POISSON LIMITS OF MULTIVARIATE RUN DISTRIBUTIONS!

By CaroL E. Fucas anp H. T. Davip

Towa State University

0. Summary. n balls on a circle are colored white or black according to n
mutually independent binomial trials. It is shown here that, when their expecta-
tions converge with n, (a) counts of runs of various lengths are asymptotically
independent Poisson; (b) counts of certain configurations other than runs yield
asymptotic correlated Poisson distributions; (¢) counts of configurations with
structure independent of n can be partitioned into equivalence classes, with
asymptotic equivalence (equality with probability one) and asymptotic inde-
pendence respectively within and among classes. It is also shown that (d) there
cannot, essentially, exist configurations whose counts, asymptotically, are
marginally, but not multivariate, Poisson.

1. Introduction. In 1921, von Mises [14] showed that the count of binomially
generated runs on a circle is asymptotically Poisson, when the expectation of
this count converges with n. This paper extends von Mises’ work in two direc-
tions: to the multivariate case and to configurations other than runs; the type
of result obtained is indicated in the preceding section.

The asymptotic normal theory of runs, multivariate as well as univariate, has
been treated by Mood [15]; related work is to be found in [6], [18] and [19].

Certain of the auxiliary results in the Appendix, specifically Theorem A.6,
may be of some independent interest.

2. Definitions. The m-dimensional distribution designated here as multivariate
Pousson has characteristic function (c.f.)

c<t17t2"";tm)

(1) m
= exp (Zi=1 azi + Zi<j @iz + 0+ OpemRize 2w — An),

where
Ap= 2010+ 2icii+ -+ Goem, @i 20, 2= exp (iLy).

This form is that used by Teicher ([17], pp. 5-6) and Dwass and Teicher ([7],
p. 467). This distribution is less general than the class of linear transformations
of it which Lotve ([13], p. 84) calls multivariate Poisson. Any multivariate
Poisson with c.f. as in (1) can be interpreted as the joint distribution of possibly
overlapping sums of independent Poisson random variables. A more general
result, applicable to a larger class of multivariate Poisson distributions, is given
by Dwass and Teicher ([7], pp. 463—466).

The bivariate Poisson will be of special interest. It has means a; 4 a1z, @2 + 12,
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and covariance as . Its correlation coefficient, given by Campbell ([2], p. 20),
isr = [als/ (a1 + a2)(as + a1)]). Note that, when a1, = 0, the bivariate Poisson
distribution is that of two independent Poissons. When a; (or a») = 0, the
bivariate Poisson will be called semi-Poisson because it assigns non-zero proba-
bility only to that half of the positive quadrant where X; < X,. When
a1 = a; = 0, the two Poisson variables (each with parameter a,,) are equal with
probability one, so that non-zero probability occurs only on the line X; = X,.

The m-dimensional distribution designated here as multivariate multiple
Poisson is defined as the joint distribution of arbitrary sub-sums of random
variables whose joint distribution is multivariate Poisson. It can also be inter-
preted as the joint distribution of arbitrary sub-sums of non-negative integer
multiples of independent Poisson random variables.

The symbols — and —; both will denote convergence in distribution, respec-
tively when the general term of a sequence of distributions and the general term
of a sequence of random variables appears on the left ([4], p. 82-83).

3. Poisson limits of run distributions. This section is devoted to the results
designated by (a) in Section 0.

Consider a circle with n positions, each of which can be filled by a white ball,
with probability p, or by a black ball, with probability ¢ = 1 — p. A “run” of
white balls of length £ is a succession of £ white balls, preceded and succeeded by
at least one black ball; similarly for a run of black balls of length I. The depend-
ence of p, k and [ on n will be brought out by writing p(n), k(n) and I(n).

Let r and s be arbitrarily selected non-negative integers. Let ko (%), @:1,2, - - - |7,
and l(n),a:1,2, --- , s, be r 4+ s arbitrary functions from the positive integers
to the positive integers, with ke(n) 5 ke(n) and lo(n) 5 le(n). Then I,(n),
a:1,2, .-+, r, is defined to be the number of positions on the circle at which a
run of k.(n) white balls begins, and Io(n), a:r + 1,7 + 2, - -+, r + s, is defined
to be the number of positions on the circle at which a run of I,_.(n) black balls
begins.

A further matter of notation is the translation of Lemma A.6, which is to be
used in the proof of Theorem 3.1, into the present context. A glossary is as follows:
m = r + s; N, = n. Also, let the event £(a, t), @: 1, 2, - -+ , r, be the beginning
of a run of white balls of length k,(n) at position ¢ on the circle, and let £(a, t),
a:r+ 1,r4+2,---,r + s, be the beginning of a run of black balls of length
la_r(n) at position ¢ on the circle; then Q, is the set of n events £(e, t),
t:1,2, -+, M, we is a subset of Q, with ¢ restricted to a subset 7o of (1,2, - -+, n),
n(we ) 18 the number of elements of w, (i.e., the number of integers in 7, ), and v, is
a particular value for n(w, ). Further, P(w) is the probability that, at least for the
n(w) positions ¢ specified by w;, the events £(1, t) materialize, and so on for
a = 2,3, -, r + s. Finally, exactly as in Lemma A.6, V(») is the class of
11 () distinet vectors (wi, ws, - - , wyy,)—in effect, starting point combina-
tions—that can be formed under the restrictions n(w,) = vq .

In order to relate the asymptotic behavior of run counts purely to the con-
vergence of the expectations of these counts, it will be useful, as a last prelimi-
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nary, to recognize two consequences of this convergence. The first of these,
discussed in Lemma 3.1, involves the order of run length; the second, discussed in
Lemma 3.2, involves the asymptotic behavior of the probabilities p(n) and g(n)
of materializations of white and black balls respectively.

LemMmaA 3.1. Suppose lim, ., E[Io(n)] = Co > 0. Then all run lengths (ko(n) in
the case of « £ r, and la_.(n) in the case of a > r) are of order at most n* log n.

Proor. Consider any a < r. Then, by definition and hypothesis np(n)**™q(n)*
= KE[I.(n)] = Capa(n), where C, > 0 and ¢.(n) tends to 1 for large n. The
equality of the left-hand and right-hand sides is now exploited in two ways. First,
the equality implies that ng(n)* Z Ca¢a(n), which, for n large, implies in turn
that — logp(n) = [Cada(n)/n)}, so that 1/— log p(n) is of order at most n'.
Second, the equality is solved for k.(n), which yields an expression whose de-
nominator is — log p(n), whose numerator is of order at most log n, and which,
therefore, is of order at most n! log n. The argument for« > r is similar.

LemMa 3.2. (a) If limy.o E[lo(n)] = Co > 0 for some « = r, then
lim,,eng(n) = <

(b) tf limyaw Bl (n)] = Co > 0 for some o' > r, then limusw np(n) = «;

(¢) if both limits pertain for some (a, o), then limy, np(n)g(n) = o.

Proor. (a) Referring to the proof of Lemma 3.1, ng(n)* = Capa(n), so that
[ng(n)]* = Canda(n); similarly for (b). (¢) Since it is assumed throughout that
ka(n) = 1, comparing the left-hand and right-hand sides in the proof of Lemma
3.1 yields np(n)q(n)’ = Capa(n); similarly, ng(n)p(n)’ = Corder(n), and multi-
plication of these two inequalities, followed by multiplication by n, yields
[np(n)q(n)]' Z CaCana(n)dar(n).

Letting I(n) be the vector of (r 4 s) counts I,(n), and C the vector of (r 4 s)
positive constants C, , we are led to

TueorEM 3.1. If lim,.. E[I(n)] = C, then I(n) —4 the distribution of » + s
mutually independent Potsson variables with parameters the respective components
of C.

Proor. We first compute the joint factorial moments of the variables I.(n),
using Lemma A.6. This will involve computing S(») = > v P(w). The de-
pendence of S(») on n will be brought out by writing S.(»). Also, setting > va
equal to K, we note that, for some set vectorsw = (w1, wa, *** , Wrps ), P(w) = 0,
because of the impossibility of beginning K runs of the required types at the K
positions specified by w. P(w) 5 0 either when the vector w specifies an arrange-
mentof K runs with no overlaps, or when it specifies an arrangement of K runs with
one or more overlaps of the following types: (1) overlap on exactly one white
ball; (2) overlap on exactly one black ball; (3) overlap on two adjacent balls of
different colors. With every vector w such that P(w) ## 0 we now associate the
vector (p1, p2, p3), where p; equals the number of overlaps of type (¢), ¢: 1, 2, 3,
occurring in the arrangement specified by ». We note that

(2) pi < K.

Tt is further convenient to define N,(p1, p2, p3) as the number of distinet vectors
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such that P(w) # 0 and such that the arrangement of K runs specified by w
shows p; overlaps of type (7). It is easy to verify that

(3) Nn(ﬁl y P2, px) = O(nK_pl_m_pa)
and, in particular,
(4) N.(0,0,0) = n*/]]ava! + o(n),

where (4 ) follows from the upper bound for run length order given in Lemma 3.1.
Recalling the definition of S(») in Lemma A.6, we also have S,(v) =

Z(m,pz.pz) Nn(Pl y P2y ps)'

T r+s

(5) IT Ip(n)*“q(n)P= II [p(n)’q(n) =7
a=1 a=r+1
p(n)p1+p3q(n)p2+p3 —
But by the given of the Athe.orem, P(n)kam)q(n)? = E[I.(n)]/n = Capaln)/n for
a:1,2, -, r,and p(n)’qg(n) =™ = E[l.(n)]/n = Cupa(n)/nfora:r + 1, -,
r + s, where
(6) ljmn—wo ¢a(n) =

Hence, substituting these expressions, as well as (4), in (5), we obtain
Su(v) = ABm)/TIe5 val 4+ o(1) 4+ 2trpewpneon N (o1, p2, ps)
AB(n)/n"p(n)" q(n)**"* where A = []22 €. and B(n) = []25 ¢u(n)™
Hence, in view of (3) and (6)

1Sa(v) — A/TTa%1va t| < 0(1)
+ X O(1/[np(n)]*Ing(n)]”[np(n)q(n)]*).

(p1:p2:03)7(0,0,0)

But py > 0 implies s = 1, p» > 0 implies » = 1, and p; > 0 implies , s = 1.
Hence Lemma 3.2 implies that each of the terms of the last summation tends to
zero. Hence, in view of (2) and (7) limpoeSa(v) = []555 €/ T8 va |, or, in
view of Lemma A.6, lim, e 4hn = Hf;;sl .* which is the »'th factorial moment
of the joint distribution of » + s mutually independent univariate Poissons. It is
clear that conditions (a) and (b) of Lemma A.4 are satisfied by the sequence
{mrn} of zero-moments corresponding to the sequence of factorial moments
{urn}. Hence Lemma A.5 yields the desired result.

COROLLARY 3.1. Iflimuaw E[I(n)] = C > 0, then the distribution of D w=y I(n)
converges to the univariate Poisson with parameter S O

Proor. Apply Theorem 3.1 and Corollary A.1.

Note that, whenr = s = 1 and ki(n) = l;(n), we have essentially the result of
von Mises [14], namely that the asymptotic distribution of the total number of
runs of given length (i.e., number of runs of both types) is Poisson.

COROLLARY 3.2. If lim,. E[I(n)] = C > 0, the bivariate distribution of the
number of white ball runs of length k(n) and the number of runs of length k(n) is

asymptotically semi-Potsson with parameters as = Cs, a1z = C .
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Proor. Apply Theorem 3.1, Corollary A.2 and the definition of a semi-Poisson
given in Section 2.

CoroLLARY 3.3. If lim,.., E[I(n)] = C > 0, the asymplotic multivariate dis-
tribution of sums of numbers of runs of arbitrary type and length is multivariate
Pozsson.

Proor. Apply Theorem 3.1 and Corollary A.3.

4. Poisson limits of configuration distributions. It has been shown above that
the asymptotic distribution of numbers of “runs” in the usual sense, under the
restriction that their expectations converge with n, is multivariate independent
Poisson. Runs can be generalized to configurations that are not asymptotically
independent; this is illustrated now, in Theorem 4.1 below.

DeriniTION 4.1. Let Uq(n) equal the number of configurations G(n), a = 1, 2,
which materialize on the circle, where G,(n) is a succession of ku(n) = 1
white balls immediately followed by a succession of l,(n) = 1 black balls,
[ki(n), bi(n)] # [ke(n), lo(n)].

Dermvirion 4.2. Let K(n) = max,[ka(n)], x(n) = ming [ka(n)], A(n) =
maxXe [lo(n)], N(n) = ming [lo(n)].

Lemma A.6 is also used in proving Theorem 4.1. The translation of Lemma A.6
is entirely analogous to that in Section 3. Thus, m = 2, N, = =, and, if the
£(a, 1), a:1, 2, is the beginning of a configuration G.(n) at position ¢ on the circle,
then Qu , wa, 7o, 7(wa), va , P(w) and V(») are defined in a manner analogous to
their definitions for the r + s run types of Section 3.

Lemmas 4.1 and 4.2, below, are the analogues of Lemmas 3.1 and 3.2; as be-
fore, these lemmas deal, respectively, with the orders of configuration length and
of [p(n), ¢(n)].

LemMa 4.1. If limy,e, E[Ua(n)] = Qu > 0, @ = 1, 2, and if [ky(n), ka(n)] =
(1, 1) and [li(n), l(n)] # (1, 1) for large n, then kl(n) kQ(n) li(n), and ly(n) all
are of order at most n’ log n.

Proor. Consider for example the subsequence of {n} for which &y(n), li(n) = 2
and kz(n), la(n) = 1. Then np(n)"*™q(n)"™ = E[Uy(n)] = Qi¢i(n), which
implies, as in the proof of Lemma 3.1, that both 1/—log p(n) and 1/—log ¢(n)
are of order at most n’. Further, as in the proof of Lemma 3.1, we find that
solving for ki(n) or li(n) yields an expression whose denomlnator is either
—log p(n) or —log q(n), Whose numerator is of order at most n’, and which,
therefore, is of order at most n log 7; this completes the proof of the Iemma since
a similar argument holds for the other eight subsequence types possible under
the hypothesis of the lemma.

Levmma 4.2. If limg e E[Us(n)] = Qo > 0, & = 1, 2, and if

limn_m p(n)K(n)—x(n)q(n)A(n)—k(n) — D, 0 é D é 1

then limy, .., np(n)X™q(n)*™ = (QQ.D).
Proor. Consider the subsequence of {n} such that

[K(n), A(n)] = [ki(n), la(n)].
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For this subsequence

mp(n)*g(n)* " = Qupr(n)q(n)* T = Qua(n)p(n) X T

)K(n)—x(n) An)—A(n) __

Since ¢(n) > 0 for large n, division is possible and p(n g(n)
[Qi1(n)/Qads(n)]. However, by hypothesis, p(n )™ @g(n)*™®™ = Dy(n),
where ¥(n) tends to 1 for large n. Hence

g(n)* ™ = {[Q,Des(n ) (n)/Qur(n)]} .

Finally, substitute this into the above expression for np(n) ™q(n)*™. Similar

demonstrations hold for the subsequences of {n} where [K(n), A(n)] =
[ka(n), Li(n)], [ki(n), Li(n)], or [ka(n), la(n)], which demonstrates the lemma.

TuaroreM 4.1. Consider the vector U(n) defined in Definition 4.1, and assume
that [ki(n), ka(n)] # (1, 1), [li(n), la(n)] % (1, 1). If limpse E[U(n)] = @ > 0
and if liMyae p(n)XP T @g(n)2™ ™ = D 0 < D < 1, then U(n) —q a bivariate
Poisson distribution with correlation coefficient Dt '

Proor. As in the case of Theorem 3.1, we begin by computing S(»), whose
dependence on 7 is brought out by writing S,(v). Also, setting »; + ». equal to
K, we note that P(w) # 0 either when the vector w specifies an arrangement of
K configurations with no overlaps, or when it specifies an arrangement of K
configurations with one or more overlaps. Such overlaps can, in this case, be of
only one type: overlap on x(n) white balls and A(n) black balls. The number of
such overlaps corresponding to a particular w with P(w) 0 is denoted by p,
and we note that p < v = min (v, »).

In addition, we define N,(p) as the number of distinct vectors w such that
P(w) # 0 and such that the arrangement of K runs specified by » shows precisely
o overlaps. It is now easy to verify that

(8) Na(p) = 27" /(n — p)1( — p)lo! + o(n"™*),

where, analogously to Section 3, the upper bound for run length order given in
Lemma 4.1 is required for (8). Further,

(9) Saly1, m) = 225z Na(p)lp(n)*@g(n)" 17"

[p(r)* P g(n) VY p ()< g ()P
But, by the given of the theorem,
(10) p(n)**@q(n) " = E[Ua(n)l/n = Qata(n)/n, a=12,

and Lemma 4.2, in addition to the given, implies that p(n)*™q(n)*™ =
(Q:1Q:D)*¢s(n)/n, where all three functions ¢ satisfy

(11) limn—no ¢(n) = 1.

Now substitute (8) and (10) in (9). Then, using (11),

L4 vi—p) v2—P 0l2
Sn(Vl 5 V?) = Z Ql Q2 (Q1Q2D)

=0 (n — p)l(ra — p)!p!

+ o(1),
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so that the limit of »; ! v3 | S,(»1, »2) is the factorial moment of order (v;, ;)
of a correlated bivariate Poisson distribution with marginal means @, and Q,
and correlation coefficient D}([2], pp. 20-21). Arguments analogous to those
used at the end of the proof of Theorem 3.1 then show that U(n) tends in distribu-
tion to this correlated bivariate Poisson.

Theorem 4.1 leads to several corollaries, stated below with the given of Theorem
4.1 implied.

CoroLraRY 4.1. When D = 0,0 < D < 1, 0r D = 1, U(n) 1s respectively
asymaptotically bivariate independent Poisson, bivariate correlated Pozsson, or
bivariate singular Poisson.

CoROLLARY 4.2. When Q1 < Qs and D = Q1/Q, the asymptotic distribution of
U(n) us semi-Poisson with parameters as = Qs — Q1 and a;; = Q.

CororLLARrY 4.3. Ui(n) + Us(n) is asymptotically univariate multiple Potsson,
with parameters Q, + Q; — 2(Q:Q:D)! and (Q:1Q:D)".

Proor. By Theorem 4.1 and Equation (1) in Section 2, the asymptotic dis-
tribution of U;(n) + Us(n) has characteristic function

c(t,t) = exp[A(z — 1) + B(z* — 1)],

with 4 = @ + Q@ — 2(QQ:D)* and B = (Q.Q,D)*; this is the characteristic
function of P, 4 2P;, where P; and P, are mutually independent univariate
Poissons, with parameters respectively A and B.

CoROLLARY 4.4. When D = 1 and @ = @, = Q, Ui(n) + Usz(n) asymptotically
ts distributed as 2P, where P is a Poisson with parameter Q.

Proor. As for Corollary 4.3, but with the given particular parametric values.

6. Limit distributions of arbitrary configurations of fixed structure. This sec-
tion discusses briefly the asymptotic multivariate distribution of numbers of
configurations on the circle, under the conditions (a) that the structures of the
various configurations involved remain fixed as n becomes large, and (b) that
the expected number(s) of the configurations whose pattern has (have) the fewest
white balls is (are) convergent with n. This asymptotic distribution is a special
case of the multivariate Poisson in the sense that it can only involve mutually
independent, equivalent (random variables which are equal with probability
one), or degenerate random variables (random variables which are zero with
probability one.)

Consider white and black balls from a binomial population arranged on a
circle, as in Section 0. Let p(n) be the probability of a white ball. Let W:; be
the number of configurations of type (i7) appearing on the circle where { =
1,2, - -, m enumerates distinct white balls patterns (e.g. oxo and oxoxx have the
same ¢), whilej = 1, 2, .- | r; enumerates different black ball patterns super-
imposed on the zth pattern of white balls. Let k; be the number of white balls in
configuration (4j). Let & = min; k;. Details of derivation will be omitted, but it
is clear that, under the condition np(n)* — \, the asymptotic character of the
joint distribution of the D r; random variables W; follows from the following
asymptotic considerations: (1) configurations with more than k white balls occur
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with probability zero; (2) black balls materialize with probability one, so that,
for the configurations with % white balls, only the white ball pattern matters;
(3) indeed, any two such configurations that have the same white ball pattern
occur simultaneously with probability one, with the respective counts equal,
while two such configurations with differing white ball patterns occur simul-
taneously with probability zero, with the respective counts independent. These
considerations lead to

Concrusion 5.1. Configuration counts for configurations with &; > % tend to
zero in probability; configuration counts for configurations with k; = % tend in
distribution to that of several sets of Poisson (parameter \) variables, with
mutual independence among sets, and equivalence within.

Concrusion 5.2. By Lemma A.1, D 7y > i Wy tends in distribution to
the distribution of ) ., 7:P, , where the P; are mutually independent Poissons
with parameter \.

6. The prevalence of multivariate Poissons as limit distributions of configura-
tions. The theorem presented in this section states sufficient conditions for the
asymptotic joint distribution of arbitrary configurations on the circle to be
multivariate Poisson. It is based on the fact that the only infinitely divisible dis-
tribution with Poisson marginals is the multivariate Poisson ([7], p. 467).

This theorem essentially eliminates the possibility that configurations on the
circle may exist whose numbers are asymptotically marginally Poisson but whose
joint distribution is not multivariate Poisson.

THEOREM 6.1. Let Yo(n), @ = 1,2, -+, m, be the number of arbitrary con-
figurations Ho(n) of ka(n) = 1 white balls and l.(n) = 1 black balls, materializing
on n positions of a circle. Let

(a’) [kl(n)7 R} km(n)] # <1y ) 1) and [ll<n)7 R} lm(n)] # (17 ) 1)
Jor large n, and E [Yo(n)] — Ao ;

(b) on any arc of yn + o(n) successive positions,

Y(v,n) = [Yi(v, n), -+, Yu(y, n)] =4

a multivariate distribution whose marginals are Poissons with parameters v\,
5 Y\m , where Ya(7y, n) is the number of configurations H.(n) materializing on
this arc.
Then Y(n) = [Yi(n), -+, Yu(n)] —q a multivariate Poisson distribution.
Proor. By assumption (b) with v = 1, Y (n) —,; a multivariate distribution
with Poisson marginals. To prove that this multivariate distribution is Poisson,
we show that it is infinitely divisible, since, by [7] p. 467, the only infinitely
divisible distribution with Poisson marginals is the multivariate Poisson.
Consider an arbitrary positive integer M. Divide the circle into 2M arcs, M
of them large and 3/ of them small, with the small arcs alternating with the large
ones. The type of argument given in Lemmas 3.1 and 4.1 will hold also here under
assumption (a) so that there will exist a constant L such that, for large =, con-
figuration length will be less than Ln log n. Let a large arc have length = n/M —
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Ln! log 7, a small arc have length = Ln’ log n, and let all large arcs have exactly
the same length. Let the random m-vector e, count the configurations

Hy, ---, H, beginning on the first small arc, and similarly for e yn, -,

€x,u.n - Let the random m-vector Yy, count the configurations Hy, -++, Hn

that begin on the first large arc, and similarly for Y3 40, -+, Y 2rn . Then
Y(n) = 25 Yiun + 2iieiun = A(M,n) + B(M,n).

But each of the components of a particular €;,x., converges to zero in proba-

bility, by-assumption (b). Hence B(M, n) converges in probability to (0, - -+, 0),

so that Y(n) and A(M, n) converge in distribution to the same distribution
([4], p. 300). Hence, by the multivariate continuity theorem ([4], pp. 102-103),
the c.f.’sof Y(n) and A(M, n), say c.(t) and Cy ,(¢), converge to the same limit
c.f., say c(t). :

However, cu,(¢) = [¢a(¢)]", where ¢,(t) is the c.f. of Y u,. , since the ¥, .,
are independent in view of assumption (a) and the choice of L, and are identically
distributed in view of the assumption that all large arcs have exactly the same
length. Hence ¢(t) = liMyae, [¢n(¢)]Y = [liMpaew ¢a(¢)]", where lim,. ¢a(t) is a
c.f. by assumption (b).

APPENDIX

The first auxiliary result is a special case of a theorem by Chernoff ([3], p. 8,
[1], pp. 146-147).

LEmMa Al Let {®.} be a sequence of probability measures on R, . Let f =
(fr, fe, -+, fo), where fo is a sub-sum of components of x € Ry, a: 1,2, -+, q.
Let W, be the probability measure induced on R, by f and ®, . Then, if , — &,
then W, — ¥, where ¥ s the probability measure induced on R, by f and P.

Lemma A.1 yields

Cororrary AL If X;™, X,™, . X,™ —; a multivariate independent
Poisson with parameters a; , then Y r—y X;™ —q a univariate Poisson with param-

eter D 71 a;.

Corornary A.2. If X, X,™, -+, X, —, a multivariate independent
Poisson, then subset sums of the X, —q a multivariate Poisson.
Cororrary A.3. If X,™, X,™, ... | X, —, a multivariate Poisson, then

subset sums of the X;™ —4 a multivariate multiple Potsson.

Another useful auxiliary result, due to Cramér and Wold ([5], pp. 291—292),
generalizes a sufficient condition proposed by Carleman for determinacy of the
Hamburger moment problem ([16], pp. x1, 1, 4, 11).

LeMmyMa A.2. Suppose there exists at least one m-dimensional probability distribu-
tion ® with zero-moments pyy ..., 371, **+ ,vm = 0,1,2, «++ . Let Ay = oz 0,... 0 +
oo o, 00 - Then, if D ey aw ™ diverges, ® is substantially unique.

Lemma A.2 now yields

Lemva A.3. The moments of the multivariate Poisson distribution satisfy the
condition of Lemma A.2.

Proor. For i sufficiently large, all kth order marginal univariate Poisson
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moments do not exceed 2(k*), so that Ay < 2m(2k)™, and the series D pei \ap
diverges.

In the body of this paper a sequence of moments is considered which cor-
responds to a sequence of distributions {®,}. When these moments converge to
those of the multivariate Poisson, the question arises whether or not the latter
distribution is indeed the limit of the sequence of distributions {®,}. The following
theorem by Haviland ([11], p. 632) gives sufficient conditions under which con-
vergence of moments implies convergence in distribution.

Lemma A.4. Let {®,} be a sequence of distributions on R, such that

(a) the zero moments py,,... v,(®n), va : 0, 1, - - -, exist for all n;

(b) oy, eor,n(@u)| £ K1y -+, vm) forallm, ve : 0, 1, - -+

(¢) liMpaw oy, wn(Pn) = Moy eee v, €ists for all v, : 0, 1, ---

Then there exists at least onme distribution, say ®, such thal p,, ..., () =
Brg,eee om 5 and a subsequence {®n,} can be extracted from {®,} such that ®,, — .

If, in addition, the sequence {py, vy, .. v} 18 such that ® s substantially unique,
then the sequence {®,} itself — &.

Lemmas A.2, A.3 and A.4 now lead to

LeMMA A5, Let Ny,oooy, 501, = yvm = 0, 1,2, -+ | be the moments of a multi-
variate Poisson distribution ®. Consider a sequence of distribution {®.} defined
on R, with moments py,vy,... v, (®n). If these moments satisfy conditions (a) and
(b) of Lemma A.4, and if liMuacw oy g, 0 @n) = Noyva,eee v » then &, — .

The final auxiliary result, stated below as Lemma A.6, will be used to obtain
the factorial moments for the distribution of numbers of runs and numbers of
other configurations. In the univariate case, this result has been derived and used
by von Mises [14] and by Fréchet [9], and has recently been rediscovered by Iyer
[12]. The multivariate result is easily derived either by extending the arguments
of Fréchet and von Mises, or that of Iyer.

LeEMMA A.6. Consider a finite set Q of events, divided in some fashion into m
subsets Q. containing respectively N, events. Let w, be a particular subsel of Qe

containing n(w,) events. Let P(w) = P(w1, -+, wn) be the probability that all
>~ n(wa) events in w, materialize, and let V(v) = V(v»1, --+, vm) be the class of
all (31) --+ (3 set vectors (w, - - , ww) that can be formed under the restriction
n(Wa) = Ve, a: 1, -+, m. Finally, let I = (I, -+, In) be the m-dimensional

chance variable whose ath component counts the number of events of Q. that ma-
terialize. Then, if w~* = pn oo 18 the factorial moment of order v of I, w =
S) [Tzt (va 1), where S(v) = D_vey P(w).

The content of Lemma A.6 is illustrated by considering five events E,, E.,
Eg, E4, E5WlthPl‘ {E], Eg, E3, E4, E5} = %and Pr {El, Eg, E_3, E4, 75} =
Pr {E], EQ, E3, E4, Es,} = Pr {El, Ez, E3, E4, E5} = fl;. Then lfQ] IE], EQ
and @ : By, Es, Es, ple = E[(I)(IL)(I, — 1] = (2)(3)(2)(3) + -+ +
(1)(3)(2)(%) = 73, while 8(1,2) = Pr{E:; By, Es} + -+ + Pr{Ey; By, Iy
=G+8+ -+ G)=3%
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