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1. Summary. Asymptotic expansions are derived for the behavior of
the optimal sequential test of whether the unknown drift 4 of a Wiener-
Lévy process is positive or negative for the case where the process has
been observed for a short time. The test is optimal in the sense that it is the
Bayes test for the problem where we have an a prior: normal distribution of u,
the regret for coming to the wrong conclusion isproportional to |u| and the cost
of observation is one per unit time. The Bayes procedure is compared with the
best sequential likelihood ratio test and with the procedure which callsfor stop-
ping when no fixed additional sampling time is better than stopping. The de-
rivations allow for generalizing to variations of this problem with different cost
structure.

2. Introduction. In the Fourth Berkeley Symposium on Probability and
Statistics Chernoff [3] indicated that the problem of sequentially testing whether
the mean drift of a Wiener-Lévy process is positive or negative, given a normal
a priort probability distribution, was relevant to the problem of deriving an
asymptotically (as sampling cost approaches zero) optimal sequential test of
whether the mean of a normally distributed variable is positive or negative. (The
relationship between the two problems is examined in detail in [4].) The former
problem was reduced to the solution of a free boundary problem involving a
diffusion equation.

Subsequently Moriguti and Robbins [8] and Bather [1] derived asymptotic
expansions for the optimal procedure and Bayes risk for time ¢ large, i.e., for the
case where the process has been observed for a long time. Breakwell and Chernoff
[2] also derived these expansions and proved that they were valid in the sense of
yielding asymptotic approximations to the desired optimum boundary and the
corresponding risk. In Section 3 of the latter paper there is a brief review of the
results and notation of [3], which is urgently recommended to the reader of the
present paper. The case where ¢ — 0 is studied in this paper. Although this cor-
responds to the beginning of sampling in the normalized problem, it is relevant
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to large sample situations when the cost of sampling is small. In fact, suppose
that in a realistic version of the problem the scales are such that each observa-
tion has variance 1, the cost of making the wrong decision is roughly 10°|u/, the
a priori probability of u has variance 1 and the cost per observation is 107, Then,
in the normalized problem the starting point is set at (uo, fy) where f{; = 10™*
and the discrete problem involves time steps of length 8 = 107, Then after a
substantial number of observations one will still be in a case of ¢ small.

In Section 3, a formal derivation will be presented of expansions for the free
boundary and the Bayes risk for the optimal solution. This derivation involves a
special solution of the heat equation. The motivation for the use of this solution
is briefly indicated in subsequent sections but can be bypassed and is no longer re-
quired. In Section 4 alternative expansions are presented. These have the ad-
vantage of being easier to compute and somewhat more elegant.

The problem of proving that these expansions do represent asymptotic ap-
proximations to the solution for small ¢ is then attacked. In Section 5 it is shown
that the expansion for the boundary is an asymptotic approximation. In Section 6
the same is done for the Bayes risk. The latter proof involves a representation of
solutions of the heat equation which appears in Goursat [7]. This representation
is particularly well adapted to our free boundary problem for it involves the
value of the solution and its partial derivatives on the boundary both of which
are described by our boundary conditions. The proofs in these two sections have
been complicated substantially by the requirement that they be adaptable to
variations of the stated problem. Simpler proofs could be presented which apply
the symmetry of the special stated problem.

Section 7 is devoted to methods of deriving bounds on the behavior of the
boundary and risk. This section serves two purposes. First it indicates some of the
motivation which led to the formal expansions and the arguments used in pre-
ceding sections. Second, we describe the boundary and risk for the procedure
which consists of stopping at a point where there is no fixed sampling time which
will do better than stopping. This procedure arises naturally in this section be-
cause it leads to stopping early, thereby providing useful bounds. At the same
time it is relatively easy to evaluate.

In Section 8 we compare the optimal procedure with the best procedure of the
Wald type when the a priori probability distribution of u has large variance. In
Section 9 we decompose the Bayes risk of the optimal procedure into a Sampling
risk and risk due to Error. Finally in Section 10, we discuss briefly the important
question of the operating characteristics of the optimal procedure. That is to say
we comment on the expected sample size and error probability corresponding to
a specified 4 when the Bayes procedure is applied. These characteristics are funda-
mental to a proper evaluation of the procedure for cases where the a priors nor-
mal assumption is not necessarily valid.

To facilitate reference we terminate this introduction by supplementing the
reference to [2], Section 3, by a brief outline of some of the notation we shall use.
The statistician observes X; = ut + Z, where Z, is a Wiener-Lévy process of inde-
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pendent Gaussian increments with mean zero and variance one per unit time.
The a priori probability distribution of x4 and a starting point (x, , &) are chosen
so that given X, = =z, the a posterior: probability distribution of x is normal
with mean ™" and variance ¢, i.e., 9(z¢ ™", ¢ '). Then we represent the risk due
to additional sampling and error probability by B(z, ¢) and the risk due to stop-
ping by D(z, t). In our problem D(z, t) = ¢ " (at™) where ¥(a) is symmetrie
and ¥(a) = ¢p(a) — e[l — ®(a)] for « > 0, and ¢ and P are the normal density
and cdf respectively. For a given procedure represented by a continuation region,
B satisfies the equation 1 + B, + 2t 'B, + 1B,, = 0 subject to the restriction
B = D on the boundary. For the optimal procedure B, = D, on the boundary.
We shall find it convenient to transform to y = ¢t and s = ¢ . In these vari-
ables the differential equation and boundary conditions for u(y, s) = ¢t + B (z,t)
are

Us = FlUyy .
(2.1) u=s"+ sy(ys™) on the boundary
uy, = —[1 — ®(ys )] on the boundary.

1
Z

The variable & = ys~ = 2t will be used throughout the paper.

3. A formal expansion. To derive our formal expansion we shall consider
solutions of the heat equation of a special form and apply the two boundary
conditions alternately to obtain successive terms in the expansions for the bound-
ary and optimal risk. The proof of the validity of these expansions is given in
Sections 5 and 6, and some remarks on the motivation appear in those sections
and Section 7. The special form of solution of the heat equation is

(3.1) u = Ks'p(a) + 20(a)[7 ¢*cosh ab — 1]f(s'b) db,
while the boundary will be represented by an expansion of the form
(32) B=1logs = (’/3) + ko + ko> + koa™* + - = (a’/3) + ko + 7.

First we indicate that « is a solution of the heat equation. It is easy to see that
s%p(s ty) is a solution for s > 0. Similarly f s7[s H(y — y')] dF(y"), which is
a heat potential with sources distributed along the y axis is a solution provided
the integral converges. A mass of K for dF at y’ = 0 provides the Ks %o(a) term
of the proposed solution. Elsewhere let dF/dy’ be represented by the symmetric
density f(y') which is compensated for by the mass — f f(y')dy aty = 0.

Setting y' = s'b, this process yields
(33) g(a, s) = [Tlo(a — ) + ¢(a + b) — 20(a)lf(s'b) db
' = 2¢(a) [7 ¢ [cosh ab — 11f(s'b) db.

To assure convergence to a solution some regularity conditions are required.
For the above representation it suffices that (i) f be measurable while
f(y) exp (—ey’) — 0 as y — o« for each ¢ > 0 and (ii) 4°f(y) be absolutely in-
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tegrable in every finite interval. Thus, as y — 0, f(y) may approach infinity like
y " log y without causing difficulty.

Now we note that along the boundary, the term Ks () is relatively negli-
gible. To be more specific, along the boundary represented by (3.2), a = sy =
[3log s + O(1)J. Then sp(a) ~ s and its partial derivative with respect to
y, —s ‘ap(a) ~ s (log s)!. (We use the symbol ~ so that f ~ g means that
f/g is bounded away from 0 and <. The symbol & is used for formal expansions.
It is also used in the asymptotically equivalent sense. That is f % 0 —|— -+,
means that [f — (g1 + - -+ + ¢,)]/g- — 0.) On the other hand s + s g&(a) ~s
and 1 — &(a) ~ s_%(log s)7* along the boundary. From this it will follow that
at the boundary the main part of » and wu, is contributed by g.

The function g may be approximated for large o by use of a simple argument
similar to that used in the method of steepest descent For large , we have the
formal expansions

9la, 8) = E* {fls'(a + O} = f(s @) + 3 f‘”(* a)

(34a)
132(4)(%)+ 353f(6)(s )
and
da(a, s) & E* {ef[s'(a + ©)]} = s V% ) + 13;‘%3%]’(3)(8%)
(3.4b) )

+ 120G ()

where e is regarded as normally distributed with mean 0 and variance 1 and E*
is the expectation operator applied after the operand has been expanded in a
power series in e. These expansions are asymptotic approximations if the deriva-
tives of f are sufficiently well behaved.

Neglecting the Ks ¢(a) term, the boundary conditions of (2.1) transform to
(3.52) E*{fls'(a + Olf = s + s'¥(a)
(3.5b) E¥ef[s(a + €)]} = —s'[1 — ®(a)].
Substituting (3.2) in the right hand side of (3.5) and using the expansions
([6l, p. 179)

(36a) 1 —®(a)~o(a){a” —a® +l (1-3)a™® — 1350 + ---}

(3.6b) Y(a) X pla)fa” — 1-3a* + 1:3:5a"° — -1,
we have the boundary conditions
(3.72) EXfld(a + I} & sH1 4+ (2r) ™[0 — 307 + 150" — - -]}

(3.7b) E*{ef[s'(a + €]}
~ —s ' (2r) e 0T — o+ 307 — 152 + -]
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Let us compute a few terms in the apparently natural expansions of f and 8
which satisfy (3.7) in order to see how the other terms are derivable. Starting
with the approximation

(3.8a) fo(z) = 62 logz = 32" log 27,
the s terms match in equation (3.7a) and equation (3.7b) leads to

(2r)F exp (3ko/2) = 2

or
(3.8b) ko = (log 87)/3.

We apply the resulting approximation

(3.9) B~ B = (a’/3) + (log 8n/3)

to (3.7a), substituting sa” for 2” in the argument of f and we obtain a discrepancy
(right side of (3.7a) minus left side] which is

(3.10) —(sa®) {3 log o’ + log 8 + 1 + 0*(a™?)}

where 0*(a™") is used to represent an expression which is bounded by some
power of log o’ divided by o™ as a — . To compensate for this discrepancy we
apply a correction to fo making use of the fact that if o’ ~ sd’, log [3 log 2] ~
log o since log s = 8 & */3. This gives

(3.11) fi(z) = 27*{3log 2’ — 3 log [log 2"] — 3 log 3 — log 8« — 1}.
This approximation combined with (3.9) yields a discrepancy in (3.7b) which is

(3.12) 2(sa) 3o + 0% (o)}
and the main part of this can be compensated for by the approximation
(3.13) = (o’/3) + (log 87/3) + 2a".

We are now in a position to state and prove the following theorem about the
existence of a formal expansion.
TuroreEM 3.1. There are expansions of the form

(3.14a) B = log s~ (’/3) + (log 87/3) + Kia™" + Koa™* + -+
= (o"/3) + (log 8r/3) + 7

and

(3.14b) f(z) ~ 32 *(log 2*){1 + Pi(log z*)™" + Py(log2”)™> + - -}

where the K, are polynomials in log o and the P, are polynomials in log [log 27]
with the following property. If 8. and f. represent the above expressions with the
sums terminated with K, and P,(log &*)™", substitution in equations (3.5a)
and (3.5b) leave discrepancies of s 0™ (a>™") and s70*(a™*™") respectively.



SEQUENTIAL TEST FOR NORMAL III 33

Proor. First we note that substituting 8, and f, in both sides of (3.7a) and
(3.7b) leads to asymptotic expansions. Each side of (3.7a) can be represented
by an expansion of the form s {1 + Qa2 + Qoo™ + - - -} where Q; is a generic
polynomial in log o’. Each side of (3.7b) can be represented by an expansion of
the form —2(sa) ™1 + Qa2 + Qua ™ + - - -}. Of course the generic polynomials
Q: are not to be assumed to be equal to one another.

Let us assume that the theorem holds for a certain value of » = 0. As we have
already seen, it does hold for » = 0 and 1. We observe that adding 27*(3 log 2?) ™" -
P{log (3 log %)} to f, has the effect of increasing the left side of (3.7a) by
s"'a ""P{log ¢’}{1 + 0*(a™?)}. Furthermore it has the effect of changing the
left side of (3.7b) by s0¥(a™*™). It does not affect the right hand sides of
these equations. Since the theorem applies for 7, the first  Q’s match on both sides
for the expansions of (3.7a) and (3.7b). By letting P be the discrepancy of the
two Q41 for equation (3.7a) the resulting f which we call f,.; reduces the dis-
crepancy in that equation to s7'0*(a™*"). Equation (3.7b) still has a discrep-
ancy of s '0*(a™*7™).

Now we observe that adding K (log ”)a """ to 8, does not change the first
(r + 1) @’s of the left hand sides of equations (3.7). Basically this is so because
the change in g is equal to 8, O*(a—‘H’), the change in log sa’ is equal to the
change in g, and the change in log [log sa’] is 0*(a~*™"). On the other hand the
right hand sides are changed by 3s o * K (log o*)[1 + 0* (o )] and —3s ">
-K(log o)[1 + 0*(a")] respectively. Thus by setting K equal to the difference
of the Q.11 on the two sides of equation (3.7b) we can match the first (r + 1) Q’s
of both sides of this equation without affecting the corresponding Q’s of (3.7a).
Hence the result holds for r 4 1, and the theorem follows.

It should be noted that f, is not defined for all z. If we replace z* by 2° + 2 in
the expression (3.14b) then log [log z°] and hence the new f, are defined for all
x. All of the asymptotic expansions of this section are unaffected. Furthermore
the integral (3.3) is now defined when f is replaced by the new f, .

In Section 5 we shall study the corresponding g. We remark here merely that
while g is large compared to Ks_%go(a) near the boundary, it is relatively small,
O(s™" log s), for bounded a.

4. An alternative formal expansion. An alternative method of obtaining a
formal expansion is somewhat easier for computational purposes. Essential use
is made of the function f,*(z) which is defined so that fof(z) = s when
z = [s:(31log s; — log 8 )]*. This function was selected because s 8%1//(0() ST
along the boundary and, using the approximation 8 of the previous section,
ie., logs &~ (a’/3) + % log 87, we have

sa $'[3 log s — log 8!
and hence

E*fo*s(a + O} & fo*(sha) & 570
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A tedious computation indicates that an analogue of Theorem 3.1 applies
using expansions of the form
(4.22) f(z) = fo*(2) + e + ea” (W7 (@)]7 + ™ U (@) + -
and
(4.2b) o = 3wl + kw ™+ kaw® F -+ -]
where the ¢; and k; are constants and
(4.2¢) ‘ w = log s — %log 8«

corresponds to the approximation for o’/3 based on ;. The constants thus far
evaluated are

1 = —1, Cy = —3, 63—“=g-];,
2
(4.3a)
o — —3193) . — 90179) . _ —27(28937)
T e ST T 5= 20
and
-2 -5 —22
=g Reg RE
(43b) 427 16,184 17,152
— —186, . =17,
M= B= s 0 BT e

The following consideration is basic to the convenient computation of the
above constants. If

¢ = —log fo*(x) — % log 8,
z + log z = log 2°/3 — % log 8,
de/dx = (1 + 2)7(2/x),

and the derivative of [fo™(z)] "'z "% " is [fo " (¢)] "=~ "**" multiplied by a series
in descending powers of z.

5. Asymptotic approximation to the optimal boundary. The object of this
section is to establish that the formal expansions of Sections 3 and 4 yield asymp-
totic approximations to the optimal boundary. The proof will be preceded by
several lemmas that detail properties of the function ¢ defined by

(5.1) gla, s) = [ [e(a — b) + o(a + b) — 20(a)]f(s’b) db
where
(5.2) flz) = 32"+ 2)7" log (2" + 2)
{1 + [log (2% + 2)]7'P1 + -+ - + [log (2* + 2)]7'P;}
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and the P; are polynomials in log [log (¢* 4+ 2)]. Several related quantities which
are studied are

(5.3) Ax(e, s) = gla, s) + Ksp(a) — s — s¥(a),

and éx(s), the positive value of «, if any, for which Ag(e, s) is maximized. Let
0x(s) be the maximum value. Finally let ax”(s) be the greatest value of a, if
any, for which 0 < a =< dx(s) and Ag(e, s) = 0.

LemMma 5.1 (a) Ass — o,

9 g(a, s)

v O(s™'log s) for each integer 1 = 0,1,2, --- .

(54) SUP.

(b) For fixed s and large «, and each integer © = 0, 1,2, -+

2 gle,s) g(a.’ 8~ (=1)7 30 + 1)1 (507 log (5a?).

(5.5) .

(¢) Equation (5.5) also holds for large s when a is bounded away from zero.
Proor. First we establish (b). Fix s and let « — «. Then

g%]i B fom Q‘i’%&i_—b) f(s’) db + Ola’e(a)]
~ E*{H*()fls(a + o]}

where H;*(¢) is the sth order Hermite Polynomial in ¢, which is orthogonal to
(uncorrelated with) the first ¢ — 1 powers of e. Hence

a_g ~ s ﬂ sl &~ (=1)3( + 1)! (sa™) " log (s).
da’ ox?

Now we proceed to (a). For convenience we take s > e.

(56) 29— 5 f 52 2 (e — b) + ola 4 b) — 20(a)]-sb(s') db.
dat o da’

For0 b £ 1, b0 e(a — b) + (e + b) — 20()]/da’| < Ji(a) exp [a — 3a’]
whereJ1(a) is a polynomial in o”. Also |sb*f( §'b)| < Jzlog s whereJ; is a constant.
Hence the interval from 0 to 1 contributes to (5.6) an amount bounded by
Ji(a)Jzexp (a — 3a?)s logs = O(s ' logs). Forb > 1, [f(s')| < Js(sb") " log sb®
< Jss " log s where J; is a constant. The partial derivatives in the integrand are
uniformly bounded and (a) follows.

For the sake of brevity we shall prove (c) only for the case ¢ = 0. Takes > e,
a > 2 and for given £, 0 < ¢ < 1, we decompose the integral into the parts from
0toltoa(l — &) toa(l + £)to «. The contribution from 0 to 1 is bounded as
above by J1(a)J2 exp [a — (/2 )]s~* log s. The contribution from 1 to a(1 — §)
is bounded by Jss~ log s ®( —at) where J4 is a constant. The same bound applies
to the part from a(l + £) to «. Finally for a(1 — §) < b < a(1 + £),
(s')/f(sta) — 1] < Js(&) for s > s(£) and @ > a() whereJ5(§) —0as £ — 0.
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It follows that given ¢ > 0, there exists £(¢) such that for s > s(¢) and o > «(£),
[eaiB le(a = b) + o(a + b) — 20()lf(s'®) db — f(s'a)| = f(sa).
Combining the various segments, we have
lg(a, 8) — f(s'a)| = §f(s'a) + Jo(a)s™ log s exp (—a't/2),

which implies (¢) for ¢ = 0. For z > 0, f must be treated more carefully for the
section a(1 — &) to a(1 + £).

LEmMa 5.2. (a) For large s, (in this lemma “large s may depend on K as well
as the particular form of f),

(5.7) éx = {3logs — log 87 + o(1)}}
6§K>O and 66Af<0 for a < ax while %Af<0 for a> éax.

(’)AK

(b) For o’ 3logs—log81r+c—l—o(1), —257 e

(¢) Decreasing K increases ax and decreases Gx(s) monotonically and con-
tinuously.

(d) For large s, ax” ~ (3 log ) exists if 0x(s) = O and s nonexistent if
0x(s) < 0. In the former case, increasing K decreases ax (s) monotonically.

(e) For large s, Ax < 0 for 0 < a < ax*(s) when ax*(s) exists positive.

PROOF The first and second derivatives of Ks~ qo(oz) with respect to « are
—Kslap(a) and Ks (o — 1)o(a) respectively. The first and second deriva-
tives of s + s'¥(a) with respect to a are —sl[1 — ®(a)] ~ —s%a_lqp(a) and
s'o(a) respectively. Applying Lemma (5.1a) for o® < log s and Lemma (5.1¢)
for o > log s, parts (a) and (b) follow. Parts (¢), (d), and (e) are trivial.

Consider the function f in (5.2) where the P; are obtained from the expansion
of Theorem 3.1. with «” replaced by z* 4+ 2. Adding (subtracting) the constant
one to (from) P,, we designate the resulting function f*(f~). We label the
corresponding g, A, & a¥, 8 ete. with the superseript -+ (—) and the subscripts
Kr. Let 8, represent the sum of the terms thru K,o ™ in the expansion (3.14a)
and let a,.(s) represent the inversion of 3, . Our object is to prove that the optimal
boundary & is approximated by a.(s).

LemMa 5.3. For s large,

05:(s) ~ s'(logs)™, 0xr(s) =~ —s (logs)™"
éx.(s) = a, + o(log s)™, agr(8) = a, + o(log s)™"
r/2

ag(s) =~ a, — (log s)™

Furthermore both OK,(s) and 0x.(s) are monotone in s for s sufficiently large.
Proor. According to Theorem 3.1 and its derivation, the use of the terms
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thru (log 2°) P, and K,o ™ in the expansions for f and 8 yield a discrepancy
Axe(a, 8) ~ s70%(a*™) and %‘f—' ~ §70%*(a™¥ ™). Hence Afr(a,, s) ~

3x.(ar, 8)
da
Lemma 5.2b, d5, — a, = oflog s|™" and A%,(a,, s) = 6%, &~ s'(log s)™". The

same arguments apply to 6x, and ax, . Moreover oz, exists and afy — di, &

s '(log s)™" and ~ s70*(log )™ = o[s™(log s)™"]. Applying

(log )™, completing the first half of Lemma 5.3.
For large s,
e &, .. d . N9k . ..
5 = a—gAK(ax ,8) + é—g!Ax(aK, ) s = 38 Ax(éx, 8).
Since g + Ks*o(a) represents a solution of the heat equation, and s + s*¢(a)
corresponds to the solution of a modified version of it, it follows that % =

s 8°Ax(éx , 8)
2 da?

the proof of Theorem 3.1 can be differentiated termwise to give asymptotic ex-
pansions for the partial derivatives with respect to «. Substituting in the above

4+ s = 0(s?). The asymptotic expansion for g and s*x// used in

o
ds
plete cancellation. In both the cases of 0%, and 0x, , cancellation must fail for some

. . 2 =22 ’ .
equation and canceling we get s Qréx for some r unless there is com-

*" £ r. In each case, for s sufficiently large cgi: will have only one sign determined

by the polynomial Q, . Clearly 63, is decreasing since it is positive and approaches
zero. Similarly 6x, is increasing,.

LemMA 5.4. For large s, & = o, — O*[log s]

Proor. For s sufficiently large, say s > s, 65, > O. Increasing K from zero,
increases 6%, , decreases dx, and decreases af; wherever it exists positive. By
increasing K sufficiently, we obtain A},(a, ) >0for0 = a < &I,*,(so). Hence
oxT represents the boundary of a region which corresponds to a truncated se-
quential procedure. In this region g, + Ks7%(a) satisfies the heat equation.
At ordinary points of the boundary ¢,* + Kst = s + s%zp(a). If, however,
o7 has discontinuities, this equality may fail. But, the fact that A%, > 0 be-
tween axs and &f, implies that ¢," + Ksl =2 s + s'Y(a) on the boundary.
Hence ¢,7 + Ks% is the risk (B + t value) corresponding to the truncated
sequential procedure with a possibly increased stopping risk. Then the optimal
Bayes risk u satisfies u(as’, s) £ ¢,7 4+ Ks % inside the region. Now for s suf-
ficiently large, ie., s > s(K), ¢.7 +Ks7% < s + sfy(a) for 0 < o < off
(Lemma 5.2¢) and hence u < s + s'¢(a) there. But this inequality charac-
terizes continuation points for the optimal procedure. Thus & = az, fors > s(K).
Applying Lemma 5.3 yields the desired result.

Lemma 5.5. For large s, @ < o, + o(log s)™".

—r/2
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Proor. Select so so that 6;,(s) < 0 for s > s,. Decreasing K reduces 6%, and
increases éx, . For K sufficiently negative,

S = sup. [g- (@, o) + Kso_%go(a) - u(aso%, s0)] < 0.

Since 6x-(s) is monotonic increasing (to zero) for s sufficiently large, there is an
s; such that 6x,.(s;) > S and 6x.(s) < 6x-(s2) < O whenever s, > s > s and
82 = s1 . Now suppose that & > éx, for some s; = s;. Then

h =g~ + Ks(a) — 6xr(s2) — u(as’, s)

satisfies the heat equation in the region bounded by s = s and (*a(s), s) for
s > sy . Furthermore it is negative on that part of the boundary of the region
corresponding to s < s;. Thus h(dxr(s2), s2) < 0, and hence

u(Gxr(s2)8, 82) — [s7" + shp(axr(s2))] > 0

which is impossible. Hence @ < éxr = a, + o[log s] " for large s which is the
desired result.
THEOREM 5.1. & — o, = 0*[log s
Proor. Applying Lemmas 5.4 and 5.5 @ — a» = o[log s]™""*. However

a1 — o = 0*(log s)™*

—7—3

and hence

o — a, = 0% (log s)™} for ' > 7.
Let ' = 2r + 3, and it follows that

& — a, = 0*(log s)™ %

Theorem 5.1 is the desired result that the expansion (3.14a) of Theorem 3.1
furnishes an asymptotic approximation to & Essentially the same method could
have been used with the alternative expansion of Section 4.

6. Asymptotic approximation to the Bayes risk. A considerable portion of
this section is concerned with technicalities presented in the form of lemmas.
To help the reader we outline this section briefly. Goursat ([7], p. 311) presents
a representation of the solution of the heat equation which is equivalent to

u(ys, 81) = fB (51— &) 7% <u>[u(y, s) dy

(s — s)t
1 _v I =y ' i
+3u, ds 55 = ds

where the integral is taken along a (y, s) path B which starts at s = s; with a
value of y less than y; , passes through points with s < s; and terminates at s = s;
with a value of y greater than y; . This representation is particularly well adapted
for our problem with B consisting of a vertical section at s, < s, and the upper
and lower optimal boundaries from s, to s;. Along the upper and lower optimal

(6.1)
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boundarles % and Uy are determmed by the boundary conditions and coincide
with s 4 sﬂ[/(ys Hand 1 — B(ys™?) respectively.

A minor variation of (6.1) is applied to the difference between u and g, +
Kso(a) where g» is the rth order expression in the formal expansion and s, = s .
It is required to show that the difference is small. To do so one must establish
suitable bounds on various line integrals along the optimal boundary. Deriving
these bounds and carrying out a number of other steps would be considerably
easier if we used the symmetry of the Bayes risk and the monotonicity of the
optimal boundary for our specific problem. To allow for the applicability to
possibly asymmetric variations of our problem, more elaborate proofs were
applied.

Lemmas 6.1 and 6.2 are used to bound integrals along the optimal boundary
by similar integrals along monotone approximations to the boundary. Lemmas
6.3 and 6.4 express integrals of » and yu from the lower to upper boundary in
terms of » and u, along the boundaries and yield the variation of the Goursat
representation in Lemma 6.5. Lemmas 6.6 to 6.9 consist of evaluating bounds on
the various integrals in the above representation applied to g, -+ Ks—)go(a) — u.
Finally we state and prove Theorem 6.1 which shows that the optimal solution is
approximated by Coso(a) + Cis~ ‘ap(a) + g.(a, s). The C; term is zero for
our symmetric problem. This is not the case for problems with asymmetric
stopping risks.

Lemma 6.1. If

(1) yi(z) and ys(x) are monotonic increasing functions such that

n(x) < yo(r) < yolz) for o <z < a2,

(2) yi(21) = a1, yi(x2) = az for i = 0, 1, 2, and

(3) fis continuous and gg > 0 ¢n the region bounded by

nn=r =2, yi(r) Sy = p(z)
then
(6.2) 27z, (@) de(z) < [2flz, yo(2)]dyo(z) < [2flz, yi(2)] dys(z).

Proor. Approximate yo(z) by a polygon which yields an approximation to the
path integral. Suppose that the polygon ‘decreases from b, to b; along one sub-
interval of (z;, z:) and increases from b; to b, along a “later” subinterval. Con-
dition (3) implies that these two intervals contribute a positive amount to the
integral. Replacing “later” by ‘“‘earlier” in the first sentence leads to replacing
““positive’”” by ‘“‘negative” in the second. The repeated use of these facts lead to
the desired result.

Incidentally the result applies when y;(x) and ys(z) have vertical sections.
In our applications y,(x) will have a vertical section at x; and y;(z) may have
one at z, .
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Lemma 6.2. If
(1) yi(x) and y2(x) are monotonic increasing Sfunctions such that
n(z) < yolz) < yolz) for o <z <2,
(2) yi(21) = a1, yi(x2) = az for i =0, 1,2, and
(3) ‘f)i(g;—y‘)l < K (y) in the region bounded by 7, < & < 2, y1(z) Sy = y2(2),
then )
(6.3) |2 flz, yi()] dyi(z) — [ flz, yo(@)] dyo(@)| S [ p(1)K () dy

where
(6.4) p(y) = sup {los — @4 : ya(2s) = ya(zs) = y}.
Proor. We simply elaborate on Lemma 1 using the fact that

[f(xs, y) — flas, y)| S |2s — 24 K(y).
Thus the interval (y, y + dy) contributes less, in absolute value, then
p(y)K(y)dy to the difference ff[x, ()]l dyn — ff[x, yo(z)] dyo or to
[ fle, yo(z)] dyo — [ flz, ya(2)] dys .
LeMMA 6.3. For a solution u of the heat equation,

d Y2 (8)

— u(y, ) dy
dS y1(8)
(6.5)

= [%u,,(% ,8) + ulys, s) (fi_g,/;] - [%uy(yl ,8) + u(ys, s) %:l

fllz(s) ( )
— u(y, s) d
s o Yyuly, Y

(6.6) %{u(yz, 8) [iyi - ] + y2uy(y2, 8)}
- l{u(yl, 8) [dﬂ - ] + yluu(yl,S)}.

Y2 _ Y2 dyZ dyl
T “udy—f“ usdy+u(yz,8)% u(yl,s)%

)] Y2
f us dy = f Luy, dy = Luy(ye,s) — 3uy(y1,s)

Y1 Y1

and equation (6.5) follows. Similarly

d f!lz _ fvz dy2 dyl
T o, yudy = N yusdy-l-yzu(yz,S)gg ylu(yl,s)a;

Y2 Y2 Y2
Yus dy = f Fyuw dy = Fywy o7 — 3 f uy dy = 3lyuy — uly}
U1 Y1

A%

from which equation (6.6) follows.
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LemMa 6.4. There is a constant Co such that the optimal risk satisfies
(6.72)  [Z50 u(y, s0) dy = Co — [T, [uy(, s) ds + 2u(g, s) dj(s)]
(6.7b) = Cy — O[so *(log o).

Proor. Equation (6.7a) follows from equation (6.5) and symmetry provided
the integral on the right converges. Along the optimal boundary, w(§, s) =
s+ shy(ys™) whose partial derivative with respect to y is —[1 — ®(ys )] =
O[s ¥(log $)7Y, and whose partial derivative with respect to s is —s° -+
157%(ys™¥). Using the first few terms of the asymptotic expansion

1

& =§s ~3logs — log8r — 2(logs)™" + ---

it follows that the above partial derivative with respect to s is positive for s
sufficiently large when & is between the lower and upper approximations obtained
by changing the coefficient of (log s)™" above to —3 and —1 respectively. Now

we may apply Lemma 6.1 to
[ou(@, s) dg(s) = [5 1™ + (@)1 dg (s)
using these monotonic lower and upper approximations to the boundary. Then
[ u(@, s) dj(s) = Olss™*(log 0)']
and
[ovu(@, 8)ds = =[5, 11 — @(g5™)] ds = O[ss " (log s0)~]

and hence the integral in equation (6.7a) converges and equation (6.7b) follows.

Lemma 6.4 and its method of proof can be pursued further with profit. For
example an analysis of the optimal procedure at s = 0 shows that the integral
on the left of (6.7a) approaches zero as s — 0. Hence :
(6.8) Co = [, 3us(F 8) ds + u(g, s) dji(s)
where B, is the path described by the optimal boundary going from the lower
boundary and s = « to s = 0 and then along the upper boundary to s = .
This result is also valid in the asymmetric case. Finally, Lemma 6.4 depends
mainly on the convergence of the integral on the right of (6.7a). Thus equations
(6.7a) and (6.7b) are valid if u is replaced by ¢, + Kos 0(a) + Kis  ap(a) — u
and () is replaced by Co, + Ko — Cp.

In the asymmetric case an analogue of Lemma 6.4 concerning fyu dy would
become relevant. This analogue would involve

(6.9) Ci = [ 3{u(d, )ld7"(s) — ds| + Gu(F, s) ds.
This analogue applied to g. — w appears in the proof of Lemma 6.6 (see Eq-
6.19).

We now apply Lemma 6.4 to the Goursat representation (6.1) to derive the
following minor variation of the Goursat representation using sections of the
optimal boundary and a vertical section for the path B.
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LemMA 6.5. For (yy, s1) within the optimal continuation region, the optimal risk
satisfies

N 7(s0) _
u(ys, 1) = Cosio(yr s7) + f { : 4 [yl : :|

iy L& — so)t (st — so)t

[ et (6= f)%>+ (355)
(610) ~ Zre (&)} tutg, 9 d + bt o) sl
A R (e ))
— (5 — e (H)} u(g, s) ds

B zs—}? ((:Sh) ) f {2u(y’ s) dj + u’/(g’ 8) ds}, So < S1.

The same equation applies to u.(y, s) = gr(ys_%, s) with Cy replaced by Co, .
By applying equation (6.10) to u, — u, we shall show that

(6.11) w(y, s) = Cosy o(a) + gr(a, s) + s0%[(log )]

To accomplish this we require approximations and bounds for the various in-
tegrals appearing in (6.10). In order to avoid arguments which make essential
use of the symmetry in our particular problem, some of the ensuing discussion
will be considerably longer than necessary.

LemMA 6.6. Let so = si'. Then for r > 1

_ F(s0) 1 yl _ y
h= I~ (s0) {(31 — o)} ® (81 — So)%]
(6.12) - @%;(P (:;’1)] [ur(y, 80) — uly, s0)] dy

= Oy 81 'ar o) + O*[s: " (log 1)

where C1, = 0 for a symmetric stopping risk.
Proor.

- ! m—y \_ 1 (n—y)_ -
61 4= e (B) - e () = 0ws™:
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Since u, — u is bounded
JEG8 Aulun(y, s0) — u(y,s0)] dy = Olso* (log s0)*si”*]
= O[si *(log ).

615) = b o (B2Y) — o (8] = v teroten) + 10070,

First we note that

(6.16)  [TG8 1 lur(y, s0) — w(y, s0)ldy = Olsi*(log 50)'] = O[s:"*(log s1)"].

This together with (6.14) and the fact that [P$&), y(u, — u) dy = 0 in our
symmetric problem establishes the lemma with C;, = 0. However, for asymmetric
versions of the problem, the latter integral does not necessarily vanish. For a
proof which applies to such versions, we apply Equation (6.6) to transform the
integral [ y(u, — u) dy to one with respect to s. Let 7,(s) be the lower optimal
boundary —(s) and ys(s) be the upper optimal boundary §(s). Then along these
optimal boundaries

(6.172)  u, — u = [g + Kso(a)] — [s7 + s ()] = A(ys™, s)

and

(6.14)

(6.17b) (ur — u), = s} Qé.

da
Thus we are interested in
(6.18) f IA-[dif — ds] + y‘*"’ ds.

80

Using the results of Section 5 it is clear that there exist approximations ys.(s)
and y«(s), r > 1, such that

(1) yar(s) < F(s) < yar(s)

(ii) ys-(s) and y4-(s) are monotonic for s large

(iii) A(a, 8) = s'0*[(log s)™"] along §(s) and these approximations,

(iv) % = s7'0*[(log s)_'_%]

(v >"’————A(@§s” S e

(vi) yir — y5 = O%[s(log 8) I
Then we may apply Lemma 6.2 to [, A dj’(s) where the %o, y1, ¥» of Lemma,
6.2 are replaced by 3. , 4" and yi, except that y3, and §° are modified with short
vertical sections at sy so that the three functions coincide at s, . The role of the
function p(y) of Lemma 6.2 is taken by

ply’] = 0¥[s(log s)™'] = O™[y*(log ¥*)™
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and that of the function K(y) of Lemma 2, is taken by
K@) = o(s™) = ol(y") "(log ¥*)’].

Then the integral

[7260 p(WK (W) dy* = ollog yi.(so)] " = oflog s 7.

Hence
Af5adi(s)] = [314] dyin(d) + o(log s1) ™"
= % s70*(log s)™'[log s] ds + o(log s)™"*
= 0*[(log s)™™".
Furthermore
o Ads = 0*(log 8:1) 7]
and ’

f ys_’ da ds = 0™[(log s:)7"].

)—r+1

Thus the expression in (6.18) is 0*[(log s ] and the application of equation

(6.6) has yielded

(6.19)  JT58 ylur(y, o) — u(y, )l dy = Cur + 0*[(log s1)™"].
Combining (6.14)—(6.17) with (6.19) we have

I, = Ofs;*"*(log 1) + Olsi*"*(log 51)*""] + eup(en)s{Csr + 0*[(log ) ™"']}
which gives the result claimed in Lemma (6.6). For the symmetric case Ci» = 0.
For asymmetric stopping risks

(6.20) == fB Aldig" — ds] + §s~ g—i ds.
0

Lemma 6.7. Let so = st |y = (2.5 51 1og s1) and r > 1. Then

n= [t le (B25) + o (455)]
_ %ga ((SL;)Q} (G, ) — (@, )] di(s) + Hun(5, 8) — u(G, 8] ds}

s '0*[(log s1) ™).

Proor. Once more we avoid the use of symmetry. Applying the condition on
nmtos < s < sywithy = y(s) & (3slog s)}, we obtain

1 Y1 £ Y _ __1_ __yL _ 1—3 1_1
(621) (a1 — DE ¢ (31 — 3)5> (s)? ¢ <(81)*) Ols:’s] + Olys: ]

= O[s; 's*(log s1)*.
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Along the optimal boundary %, — w and u,, — u, coincide with A and s *9A/de..

(622) u(§, 8) — w(f, s) = A = s70"[(log 1)
and
(623) uTy(g; 8) - uy(g’ 8) = S_% g‘g = S_%O*[(log 31)_T—§]~

That part of I, contributed by u.,, — u, is easily seen to be
8 '0*[(log 81)7"].

On the other hand the remaining part of I, requires the application of Lemma 6.2.
The o, y1, and y. of Lemma 6.2 are §, ys and y. respectively. The distance
function corresponding to p is now

(6.24) p(y) = 0%s(log )™

where s ~ y*/log i/’

Now we compute a bound for K(y), the derivative with respect to s of the
integrand which we identify with (6.21) multiplied by A(ys %, s). The derivative
of (6.21) with respect to s (keeping y fixed) is ‘

Lot — o)t {1 3 (yliy)z}«)( yi £ yi) — Os .

s — 8 (s1— 8)

Since A + s is a solution of the heat equation, the derivative of A with respect
to s, (keeping y fixed) is (2s)7'[9°A/8a’] + s~°. Applying Lemma 5.2b, the re-
quired derivative is O(s™). Hence
K(y) = 0™[s: s '(log s)™] 4 Olsi's *(log &1)*]
and
Ji:68 e()K (y) dy = 70 (log s1) ™.

Then Lemma 6.2 yields s,'0*(log s;)™"*" for that part of I, contributed by
(ur — u) terms, and Lemma 6.7 follows.
LeMMA 6.8. Let 5o = st and |ys| < (2.5 s11og s1)}. Then

= 4= 97 £ o (Zg—_%slﬁ)} (G, ) — u(g, o)) ds
= O{s; '(log s;)7"}.
Proor. The result follows from the fact that the integrand is bounded by
s s 0¥ (log 1) Y).
LEMMaA 6.9.
1. = [3 20w (d, 8) — u(@, )] dj(s) + [un(, s) — w(F, s)]ds}
= & '0*[(log &)™),
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Proor. The contribution of u,, — wu, is s, *0*[(log s;)™"¥. The other part
may be bounded using some of the computations of Lemma 6.8 in the applica-
tion of Lemma 6.2. Using the same §, y3, , ysr we have the same p(y), (see Eq.
6.24). On the other hand the new K (y) isO(s*) and [ Kp dy = Ols;*(log s;) 1],
The approximation using y;. gives an amount equal to s_%O*(log s1)"% Com-
bining these results we have our lemma.

TuEOREM 6.1. The formal expansion of Theorem 3.1 provides an asymptotic
approximation to the optimal risk u(y, s) in the following sense. For (y, s) within
the optimal continuation region and r > 1,

(6.25) u(y, s) = Coso(a) + Cis'ap(a) + g:(a, ) + s70*[(log s)™7

where
(6.26) Co = [53u(, s) ds + u(f, s) dij(s)

1s the line integral along the optimal boundary and C, = 0 in our symmetric problem.
Proor. Assembling Lemmas 6.6-6.9, we have for |y;| = (2.5 s; log s1)°

(6.27) w(yr, s1) = Cost 'p(a) + ge(ar, 1) + s'0*[(log s1)™""].

The proofs of Lemmas 6.7 and 6.8 were not quite delicate enough to obtain the
same result for || = (2.5 s log s)". However in this range we know from the
proof of Lemma, 5.4 that for some K, w < ¢,7 + Ks%o(a) = O(s™) and u, =
g» = O(s™"). Hence

v(y, 8) = gi(a, s) + Cosp(a) — u(y, s) = O(s™)
satisfies the heat equation in the region bounded by s,/12 < s < s and the
optimal boundaries. Hence [5], »(y, s) = E{v(Y, S)} where (¥, S) is the random

point where a Wiener process going backwards in the s scale from the point
(11, s1) first intersects the boundary of the above region. But

v = 8 0"(log s1)™Y]

along the optimal boundaries. Hence these sections contribute s, '0*[(log s;) "]
to ». Along the section where s = s,/12, » = O(s™). The probability that the
Wiener process from (y;, s;) with 3, = (2.5 s, log s;)? intersects this vertical
section is bounded by

(2.58: log s1)' — (3(s:1/12) log (5:/12))"\ _ —.54
1= ‘I’{ (T1/12)" } = ols.

Hence the vertical section of the boundary contributes o(s™*) to » and v =
81 '0*[(log s1) 7] for |y1| = [2.5 s log s1]'. Combining this with (6.27) we have
the desired result except that the exponent —r — 1 of log s; is replaced by —r + 1.
However, since g,.2 — ¢, = s; 0*[(log ;)7 '], the exponent can be improved to
—7r — 1 by first applying the weaker result to »* = r + 2.

7. Bounds and motivation. The original motivation for the expansions of
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Section 3 came from the application of the Goursat formula (6.1). Note that in
the second integral of (6.10) if we set y1/(s;)! = a1 and g/ (1)} = b, part of the
integrand is approximately ¢(a + b) + ¢(a — b) — 2¢(a). However the
original application of the Goursat formula depended heavily on knowing that
u ~ s on the boundary. To ascertain this it was necessary to obtain bounds
for the boundary to show that

7~ {s[3logs + O(1)]}%

While the bounds are no longer required, some of the methods used to obtain
bounds seem to be of interest and will be sketched very briefly here.

(a) Upper bound for optimal boundary. We use the monotonicity of the upper
boundary (in our special problem) and suppose that it passes through (y,, so).
We obtam a bound on the Bayes risk b(y:, t;) where y; < yoand s; = ;7 >

bo_fo .

d(ys, ) = s¥(y/ (1)) = by, 1) = (fo — 12)P

where P is the probability that a Wiener process Y, through (v , s;) going back-
wards in s does not cross the boundary between s, and s; . But

1 = P = P{sups<scs; Yo > yo.
By the reflection principle
1 — P < 22[(y1 — w0)/(s1 — s0)).
Let
% — Yo = —(2s0/3 log so)! and s — s = 2s0/(3 log s9).
Then

Yo — (2s0/3 log so)%] 280" [ 9 ]—% _ _
¢[%So[1+(2/3logso>n% = STogs |l T 3Togs, T 22(-1I

from which it follows that
(7.1) Yo < sof3log so + O(1)].

The main point of the derivation is that if the boundary is too high at time
there is a point (y; , ) with & < ¢ and y; < y, for which the probability of sam-
pling until time ¢ is substantial because of the monotonicity of the optimal
boundary. Then the expected cost of sampling outweighs the risk of stopping at
(91, t1) which leads to a contradiction. The derivation can be refined to get
specific constants to replace the O(1) term but I do not believe that —log 87
can be attained this way. In fact it is remarkable how effective this rather naive
approach is.

(b) A weak lower bound for the optimal boundary. In this subsection we study
the procedure which consists of terminating when there is no fixed sample time
procedure which does as well as stopping. Obviously the boundary for this pro-

\%




48 HERMAN CHERNOFF

cedure is below the optimal boundary. The bound obtained by this argument is
not strong enough to show that § = [s(3 log s + 0(1))]* but the argument
presents a simple use of a technique which can be extended to obtain that result.
This technique consists of using the identity.

(7.2) d(yo, o) — JZwd(yo + v, t)e(e) de = v (yo/v) forty < &y
where
(73) Y=ttt

and d represents the stopping risk (without the sampling cost) i.e., -

d(y, 1) = (yt)).
The identity (7.2) is easily derived using the relations

(74) d+(y0 ) to) = ffw d+(y0 + €Y, tl)¢(€) dé,
and

d(y, t) = dt(y,t) for y >0
(7.6)
=d (y,t) for y <O

where d' and d~ are the stopping costs associated with deciding that the mean is
positive and negative respectively.

For the procedure which consists of stopping when there is no fixed sample
time which does as well as stopping, the boundary is given by y*(¢) where

(7.7)  dly*(t), to] = infeyse, [(h — &) + [Zudly™(t) + ev, tile(e) de]
(7.8) d(y* (), to) = infe,se {[ — t] + dly™(t), ]l — vy (L) /7]}
(7.9) infy s (0 — o) — v¥ly™ (L)/]} = O, Y=t — 4

Setting the derivative of t; — &, — v¥[y™*(t)/v] with respect to #; equal to zero
we have two determining relations.

(7.10a) oly* (ko) /7] = 2vts°
(7.10b) Yy @)/ = (i — ) /7.
Take t,/ty = u large, and substituting, in the above relations, we derive
2u = [y*(t) /7] = —3 logto — 4log [—logt)] — log (817/2) + o(1),
y*(t)* = ty {—3log to — 4 log [—log to] — log (81w€¢’/2)} + o(1).

Note how ty**(t) compares with & () = —3 log f{, — log 8= + o(1) and
that at the y* boundary,

dly* (o), t] = (3¢/2)te(—log ts)

(7.11)
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Incidentally, if 4™ is replaced by v, the right hand side of (7.8) represents the
risk for the best fixed sample size procedure. For y = 0, a simple computation
yields a risk of approximately (2t,/x)* for ¢ small and 1/(2xt)? for ¢, large.

8. The Wald procedure. For comparison purposes we derive an asymptotic
approximation to the boundary and risk for the best Wald procedure when ¢ is
small. By this we mean, the following! A Wald procedure consists of stopping
when | X| = a. If p has an a priori normal distribution with mean 0 and variance
7, the best a will be denoted by a, = agt™* and the corresponding Bayes risk
by Ro(0, ¢). In [2], the following expressions were derived and applied.

ai’ = [0 0" sech’ v exp (—v"/2 a7’) dv/
(8‘1) ) 2 -] 2 2
fo [sech” v 4+ v~ tanh v] exp (—v"/2 oy’ ) dv
Rq(0, t)
= (2ra’as’) [T {o[1 — tanh o] + 2a¢’(tanh v/v)} exp(—v*/2 o) dv.

We shall use them to derive
TaeoreM 8.1. Ast — 0,

(8.3) ap = tH(—log t)}(2e2)'[1 + o(1)]
and
(84) R0, t) = (2m) ¢ (—=log ¢)"*(2e:)™(ez + 2e:)[1 + o(1)],

where

(8.2)

(8.5) ¢, = [o o' sech’ vdv =~ .75
and
(8.6) ¢s = [o o[l — tanh o] dv =~ 4.

Proor. The proof we present can be extended to yield more refined approxi-
mations involving

(8.7) e = [osech’vdy = 1

and

(8.8) e = 7 v tanh v + ¢ — 1] dv & .95.

Expanding exp (—°/2 ag’) in a Taylor expansion and noting that
e — 142z — 32" — - + (1/n!)(—=1)""2"e "

is bounded for 0 < z < o, one immediately obtains
(8.9) [5 sech® v exp (—v*/2a)dv = ¢ + O(a?),
(8.10) oo sech® v exp (—=v/2al)dv = ¢ + O(ar™?),
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and
(8.11) f?f o[1 — tanh v] exp (—v*/2 as’) dv = ¢; + O(ag ).
We now proceed to establish
(8.12) I = [¢v " tanhwexp (—v*/2ar) dv = log ag + ¢s + O(aw™™).
First we note that I = I, + I, + c. where
I, = f:f v '[tanh v — 1][exp (—v*/2 ) — 1]dv = O(ag™?)
and -
I = [5 v lexp (—0/2 a®) — exp (—v°/2)] dv,
= f(l) v 'lexp (—0*/2 &) — 1] dv — f(l) v [exp (—4%/2) — 1] dv
+ ff v exp (—0*/2a0) dv — f‘f v_'l exp (—v%/2) dv,
= [¢°v 7 [exp (—v%/2) — 1]dv — [§v [exp (—07/2) — 1]
+ [a,v T exp (—0*/2) dv — [Tv " exp (—0%/2) db,
= [7°v'[exp (—°/2) — 1]dv — [ v exp (—0*/2) dv = log ay,
and (8.12) follows. Substituting (8.9)—(8.12) into (8.1) and (8.2) we have
(813)  a' = eflogan+ (e + eI + Oar™)
(8.14) Ro(0,1) = (2r)*llog ao + (e2 + ¢)I’cs *’[es + 2edl[1 + o(1)].

I

Combining (8.13) with as = ao”* we have
3logas = —3logt — log [—log {] + log 2¢; + o(1)

from which (8.3) and (8.4) follow.

As is to be expected both ag and Ro(0, ¢) are larger than & and B(0, ¢). What is
not so expected is that they would be larger by an order of magnitude. However
this order of magnitude is determined by (—log ¢)** and for practical considera-
tions it is worth remarking that this term increases very slowly as ¢t — 0.

9. Sampling cost and error cost. In Sections 3 and 4 asymptotic expansions
were presented for the Bayes risk and the optimal boundary as ¢ — 0. It is of some
interest to decompose the Bayes risk into two parts; one corresponding to the
sampling cost or expected time of sampling and the other to the cost due to the
possibility of coming to the wrong conclusion.

Let u, represent the sampling cost (including the time necessary to go from 0
tot = s '), and let u; represent the cost due to error. Then both v, and u, satisfy
the heat equation subject to the boundary conditions u; = s and u= = s *¥(a)
respectively. Since u; + . = wu the derivation of an asymptotic expansion for
u; will suffice to yield one for u, . To derive an expansion for %; we may substitute
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in the formal expansions of Sections 3 or 4 and apply the expansion for the op-
timal boundary.
Thus one easily derives an expansion of the form

w X Kis"o(a) + [ole(a +b) + o(a — b) — 20(a)lfi(s) db

where f; is an expansion determined by the expansion for « on the optimal bound-
ary and
E*{fils'(a 4+ )]} = 57

Substitution in the expansion of Section 4 yields
filz) X fo*(x) + cur™ + e [ (@) F enr o @)+ -
As in Section 6, the constant K; may be expressed in terms of the integral
K1 = [ buw(d, s) ds + w(g, s) dil.

When ¢ is small (s large), wi (7, s) = s and uy (7, s) & s E*{efils'(a + €)]}.
To evaluate K; seems to require the numerical solution of the heat equation for
the region determined by the optimal boundary and the boundary condition
—1
Uy = 8 .
Applying the methods of Section 4, we compute the coefficients

ey = —3, o = 3, e = —27/2, ca = —351/2,
o1 = —6705/4, cs = —592119/20.
Consequently the coefficients corresponding to
fo= x4 cor I (@) + e THT@NT 4 -
which generates the expansion for u, are
2 =2, Co=—6, cpn=24 o= —114, czp = 2079, cp = —9459.

At the same time the computations used in deriving the results of Section 4
yield

uy(§, 8) = s 3w) H—2 — 207 — (25/9)w° + -+ -}
and
U (§, 8) ~ sHBw)FH—(4/3)w™ — (4/3)w — (52/Nw> + ---}.

In the case where the two costs are combined, the evaluation of the main term
Ks %o (a) requires knowledge only of the optimal boundary because the boundary
conditions express u and u, in terms of the stopping risk along the optimal bound-
ary. Suppose however that the problem were modified. For example suppose that
that for ¢ > 2, a prescribed non-optimal boundary must be used. Then all of our
expansions for ¢ — 0 would remain unaltered except that the evaluation of the
coefficient of s *p(a) would depend either on uy, along the boundary for ¢ > 2
or alternatively on f u dy where the integral corresponds to that part of the
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line ¢ = 2 which is in the continuation region (for ¢ = 2— ). Thus we see that in
many of these modified problems there is no essential difference in the problem
of finding the coefficient of s~ go(a) for the combined risk and for the separate
risks.

10. Operating characteristics. In cases where the a priors distribution is not
necessarily normal or where the statistician is not willing to accept an a priors
probability distribution at all, it becomes important to derive the operating
characteristics of the procedure studied. Each starting point (z, ¢) characterizes
a procedure. For each starting point and each value of the mean u, the functions
T(u; =, t), B(u; @, t), and R(u; x,t) = T + |u|B represent the expected sampling
cost, the probability of error, and the risk respectively. Expressing these func-
tions in terms of v = x — ut and t* = ¢, they satisfy the diffusion equations

1+%Tvv+Tt=
%va_l_ﬁt:()

and
]- + %va +Rt = O

with the obvious boundary conditions. While the techniques of this paper should
suffice to yield asymptotic expansions for ¢ — 0, there may be some difficulty in
establishing that these expansions give approximations which hold uniformly
in z or a.

It seems reasonable to expect that as ¢ — 0 for « bounded, 7', 8, and R converge
to functions of u Wthh are independent of «. When u has the normal a pmom
distribution 9T( ety ’, to "), to small, the density of u is approximately to Yo o)
over a large range of u. Then the asymptotic behavior B(z, t) & Cit'o(a) is
consistent with the above mentioned expectation and the further one that
J2e R(u; 2, t) du~ Co = [2, R(u;0,0) dy.

This conjecture may be applied to the non-normalized problem as follows.
Suppose that the cost per unit time of observatlon (in the ¢* scale) is ¢* (small)
the cost of a wrong decision is k*|u*|, u* is the mean drift per unit time of the
observed Wiener process which has varlance ¢ per unit time. Let the not
necessanly normal a priors dlstnbutlon of u* be G* which has a density approxi-
mately ¢*(0) in the neighborhood of x* = 0. Then according to the normalizing
transformations of [2], Section 3,

®* = C*gk‘*z/za*m&
where ® is the Bayes risk for the normalized problem involving
u= c*—ik*§o_*2/3”*

whose a priori distribution G has a density which is approximately ¢*(0)c*%* 1%/
over a large range of u. Then one would expect

® = [ R(u; 0,0)dG(u) & Cog™(0)c** ¥
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and
(10.1) ®* x Cog™(0)c™ p* ™2,

To put some rigor into a derivation of (10.1) it would be necessary to develop
some bounds for B(u; 0, t) or R(u; 0, 0) as u becomes large. We terminate this
section with a brief sketch of the derivation of such bounds for R(x; 0, 0). A
tool would be the distribution of the time at which a Wiener process Z, with
mean 0 and variance one per unit time first crosses a straight line @ + mt. Im-
plicit in Wald ([9], pp. 191-193) is the result that the distribution has density

(10.2) fam(t) = (2m)Yat T exp {—iat + mfP}, ¢t>0,a> 0,

and moment generating function M (2) = exp {a[m — (m* — 2 \)}]}. Note that
when m > 0, the probability of crossing the line is less than one but the above
formulae are still correct and yield a total probability of crossing the line equal
to exp (—2am).

The optimal boundary may be approximated from above by " and from below
by & where both of these approximations are concave for ¢ sufficiently small.
Consider a large specified value of . The process X, will intersect the boundary
at least as soon as it will intersect a line which is tangent to ' for some small ¢.
Take the tangent line at the point where ut = &' (¢). The process X, — ut is a

Wiener process with zero drift and the values of m and a corresponding to the
~+ _,.|_

above tangent line are —— az o Tk < 0and z" — t% From the characteristic

functlon the mean time till X, intersects the tangent line is a/m. Substltutlng
= [t(—3logt¢ — log 8= + 2(log¢)™" — - -)]* we have a/m ~~ ~ 3logu’/u’.
Hence for large u,

(10.3) T(u;0,0) < 3u*(log w*)[1 + o(1)).

Because the above bound is approximately the time required for the ‘“mean
drift line”” to intersect the boundary, it isn’t difficult to show that it is a good
approximation to 7.

The probability of error is dominated by the probability that the process
crosses —Z (¢). The probability that it first crosses this boundary between ¢ and
¢ + dt (¢ small) is less than the probability that it first crosses the tangent line
to —Z(—¢) in this time interval. Hence small values of ¢ contribute at most

[ (2r)Fa(t) ™ exp {— %[a(t)t + m() Y} dt

to the error. Substituting a(¢) = & — td%—and m(t) = d—f— + u > 0, observing

where at™? + mé is minimized, and applymg the steepest descent argument, the
above integral is approximately O(u*(log u*)™"). The section where ¢ is not small
can be disposed of easily. Thus we have

(10.4) B(u;0,0) = Ol (log u*)7'].
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Thus, the contribution of error to risk is smaller than that of sampling by a
factor of (log x°)° when u is large.

To summarize this section, we have sketched derivations of bounds on the
operating characteristics 8(u; 0, 0) and T'(u; 0, 0). These bounds together with
the conjecture Cy = f R(u;0,0)dusuggest that using the optimal boundary (start-
ing from (0, 0)) leads to a Bayes risk of approximately Cog*(0)c***k*¢*/, if
the a priori probability distribution has density ¢*(0) at x* = 0 and ¢* — 0.
The same result is also conjectured for the optimal procedure with the starting
point at (y, ¢), ¢ small and & = y/¢* bounded.
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