OPTIMAL EXPERIMENTAL DESIGNS!

By SamuerL Karnin? anp WiLLiaM J. STUDDEN®

1. Introduction. The purpose of this paper is to discuss a number of results
concerning the geometric theory of the optimal design of experiments. This theory
was initiated and principally developed in a series of important publications by
Elfving (1952), Kiefer (1960), (1962) and Kiefer and Wolfowitz (1959), (1960).
For other references and historical background we direct the reader to Kiefer
(1959), (1960). This paper was motivated and inspired by numerous conversa-
tions with Kiefer and contains approximately half expository and half new ma-
terial. Almost all the proofs are new and presented in a unified manner.

The theory of the optimal design of experiments fits the following structure.
Let f = (fo, fi, -+, f.) denote a vector of n 4 1 linearly independent con-
tinuous functions defined on a compact space X. The points of X are referred to
as possible levels of feasible experiments. For each level x ¢ & some experiment
can be performed whose outcome is a random variable y(x). It is assumed that
y(z) has a mean of the explicit form* &y(z) = >t 4 8;fi(x) and a common
variance o independent of 2 (normalized for convenience = 1). The functions
fo, -+, fa, called the regression functions, are assumed known to the experi-
menter while the parameters 6y, 6;, - - - , 8, are unknowns to be estimated on the
basis of N uncorrelated observations {y(z:)}:"

An experimental design specifies a probability measure £ concentrating mass
p1, -+ ,prat the points 21, - - - , x, where p.N = n;,4 = 1, - - -, r, are integers.
The associated experiment involves taking n: observations of the random variable
y(xa), e =1,---,r.

The problem confronting the experimenter is to choose the design possessing
certain optimality properties. Statistical considerations [see Kiefer (1959)] direct
an interest in the matrix M(£) = [m(£)||7m0 (mis(§) =[x fo(2)fi(2)E(dx))
commonly called the information matriz of the design &. If the unknown parameter
vector & = (6, 61, -+, 6,) is estimated by the method of least squares thus
securing a best linear unbiased estimate, say 8, then the covariance matrix of 0 is
given by

(1.1) &b —0)(0—0) = N'M ()

where £ assigns mass p; = n;/N at the points z;, ¢ = 1, ---, r. If the matrix
M7Y(¢) is “small” or M(£) is “large”, then roughly speaking 8 is close to 6. Most
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criteria for discerning optimality of an experimental design are based on maxi-
mizing some appropriate functional of the matrix M (§).

In the following we shall assume that £ is an arbitrary probability measure on
the Borel sets ® of & where ® includes all one point sets. The justification and
convenience in allowing this greater generality in the choice of measures ¢ is that
it permits a complete characterization of certain optimal designs. Of course,
any choice of a probability measure can usually be implemented in practice by
closely related bona fide designs.

A simple measure of the magnitude of the information matrix M(¢) is its
determinant [M(£)|. A design £* is said to be D-optimal if £* maximizes [M(£)].
Another criterion for optimality, formalized and interpreted in Kiefer (1959), is
as follows. Let

(1.2) d(z, §) = supq [(f(2), d)*/(d, M(§)d)]

where the ratio on the right is defined to be zero whenever the denominator
vanishes. (The notation (u, v) signifies the inner product of the vectorsu and v.)
In case |[M(£)| # 0 the function d(z, £) reduces to the more familiar expression
d(z, £) = (f(x), M (£)f(x)). The expression N d(z, £) is the variance of the
best linear unbiased estimate of the regression function (£(z), 0) = D1 0:f:(z).

The following result is due to Kiefer and Wolfowitz (1960), (see Section 4).

TuaeorEM 4.1. (Equivalence Theorem). The three classes of probability measures
£ defined by

(i) £* maximizes |M ()|,
(ii) £* minimizes sup, d(z, &),

(iil) sup, d(z, £*) =n + 1
coincide. The set T of all £* satisfying these conditions is convex and closed and
M (£*) 4s the same for all £* ¢ T.

The functions |M(#)| and d(z, £) are relevant for the problem of estimating the
full set of n 4+ 1 parameters by, 6y, - - - , 0, . Kiefer (1962) has partially extended
the equivalence theorem in a rather complicated manner to the case of estimating
a subset of the parameters.

In considering the estimation of s + 1(s < n) of the parameters
6,6:, -, 0, weintroduce two functions serving as the counterparts of the func-
tions |M(£)| and d(z, £). When M(%) is nonsingular, an analog of [M(#)| is
traditionally taken to be

IM(8)] = |Mu(¢) — My ()M (§)Ma(8)|

where

M(¢) M,'(¥€)

M(E) = ”Mz(}z) Ma(g) ) (MI(E) iss+1Xs+ 1)

and the corresponding version of d(z, £) is defined to be

d(x, £) = (¥ (2) = D'(H)I? (@), P(§) (£ (2) — D'(H)f?(2)))
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where £”(z) = (fu(e), .-+, £u(2)), £2(2) = (fua(2), -+, fulz)), P(£) =
[M.*(§) I and D(£) = My~ (£)Ma(£).

The above definitions will be properly extended to the case where M;(£) is
singular (see Section 6). One of the principal theorems of this paper is the follow-
ing game theoretic result which is basic in establishing the equivalence of various
criteria for estimating s 4+ 1 out of the n + 1 parameters.

THEOREM 6.1. Let @ denote the set of all positive definite matrices P ( of order
(s + 1) X (s + 1)) normalized so that [P|™ = sup; |M,(£)| and let D comprise
the set of all real matrices D of order (n — s) X (s +1). If

¢(P,D; £) = [ (f¥(z) — D't®(x), P(t®(z) — D't®(x))&(dx)
then
sup; infp,p ¢(P, D; £) = s 4+ 1 = infp,p sup; ¢(P, D; £).

Furthermore, there exists a probability measure & satisfying |M,(%)| = supe |M, ()]
and

¢#(P,D;&) 2 s+1 forall (P,D)e® X D.
If (Py, Do) e ® X D fulfills
¢(Po,Do;¢) s+ 1 for all probability measures £ on <
then Dy satisfies Ms(£)Do = Ma(&) and
Py = [Mi(&) — Do'M;(&)Dol ™

As a consequence of the above theorem we deduce [compare with Kiefer
(1962)]:

TuEOREM 6.2. The following three conditions are equivalent;

(i) &* maximizes |M,*(£)|,
(ii) &£* minimizes sup, ds(z; £),

(iii) sup. do(z; £°) = s + 1.

In the problem of estimating all of the parameters 6;, 6;, --- , 6, we shall
exploit a theorem due to Schoenberg which states that when fi(z) = [w(z) ]%x",
t=20,1,---, n, and w(x) is a classical type weight function then [M(¢)| is
maximized provided ¢ concentrates equal mass at n + 1 points which are the
zeros of certain familiar orthogonal polynomials. As an example, we cite

TaEOREM b5.1. Let fi(z) = [w(x)]*xi, 1 =20,1,---, n, where w(z) =
(1 — 2)*"(1 + 2)*™ and & = [—1, 1]. Then max; |M(£)| is uniquely achieved
by the measure concentrating equal mass at the zeros of the n + 1st Jacobsi poly-
nomial P, (z).

A brief section by section outline of the paper is as follows: In Section 2 we con-
sider the estimation of linear forms (c, 8) where ® = (6,,6:, - - - , 6,) is the vector
of unknown regression coefficients. Theorem 2.1 provides an exact expression of
the minimum variance among all linear unbiased estimates of (¢, 6) based on a
fixed design £, even allowing the contingency that M (£) may be singular. Theorem
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2.2 embraces Elfving’s geometric characterization of the optimal design for esti-
mating (¢, 0). The theorem of Elfving has been slightly extended utilizing game
theoretic methods. We shall include complete proofs of these two theorems since
the majority of discussions of these results are loosely written where rank con-
ditions on the relevant information matrices are usually ignored.

In Section 3 we consider a recent result of Hoel and Levine (1964) on extrapola-
tion. We will show that the Hoel and Levine result and some of its extensions con-
sidered by Kiefer and Wolfwitz (1965) can be deduced directly from the Elfving
result of Theorem 2.2.

Section 4, 5 and 6 investigate various minimax designs. Section 4 is devoted to a
game theoretic proof of the equivalence theorem while in Section 5 we determine
several explicit minimax designs for certain cases where the regression functions
are related to classical orthogonal polynomials. Extensions of the results of Section
4 to the case of the estimation of a subset of the regression parametersfy, - -« , 0,
are given in Section 6.

Section 7 is devoted to a discussion of some classes of admissible designs. Some
refinements and extensions of results in Kiefer (1959) are indicated. In the final
Section 8 we consider some quadratic problems involving the minimization of
&(0 — 0)L(6 — 0)" where L is a general nonnegative (i.e., positive semi-definite)
matrix.

2. Estimation of the linear form (c, 6). In this section we shall present two
theorems concerning unbiased linear estimation of a linear form (c,0) =
D mocif: . The first theorem exhibits an expression for the minimum variance
among all linear unbiased estimates of (c, 8) when a fixed design £ is used. The
second theorem is Elfving’s characterization of the optimal (see Definition 2.1)
design £ for estimating (c, 0).

Let f(z) = (folz), fa(z), - -+, fu(x)) be a vector-valued function composed
of n + 1 linearly independent continuous functions defined on a compact space
X. Let £ denote an arbitrary probability measure defined on the Borel field ®
generated by the open sets of X. For each £ let M(¢) denote the matrix

(2.1) M(£) = [lmi;(£)]]7=0
where
(2.2) mi(§) = [x fi(@)fi(x)E(dz), 5,5 =0,1,---,n.

Throughout we assume that & includes all one point sets. In the case where the
measure £ concentrates at a single point 2, the matrix M (&) reduces to a rank one
matrix with elements mi; = fi(0)f;(x0). We also single out the case where & con-

centrates massespy , - -+ , prat the r distinet pointsa, , - - - , z, respectively. Here
M(¢) takes the form
(2.3) 2 pilf(an) 1 (20)]

whose individual elements are mi; = 25— pifi(x)fi(1).
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In the case where fi(z) = 2,4 =0, --- ,n, and X = [a, b] the matrices M ()
reduce to the classical Hankel matrices ||cij||fjc0 where ¢, = [o 2¢(dx),
k=0,1,---,2n.

In the following lemma we record several familiar properties of the matrices
M(%).

LemmA 2.1. Let M (&) be defined as in (2.1) and (2.2). Then

(1) for each &, M(§) is positive semi-definite;
(i) |M(%)| = O whenever the spectrum of & contains less than n + 1 points;

(iii) the family of matrices M (&), as & ranges over the class of probability meas-
ures, 18 a convex compact set;

(iv) for each & the matrix M(£) may be written in the form (2.3) where
rs(n+1)(n+2)/2+1

Proor. (i) For any choice a = (a1, - - , @) With a; all real we have
(e, M(£)a) = X ticomii(E)aiey = [ | 2i=0 aif ()" £(dz) Z 0

which shows that M(§) is positive semi-definite.

(ii) Under the hypothesis stated the rank of M (%) is at most n and therefore
M(¢) is singular. '

(iii) The convexity assertion is immediate.

Let z1(z), -+ -, 2n(2), (m = (n + 1)(n + 2)/2) denote the set of functions
fi(x)f;(xz) (j = 0,1,---,4;4 =0,1,---,n) arranged in some order and con-
sider the set C, in E™ generated by the coordinate functions, ie.,
Cn = {(21(2), -+, 2n(2))| z £ X}. Let €(C,) denote the convex hull of C,, . A
classical theorem of Caratheodory,’ informs us that each ¢ = (c1, -+-, ¢u) In
e(C,,) possesses a representation of the form

(2.4) C; = Z;":ll ajZi(tj), 7 = ]_’ 2, cee, m,

where @; = 0,5 = 1,---, m + 1 and > ™ a; = 1. Since the functions
2, ,2n are continuous and X is compact we deduce from (2.4) that ¢(Cy) is
compact. Furthermore, the fact that €(C,) is closed implies €(Cr) = 9, where

M = {(cr, -+, )| & = [ 2:(2)(dn), i=1,---,m}.

The compactness of the family of matrices M (&) is now clear.

(iv) This is nothing more than an expression of the Caratheodory theorem for
the case at hand.

We now direct attention to the problem of estimating a linear form (c, 8). Let
£ = {x; ; p:}2” where p:.N = n; are integers; i.e., the design £ involves taking 7. ob-
servations at the level z;,¢ = 1, - - - , r. In considering unbiased estimates, the
linear form (c, ) must of course be estimable when the design £ is used, i.e., there
must exist on N-vector v such that &(y,y) = (c, 0) for all 8, where y denotes the
N-vector of observations {y(2:)}i". Let A denote a matrix of order N X (n + 1)

s The theorem of Caratheodory in question states that every point in the smallest convex
set containing a given set 4 in Euclidean m space can be represented as a convex combina-
tion of at most m + 1 points of 4.
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with n; = Np; of the rows equal to £(z:) = (fo(w:), -+, fu(®:)), e =1, -+, 1.
Note that A’A = NM(£). If (v, y) is an unbiased estimate of (c, 8) then
(c,8) = &(v,y) = (v,A8) = (A'y, ) for all 8 so that A’y = c. Thus for a given
design ¢ = {z: ; p:}«" the vector c is estimable only if there exists a solution y of
the equation A’y = c, i.e., ¢ belongs to the range of A

The following theorem provides a convenient expression for the minimum
variance of any linear unbiased estimate of (c, 8) obtained from a fixed design &.

TarEorREM 2.1. Let § = {x; ; pi}1 where p:N = n; are integers and let F(&) denote
the class of linear unbiased estimates (v, y) of (c, 0). If §(&) s non-void, i.e., ¢ is
estimable, and V{((v, y)) denotes the variance of (v, y) then

V((yo,y)) = mingey V((v,¥)) = N supaews.ano [(¢, d)*/(d, M(£)d)]
= N7 221 [(@i,0)"/N]

where U = {d|M(£)d = 0}, vo = N 'Ado, do = i\ (@i, )i and
N, * 5 \s are the non-zero eigenvalues of M(£) with associated orthonormal eigen-

vectors @1, -+ , Qs -
Proor. The variance V((v, y)) of any estimate (v, y) € (&) is easily seen to be
(s ). Moreover

(2.5) (c,d)’ = (A'y,d)* = (v, Ad)” = N(y, v)(d, M(£)d)
so that
(2.6) V((v,y)) = N7 supaeuz a0 [(€, 4)°/(d, M(£)d)].

From (2.5) it follows that ¢ € U* and hence ¢ = Y 3 (©:, ¢)o. Therefore for any
de U* we have

(c, d)" = (21 (@i, d) (i, €))’
(2.7) = [Zia (W) es, ) (es, ©)/ 0T
< (e, ) 2iar (04, €)*/N
= (4, M(£)d) 221 (@i, €)"/\i (M(%) = 2 i higio).)
Equality occurs if and only if Ni(@:, d) = k(g@i,¢) (¢ = 1,2, ---, s) for some

constant k or when d is proportional to dy = D s N (s, €)@i. Now if
vo = N7'Ad, then equality takes place in (2.5) and

(2.8) Alyo = M(£)do = D ie1 (@i, €)gi = c.

Thus the bound in (2.6) is attainable by the estimate (o, y) which belongs to
F(£). This completes the proof of the theorem.

REMARK 2.1. When M () is non-singular we have available the more familiar
expression Supgs [(¢, d)?/(d, M(£)d)] = (¢, M'(£)c) achieved for dy =
M'(£)c. The matrix A (A'A = NM(%)) in this case is necessarily of rank n + 1
and every vector c is estimable.

Suppose now that £ is an arbitrary probability measure on &. A vector ¢ is
said to be estimable with respect to the design & if and only if ¢ belongs to the linear



OPTIMAL EXPERIMENTAL DESIGNS 789

space spanned by the set of vectors {f(z)| z ¢ S(¢§) = spectrum of £}. Note that
this definition is consistent with the usual definition when ¢ = {x,; p.}s" and
piN =n;,7 =1, ... r are integers. For an arbitrary design ¢ we define

d(c, &) = supges,anse [(c, d)°/(d, M(§)d)]

whenever ¢ is estimable with respect to ¢ and « otherwise. If ¢ = f(2) for some
fixed value of z ¢ X we shall write d(z, £) for d(c, £).

DErINITION 2.1. A design £ is said to be optimal with respect to the estimation
of (¢, 0) if £ minimizes d(c, £).

The following result due to Elfving (1952) characterizes optimal designs ¢ for
the problem of estimating (c, ). This result is geometric in nature and for the
cases n = 1 or 2 provides a simple explicit means of determining the optimal
design.

TarorEM 2.2. Let Ry = {f(x) = (folx), -+ -, ful@)) | £ X} and let ®R_ denote
the symmetric image of R+ , i.e., R_ = {—£(x) | x £ X}. Further, let R denote the con-
vex hull of R U R . A design & ts optimal with respect to the estimation of (c, 0)
if and only if there exists a real measurable function o(x) satisfying |o(z)| = 1
such that ¢* = fgo(x)f(x)éo(d:c) 1s (i) proportional to ¢ and (ii) a boundary point
of ®. Moreover Bc lies on the boundary of ® if and only if B = vy ' where
vy = ming d(c, £).

Proor. We first assume that & is optimal and show that conditions (i) and
(i) are satisfied. Consider the sequence of games with kernel

deu, &) = [ (c, 8)"/ (g M(£)g)In(dg)

where Player I maximizes over the set of probability measures u defined on the
unit sphere $* in E™*' and Player IT minimizes over the convex set of probability
measures £ on € such that M(¢) has all of its eigenvalues at least e. It is easy to
verify that the kernel ¢ is convex in £ and linear in u. Since the strategy spaces
are compact each game has a value v. and associated optimal stategies M(&.)
and u. . Furthermore

ve = supgesn+t [(c, d)*/(d, M(£&)d)]

is uniquely achieved for d proportional to M (&)c. It follows that u. concen-
trates on a single point d. . A straightforward compactness argument shows that

there exists a d* such that
(c, d*)? = vo(d*, M(£)d*)  forall ¢

where vy = inf; supgess+1 [(c, d)?/(d, M(£)d)].
Letting £ concentrate on a single point 2 we infer that

(2.9) (c, d™)? = vo(d* f(z))* forall zex.
For ¢ = & we also have

(2.10) (c, d*)* 2 v(d¥, M(%)d*).
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But £, is optimal with respect to the estimation of (¢, 8) so that
(2.11) vy = inf; supgesn+1 [(c,d)"/(d, M(£)d)] = supgesn+1 [(c,d)"/(d, M(%0)d)].

Comparing (2.10) and (2.11) we see that equality holds in (2.10) and hence in
(2.9) for x £ S(&) = spectrum of & . Thus

(2.12) (c, d%)" = u(d*, £(z))", zeS(&).
We now take a real square root of (2.12) to obtain
(@) (c, d*) = ()} (d* £(2)), zeS(h),

where |p(z)| = 1. We define ¢(z) = 1 for z £ S(&). Since each fi(z) (¢ = 0, 1,
-+« ,n) is continuous the function ¢(z) is clearly measurable.

Now from (2.7) we know that equality occurs in (2.10) only if the component
of d*in U+ (U = {d|M(&)d = 0}) is proportional to D i—s N "(@:, C)os
where N1, ---, \; are the non-zero eigenvalues of M(%) with corresponding
orthonormal eigenvectors @1, -+, @s. By adjusting the proportionality con-
stant we may assume d* satisfies M(&)d* = M(&) (D i1 M (s, €)@i) =
> i1 (@i, ¢)@:i = ¢. Then (¢, d*)? = vo(d* M(&)d*) = vo(d* c).But (¢,d*) =
(i (@i, 0@, 2imi M i, ©)@i) = 251 M (@i, €)* > 050 that we may
conclude that (¢, d*) = v, . Therefore

¢ = M(&)d* = [ (f(x), d*)f(x)&(dx)
= v (¢, d¥) [ o(@)f(x)E(d)
= v [ o(2)f(2)ko(dw).

We have thus shown that f o(2)f(z)&(dz) = Bc where 8 = v, which establishes
condition (i) of the theorem.

We now verify that the vector B¢ (8 = vy ?) lies on the boundary of ®. Since
Bc = fgo(x)f(x)éo(dx) it follows that B¢ £ ®. If B¢ is not on the boundary of ®
we choose Y _1 &,qf(s,) = B¢ (6 = =1, ¢, > 0, 2 g, = 1) on the boundary
where 81 > B. By Schwartz’s inequality

supgesn+1 [(€, d)°/ D re1 ¢o(£(s,), d)*] < supgesnt [(c, )/ (it 6gu(£(s,), d))°
= 31_2 < 3_2 =

which contradicts (2.11). Therefore condition (ii) holds.

Since the set ® is symmetric about the origin the above reasoning establishes
that B¢ is on the boundary of ® if and only if 8 = v, .

To prove the converse half of the theorem we postulate the representation
[ o(@)f(z)%o(dx) = Bc and that Bc lies on the boundary of ®. Clearly ¢ is estimable

with respect to & and 8° = v,~". Moreover, by Schwartz’s inequality
(¢, d)* = B7°1f () ((2), d)&(dx)]’
=67 [ (f(2), d)*%o(dx)
= 7(d, M(4)d)
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and hence
(2.13) d(e, &) = supq [(c, d)*/(d, M(£)d)] = 7° = v.

Since vo = min; d(c, £), equality must hold in (2.13) and hence £ is an optimal
design with respect to the estimation of (c, ).

3. Some aspects of extrapolation. In this section we consider a theorem of
Kiefer and Wolfowitz (1965) which generalizes a result due to Hoel and Levine
(1964) concerning extrapolation in polynomial regression. It will be shown that
the Hoel and Levine result and parts of Kiefer and Wolfowitz are direct con-
sequences of Elfving’s theorem. In the simple case when fi(z) = 2°, ¢ = 0, 1,

- ,m,and X = [—1, 1] the problem is to characterize the design minimizing the
variance of the best linear unbiased estimate of the regression function _ 7 6z’
where || > 1. This is called an extrapolation problem since the point z, is
exterior to the interval [—1, 1] on which the levels of the designs ¢ are concen-
trated. In our previous terminology we wish to determine the optimal design
with respect to the estimation of the linear form (¢, 8) forc = (1,20, 20, - - - ,20").

The Hoel and Levine result asserts that the optimum design for estimating the
linear form (8, f(z0)) = D 6ixs’ concentrates on a fized set of n 4+ 1 points
—1 =8 <s < -+ <s, = 1independent of the choice of z, provided |z > 1.
The levels of optimality {s:}," satisfy [T.(s:)] = 1,7 = 0, 1, - - , n, where the
polynomial 7', () is characterized by the property that (apart from a multiplica-
tive constant) it minimizes the quantity sup_ic.<i|2® 4+ .25 a2l Thus
To(z) in this special case is, of course, the well known Tchebycheff polynomial
of the first kind.

In a recent paper, Kiefer and Wolfowitz (1965) extended this result by re-
placing the ordinary powers 1, z, - - - , 2" by a T-system of functionsfy, fi, - - - , fa
(see below ). Subject to suitable restrictions on fy, fi , - - - , f» the best approxima-
tion of £, by polynomials Y 2= a.f; attains its maximum absolute value at exactly
n + 1 points {s,*},". The principal theorem of Kiefer and Wolfowitz (1965)
provides a characterization of the vectors ¢ = (¢, -, ¢,) with the property
that the optimum design for estimating the linear form (¢, 8) concentrates on the
fixed set {s:*},".

In Theorem 3.1 below we state that part of Kiefer and Wolfowitz (1965)
which is a direct extension of the Hoel and Levine result (see Corollary 3.1).

A system of continuous functions {f:}," defined on an interval [a, b] is called a
T'chebycheff system or a T-system on [a, b] provided every real linear combination
2ot afi(z) (2oa’ > 0) has at most n distinct zeros on [a, b]. It isreadily
ascertained that this definition is equivalent to requiring that the determinants

fo(xo) fo(xl) te fo(fﬂn)

U( 0,---, 'n> — fl(xo) f1(931) cr fl(%n)
Lo, *",Tn : : :

fn(xo) fn(xl> M fn(xn)

are of one strict sign provideda < zp < 2, < -+ < 2, £ b. For definiteness we
shall suppose that the sign in (3.1) is positive.

(3.1)
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The classical prototype of a T-system consists of the power functionsfi(z) = a°,
1 =0,1, ---, n. In this case the determinant (3.1) reduces to the classical
Vandermonde determinant. The ‘“polynomials” Q= a;f;(x) for a general T-sys-
tem share many of the properties of ordinary polynomials D 7o a:z’. Tchebycheff
systems, in fact, play an important role in many domains of mathematics,
notably the theory of approximations, methods of interpolation, generalized
moment problems, numerical analysis, oscillation properties of eigenfunctions
of Sturm-Liouville problems, generalized convexity, etec. A detailed discussion of
many of these aspects of T-systems is presented in Karlin and Studden (1966).

The following important property of T-systems will be used in Theorem 3.1
below [see Karlin and Studden (1966), Theorem I1.10.1]. If {f}," is a T-system
on [—1, 1] then there exists a unique polynomial w(x) = Y r a:*f:(x) satisfying
the properties:

(1) Iy(x)l é 1) re [_ly 1] and

(ii) thereexistn 4+ lpoints —1 < s < 8 < - -+ < 8, < 1such that u(sa—:) =
(—l)iyi = Oy 17 P (B
Let € denote the set of vectorsc = (¢, ¢1, « -+, ¢,) for which

Jo(z1) -+ fo(za)
(3.2) fl(-;l;l) e fl(:fn) 0:1 0
f"(;vl) e fn(xn) C;u

for all {z:}," satisfying —1 = 2 < 2, < -+ < z, £ 1. Note that the deter-
minants (3.2) necessarily maintain a constant sign. In the following it will be
convenient to associate with each ¢ & @ an abstract point z and to set f:(z) = ¢,
i=20,1, ---, n. For any polynomial u = Y i af; we may write u(z) =
Doim0adfi(z) = Do aic .

TuvorEM 3.1. Let {f:}¢" be a T-system on [—1, 1] and let u and @ be defined as
above.

(a) If ¢ € @ and £ denotes a probability measure on [—1, 1] then

(3'3) d(C, E) = yz(z)’ (f.(Z) = Ci, 1= 0) R} n)'
(b) Let so* < &1™ < -+ < s,"ben + 1 points in the set B = {x | u*(z) = 1}
such that the values u(so™), -+, u(s,™) alternate in sign (the existence of at least

one such set of n + 1 points is guaranteed by property (ii) of the polynomial u).
Let L,(z) = Ym0 a:;"f:i(z) denote the Lagrange interpolation polynomials for the
points {8:*}o", i.e., L,(8;*) = 8,;,v,5 = 0,1, - -, n. Then equality occurs in (3.3)
when £ = E* concentrates mass p;* = |Li(2)|/ D70 |Li(2)| at 8:*,4 = 0,1, - -+, m.

(¢) If D toafi(x) = 1, xe[—1, 1] for some set of coefficients {a}o" then B
consists of exactly n + 1 points. Furthermore s = —1, s, = 41, and equality
occurs in (3.3) if and only if £* is defined as in part (b).

Proor. We first prove part (b) by appropriately applying the result of
Theorem 2.2. Since the optimal designs for estimating the vectors ¢ and —c are
the same we may assume, without loss of generality, that the determinants in
(3.2) are positive.
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From the definition of a T-system it is readily seen that every polynomial is
uniquely determined by its values at n + 1 distinet points. In this case the La-
grange polynomials L,(z) are well defined. Moreover for any polynomial u(z) =
D toadi(z) we have u(z) = > rou(s,*)L,(z) and hence

u(z) = Dorou(s,™)L,(2).

In particular if we set w = f; then f;(2) = Do fi(s,*) Ly (2).
The polynomials L,(z) admit the explicit expression

_ 0, ---,v—=19v4+1 -+, n / 0, -+, n
Ly(x)—U(so*, ces, s,’f_l,x, s;(<+17 "',Sn*) U(so*, "‘,Sn*
(see (3.1) regarding the notation) so that L,(z) = (—1)""|L,(2)[,» = 0, 1,

-, n. Therefore, if we set ¢, = (—1)""" we have

2o alLu(2)fi(s*) = fi(2), i=01,:,n,
or equivalently
Dm0 epy T(s¥) = Bi(z) = Be

where pv* = |L"(z)|/2:l‘=0 ILV(z)|7 v=20,1,---,mn, and g = [Z:;o ILﬂ(z)l]_l~
Thus the first requirement of Theorem 2.2 holds.

We now show that gc, for 87 = D>_r |Li(2)|, lies on the boundary of ®. Let
a* denote the vector of coefficients of the polynomial u(z). Then (Bc, a*) =
Bu(z). Since the values s,* were specified so that u(se™), u(s:™), -, u(s.™)
have absolute value one and alternate in sign it follows that

(@) = 122, u(s) L) = (200 |L(2)])"
Thus
(3.4) B = [u()]™

Consulting property (ii) of the polynomial 4 we find, in particular, that u(z) > 0.
It follows that

(3.5) (Bc, a*) = Bu(z) = 1.

Moreover by property (i), we infer that (f(z),a*) = u(z) £ 1 and (—f(z),a*)
= —u(z) = 1 so that

(3.6) (y,a*) €1 forall yea@.

The relations (3.5) and (3.6) imply that 8¢ is a boundary point of ®. The demon-
stration of part (b) is hereby complete.

To prove part (a) we need simply observe that the minimum value of the
left side of (3.3) isvp = B> = u’(2) (see Theorem 2.2).

We now consider part (¢). If D rp aifi(z) = 1, z e [—1, 1] then, according to
properties (i) and (ii) on u, we infer that the polynomials 1 — u(z) and 1 + u(z)
are non-negative on [—1, 1] and each exhibits n zeros with the convention that
zeros in the open interval (—1, 1) are counted twice. In this case the set B con-
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sists of exactly n + 1 points including soF = —1ands,* = +1 [see Theorem
1.4.2 of Karlin and Studden (1966)].
Let £ be an arbitrary probability measure on [—1, 1] and assume that the
spectrum of & 1ncludes points other than the n + 1 points of B. Since % *(x) < 1at
such points and %*(z) < 1 for all z ¢ [—1, 1] we find that

d(c, &) = supq (¢, d)*/(d, M(£)d)] = supa [( X difi())"/J (X difi(2))8(de)]
= w(2)/[ w(z)E(dr) > u'(2).

Therefore any & attalmng equality in (3.3) necessarily concentrates on the n + 1

points —1 = so¥ < si¥ < -+ < 8. = 1. Let £ concentrate mass p, at 8 v =
0,1, ---, n, respectively. If £ is optimal then for some ¢, = +1,
(3.7) Tioepd(s®) = Bi(2), B = [2IL(I

Regarding (3.7) as a system of equations in the unknown ep, and noticing that
the corresponding determinant, namely det ||f: (s,")|| is non-zero we infer that
the solution in unique and hence p, = |L,(2)|/2_s=0 |Ls(2)| and & = (—1)"7,

= 0,1, -+, n. Therefore, the optimal weights are as described in part (b).
COROLLARY 31 Hoel and Levine (1964). Let fi(z) = z*,7 = 0, 1, , M.
If |zo| > 1 and & denotes a probability measure on [—1, 1] then
(3.8) d(@o, £) Z Ta’(%0)

where T,(z) denotes the nth Tchebycheff polynomial of the first kind. Moreover of
(3.9) s, = —cos (vr/n), y=0,1,---,n,

and L,(z),» = 0,1, --- , n, are the Lagrange interpolation polynomials of degree
n for the points {s,}o" then equality occurs in (3.8) if and only if & concentrates
mass p,. = |Lu(20)|/ D=0 |Li(x0)| at the points s, ,» = 0,1, -+ ,n

4. Minimax designs. A classical criterion for selecting an optimal design is to
choose £ so as to maximize the determinant of the information matrix M(£).
As noted previously this procedure is equivalent to minimizing the determinant of
the covariance matrix of the best linear unbiased estimates of the parameters
0,01, -, 0n.

Another possible criterion for optimality may be to minimize the maximum
over z £ X of the variance N* d(z, £) of the best linear unbiased estimate of the
regression function (f(x), 8) = > e e 0fi(x).

It has been shown [see Kiefer and Wolfowitz (1960)] that these two criteria
are equivalent.

The following proof of this theorem is new and utilizes game theoretic argu-
ments which permit generalizations to be discussed in Section 6.

TueoreM 4.1. Kiefer-Wolfowitz (1960). (Equivalence Theorem). The condi-
tions

(1) £* maximizes |M(£)|,
(i) £* minsmazes sup. d(z, £),
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(iii) supsd(z, £*) = n + 1
are equivalent. The set T of all £* satisfying these conditions is convex and closed
and M(£¥) 4s the same for oll £* ¢ T.

Proor. We first note that for any £ for which [M (£)| = 0 there exists some x,
for which f(x,) is not estimable, and hence d(x,, £) = « by definition. We may
therefore restrict consideration to those ¢ for which |M(¢)| > 0. In this case
d(z, §) = (f(z), M (§)f(2)).

Consider the game with kernel K.(£,7) = tr M~ (5)M (&) where £ and n range
over the set

e = {£] all eigenvalues of M (£) are = ¢}.

The kernel K (£, 9) is linear and thus, a fortior, concave in ¢. Using the fact
that M~'(5) as a matrix function is convex,i.e., the matrix oM '(ng) +
(1 — )M *(n;) — [aM(m1) + (1 — a)M(n2)] " is positive definite for 0 < a < 1
and M (n;) 5 M(9.), it is readily seen that K.(£, 7) is convex in 4. Since K (£, 7)
is continuous in £ and n and E. is compact each of the games (., E., K.) has a
determined value v. and optimal strategies for both Players.

Clearly for each £ inf, tr M™'(n)M({) < n + 1 since we can take 7 = £.
Therefore

(4.1) sup; inf, tr M~ ()M (¢) < n + 1

where the infinum and supremum are evaluated over =, . Invoking the arithmetic-
geometric mean inequality,’ we obtain

(4.2) tr M (n)M(8) = (n + 1)|M(E)["™7/|M(n)| "™

and equality occurs if and only if M(£) is proportional to M (5). Since [ ] o N:(£)
= |M(£)| where N\;(£) are the eigenvalues of M (£) and

max; \i(£) = Supyso [(V, M(E)V)/(v, V)] < [ (270 v fi(2))*E(dz),

we see that the matrices M (&) attaining sup; [M (£)| (which is finite) necessarily
have eigenvalues exceeding some ¢ .
For ¢ < ¢ it follows from (4.2) that

(4.3) Supgez, infyez, tr M7 (9)M(£) 2 n + 1.

Comparing (4.1) and (4.3) we see that the value of the game (=, E., K.),
isve = m + 1 independent of ¢ = ¢ .

Let Eo(e¢) and Oo(e) be the class of optimal strategies for Players I and II
respectively. From (4.2) weinfer that @¢(e) C T C Eo(e) whereT' = {£| M(§)| =
sup, | M()}

Now let & e T' C Eo(e) and 9o € @(e). The optimality of & and o requires the
relation tr M~ (no)M (&) = n -+ 1. Moreover, since & and no are in T', [M(no)| =

6 In the form (tr P)/n + 1 = | P |”("+1) for P positive semi-definite with equality if and
only if P is a multiple of the identity matrix.
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|IM(&)| so that from (4.2)
n+ 1= tr M (n)M(&)
2 (n + DM (&) "7/ |IM(50)| "™ = n + 1.

But equality occurs in (4.4) only when M (%) is proportional to M(7,) and we
may conclude that M(£) = M(,). Keeping &, fixed, we deduce that the matrices
M(n0), n0 € @o(e), all coincide. Furthermore, & was specified arbitrarily in T' so
that @¢(e) = T. The set T' = BOg(e) is therefore convex and closed.

We can now prove that conditions (i), (ii) and (iii) define the same set.
Since sup, d(=, £*) = sup; tr M (§*)M (&) = n + 1 it follows that (ii) and (iii)
determine the set @o(e). Furthermore (i) is precisely the set I' so that the desired
result is established.

6. Maximization of certain determinants. In this section our objective is to
determine, for special choices of the functions fy, fi, - - -, f., those designs &
which maximize |[M(¢)| or equivalently minimize sup, d(z, £). In carrying this
out we find that the maximization of [M(#)| is more amenable to direct analysis.
We cannot always display the solution in closed form but some characterizations
are available.

Stating the problem more explicitly we wish to determine the measures &
which maximize the determinant of the matrix M (£) = ||m.;(£)|| where m:;(£) =
[ fi(z)fi(x)E(dx), 4,5 = 0,1, - - -, m, for special choices of fo , fi RN

(4.4)

Suppose the measure £ concentrates mass po, P1, -« , Pa( 2rmop; = 1) at
n + 1 distinet points @0, - - - , z, , respectively. For this choice of ¢ the elements
of M(£) become
(5.1) mi; = 2t pifs(x)fi(21).

Writing a:; = pifi(x:) and by; = f;(2) it follows that [M(¢)| = |A|/B| so that
the determinant of M (£) takes the special form

(5.2) {ITi=0 pi}{det [Ife(z)) (1750}’

We observe from (5.2) that the two sets of variables o, 2, - - - , 2, and po , p1,

-, Pa separate. The maximization of (5.2) can therefore be performed in two
stages An elementary calculation reveals that the maximum of [ ] 7= p; under the
conditions p; = 0, D7~ p; = 1is achieved forp, = (n + 1), 1 =0, 1,
In general the maximization of det ||f:(z;)|| or even the simpler task of charac-
terizing the solution appears very formidable.

If the functions fy , - - - , f. are specified to be

(53) f,((l?) = xiwé(x% 1= 0’ 17 R () xe[a, b]’
then (5.2) becomes
(5.4) (H?:o pz)HLo w(xl)H0§i<j§n (z: — xj)z-

ReEMARK 5.1. The above considerations suggest a number of pertinent in-
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quiries. For example, it would be of interest to determine conditions on the func-
tions fo, fi, - - - , f. that guarantee that the maximum of |M(£)| will be attained
for a measure concentrating at » 4+ 1 points. In this case [M(¢)| simplifies to
(5.2).

A second important area of inquiry concerns the problem of characterizing
those weight functions w(z) for the functions fi(z) = z'w}(z),7 = 0,1, --- , n,
whose associated maximizing measure £ contains #n 4+ 1 jumps. A partial solution
is indicated in Theorem 5.2 below. It would also be of interest to characterize the
points xo, 1, - - - , &, which produce the maximum in either (5.2) or (5.4).

We now turn to the maximization of the determinant |M(£)| when the func-
tions f;,7 = 0,1, --- , m, are of the form (5.3) and w(z) is a classical weight
function. _

TuroreM 5.1. Let fi(z) = z*w}(z),i = 0, --- , n, and let w(z) be one of the
following weight functions;

(ll) 'LU(IL') (1 - x)a+1(1 + x)B+17 [a7 b] = [_17 1]; a > _17 ﬁ > _17
(iii) w(z) = ¢, [a,b] = [0, »]; '

(iv) w(z) = xa-i-zle—ac’ [a,b] = [0, ], @ > —1;

(v) w(z) =€, [a,b] = [-, =].

Then the determinant [M(£)| 1s uniquely maximized by the measure & concentrating
equal mass (n + 1) at the zeros of the polynomials

(i) (1 — )P, (x) where P, is the nth Legendre polynomial;
(ii) P3P (z), the n + 1th Jacobs polynomial;
(iii) 2L, (x) where L, (z) is the nth Laguerre polynomial of parameter a;
(iv) LiFi(z);
(v) the Hermite polynomial H,1(x).

Proor. Since the analysis in each case is similar we shall consider only part
(iv). We first set D(£) = |[M(#)| and note that 0 < sup; D(¢) = Dy < .
Invoking the classical Helly selection theorem we obtain a sequence {&.} satisfy-
ing lim,.. D(£,) = D, and &, converges weakly to & (which, a priori, may not
be a bona fide probability measure, i.e., £, may have total measure less than one).
Since each of the functions 2”"*™¢™, » = 0, 1, .-+, n, vanishes at infinity, it
follows that D(%&) = D, so that the maximum is attained for & . We claim that
& cannot exhibit mass at the origin nor can the total measure £( « ) be less than 1.
If we assume to the contrary that &( o) < 1 then the measure &(dz)/&( )
produces a determinant of value exceeding Dy which is manifestly absurd. The
possibility that £ concentrates mass at zero is precluded by analogous reasoning.

Now let L,(¢) = [¢2"e¢™dt, » = 0, 1, ---, 2n. Because max; D() is
attained for £ = & it follows that the maximum of L,,(£), extended over those
probability measures whose first 2n moments are L,(%),» = 0,1, - - ,2n — 1,is
achieved for ¢ = & . In this case the point (Lo(%), Li(&), -+, Lw(%)) is a
boundary point of the convex set M = {(Lo(£), - - - , Lea(£))} where £ varies over
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the set of all probability measures on [0, « ). Consequently there exists a sup-
porting hyperplane to M at (LO(EO), -+, Lau(%)) i.e., there exist real constants
G, -+, Gz, and d with D 5" a,” > 0 such that D " a:L:(¢) < d, for all £ and
> a.L (&%) = d. Equivalently, [§ Z,_o ax™ e — d)é(dz) £ 0 for all ¢
with equality for & . This implies that > 2% a,a:"L""L1 S dforallz [0, «) and
equality occurs at all points of increase of £ . We now prove that equality holds
for at most n + 1 points exceeding zero. If equality occurs at n + 2 points then
the function g(z) = € "' Py, (z) — d, where Py, (z) = D s a:x’, possesses at
least 2n + 4 zeros counting multiplicities. On the basis of Rolle’s theorem we
may conclude that ¢'(z) = ¢ “2°[—2Ps + zP5, + (a + 1)Py] has at least
2n + 3 zeros on (0, « ), counting multiplicities.

This requires —2Ps,(z) + zPs.(z) + (a + l)PZn(x) = 0 and hence
P.(z) = 0 which contradicts the fact that .= a’ > 0. Since D(%) > 0 it is
clear that & necessarily admits at least n + 1 points of increase. The above analy-
sis proves that the measure £, consists of exactly » + 1 mass pointszy, -+ , Zn,
all greater than zero, with corresponding weights po, p1, -+ , Pn, Doreop: = L.

We may therefore write

(5.5) Ly(k) = 210 ot P
Referring to (5.4) it follows that D(£&) reduces to

(5.6) D(%) = (II¢ ps) exp [— 22 @ (I8 2" NMogicizn (@ — 2)™

We may now proceed along the lines of the proof of Theorems 6.7.1-6.7.3 in
Szegd [1959]. In this case we may differentiate log D (&) (][] p:)™ and verify
that f(z) = ][ (z — =:) satisfies the differential equation which determines the
Laguerre polynomial L% (z) up to a constant factor.

As remarked earlier the product J]& p: under the constraints p; = 0,
> rop: = 1is maximized when p; = (n + 1)™". This completes the proof of the
theorem.

REMARK 5.2. Theorem 5.1 was discovered by Schoenberg (1959). Schoenberg
used rather involved variational arguments while the above method of proof is
geometric and leads to a more general theorem (Theorem 5.2) given below. The
explicit values of |M(%)| in each case can be determined by referring to the
discriminant functions of the classical polynomials, see Szego (1959), p. 141.

Some of the preceding arguments pertaining to the number of points in the
spectrum of a measure £ which maximizes |[M (£)| are directly applicable for the
case fi(z) = [w(:c)]*x", (#=0,1,---,n,a =z = b) where w(x) is a general
weight function.

We shall assume that w(z) is continuous on the interval (a, b), which may be
finite or infinite, and that if ¢ = — o (b = 4+ ) then the limit of w(z)z™ as
z— a (x—0b) isfinite. We let u, = fZ w(z)2’t(dz),» = 0,1, - - -, 2n,and denote,
as previously, the determinant of ||uiyl|7j—0 by D(£). We shall assume that
w(z) > 0 for at least n 4+ 1 points; otherwise D(¢) = 0.

If D(%) = max, D(n) we may deduce using the supporting hyperplane argu-
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ment, as in the proof of Theorem 5.1, that an upper bound on the number of
points in the spectrum of &, is the maximum number of points for which equality
holds in the relation w(x) 2 i ax’ < d, z ¢ [a, b], D i a’ > 0. Using this
fact we prove the following theorem.

THEOREM 5.2. The maximum of D(n) with respect to the set of all probability
measures 1s attained by a measure & which concentrates at exactly n + 1 points if
any of the following conditions hold :

(i) the system {1, w(z), zw(x), --- , 2"w(x)} is a T-system on [a, b], (see
Section 3).

(ii) w(z) = [P(z)]"", where P(x) is a polynomial, positive on [a, b] and
P®* (2) has no zeros on the open interval (a,b), (e.g. if P(x) has only real zeros
either all less than a or all greater than b).

(iii) w(x) can be approximated uniformly by weight functions of the type con-
sidered in (ii).

(iv) w(z) = [P(z)]", where P(z) is a polynomial, positive on [a, b], of degree
at most 2n.

REMARK 5.3. Case (iii) appliesif a = 0,b = o and w(z) is the Laplace trans-
form of a Pélya frequency function on [0, '« ), see Schoenberg (1951).

Proor. Suppose that (i) holds. From the remarks preceding the statement of
the theorem there exist real a:, i = 0, 1, ---, 2n, (2, a’ > 0) such that
w(z) D " ax’ < d for some real d and equality occurs on the spectrum of &.

If there exist at least n + 2 points 2; < Z3 < +++ < Znye in the spectrum of &,
then three alternatives can arise: xz; ¢ (@, b) for all i; n + 1 of the z;’s lie in (a, b)
and one is located at an endpoint @ or b; 2, - - -, .41 are interior to (a, b),

23 = a and x,.2 = b. For each of the three possibilities the ‘“polynomial”
w(z) D" e’ — d has at least 2n + 2 zeros where zeros in the open interval
(a, b) are counted twice. This is impossible by Theorem 1.4.2 of Karlin and
Studden (1966).

If condition (ii) is postulated, then as above, the function g(z) = Yo" a:r’
— d-P(x) admits at least 2n 4+ 2 zeros in the interval [a, b] where zeros at the
endpoints a and b are counted once. If d = 0 this is impossible while if d £ 0 then
the function ¢®"™(z) = —d-P®* () possesses a zero in (a, b) contradicting
the hypothesis.

The third part follows by a straightforward limiting argument.

Part (iv) is handled in a slightly different manner. Let

M = {(uo(£), -+, wa(£))} (= [aw(z)2’t(dx))

denote the moment space obtained by varying & over all probability measures on
[a, b] and let 97 denote the closed convex cone generated by M. Since P(x) is a
polynomial of degree at most 2n we may write P(x) = 2ro bt It follows that
M is the section of the cone 9 consisting of the points (¢o, - -+ , C2n) € M satis-
fying the normalization condition D i bic; = 1. Now if & maximizes the de-
terminant D (&) then (mo(&), - - - , usm(%)) is necessarily a boundary point of M.
Since M is a section of 9T the point (uo(£), -+« , uen(£)) must also be a boundary
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point ofgthe cone M. In this case there exist real constants ayp, a1, - -, az
(2% a’ > 0) such that
(5.7) 2iax'/w(x) £0, a=<z=0,

and equality holds for z in the spectrum of & . But [M(%)| > 0 implies that the
spectrum of £ contains at least n + 1 points. However w(z) > 0 for z ¢ [a, b] so
that equality can hold in (5.7) for at most n + 1 points which includes the two
endpoints @ and b. Therefore the spectrum of £, contains exactly » + 1 points.

6. Extensions of Theorem 4.1. In Theorem 4.1 it was shown that any measure
£ maximizing |M(£)| also minimizes max, d(z, £) and conversely. The significance
of this theorem was the identification of the optimal designs associated with seem-
ingly distinct statistical criteria. The matrix M(¢) is the information matrix
associated with an experiment ¢ while N™" d(z, £) corresponds, for fixed £, to the
variance of the best linear unbiased estimate of the regression function
20 0fi().

The functions M (£) and d(z, £) are relevant for the problem of estimating the
full set of » + 1 parameters 6y , - - - , 8, . In considering the estimation of only the
first s 4+ 1 of the » 4 1 parameters we introduce two corresponding functions.
When M (#) is non-singular, the analog of [M(£)| will be
(6.1) IML*(8)] = IMa(§) — M (§)Ms™ (£)Ma(5)|
where
M:(£) My'(%) .

(M(§)iss+ 1 X s+ 1).

Ma(8) Ms(£)

(6.2) M(¢) = .

The analog of d(zx, £) is
(6.3) di(z, £) = tr P(§)(f*(2) — D'(H)f®(2))(f¥(2) — D'(H)f¥())’
= (f%(z) = D'(H)I®(2), P(&) (f” (2) — D'(§)f?(2)))
where
f92) = (fo(@), -+, fu(@), 1) = (foua(@), -+ , ful®)),
P(f) = MO  and  D(£) = My (£)Ma(£).
Our objective in this section is to extend the equivalence theorem (Theorem 4.1)

to show that a measure ¢ maximizes |M,*(£)| if and only if it minimizes
max, ds(z, £).

We first wish to extend the definition of M,*(£) to the case where Mj(¢) is
singular. For this purpose we need the following elementary facts that are conse-
quences of the hypothesis that M(£) in (6.2) is positive semi-definite.

LeMMA 6.1. Range My(¢) C Range Ms(§).

Proor. The statement of the lemma is equivalent to the relation

[Range M:(£)]* D [Range Ms(£)]*
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( L denotes orthogonal complement). But for any matrix C the null space n(C)
of ¢’ (C" = the transpose of C) coincides with [Range (C)]*. Therefore, we need
to show that 9t(M.'(£)) D 9U(M;'(£)).

Since M (£) is non-negative definite we know that if x = {ex; , X2} (x1is a vector
of s 4 1 coordinates and X, is a vector of » — s coordinates), then for all real ¢,

(x, M(§)x) = é(x1, Mi(£)x1) + 2e(x1, My (£)%:) + (X2, Ms(£)%:) = 0.

Let x; be contained in 91(M;(£)) = 9U(Ms'(£)). Then (x, , Ms(£)x,) = 0 and it
follows from the preceding inequality that (x;, M, (£)xz) = O for all x; . There-
fore X, £ 90(M,'(£) ) which implies 9t (M.’ (£)) D (M’ (£)).

CoROLLARY 6.1. A solution X of order (n — s) X (s + 1) of the matriz equation
M;(£)X = M.(£) always exists.

LuMMA 6.2. The mairiz X' M;s(£)X is independent of X provided X is a solution of
M;(£)X = Ma(£).

Proor. If M3(£)D = 0 then trivially (X’ + D’)M;(X + D) = X’'MX.

We now set M,*(t) = Mi(¥) — X(&)'M;(£)X(¢) where X(£) is a solution of
M, (£)X(£) = My(£). By virtue of Lemma 6.2 M, *(£) is well defined independent
of the particular solution used. We also define d,(z, £) asin (6.3) with D(£) re-
placed by X(%) provided M,*(¢) is nonsingular.

The quantity M,*(£) enjoys the following properties:

Lemma 6.3. (1) M,* = M,*(£) is non-negative definite.

(i) M,*(%) = My(§) — X'(§)Ma(D)X(£) = Mu(8).

Proor. (i) If D is an arbitrary (n — s) X (s + 1) matrix and I represents the
(s + 1) X (s + 1) identity matrix then

M, M, I ‘
M, M; || —D|

is manifestly non-negative definite. In particular let D satisfy MsD = M, . Then
the above matrix becomes

M; — M)D — D'M, + DM;D = M; — M;’D = M; — D'M;D = M,*

Thus M,* = M,*(¢) is always non-negative definite.

(ii) This result follows immediately since X' (£)M3(£)X(£) is clearly non-nega-
tive definite.

The following two elementary lemmas will also be needed.

LemMA 6.4. If X(£) is a solution of Ms(£)X(£) = Ma(&) then the matrix

X'MX — X'M;D — D'M;X + D'M;D
= X'MX — M,;D — D'M, + D'M:.D

I|L, — D'| = M; — M;D — D'M, + D'M;D

is non-negative definite. Moreover this matriz is identically zero if and only if D also
satisfies MsD = M.
Proor. The above matrix coincides with

(6.4) (X' — D')Ms(X — D)
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which is clearly non-negative definite and certainly vanishes when D satisfies
M;D = M, . Moreover if Ms(X — D) > 0 then A = M;(X — D) 5 0 which
brings (6.4) into the form AA’ with A > 0. This obviously vanishes if and only if
A = 0 or what is the same if and only if D satisfies M;D = M. .

Lemuma 6.5. If C is an arbitrary non-negative definite (s + 1) X (s + 1) matrix
then

(6.5) infipi_ tr PC = (s 4+ 1)[C|*™™

where the infimum is extended over the set of positive definite matrices P (order
(s+ 1) X (s+ 1)) of determinant one. In the case that |C| > 0, equahty ocecurs in
(6.5) if and only if P is proportional to C™.

This is another form of the arithmetic mean geometric mean inequality (see
footnote, 6, Section 4).

We are now prepared to analyze the functions M.*(¢) and d,(z, £). Since the

functions f;, 7 = 0, --- , n, are continuous and X is compact it follows from
Lemma 6.3(ii) that :
(6.6) 0 < supg [Mi(£) — X'(§)Ma(O)X(£)| = a < ..

Let {M (%)} be a sequence of information matrices for which

M. () — X/ (5)Mu(8)X ()] — o
and without loss of generality we take & converging weak™ to some & . Then
(6.7) limyo M (&) = M(&).

It is not clear at present that the matrices X(&) converge; however, it will be
shown below that @ = [M,*(%)| = [Mi(£) — X (&) Ms(£)X(%)|-
We introduce the function

#(P,D; ) = tr P(M; — D'M, — M;'D + D'M;D).
= [ P@#E® — D'I?)(f® — D'f?)’ ida)

where D is an arbitrary » X s + 1 (r = n — s) matrix and P is positive definite
of determinant value a~". Obviously

$(P,D; £) = tr P(My(¢) — D'M,(£) — M,/ (£)D + D'M;(£)D)
tr P(My(£) — X' (6)Ms(£)X(8) + X'(§)Ms(£)X(8)
— D'M,(£) — M, (£)D + D'M,(£)D)

(6.8)

so that from Lemma 6.4

(6.9) $(P,D; £) 2 tr P(Mi(¢) — X'(§)Ms(§)X(9)).

and equality holds in (6.9) if and only if D satisfies Ms(£)D = M.(£). Therefore
(6.10)  infp,p,pi=a—t (P, D; £) = infp,pja-1 tr P(M1(§) — X' (§)Ma(§)X(4)).
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Now appealing to Lemma 6.5 we deduce that
infp,jpi—a-1 tr P(M1(§) — X'(§)Ms(£)X(£))
= (s 4+ DMi(§) — X'()Ms(£)X(8)| 7 /a7

where a is defined in (6.6). Combining (6.10) and (6.11) we obtain for all prob-
ability measure ¢ that

infp,p,pj=a-1 ¢(P, D; £)

(6.11)

(6.12) Y (e+D71/ (s+1) 71
= (s + D[Mi(§) — X(HM(HX(H)[* /a”

and

(6.13) sup; infp,p $(P, D; £) = s + 1.

If ¢ is such that [M,*(¢)| = [Mi(¢) — X'(§)Ms(£)X(£)| > 0 then Lemma 6.5
informs us that equality occurs in (6. 12) if and only if D satisfies M3(¢§)D = M.(£)
and P is proportional to (M;(¢) — X’ (£)M3(£)X(£) )~; the proportionality con-
stant is determined by the condition |P| = a™*

Finally, since

$(P,D; &) 2 (s + 1)IMi(&) — X’(sk>Ma<sk>X<sk>|<*+"“’/a<*+"“
the limiting properties of the sequence {£} imply that
(6.14) o(P,D; &) =2 s+ 1.
Therefore
(s + 1)[Ma(40) — X'(80)Ma(80)X(80)|“*7/a*"™ = infp,p $(P,D; ) Z s+ 1
and hence
(6.15) IMi(%) — X'(£0)Ms(£)X(%)| = a.

The above analysis will help in proving the following theorem.

THEOREM 6.1. Let @ denote the set of all positive definite matrices (of order
(s + 1) X (s + 1)) normalized so that |[P| = a~* and let D comprise the set of all
real matrices of order (n — 8) X (s + 1). The kernel defined in (6.8) satisfies

max; minp,p ¢(P, D; £) = s + 1 = minp p max; ¢(P, D; £).
Furthermore, & determined in (6.7) satisfies
¢(P,D; %) =2s+1 foral (P,D)e® X D.
If (Py,Dy) ¢ ® X D fulfills
¢(Po,Do; &) s+ 1 for all probability measures & on X

then Dy satisfies M3(£) Do = Mo2(&) and Py s a constant multiple of [Mi(%)
- Do,M;;(fo)De]“l.
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Proor. We consider the sequence of games

¥n(Q, E; £) = tr(Q'My(£)Q + Q'M,'(£)E + E'M;(£)Q + E'M;(¢)E)

- (10,3 e &R])

where E denotes an arbitrary (n — s) X (s + 1) real matrix whose elements are
uniformly bounded by N and Q stands for a general positive definite matrix
((s + 1) X (s 4 1)) normalized so that |Q| = a™* with smallest eigenvalue
2> N The ¢ variable, as previously, traverses the set & of all probability measures
on X.

We denote the strategy space of the minimizing player by @y X &x . In view of
the classical inequality

Q1 + Qu“™7 2 IQII(”'D_‘ + ,Q2l(s+1)"l

when Q; and Q. are positive semi-definite it is readily established that Qx is con-
vex and compact and obviously the same holds for & . Clear & is convex and com-
pact since & is compact. Moreover, we note the fact that the kernel ¥»(Q, E; £)
is convex with respect to (Q, E) and linear in £ The fundamental theorem of the
theory of games affirms the existence of (Qx , Ex) € Qv X &y and £y ¢ = fulfilling
the relations :

(6.16) Yy(Qw,Ex; &) = vx forall t(ei&
and
(6.17) Yy(Q, E; tx) = ox forall (Q,E)eQy X &x

for some constant vy . Clearly vy decreases as N increases since only Qx X &y en-
larges. This, shows in particular, that vx is uniformly bounded.

Now choosing £ so that M3(¢) is non-singular we infer from (6.16) that the ele-
ments of Qx and Ey are uniformly bounded. Selecting a pair of limit matrices
Qo and E, from {Qy} and {Ex} respectively and a weak™ limit measure £ from £y
and executing the obvious limit procedure in (6.16) and (6.17) leads to the in-
equalities

(6.18) V(Qo, Eo; &) = v, forall ¢(e¢&

and

(6.19) ¥(Q,E;£) 2v forall (QE)e@ X &

where v = limy,.vy. Obviously Qo is a positive definite matrix of order
(s + 1) X (s + 1) fulfilling the condition |Qo| = a™*. Since |Qy| = a™* we can
introduce the matrix Dy = —E, Q;" and D = —EQ™" generally for (Q, E) in

@ X & Then (6.18) and (6.19) become
(6.20) ¢(Py,Dp; &) < v forall ¢¢k&E
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and
(6.21) ¢(P,D;E) =v forall (P,D)e® X D.

We see directly from the definition that ¢(A\P,D; ¢) = A¢(P,D; £) for A > 0.
Therefore, we may suppose that P, satisfies the normalization condition
[Po| = a™*; otherwise replace Py by AP, for appropriate A (0 < A < 1) and relations
(6.20) are manifestly preserved.

The inequalities (6.20) and (6.21) imply the identity

(6.22) max; minp,p ¢(P, D; £) = v = minp,p max: ¢(P, D; £).

Comparison of (6.22), (6.13) and (6.14) shows that v = s 4+ 1 and that we can
replace £ in (6.21) by & . Since Py , Dy minimizes ¢(P, D; &) the characterization
of Py and D, as stated in the theorem follows as indicated in the discussion of
(6.14). The proof of the theorem is complete.

Using the above theorem we may deduce the following theorem.

TrarorEM 6.2. Kiefer (1962). Let fo, - - - , fa be linearly independent continuous
functions on a compact space X. Then for 0 = s = n there exists real numbers
ai;,0 21 25,0 =5 = n, with the matrix ||aigl], (0 < 4,7 < s) non-singular and a
probability measure & on X with finite spectrum such that

(a) the functions g; = Y=o aifi, 0 < ¢ < s, are orthonormal with respect to &
and are orthogonal to f; for s < j = n.

(b) max, 2 2i0gi(z) = [ 2ic0g(z)ke(dm) = s + 1.

Proor. By Lemma 2.1 we can choose &, satisfying (6.14) with finite spectrum.
Let Do and P, be determined as in Theorem 6.1. We define

(90, ,0) = g = PI{f” — D/f?}.

Since Po[(Ml(fo) - Do’Mz(Eo) - MQI(EO)DO + Do’Ms(go)Do] =1 (the identity
matrix) we conclude that the functions g, - - - , gs are orthonormal with respect
to & . Moreover, since ¢(Py , D¢ + €D, &) = ¢(Po, Dy ; &) for allD ¢ D and arbi-
trary real e it follows that

—2¢ [ tr g(2)f? (z)'DPy(dz) + ¢ tr PD'M(£&)D = 0.

However this is possible only if the coefficient of ¢ is zero. Now choosing D soithat
DP; is the (n — s) X (s 4+ 1) matrix with zeros everywhere except in the jth
row and 7th column, we have [ gifoy; dé = 0,0 <4 <s,0 <j <n — s. This com-
pletes the proof of (a). To prove (b) note that

s+ 1= ¢(Po,Dq; &) = sup:p(Po, Do ; £)
sup; [ (trg(z)g’(x))E(dx) = sup, D im0 gi*(x)

Il

so that
max, ) sogi(z) = s+ 1 and [ D ioogl(x)é(dr) = s+ 1.
The proof of Theorem 6.2 is complete.
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We now turn to the analog of Theorem 4.1. For any measure such that
[M,*(£)| > 0 we define (see (6.3))

(6.23) du(z, £) = rP(& AV () — D(OIP(2))(EV(2) — D'()F())’

where P(§) = [M.*()I" = Ma(§) — X'(£)Ms(£)X(£) ™" and My(£)X(£) =
Mi(nsihe case that M(£) is non-singular it can be verified by juggling the obvious
relations between M; and M
(M(E)_l HM 2 M) )
that d;(z, £) reduces to
di(z, §) = (£(z), M7 (H)f(z)) — (E®(2), Ms™ (£)® ().

The three conditions corresponding to those given in Theorem 4.1 are

(i) E maximizes [M,*(£)| = [Mi(§) — X'(§)Ms(£)X(8)[;
(6.24) (ii) £* m1n1m1zes max, ds(x, £); -
(iii) max, d,(z, £*) = s + 1.

The analog of Theorem 4.1 is the followmg
THEOREM 6. 2 The set of measures £* fulfilling (i), (ii) or (iii) of (6.24) coincide.
Proor. If £* satisfies (ii) then

max, dy(x, £*) = min; max, d,(z, £) = ming max, [ do(z, £) dn(z)
= min; max, ¢(P(£), D(£), n) < max,¢(Po,Do;n) < s+ 1
But since ¢(P(£),D(£); £) = s + 1 we see that £* satisfies (iii). Condition (iii)

clearly implies (ii) since always max, dy(z, £) = s + 1.
If max, dy(z, £*) = s + 1 then taking account of (6.12) we deduce that

s + 1 = max; ¢(P(£%),D(£%), £) = max, N '¢(A\P(£*), D(£), £) = (s + 1)/A

where \ is such that [P(£*)N| = ™ (a = sup; [M,*(£)|). Therefore |aP(t*)| < 1
ora < |M,*(£*)| and hence condltlon (iii) implies condition (i).

From Equation (6.11) any £* which maximizes |M,*(¢)| fulfills ¢(P, D; £*) =
s + 1. However, in this case, the optlmal minimizing pair P, and D, are character-
ized by the propertles that Py = P(£*) and D, satisfies M(¢ )DO M.(£*) so
that ¢(P(£*),D(£%);£) < s + 1 for all £ and hence max, d, (z,£*) = s+ 1. This
completes the proof.

REMARK 6.1. The expression ¢(P,D; £) can be written as

(P, D; ¢) = tr PM(¢)P’

where P is the s + 1 X n + 1 matrix defined by P = ||Q, —QD’||, Q being the
positive square root of P. When M () is non-singular we can express ¢(P, D; £)
in the form

(6.25) (P, D; £) = supg. [tr’ PE/tr EM(¢)'E]
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where E is an arbitrary n 4+ 1 X s + 1 matrix. Equality is attained for
E = M(£)P'. The proof of (6.25) can be based on the inequality tr* PE =<
(tr E'M(¢)'E) (tr PM(£)P’) whichis easily derived by employingan appropriate
form of Schwartz’s inequality. In the present case we have the formula

infp,p (P, D; £) = infp,p Supg [tr* (PE)/tr E'M(£)E].
REMARK 6.2. Whenever |[M(£)| > 0, it is easy to show that
IMy(5) — X'(OMo(£)X(E)] = IMa(§) — Mo (6)Ms™ (§)Ma()]
reduces to [M(£)| |Ms(£)|™ so that (cf. (6.11))
infp,p (P, D; £) = [(s + 1)/ I(IM(£)/Ma(6)D ™

REMARK 6.3. In the case s = 0, (P, D; £) becomes (apart from a fixed multi-
plication factor)

)—1

fﬂc (fo(z) — Z;’;l d,f,-(x))zé(dx).

Therefore the task of evaluating infp p ¢(P,’D ; £) and determining the minimizing
D is equivalent to finding that linear combination f*of fi, -+, fa for which
fo — f* has minimum L,(£) norm.

If we view the functions f; as random variables we wish to find f * which mini-
mizes what is essentially the variance of fo — f*. This linear combination is the
same as the one which gives maximum correlation between fo and f* where the

square of the correlation is ( ) fof* de)2/f fo dt [ ( ) de.
In the case (fo(z), -+ , fa(®)) = (2", -+, =, 1) for z [0, 1], the result of
Theorem 6.1 specializes to

sup; infg [o (2" — Sry da')’e(de) = infq sups [2° — St da’?

and the right side is attained when the polynomial is proportional to the nth

Tchebycheff polynomial of the first kind.
In the general case we have the following: For a fixed £ we define an inner

product by ¢h, g) = [ (h, P(£)g)dt where h = (ho, - -, hs) and
g = (go, ", 9s). Then

$(P(£),D;8) = [« ((E — D'I?),P(§) (f* — D'T?)) d
— §© _ D'f®, P — D'f?),

We easily deduce that
infy ¢(P(£), \D, &)

= GO, £ — ¢, D'EPW/ G, 1O )(D'E?, DE?)] (A real)
so that
infp.p $(P, D; £) = infp ¢(P(£), D; £) = infp (¥ — D't?, £V — D'f?)

— ¢, £P)1 — supp [P, D'E? Y/ §®, £0y(D't?, D'EP)]}.
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7. Admissible designs. A measure or design £ is called admissible if there does
not exist a design £* such that M(£*) = M(%) (the inequality signifies that
M (£*) — M(£) is positive semi-definite and M (£¥) = M(£)).

The next theorem is stated without proof in Elfving (1959) in a less precise
form. Two examples will be given at the culmination of the proof to show that the
converse statements of both parts of the theorem are not valid.

TurorEM 7.1. Let S(&) denote the spectrum of & .

(1) If there exists a positive definite matriz T such that (f(x), Tf(z)) < 1 for
all x & X and equality holds for x € S(&) then & is admissible.

(ii) If & vs admissible then there exists a non-negative matriz T (not necessarily
positive definite) such that (£(z), Tf(z)) = 1 for all x £ X with equality occurring
for x £ S(%).

Proor. (i) Suppose that there exists a design £¢* such that (d, M(¢*)d) =
(d, M (%)d) for all d or equivalently

(7.1) [ (f(z), d)’t*(dz) = [ (f(2), d)’%(dz)  forall d.

Since the matrix T is positive definite it may be represented in the form
T = > 7tt/ wherety, ---,t,aren + 1 linearly independent vectors. Substi-
tuting t; for d in (7.1) and summing over j yields

(7.2) J (), TH(2))E"(dz) 2 [ (i(2), Ti(x))&o(dx).

Since (f(z), Tf(x)) = 1 for all # and equality occurs for z £ S(&), the relation
(7.2) is an equality. In this event, equality necessarily holds in (7.1) for the
choicesd = t;;5 = 0, 1, ---, n. Therefore (t;, M(£")t;) = (t;, M(&)t,),
j =0,1,---, n, and since M(£*) — M(%) is semi-definite it follows that
M(£*) = M(&). Therefore & is admissible.

(ii) Let & be admissible. Consider the game with kernel ¢(, u) =
f (g, (M(£) — M(%))g)u(dg) where Player I maximizes over the set of prob-
ability measures £ on % and Player IT minimizes over the set of probability meas-
ures u defined on the unit sphere {g | g ¢ E"™, |lg| = 1}. The kernel ¢(, u) is
linear in both variables and the strategy spaces are compact so that both players
have optimal strategies £* and u*. Moreover, since £ is admissible the value of the
game is manifestly equal to zero. Therefore

(7.3) J(&, M()g)n*(dg) = [ (g, M(%)g)n*(dg)  forall &

The right side of (7.3) is positive due to the fact that M (£) is positive definite for
some £. Letting mo = [ (g, M(£)g)u*(dg) and T = mg " [ gg'n*(dg) we may re-
write (7.3) in the form

(7.4) [ (f(x), Tf(x))&(dz) <1  forall ¢

and equality occurs for ¢ = & . In this case (f(x), Tf(x)) = 1 for all z £ I with
equality occurring when « € S(&). This completes the proof of the theorem.

We now present two examples which show that the converse statements of parts
(i) and (ii) in Theorem 7.1 are false.
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Consider part (ii). We wish to demonstrate that the existence of a non-negative
matrix T satisfying (f(z), Tf(z)) =< 1 with equality on the spectrum of ¢ does not
imply ipso facto that ¢ is admissible. To this end, consider fo(z) = 1, fi(z) = z
and [a, b] = [0, 1]. If

T = (o0

then (f(z), Tf(z)) = 1.

If the converse of part (ii) were true then every ¢ would be admissible. How-
ever, this is manifestly not the case. In fact, let £, denote the measure con-
centrating all of its mass at to (0 < t, < 1) and let & concentrate mass ¢, and
1 — ¢, at 1 and O respectively. Then

M (&,) = (i, 122), and M(%&) = (G,

so that M (&) = M(&,).

The following example shows that the converse assertion of part (i) is false.
Let X = [0, /2] u {=} and define f = (fo, f1) by f(x) = (1, 1) and £(8) =
(fo(8), f1(8)) = (cos 6, —sin 6). It can easily be checked that the design con-
centrating exclusively at # = 0 is admissible. However, there exists no positive
definite matrix T satisfying (£(8), Tf(6)) < 1forall 6 £  and (£(0), Tf(0)) = 1.

We will next establish that the concept of admissibility of a design & is essen-
tially a property of the spectrum of £ (see Corollary 7.2 below).

TuroreEM 7.2. Let & be an admissible design. Then every design £ of the form
£(dz) = o(x)é(dx) where 0 < o(x) = K (K is a constant) s also admissible.

Proor. Suppose to the contrary that £ is inadmissible. Then there exists a
design £* such that

(7.5) [ (f(z), d)’*(dz) = [ (f(z), d)*(dz) for all d
and strict inequality holds for some d.
Let & = (1 — 1) + 7¢* (0 < ). Then
J (@), )& — H(de) = 1 [ (f(e), O - £(de) 2 0
with strict inequality for some d. It follows that
(7.6) [ (@), )& — & + &)(dz) = [ (f(z), d)%(dz).

Now since p(z) < K it follows that forn < K~ the measure (&, — £ + &) (dz) =
nE¥(dz) + &(dz) — me(x)&(dz) is non-negative. Moreover

[ (& — &+ &)(dz) = 1.

Equation (7.6) shows that the design & is also inadmissible. This contradiction
implies that the design £ is admissible.

COROLLARY 7.2. If a design & = {x: ;pis” (ps > 0, D i1 p: = 1) is admissible
then the design & = {x; ; ¢} (¢: = 0, 2 imy ¢i = 1) 4s also admissible.

For the case of ordinary polynomial regression on a finite interval [a, b] the
class of admissible designs have been completely characterized by Kiefer (1959).
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The following theorem, which makes use of Theorem 7.1, part (i), incorporates
an extension of his result.

TrmormM 7.3. Let X = [a, b] and fu(z) = w(z)'e’, ¢ = 0,1, --- , n, where
w(x) = Pas(z) = 20bat is a polynomial, positive on (— w0, «), of
degree at most 2n — 2. Then a design & is admasstble if and only if the spectrum
of & contains at most n — 1 points in the open interval (a, b).

Proor. Suppose the spectrum of £ includes at most » — 1 points in (a, b).
Then there exists a polynomial @, i(z) of exact degree n — 1 such that
(a — 2)(b — 2)Q%_1(z) vanishes for x in the spectrum of &, . Since Pg,_o(z) > 0
on z ¢ [a, b] we specify e sufficiently small and positive so that

(7.7) Pous(z) + e(a — 2)(b — 2)Qra(z) > 0, e, b].
However, both polynomials on the left side of (7.7) are positive for z # [a, b]
80 that Us(z) = Pans(z) + e(a — z)(b — x)Q%_1(2) is a polynomial of exact

degree 2n which is positive for z & (— «, ©). We now prove that Us,(z) pos-
sesses a representation of the form

(7.8) Un(z) = (g(2), Tg(x))

where g(z) = (1,z, -+, 2") and T is a positive definite (n 4+ 1) X (n + 1)
matrix. To this end we first write Uy, (z) in the form Us,(z) = D im0 Va(z)
where Vo (x), kb = 0, 1 -+, m, is positive on (— », ) and of exact degree
2k, e.g., let Vor(z) = a° —I—a(a>0)fork—0 1, -+, n—1,and Vy, =

Usn — BZ,H) Var where 6§ is sufficiently small and positive. By Corollary VI.&.1
of Karlin and Studden (1966) each of the polynomials V. (z) can be written
in the form Vy(z) = Ri*(z) 4+ Si_1(z) where R; and Si_; (S_1 = 0) are poly-
nomials of exact degree & and k — 1 respectively. Now let ry, and s;_1, denote
the coeflicient vectors of Ry and Si_, , i.e., Rk(x) (ray, g(x)) and Sp_i(x) =
(St—1y , g(x)). Since the vectors e,k = 0,1, .. n,are linearly independent
the matrix T = Zk =0 r(k)r(k> + S(k—l)S(k 1)] 1s pOSlthG deﬁnlte and Ugn(x)
can be expressed as Ua(x) = (g(z), Tg(z)) as required. We have thus shown
that Pa_s(z) — e(z — a)(b — 2)Q%_1(z) = (g(z), Tg(z)) where T is positive
definite. Dividing both sides by Ps,_2(2) we conclude that

(f(z), TE(2)) = 1 — e(z — a) (b — 2)Q%_1(x)/Pons(2)

which shows that (f(z), Tf(z)) < 1 for z ¢ [a, b] and equality holds for z in
the spectrum of & . The design & is therefore admissible by Theorem 7.1 (i).
We now assume that £ is admissible and wish to show that the spectrum of
& has at most n — 1 points in (a, b). Appealing to Theorem II1.1.1 of Karlin
and Studden (1966) we infer that if the spectrum of &, contains at least n points
belonging to (a, b) then there exist a measure £, , concentrating on the endpoints
a and b and n — 1 points in (@, b), and X > 0 such that the relations p.(%) =
w(Na), v = 0,1, -+, 2n — 1, and (&) < pen(N&) hold where pu,(¢) =
fb w(x)x E(dx), v =0,1, 2n But

= fw(x)22”—2b,x£o(dx) = D I budk) = it tba(NE) = A
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so that u,(&) = m(&),» =0, -+ ,2n — 1, and pza(£0) < pea(£1). These rela-
tions trivially imply that £ is inadmissible. From this contradiction we conclude
that the spectrum of & consists of at most n — 1 points in (@, b). This completes
the proof.

For a general system of functions fo , f1, - - - , f. the problem of characterizing
the class of admissible designs seems to be quite formidable. However, for the
case where fi(z) = [w(z) 'z, i = 0,1, -+, n, £ = [a, b] and w(x) satisfies cer-
tain conditions, an upper bound on the number of points in the spectrum of an
admissible design can be obtained.

Turorem 7.4. Let fi(x) = [w(x)]*x',i =0,1, -+ ,n, X = [a, b] and suppose
w(x) either satisfies one of the four conditions of Theorem 5.2 or w(x) ¢s one of the
classical weight functions featured in Theorem 5.1. If a design & is admissible then
the spectrum of & contains at most n + 1 points.

Proor. If & is admissible, then Theorem 7.1 (ii) implies the existence of a
non-negative polynomial @.(z) of degree at most 2n such that

(7.9) w(x)Qem(z) =1 for all z & [a, b]

and equality holds on the spectrum of & .

The proof proceeds by determining the number of possible zeros of the func-
tion w(z)Qem(x) — 1. If w(x) satisfies one of the four conditions of Theorem 5.2
the analysis paraphrases that is given in the proof of Theorem 5.2 and may
therefore be omitted.

Let w(z) be one of the classical weight functions considered in Theorem 5.1
and suppose that the spectrum of & contains r points. Note that any point x
for which w(z) = 0 cannot belong to the spectrum of & . Since each of the weight
functions under consideration (other than w(x) = 1) vanishes for at least one
of the endpoints @ or b and w(z)Qs.(z) # 1 it follows from (7.9) that the func-
tion w(2)Q:m(2) — 1 possesses at least 2r — 1 zeros, counting multiplicities in
[a, b]. In this circumstance the derivative

(7.10) W' (2)Qen(x) + w(z)Qsn(z)

has at least 2r — 2 zeros in the open interval (@, b). In the case of the classical
weight functions the ratio w’(x) /w(x) reduces to a function of the form I(x)/q(x)
where I(z) is linear in z and ¢(z) is a quadratic. Therefore

(7.11) L(z) = U(z)@um(2) + ¢(z)Qen(®)

possesses at least 2r — 2 zeros on (a, b). But L(x) cannot vanish identically
since w(x)Qu(x) # 1. Therefore since L(z) is a polynomial of degree at most
2n + 1 we conclude that 2r — 2 < 2n + 1 orr = n + 1. The proof is complete.

To testify to the difficulties involved in completely characterizing the ad-
missible designs for a general system of functions fy, fi, - -+ , fa or even for the
cases considered in Theorem 7.4 we cite the following examples:

(a) If & = [—1,1], w(z) = 1 — 2” and n = 1 then a two point design con-
centrating at —m, and z, is admissible if 0 < z, < 1/ 2! and inadmissible when
/2 < 2 = 1.
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(b) For the case w(z) = ¢ © and £ = [0, =] it can be shown that at most
n points in the open interval (0, «) are permitted in the spectrum of any ad-
missible design. For the special case n» = 1 a design concentrating on the
points zo = 0 and 2, is admissible provided z; < v where v is the unique positive
root of the equation ¢”(y — 2)* = 4 and inadmissible when z; > 7.

8. Quadratic loss. In this section we will be concerned with the minimization
of the expectation EW where W = (( — 0), L(8 — 6)) and L is a non-negative
matrix of rank k. The estimates §; ,% = 0,1, - -+ , n, will be assumed to be linear
in the observations. Let ¢ = {x; ; p:}," where p.N = n; are integers and let A
denote the N X (n + 1) matrix with n; rows equal to f(x;) = (fo(x:), ---,
fa(2i)), ¢ =1, -+, r. If § = By, where y is the vector of N observations and
B is an arbitrary (n + 1) X N matrix, then

(8.1) EW = ¢'(BA — I)’L(BA — I)6 + tr B'LB.

In order to make the estimates & unbiased in the sense that the right side of
(8.1) is independent of 6 we restrict considerations to those designs ¢ whose
associated matrix A is such that there exists a matrix B satisfying

(BA—I)L(BA —1) = 0.

Since L is of rank k we write L = k1 LL" where 1 , *++, 1 are linearly in-
dependent vectors and let J denote the n + 1 X k matrix with column vectors
L,y =1, -,k Then JJ' = L and the restriction that there exist a solution of
(BA — I)’L(BA — I) = 0 is equivalent to the existence of a solution B to the
matrix equation J’BA = J'. Let ® denote the class of n + 1 X k matrices B
satisfying J'BA = J'. For each B ¢ ®, Equation (8.1) reduces to

(8.2) &§W = tr B'LB.

We now minimize (8.2) over the class ®. Let E be an arbitrary n 4+ 1 X k matrix
and assume that B belongs to ®. With the aid of Schwartz’s inequality we obtain

(8.3) tr E'T = tr’ E'A'B'] = (tr E'A’AE) (tr B'J]'B)
= N(tr EM(£)E)(tr B'LB)s
Moreover equality occurs if and only if AE is proportional to B'J.

Let A, - -+, \, be the non-zero eigenvalues of N"'A’A = M(¢) and 1, -+ * , 0.
the associated orthonormal eigenvectors. If

(8.4) E, = NN (XiinT0w0)] and By, = N7 (251N o)A’

then clearly AE, = B,'J so that equality applies in (8.3) when E, and B, are
specified as in (8.4).

Now if U = {e|M(£)e = 0} it follows from (8.3) that the columns of J
belong to U* so that (D.i1@ie: )] = J. In this case A'B/J] = N(A’A)-
(DN )T = (D100 )] = J and hence By ¢ ®. From (8.3) we then
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deduce that
(8.5) infg.q tr B'LB =N " supg [tr’ E'J/tr E'M (£)E]

where the ratio in the right hand term is defined to be zero in the event that
tr EM(£)E = 0.

We have thus proven:

TreorEM 8.1. Let L = > s L1/, where 1y, --- , 1, are linearly independent,
denote a positive semi-definite matriz of rank k andlet £ = {x; ; p:}1” where p:N = n;
are integers. Let W = ((8 — 0), L(8 — 0)) and define A, J and ® as above. If
® 1s non-empty then

(8.6)  infg.g 8W = infg.q tr B'LB =N supg [tr’ E'J/tr E'M(£)E].
REMARK 8.1. (i) If the matrix L has rank one and L = 1’ then (8.6) reduces to
(8.7) inf W = sup, [(e,1)*/N (e, M(£)e)].

This is precisely the expression for the minimum variance among all linear un-
biased estimates of (1, 8) using the design £ (see Theorem 2.1).

(ii) Using the value for either B, or E, from (8.4) the expression (8.6) may
also be put in the form

N7 supg [tr* E'J/tr EM()E] = N7 25 25 N (s, 1)

Note that this is the sum of the minimum variances for estimating (1; , ) using
the design ¢ (see Theorem 2.1).

(iii) In the case where M(£)) > 0 Equation (8.6) becomes N ' tr LM '(¢)
and By = N"'M ()] and B, = N"'M '(£)A.

Our next objective is to give a partial characterization of the designs £ which
minimize the expression

(8.8) supg [tr* E'J/tr E'M (£)E]

over the class of all probability measures £. The supremum in the above ex-
pression is evaluated with respect to the set of all non-zero matrices E whose
column vectors belong to U™ where U = U(£) = {e | M(¢{)e = 0}. Note that
(8.8) is finite if and only if the column vectors of the matrix J lie in U™*. In the
following we restrict attention exclusively to the set of designs £ for which (8.8)
is finite. ‘

Clearly (8.8) is minimized for an admissible design &, . Therefore by Theorem
7.2(ii) there exists a non-negative matrix T such that (f(z), Tf(z)) =< 1 for
all z £ I and equality holds for z in the spectrum of &, . It will be demonstrated
that the matrix T may be determined to have the same rank & as the loss matrix
L. The following lemma is needed.

LemmA 8.1. Let J denote an arbitrary n + 1 X k matrixz of rank k with column
vectorsl, ,v = 1, --- , k. For an arbitrary design £ let \y, - -+ , \s denote the non-
zero eigenvalues of M (%) with associated orthornormal eigenvectors @i, -+ , s -
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Then

(8.9) supg [tr* E'J/tr EM(£)E] = 2 5 251 N (s, 1)’

and equality is achieved if and only if the columns of E are proportional to

(8.10) e’ = D N "Y(ei, l)ej, i=1,2 -,k

Proor. Let e; belong to U* where U = {e | M(¢)e = 0}. Applying Schwartz’s
inequality twice we obtain (see 2.7)

(8.11) (s, 1) = [(es, M(0)es) (2 ima N (s, 1)HP
and
(8.12) [ (L, e)] = 2% (es, M(fo)es) 2 vms 2 ga N (s, L)

Moreover, equality occurs in (8.11) and also in (8.12) if and only if e;, 7 =
1, ---, k, is proportional to

(813) e{o = Z;‘““l )\j_l(()gj, 14)(9,' , 1=1,2 .-+, k.
In this case
supg [t E'J/tr EM(&)E] = Dty > o i\ eos, L)?

and equality is achieved only when the columns of E are given by (8.13).

The following theorem is stated in Elfving (1959) without proof. The proof
indicated below emphasizes game theoretic arguments in the spirit of the paper
hereto.

THEOREM 8.2. Let J denote an n + 1 X k matriz of rank k. If & satisfies

(8.14) v = inf; supg [t E'J/tr E'M(£)E] = supg [tr* E'J/tr E'M(&)E]

then (1) there exists a non-negative matrixz T of rank k such that (f(z), Tf(z)) = 1
for all x & X with equality occurring for x in the spectrum of & ;

(ii) when M (&)| > 0 the matriz T may be chosen tobe T = k™M~ (£)LM (&)
where b* = tr LM '(&).

Proor. Consider the sequence of games with kernels

¢E(I‘, E) = f [tr2 E’J/tr E,M(E)E] dﬂ'(el y " ek)

where E is an arbitrary n + 1 X k matrix with column vectors e;, ---, e
respectively such that ) |les]|® = 1, u is a probability measure defined on the
above set of matrices E and £ is such that M (£) has eigenvalues all of which are
not less than e.

Each of these games determines a value ve = v (see (8.14)) and possess
optimal strategies, say M (&) and u.. Moreover p. must concentrate on the
single matrix E, which is proportional to M*(¢.)]J.

Choose a sequence e, — 0 so that E,, — E4 and v, — v, . Using the fact that
vp = v we deduce that

(8.15) tP E4] = 0 tr E/’M(§)Es  forall &
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In particular for £ concentrating on a single point z ¢ & we obtain

(8.16) tr* Es]’ = v(f(z), ExE4f(z))  forall zeX.
Now from (8.14) we infer that
(8.17) tr* E4'] < v tr Ex’M(&)Ex .

Comparing (8.15) and (8.17) we see that equality necessarily holds in (8.15)
when ¢ = & and hence equality occurs in (8.16) for = in the spectrum of & .

Since v > 0 and tr Ex'M(£)Ex > 0 for [M(£)| > 0 it follows from (8.15)
that tr E+'J > 0. We may therefore define h* = v tr* E4J and set T = B°ELE.’.
The assertion of part (i) then follows with this choice of T provided Ex is of
rank k. But

t1* E4'J/tr E&'M (£&)E« = supg [tr* EJ/tr E'M(&)E ]

and hence by Lemma 8.1 the columns of E4 must be proportional to the vectors
(8.13) associated with & . These vectors are readily discerned to be linearly
independent since the vectors l,, » = 1, 2, - -- | k, were assumed to be linearly

independent.
It remains to verify part (ii). However when |M(%)| > 0 the matrix E4 is
proportional to M '(&)J so that we may take

T = hE4Ey = B M ™ (&)LM (&)
where h2 = v t1* E4]’ = tr LM (&).
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