MINIMUM CHI-SQUARED ESTIMATION USING INDEPENDENT
STATISTICS

By A. D. Jorre
The Unaversity of New South Wales

0. Summary. In a multinomial situation with observed proportions Q; (¢ =
1,---,r 4 1) and corresponding expected proportions p;, it has been shown
by Chapman [1] that for large samples

Yi=ani—ani+ly i=17"'rr’

and Y; are independent for j ¢ ¢ — 1, ¢, 7 + 1. In this note the efficiency ob-
tained when estimating the parameters of a distribution from these mutually
independent odd (or even) Ys is examined in the case of the geometric and
Poisson distributions and it is shown that the resulting estimators are inefficient.

1. Introduction. Katti and Gurland [3] discuss applications of a minimum
x" approach to the problem of estunatmg the parameters of a distribution by way
of a vector of statistics ¢ = (&1, f2, -+, &). If ¢ is a consistent estimator of
= (71, 72, -+, 1) then the required estimates are the ones that minimize

= (t — T)M-l(t — ‘r)'

where M is the variance covariance matrix of the ¢; .
In the case of a single parameter (6) the asymptotic variance of such an esti-
mator § will be

Var 8 = [(37/30)M(37/30)'T™*

where d7/96 = (871/36, d72/390, - --).

A numerical difficulty associated with this method would be that of inverting
M as in general this need not be simple, although with the advent of the high
speed computer this is no longer such a serious problem. If, however, all the ¢;
are independent then M will be a diagonal matrix and M~ will be readily avail-
able.

In his paper on the truncated gamma distribution Chapman [1] has obtained
such a set of statistics. He in fact suggests applying the above method to these
independent statistics in the case of the truncated gamma distribution, where the
frequencies in the class intervals are not all the same.

Briefly his results are as follows; if Q; (¢ = 1, - -+ ,r + 1) are observed propor-
tions in a multinomial classification, then for large samples the variance co-

Received 1 December 1965; revised 11 July 1966.
267

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access

The Annals of Mathematical Statistics. NIKORS ®

Www.jstor.org



268 A. D. JOFFE

variance matrix of ¥; =In Q;, —In @,y (¢ =1---7) is

(0" + 927 —py 0 ... 0 .
—pz_l (P2_1 + Pa—l) —pa—l
M= nt 0 —Ps_l (Pa_l + Iu—l)
Lo 0 0 co (p T+ pr) |

Thus Y, and Y; will be mutually independent as long as j ¢ — 1,¢,7 + 1
and consequently if one uses only the odd (or even) Y; then the resulting vari-
ance covariance matrix will be a diagonal matrix with entries 7" (psi—1 + pai)
and its inverse can be readily evaluated. Chapman mentions that using half the
Y ; will lead to less efficient estimators than when using all the Y, but does not
pursue the matter any further. In this note the loss in efficiency due to using the
even (or odd) Y, only is investigated for the geometric and Poisson distributions
and is shown in most instances to be considerably more than 50% —the figure
one would obtain if half the observations were rejected by some random pro-
cedure. The efficiency obtained when using the odd Q; of the geometric dis-
tribution is also evaluated and in certain cases this too is less than 50%.
The investigation is confined to distributions with a single parameter.

2. Asymptotic efficiency using all the Y, . In order to assess the efficiency of
estimators based on half the Y; it is firstly necessary to know the efficiency of
any estimators based on all the ¥;. When discussing transformed minimum
x’ estimators Ferguson [2] indicates that the estimators obtained by that method
will be BAN estimators and will therefore be asymptotically efficient relative
to the standard maximum likelihood estimators.

Thus in the limiting case, using all the Y’s results in the estimated parameter
having the same variance as when using all the @.’s and when investigating the
variances obtained by using only half of the Y /s it is adequate to compare the
variance of the estimator to the variance of the corresponding maximum likeli-
hood estimator. ‘

Although the results above are all derived in terms of multinomial distribu-
tions with a finite number of cells the extension to an infinite number of inter-
vals is simple enough as long as the probability in every cell is non zero and the
extension will be used without further comment.

3. The geometric distribution. Define
pi:(l—w)i_lw’ i=1’2""’°°

then the asymptotic variance of the maximum likelihood estimator (&) can be
shown to be

Var 6 = o’(1 — w)/n.
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For the estimator (&) based on odd ¥; we have if
;= Inp; — In pips
then
n2i1 = —In (1 — w), 1=12 .-+, o,
and
(Poimap2s)/ (Prics + p2i) = (1 — 0)"0/(2 — w).
Consequently the asymptotic variance of & is
Var & = [(8n/w) (M) (3n/80) T
= (1 = @)*/nl 2 pricipai/ (Pris + p2i)]™
= (1 - w)(2 - w)/n

The efficiency of & relative to & is RE = 100w’/(2 — w)® and values of this
quantity are tabulated for selected values of w in Table I.

As can be seen from Table I the efficiencies are very low for all but very large
values of . \

4. The Poisson distribution. Here p; = ¢ /5!, i = 0,1,2 ---, and the
asymptotic variance of the maximum likelihood estimator (A) is Var A = \/a.
Using the even Y, to obtain an alternative estimator of A()) it can be shown that

Var X = (Me™/n)[ Qi N7/ (2 + 1IN + 20 + D]
> (NP /n) [ DR N /(20 + 1IN+ 20+ 1) 4+ 16(3)/75(40) T

The above equation gives a lower bound to the variance of A, which for most
values of N\ will be quite close to the true value.

TABLE 1
Asymptotic effictencies of & relative to &
%) 0 1 .2 .3 .4 .5 .6 7 .8 9 1.0
RE (%) 0 0 1 3 6 11 18 29 4 67 100
TABLE II
Asymptotic efficiencies of X relative to A
N 1 2 3 4 5 6 7 8 9 10
RE (%) 23 11 8 6 5 4 3 3 3 2

TABLE III
Asymplotic efficiencies of ao relative to &

0 .1 .2 .3 .4 .5 .6 7 .8 .
RE (%) 50 52 55 57 59 59 58 55 46 30 00
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In Table II an upper bound is given for the efficiency of A relative to A for
selected values of A and here too the efficiencies are very low.

The method discussed in Table II, although appealing because of the ease of
manipulation associated with it, is of disappointingly low efficiency in the cases
examined.

6. Asymptotic efficiency using all the odd @; . In this section the effect of
using the odd @ is considered for the geometric distribution. If X is a random
variable such that

Pr(X =4) = (1 — )
then
Pr(X =2 —1|Xisodd) = (2 — w)w(l — «)*™

The parameter » can be estimated from the odd X’s, which is equivalent to
using the odd @:, and the asymptotic variance of the conditional maximum
likelihood estimator (éy) is

Var (&) = (2 — w)®/4n.

The efficiency of @ relative to & (the full maximum likelihood estimator) is
RE = 4(1 — w)/(2 — w)® and this is tabulated for different values of « in
Table II1.

The difference between these results and those of Table I is quite striking.
The explanation is that whereas using all the Q, is asymptotically equivalent to
using all the Y, using the odd (or even) @; is not equivalent to using the odd
(or even) Y;. It is of interest to note that here too the relative efficiency of the
estimator is less than 50% for certain values of the parameter.
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