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0. Summary. Aspects of best linear estimation are explored for the model
y = XB + e with arbitrary ndn-negative (possibly singular) covariance matrix
o’V. Alternative necessary and sufficient conditions for all simple least squares
estimators to be also best linear unbiased estimators (blue’s) are presented.
Further, it is shown that a linear function w'y is blue for its expectation if and
only if Vw ¢ @(X), the column space of X. Conditions on the equality of subsets
of blue’s and simple least squares estimators are explored. Applications are made
to the standard linear model with covariance matrix ¢°] and with additional
known and consistent equality constraints on the parameters. Formulae for
blue’s and their variances are presented in terms of adjustments to the cor-
responding expressions for the case of the unrestricted standard linear model
with covariance matrix ¢°1.

1. Introduction. Consider the general linear model
1) y=2XB+e

where y is an n X 1 vector of observable or known values, X is a known n X p
matrix of rank r, 8 is a p X 1 vector of parameters and e is an n X 1 vector of
errors with expectation E(e¢) = 0 and with variance E (e¢’) = o'V, where ¢* is
positive and known or unknown and V is an n X 7 non-negative symmetric

matrix which is either totally or partially known. One example of a situation

which may be viewed as having a singular covariance matrix arises when the
parameters are subject to specified linear constraints. Further, an important class
of situations in which the model covariance matrix is naturally singular is that
arising in randomized experiments when all errors are induced by the random
assignment of treatments to subsets of the experimental material. Such situations
are introduced and treated in the classic book by Fisher [4], and are mathemati-
cally explicitly exhibited, for example, in the books by Kempthorne [6], by Scheffé
[16], and in Kempthorne, et al. [7]. For instance, the derived linear model for the
observation on the kth treatment in the 7th block in the case of a randomized
block under additivity is given in Kempthorne [6] as

Y = p+ bi + 4 + Zjﬁ’fjeijy
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where the error Y _; 6%;e;; associated with the observation Y is such that when
it is summed over all the treatments in the given block it gives the value
S ( D> 0%es;) =0 Asa consequence singularities become introduced into the
covariance matrix of the observations y .

When the covariance matrix ¢’V is non-singular with ¥ known, and the n X P
matrix X is of full rank, i.e., of rank p, and when further the columns of the
matrix X are all orthogonal eigenvectors of the matrix V then it is an elementary
and easily verifiable fact that the best linear unbiased estimator of the vector 8
is identical with its usual simple least squares estimator. This fact was first
pointed out perhaps by Anderson [1], and notice of it was taken soon after by
Durbin and Watson [3]. An attempt at exploiting the fact in the case of a co-
variance structure of form like that of a randomized block, but with non-singular
covariance matrix, was made by Box and Muller [2], and was further amplified
by Muller and Watson in [9].

While blue estimators for contrasts in various randomized designs were ob-
tained by specialized methods in the report ARL 149 by Kempthorne, et al.,
[7], mention was there also made of the alternative possibility of deriving the
desired results by use of the fact that when a subset of r eigenvectors of the
covariance matrix ¢°V may be chosen to form a basis of the design matrix X then
the usual least squares estimators yield corresponding best linear estimators. A
further statement on various conditions for the equality of best and simple least
squares linear estimators under a non-singular covariance matrix, was made by
Zyskind [17] and a short discussion of such conditions is presented by Zyskind,
et al., [18]. Another statement and partial proof of a necessary and sufficient
condition is also presented in the recent paper by C. R. Rao [15]. Also, a proof
that the eigenvector condition is both necessary and sufficient for the correspond-
ing best and simple least squares linear estimators to have the same covariance
matrix is presented, with X of full rank and V non-singular, by Magness and
McGuire [8].

In the present paper we discuss best linear estimation in linear models with
arbitrary non-negative covariance structure. Because of the mode of arguments
involved and of the above background we consider first the conditions under
which all the simple least squares linear estimators are also blue’s. Thus, in
Section 2 we first verify for an arbitrary covariance matrix the validity of the
generalization of the eigenvector condition, and we proceed to a proof and state-
ment of a number of other equivalent conditions, most of which are direct gen-
eralizations of statements previously made by Zyskind [17] and Zyskind, et al.
(18]. In Section 3 we provide a basic characterization of best linear estimators
and then give conditions for the equality of subsets of best and simple least
squares estimators. We finally consider the linear model involving known para-
metric restrictions, which may be regarded as known observations with zero
variance, as an example of a model with a special singular covariance matrix.
In dealing with the above problems we have found it both clarifying and fruitful
to employ a canonical form of the general linear model.
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2. On canonical forms and conditions under which all simple linear least
squares estimators are also best linear unbiased estimators. A standard special
form of the linear model is

2 y=X8+e E() =0, E()=dI,

where the meaning of the symbols is as in (1) and where I represents the identity
matrix. A canonical transformation of the above model may be obtained as fol-
lows. Let O, be any orthonormal basis for the » dimensional vector subspace of
all linear combinations of the columns of X, hereafter called the column space of
X, and abbreviated as € (X ), and let O, be any orthonormal basis for the (n — r)
dimensional othogonal complement subspace to the column space of X. Then
00X = &, a null matrix, and the chosen particular orthogonal matrix

°~ (o)

applied to the observational model (2) yields

(- C)= ()= ()= 0)

where § = 0;X3 is a set of r independent estimable functions and where the
covariance matrix of the errors 5 is given by Cov(n) = ¢°I. (We recall that a
linear parametric function is said to be estimable if there exists a linear function
of the observations whose expectation equals the parametric function for all
permissible values of the parameters). We shall refer to the form

3) 2=<zl>=<6>+n,
) ,@

obtained from (2) as described, as a canonical form of the model (2).

An estimation procedure, suggesting itself at once from inspection of the form
(3) and without appealing to a ‘“‘deeper” principle such as that of least squares,
is to estimate the r independent estimable parametric functions & = 0,X3 by the
corresponding vector z; . It is a simple matter to establish rigorously the fact
that when Cov(z , ) = &, then the best linear unbiased estimator of any linear
parametric function »'8 = »'0,X8 is 'z, = »' Oy, for then the adding of a linear
function of components of z, cannot decrease the already achieved variance. We
note that v’z is in fact the unique unbiased estimator of the parametric function
v'8 based alone on the transformed observational part z .

We now consider the model (1), in which the covariance matrix may be singu-
lar, and enquire into the conditions under which the simple least squares linear
estimators of all the linearly estimable functions are also best linear unbiased
estimators.

THEOREM 1. A necessary and sufficient condition for all simple least squares
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linear estimators to be also best linear unbiased estimators of the corresponding
estimable parametric functions \'B in the linear model

y=XB+e, E(e) =0, E(ed) = o'V,

where V is a symmelric non-negative matrix, is that there exist a subset of r orthog-
onal etgenvectors of V which forms a basis for the column space of the matriz X.

Proor. (a) Sufficiency. Suppose that V has r orthogonal eigenvectors which
form a basis for the column space of X. Then V also has (n — r) orthogonal
eigenvectors which form a basis for the orthogonal complement of the column
space of X. Let 0, and O,' be two matrices whose columns are made up respec-
tively by each of the two sets of basis vectors. Then the orthogonal matrix
0" = (0, 0y) has for its columns a complete set of eigenvectors of V so that
OVO' = D, a diagonal matrix. Also, 0,X = &. Consequently, the transformation
O applied to the original observational model yields

(-G =)+ (- )+ C)

D
Cov ("’) = POVO' = o*D = az< ' g>,
Mo, & Dy

a diagonal matrix. It follows then easily that there exists no vector of linear
functions of the observations with expectation § = 0,X3 whose components have
variances smaller than those of the components of 2z = Oyy. Hence, since the
rows of the matrix O, provide a basis for the row space of X’ it follows that the
usual simple least squares linear estimators of all estimable functions A'g in the
original model y = X8 + ¢, E(e) = 0, E(ee’) = o'V, are also best lincar un-
biased estimators. Q.E.D.

(b) Necessity. Suppose that for every estimable function the simple least
squares estimator is also a blue. Then every orthogonal matrix O = (0, , 00)’,
with the (n — r) X n matrix O, such that 0,X = ¢, leads to the corresponding
transformed form

()-o= ()= ()
2 = = 0y = + Oe = + 7
<0 ,@ g

where z; is blue of §, which can only be the case if Cov (2, 20) = &, i.e., if the
covariance of z is of the form

2 W, &

20 I W,
where W, is of order r X r. Let now R; be an orthogonal matrix such
that RyW1R'y = Dy, and let R, be an orthogonal matrix such that RoWoRy = Dy,

where
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where both D, and D, are diagonal. Then the matrix
& Ry/ \Oq R, O

D
SVS'=D=< ' Q),
& Dy

so that the columns of 8" = (S, Sy’) form a set of eigenvectors of V. Further,
the rows of R;0, are all linear combinations of the rows of O, and the rows of
R0, are all linear combinations of the rows of Oy, from which it follows that the
columns of S, = O/R," and of Si’ = Oy'R,’ form respectively orthonormal bases
of the column spaces of X and of its orthogonal complement. Q.E.D.

We remark that because in the preceding context certain elements of the matrix
D, are permitted to have the value zero, it follows that some of the estimable
functions may have blue’s with variance zero, i.e., that certain estimable para-
metric functions may be subject to definite constraints. Further, when the value
of a linear function of constraints is zero the corresponding linear function of
components of z may clearly be freely used in forming the algebraic expression
for a linear estimator of any function without affecting its numerical value. The
same also holds for any linear function of components of z, whose numerical value
is always zero. '

It seems appropriate to note at this point that in order for all the usual simple
least squares estimators to be also blue’s it is only needed that V has a subset of
r eigenvectors as specified by Theorem 1. These eigenvectors need not be de-
termined specifically. However, if we can in any way determine that V does
have a subset of r eigenvectors forming a basis for the column space of X then we
do know that all the usual simple least squares linear estimators are also blue’s.

The eigenvector condition of Theorem 1 is not necessarily a simple one to
apply in practice. We therefore now develop a number of other equivalent alterna-
tive conditions. It is well-known that the simple least squares estimator of
E(y) = XBis XB = Py, where f is any vector such that X'X8 = X'y and P
is the matrix orthogonal projection operator on the column space of X. One
expression for P is P = X (X'X)*X’, where (X'X)* is any matrix satisfying
(X'X)(X'X)*X'X = X'X. Any such matrix (X'X)* has been called a condi-
tional inverse by R. C. Bose, since the middle 1950’s, and a pseudo-inverse in
the case of a singular matrix and a g-inverse in general by C. R. Rao, [12], [13],
and [14]. It can be easily shown that the matrix P is symmetric, idempotent and
that its column space is €(X), and thus that corresponding to the eigenvalue
unity with multiplicity r, I’ has r eigenvectors in € (X') and corresponding to the
eigenvalue zero with multiplicity (n — r), P has (n — r) eigenvectors in the
orthogonal complement of €(X). Thus, under the conditions of Theorem 1 the
complete set of n cigenvectors of 17 forms also a set of n eigenvectors of P, and

is orthogonal and
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hence also the matrices ¥V and P are diagonalizable by the same orthogonal
matrix. Equivalently then, by a known matrix theoren, the matrices V and P
commute, or more conveniently, the product VP is symmetric. Since for standard
situations, such as those of the common experimental designs, the vector Py is
known, the matrix P can be obtained quickly, as can therefore also be a check
for the symmetry of the matrix VP.

We also note that it follows immediately from the eigenvector condition that
once the column space of X is specified the stated conditions on equality of
estimators hold if and only if the class of the admissible V matrices is defined by
the form

(o)
V = (0/, 0s)D ,
0O,
where the matrix (0y , Oy) is any orthogonal matrix with 0;" and O, as previ-
ously specified and D is any diagonal matrix with non-negative elements.

It is easy to verify that if a set of 7 eigenvectors of V belongs to @€(X), and
hence forms a basis for it, then for every vector a belonging to @(X) Va is also
a vector in €(X), i.e., €(X) is an invariant subspace of V. Conversely, suppose
that € (X)) is an invariant subspace of V. Then, since for every vector a in @(X)
the vector Va is also in €(X), it follows that for every set of matrices O;' and
0, defined as before 0;V0, = &. Thus, by the argument of the necessity part
of Theorem 1, the matrix V has a subset of r eigenvectors forming a basis for
C(X). Further, it can be easily checked that @(X) is an invariant subspace of
the matrix V if and only if VX = X@, for some matrix Q. Also, since when V
is non-singular, the eigenvectors of V are also eigenvectors of V7, it follows that
then VX = XQ if and only if V"'X = XR, for some matrix R.

We note that when V is of the previously stated form

0,
0/, 0)D 0,

then because the columns of the matrices 0;" and O, provide respectively bases
for €(X) and € (L X), the orthogonal complement of @ (X), it follows that there
exist matrices P and Q such that O, = XP and O,' = ZQ, where €(Z) = (LX)
so that Z'X = 0. Hence with D expressed in the form L + k’I, where L is a
diagonal matrix, L = diag(L;, L2) of the proper dimensions, the matrix V may
be written as

0/D\0; + 0/D,0, = XPLP'X' + ZQL.Q'Z + KI = XTX + Z0Z + kI

where I' = PL,P' and © = QL,Q'.

With our ¢® of equation (1) equal to unity this form for the covariance matrix
is the one given by C. R. Rao in Lemma 5a of [15]. His condition for all the
simple least squares estimators to be also blue’s is there proved in the context of
a known and non-singular covariance matrix = and a known full rank matrix X.
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The condition is obviously related to those referred to in the introduction to the
present paper and in particular is equivalent to the several conditions stated by
Zyskind in [17], where incidentally each matrix on the right side of the equation
in condition (5) should have an additional prime. Rao’s actual statement of the
condition and the proof of necessity (the proof of sufficiency, though perhaps
implied, is not explicitly presented) are such as to allow the quantities T', ©
and &’ to be unknown. His proof, using as it does the set of linear functions with
expectations zero, does have a relationship with the known canonical form method
which we use in this paper. Professor Rao adds that it is not essential in order for
the condition to hold that the matrix X be of full rank. Also, he notes that fur-
ther, the matrix £ may be singular. It is interesting to realize that when 2 is
singular the set of linear functions given by Z'y does not in general provide the
complete set of linear functions with zero expectation, as appears to be required
in Professor Rao’s proof. This incidental point demonstrates some of the differ-
ences which occur when one passes from a non-singular to a singular covariance
matrix. Another point to note is that when the required conditions hold and 2 is
singular, then all simple least squares estimators are also blue’s but blue’s may
not be simple least squares estimators, since a particular estimable function may
admit distinct blue’s as functions of the observations, though it is a fact that all
these functions have the same numerical value.

To see that C. R. Rao’s condition in its most generalized version is not only
implied by but also implies those which we have here derived we only need to
note that for every vector w belonging to €(X) and for Z any covariance matrix
of the form = = XTX' + ZOZ' + K’I the vector Zw ¢ €(X), since Z'X = 0, so
that €(X) is an invariant subspace of the matrix =, which implies that a subset
of r eigenvectors of = forms a basis for € (X), which is the starting point of the
present development. In this reasoning the rank and possible singularity of Z are
irrelevant. Hence, Rao’s condition, fully stated and proved in its most generalized
form, like any of the conditions which we have stated in this section, might have
been used as a basis for deriving interesting equivalent alternative statements.

With regard to the previous condition VX = X@ it should be noted that Gold-
man and Zelen [5] have also demonstrated its sufficiency in the case where V is
symmetric and non-negative and the matrix @ is non-singular. In effect, their
restricted condition in addition to ensuring that a set of r eigenvectors of V forms
a basis for @ (X) stipulates also unnecessarily that the corresponding r eigenvalues
be all different from zero, which implies in turn that the possible singularity of
V induces no exact constraints on any estimable parametric functions (a condition
which is not fulfilled, for instance, in the case of the complete randomized block
design). For the case of @ non-singular these authors have also shown that
VX = XQ if and only if V*X = XQ, where V" denotes the Moore-Penrose
[10], [11] generalized inverse of V. For any matrix A this inverse is defined as the
(unique) matrix A™ satisfying the joint conditions

(i) 4474 = 4,

(i) ATAAT = 4™,
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(iii) (AA%) = A4,

(iv) (474) = A"A.

(Note that the statement (i) alone restricts A™ to be any conditional inverse of
the matrix 4.)

It is easy to show that for any real symmetric matrix A the Moore-Penrose
generalized inverse is also symmetric and has identical sets of eigenvectors with
A. Hence, €(X) is an invariant subspace of V if and only if it is an invariant
subspace of V¥, and thus VX = XQ for some matrix Q if and only if V*X = XR
for some matrix R.

Because of the preceding arguments, Theorem 1 may be subsumed by the
following statement on equivalent alternative conditions.

TuroreM 2. Consider the model y = XB + e where X is a known n X p matrix
of rank r and the n X 1 vector of errors, e, satisfies E (e) = 0, E (e¢') = o’V where
V is a symmetric non-negative matrix. Any one of the following conditions is both
necessary and sufficient that the simple linear least squares estimator for every linearly
estimable parametric function shall also be a corresponding best linear unbiased
estimator.

1. A subset of r eigenvectors of V exists forming a basts for the column space of X.

2. A full rank reparametrization exists so that E(y) = X8 = W6, where the
columns of the n X r matrix W are mutually orthogonal eigenvectors of V.

3. The matrix V is expressible in the form

O
vV = (0/, 0)D ,
0o

where the matrizx O' = (01, 0y') is orthogonal and 01 is any orthonormal basts of
the column space of X, 00 is any orthonormal basis of the orthogonal complement of
the column space of X, and D is any diagonal matriz with non-negative elements.

4. The matriz V can be diagonalized by an orthogonal matrir specified as in 3.

5. If P denotes the orthogonal matriz projection operator on the column space of X
then VP = PV, a relation which holds if and only if VP is symmetric.

6. A matriz Q exists satisfying the relation VX = XQ, and further, for V non-
singular, a matriz B exists satisfying VX = XR.

7. A matriz R exists such that VX = XR. (Note that when V is non-singular
then V¥ = V7' = V7).

8. The column space of the matriz X is an invariant subspace of the matriz V,
i.e., for every vector a belonging to ©(X) the vector Va belongs also to €(X).

It should be noted that the representation y = X3 + e expresses the model in
merely one particular parametrization. The essential specification is that E (y) e
e(X), and clearly, under any of the conditions of Theorem 2 the simple least
squares linear estimator of E (y) is also its blue, regardless of the parametric repre-
sentation employed.

An interesting illustration of the sufficiency part of condition 6, for example,
occurs when the matrix 17 is expressible as V = aol + 2 i=1 a:X.Q:, where the
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matrices X, consist of disjoint sets of colummns of X, for then clearly VX can be
expressed as VX = X@. The above form of V clearly subsumes the standard
situation of V' = I. Moreover, the matrix 1" is easily expressible in such a form
in a number of concrete experimental design situations. For example, in the case
of the randomized block design, under no measurement errors, mentioned earlier
in the present paper, the covariance matrix of the observations, when 7 = 1, 2,
<o, byk=1,2, -+, t, as shown in Kempthorne, et al. [7], has the structure
Cov (Yar , Yinkr) = dsirpo” + (1 — p)disdurro’, where p = — (¢t — 1) " is the corre-
lation of any two distinct observations in a block and §;; is the quantity defined
by 8;; = 1if ¢ = jand é;; = 0 if 7 # j. It is easy to check in this case that if
the observations are arranged lexicographically by blocks then the matrix V is
given by

V = (1 — p)I + plblock diag (J)],

where [block diag (J)] stands for a block diagonal matrix of order bt X bt whose
t X t diagonal blocks consist of the ¢ X ¢ matrix J of elements unity everywhere.
It is also easy to check that the matrix X, arising from E (yu) = u + b; + &,
has for its block part contribution an n X b matrix X, such that X;,X, = [block
diag J]. Thus, by the stated consequence to condition 6, it follows at once that
in the case of a randomized block design all estimable linear parametric functions
are best estimated by their usual simple least squares estimators. Moreover, it is
clear that when further additive measurement and technical errors with covari-
ance structure kI are incorporated into the model, then the previous usual esti-
mators still remain best.

3. On best linear estimators in the general case and on their subsets coincid-
ing with simple least squares estimators. A convenient first stage canonical form
for the general linear model (1) can be obtained as follows. Let the columns of
O, form an orthonormal basis for the (n — r) dimensional vector space orthogonal
to the column space of X. Then as before 0,X = &, though in the present argu-
ment neither the orthogonality nor the normalization of the columns of Oy are
essential. Further, it is a known algebraic fact that, with @(L V) denoting the
orthogonal complement of €(V) and with k& = dimension [€ (0, ) n€(L V)] the
rank of OoV is given by n — r — k. Choose now an n X r matrix U’ of inde-
pendent columns in such a way that the matrix 8’ = (U’, O,') is nonsingular
and satisfies the relation UVO, = &. The columns for the matrix U’ can be ob-
tained by choosing any set of r basis vectors which when augmented by a basis
for that part of the column space of Oy which is orthogonal to V forms a basis
for the null space of the matrix O,V, i.e., a basis for the space of vectors w such
that O,Vw = . Consider now the operation of applying the matrix S to both
sides of the model (1) to obtain

o =) (2 6) -0+ ()
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We note that based on z; alone 2, is a blue of the r independent estimable func-
tions 8 = UX@. Further because the transformation used is non-singular and
Cov(z, ) = cUVO, = &, it follows in fact that based on all the data 2 is
a blue of § = UX8B, and thus that a blue of any estimable function \'8 = »' UXB =
V'8 is v’z = » Uy, with variance ¢*y' UV U’y. It may be of interest to note that
equivalent answers are also obtained by employing the simple normal equations
pertaining to the model (4), and that since

UXx
X'v, &) < ) = X'U'UX,
%]

these normal equations expressed directly in terms of the vector parameter g,
are X' U'UXB = X'U'Uy. In fact, a parametric function \'B is estimable if and
ounly if it is expressible as a linear function of the left hand sides of these normal
equations, say o X'U'UXB, and when so expressible its blue is given by the same
linear function, p’X' U’ Uy, of the right hand sides of these equations. We further
note that the possiblity of expressing the model in the form (4) implies that the
original model form can always be transformed in such a way that a set of »
cigenvectors of the new covariance matrix

U uvy’ 0]
”2< >r(U', 00) = "2< >
0, 2] 0, VO,

forms a basis for the column space of the n X p new matrix (Ué,() transformed

from the original matrix X.
For certain purposes, such as for example the summarization of the data in an
analysis of variance tabulation, it may be desirable to transform the model form

further by an orthogonal matrix
<Rl Q)
Z R’

such that the matrices RUTU'R, and RyOoVO, R, are each diagonal, so as to
achieve a diagonal matrix for the covariance of the vector

o) )

of the terminal canonical form. We note further that a reasonable assessment of
the significance of an estimable parametric component E (g1;) of E(¢g:) can be
made if the variance of g; is known to be zero or if certain of the variances of
the components of go are known to be equal to the variance of gy; .

We have seen that blue’s of all estimable parametric functions A'8 can be ob-
tained by forming v’z = »'Uy = (U'v)'y where A = »'UX. Now the column
space of U’ is of dimension r, the column spaces of U' and O, are disjoint, and
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UVO, = &. However, if VO, has dimension (n — r — k) then there exists in
fact a matrix W of order (r + k) X n and rank (r + k) such that WVO0, = &.
Hence the row space of U is a subspace of the row space of W. Denote the row
space of any matrix A by ®&(4). Let \'8 be an arbitrary estimable parametric
function and let 'y, with 4’ &€ ® (U) be some unbiased estimator of it. Then every
unbiased estimator sy of A'8, with s’ ¢ ® (U), is such that (s' — u')y is zero with
variance zero. We note that in the case where V is non-singular the only permis-
sible choice of s’ is s = u'. The complete set of linear unbiased estimators of
N8 is given by the set of functions of the form w'y = u'y + (5" — u)y + €y,
where the permissible values of s are as before and the vectors ¢’ range over the
complete set of vectors of ®&(0). So, since u'Ve = &, it follows that the vari-
ance of w'y is Var(w'y) = Var(u'y) + Var(¢'y). Hence w'y is a blue if and only
if Var(e'y) = o’ Ve = 0 which, with ¢> > 0 and V non-negative and symmetric,
is the case if and only if Ve = 0, and then ¢ VO, = 0 so that ¢’ ¢ ®(W). Under
this condition the vector w' (= w' + (s — u’) + ¢') belongs to & (W). Thus, a
linear function w'y is a blue if and only if w' ¢ ® (W).

It follows as an immediate consequence that linear functions of blue’s are also
blue’s of their expectations. Further, an immediately equivalent necessary and
sufficient condition for w'y to be a blue of its expectation E (w'y) is that the vector
Vwee(X).

We now enquire into the conditions for equality of subsets of simple least
squares estimators of estimable functions, under the original model y = X8 4 e,
with their corresponding best linear unbiased estimators. It is a well-known fact
that all the simple least squares estimators are of the form w'y, where w’ is some
vector belonging to the row space of X’. Hence, the set of all simple least squares
estimators is given by the set of functions of observations w'y, where the vectors
w are such that Ouw = &J. On the other hand we have just stated that the com-
plete set of all the blue’s consists of vectors w such that OVw = . Thus, the
set of vectors w leading to both the blue’s and simple least squares estimators con-
sists of those vectors w satisfying jointly the sets of equations

(5) Ow = &;

OoV'w = ,®'
Thus, the vectors we seek are vectors belonging to the null space of the matrix
((O)OV> . The rank of this null space is clearly between zero and r. Clearly also, if

0
2r > n the system (5) has non-trivial solutions.

In practice, the usual coefficient vectors w of simple least squares estimators,
i.e., the vectors w satisfying Ouw = &, will often be well-known in advance for
standard situations. It then only remains, in order to ascertain the subsets of
these vectors w giving rise to blue’s, to isolate those of them which satisfy also

O0Vw = ¢&. Further, if we cannot easily obtain the linearly independent rows of
O, but have the ordinary least squares solutions to the normal equations, so that
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we have in fact X3 = X (X'X)*X'y = Py (wherc (X'X)* is any matrix such
that X'X = (X’ X)(X'X)*(X'X) and P is the orthogonal matrix projection oper-
ator on the column space of X), then the matrix O in the equations Ow = &
and O,Vw = & may be replaced by the conveniently available matrix (I — P)
with resulting equations (I — P)w = & and I — P)Vw = &.

A sufficient condition on eigenvectors may also be easily derived. Thus if w
is a vector belonging to the column space of X and is also an eigenvector of V'
then Vw = kw ¢ €(X), so that w'y is a blue. Similarly if w is a vector belonging
to the column space of X and is a linear combination of eigenvectors of 7 belong-
ing to that subspace then also Vw ¢ @(X) and w'y is therefore a blue.

We can easily see, in fact, that the essential condition, i.e., a necessary and
sufficient condition, on any unbiased estimator w’y to be both a blue and a simple
least squares estimator is that both w and the product Vw be vectors belonging to
the column space of X.

The conclusions of the latter part of the section may be summarized and ex-
tended somewhat as follows, where the model under consideration is the one given
by equation (1) and as before Oy’ is any matrix whose columns form an ortho-
normal basis for the orthogonal complement of @(X) and P denotes the orthog-
onal matrix projection operator on € (X).

THEOREM 3. A linear function w'y is a best linear unbiased estimator of its ex-
pectation E(w'y) if and only if the vector w belongs to the null space of the matrix
00V, i.e., if and only if w is such that OoVw = &, which holds if and only if w'y
is uncorrelated with every linear function of the form p'Owy. Equivalently, w'y is a blue
if and only if the vector Vw belongs to @ (X), which occurs if and only if (I — P)V
w= .

We note at this point that the condition Vw £ @(X) is a direct generalization
of the basic and well-known fact (see, for example the book by Scheffé [16])
that in the case where V = I the function w'y is the blue of its expectation if and
only if wee(X).

In the case where the matrix V is non-singular it is easy to obtain from The-
orem 3 the standard result that the blue’s w'y are all of the form v’ X'V ™"y, where
v ranges over the space of p X 1 vectors, since then Vw = VV Xy = Xv, a
vector belonging to €(X), and since the dimension of the space spanned by the
vectors V' Xy is 7.

THEOREM 4. A linear function w'y is both the simple least squares estimator and
a best linear unbiased estimator of its expectation E (w'y) if and only if w is such
that Oow = & and OVw = &, or equivalently such that (I — P)w = & and
(I — P)Vw = &, or equivalently if and only if both vectors w and Vw belong to
e(X).

CoROLLARY 4.1. If r, the rank of X, is such thal 2r > n then some non-zero simple
least squares estimators w'y of E(w'y) are also blue’s.

COROLLARY 4.2. A simple least squares estimator w'y of E(w'y) is also a blue
if and only if Vw belongs to @(X), which s the case if and only if OVw = &, or
equivalently if and only if (I — P)Vw = &. Further, the complete set of simple
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least squares estimators forms a set of blue’s of all estimable linear parametric func-
tions if and only if @ (X) is an invariant subspace of 1.

Thus, as shown by Corollary 4.2, the independent general approach of the
present section leads us once more into statements such as those of Theorem 2,
concerning conditions under which all simple least squares linear estimators are
also blue’s.

CoroLLARY 4.3. If w s a vector belonging to €(X) and is a linear combination
of eigenvectors of V belonging to @(X) then w'y is both simple least squares estimator
and blue of its expectation E (w'y). ‘

4. Parametric constraints as an instance of a singular covariance matrix and
of canonical form techniques. Consider the case of a standard linear model
y=XB+e E(e) = &, E(ee') = o°I, for which in addition certain parametric
constraints are known to hold. For example, the first three components of g,
say B, Bz, B, might be known to be the measures in radians of the three angles
of a particular triangle, so that a known condition would be 8, + 8. + 83 = .
In general, suppose the known conditions are of the form A8 = ¢, a known vector
of constants, where A is a known matrix of order £ X p and of rank m.

The present problem may be approached by several direct methods of which
the treatments given by Zyskind, et al. [18], and the one in the recent book by
C. R. Rao [15], are two useful examples. In the present paper we attack the prob-
lem simply, however, by using canonical forms and by viewing the overall co-
variance matrix of observations and of the conditions as an instance of a special
singular covariance matrix.

The complete model for the given situation may be viewed as

o Dl

where ‘
COV(g) = Cov <y> = Cov <e> = g2 (I g) ,
(4 7 Q g

a particular singular matrix.

We first treat the case where the row spaces of the matrices X and A are dis-
joint, i.e., where the components of AB are non-estimable, as is also every linear
function of these components, with the model y = X8 4 e alone. Further, with-
out loss of generality for the present situation, we may take the rows of A to be
linearly independent. Then

(» (o))
rank = rank X + rank A = r 4+ k£ = rank + rank ,
A %) A

so the column spaces of (f) and (?

if the vectors v, », - -+, ». form any orthonormal basis for the column space of

> are alsodisjoint. It can be seen at once that
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X then those vectors are eigenvectors of the identity matrix I, , and further that
the vectors (', &), (', &), -+, @', &) of order (n + k) X 1 are cigen-
I &
s &
(n + k) X 1is of the form (&', w')’, (&', w')’, -+, (&', w'), where the
vectors u; , %, - -+, U form an orthogonal basis for the column space of the
matrix A, then the totality of the vectors

(vllr g,),) (V2,7 g,),y ) (V"I’ g,),’ (glyul,),’ (g,y uZI),: ) (g,fuk,),

vectors of the matrix ¢° . Moreover, if a set of k orthogonal vectors of order

forms an orthogonal basis for the column space of (f) and forms also a set of

(r + k) orthogonal eigenvectors of the matrix 7 (é g) Thus, by Theorem 1

of Section 2, all of the simple least squares estimators of estimable linear para-
metric functions under the model 6, with the restrictions specialized as noted, are
also corresponding blue’s. Hence blue’s can be obtained by direct use of the sim-
ple normal equations which in the present case are

(7) (X'X + A2 =Xy + Ae

We now briefly justify the fact, which is part of the folklore of the subject, that
when all functions of the form p A8 are non-estimable under the model y =
XB + e alone, then the blue’s of all functions estimable under that model alone
are also blue’s of these estimable functions under the model (6), incorporating
non-estimable constraints of the type stated. To see this we note that if B is any
vector satisfying the normal equations (7) then because the column spaces of
X’ and A" are disjoint it must be true that

AMNAB — ANe=Xy—-X'XB=(, so that X'Xﬁ‘ = X'y.

Thus, any solution to the system (7) is also a solution to the simple normal equa-
tions X' X8 = X'y, obtainable under the model y = X8 + ¢ with no restrictions.
Further, since the blue’s of estimable functions under this model are invariant
for all vectors B such that X’X5 = X'y, it follows that, when the model consists
in addition of known restrictions on non-estimable functions, all linear functions
of which are also non-estimable, then any solution to the equations X 'XB = X'y
alone leads directly to blue’s of functions of the form N8 = o’ XB under the stated
augmented model.

The argument just offered for the case where the n X 1 vector y has covariance
matrix ¢’/ applies mutatis mutandis for the situation where the covariance of y
is o’V and a set of r eigenvectors of V forms a basis for the column space of X.
We may thus state the following:

THEOREM 5. If in the model (1) y = XB + ¢, E(e) = I, E(ee') = o'V, the
relation between V and X is such that all simple linear least squares estimators of
estimable functions are also blue’s then under addition to the model of known con-
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ststent restrictions on non-estimable functions, all linear functions of which are also
non-estimable, the previous simple least squares estimators remain blue’s in the
joint augmented model.

We note that, as largely demonstrated in [7), the derived mathematical models
under the additivity assumption for the standard randomized experimental de-
signs, such as the completely randomized, randomized complete blocks. Latin
square, and split-plot designs, exhibit all of the conditions stated in Theorem 5.
Thus, for these designs the usual linear simple least squares estimators based on
the standard simplified infinite model are also best.

We next employ a canonical reduction to deal with the case where the para-
metric constraints A3 = c are all estimable. In this case let A’y be the blue of A8
when there are no restrictions in the model and the covariance matrix is o°7,
Then E(A'y) = A’XB8 = AB for all 8, so that A'X = A. It is well-known that the
columns of the n X k matrix A of rank m generate an m-dimensional subspace of
the column space of X. Let the orthouormal columns of an n X m matrix O
form a basis for that subspace, and let Oy, be a matrix such that the columns of
the matrix 0" = (O1; , 012) form an orthonormal basis of the column space of X.
Then, since O1; and A generate the same column spaces, there exists a matrix
B such that Oy, = BA’ and hence OuXﬁ satlsﬁes OnXB = BA'XB = BAS = Bc.
Consider now the orthogonal matrix 0" = (011, O12, 00 ), where 0X = &, and
the canonical form

2n On On X 01
z2=|2|=[0n|y=[0:X]|B8+0e=| 6]+
20 0o jo) g

Then 8, = OuXB = Bc is a known vector, so that there would be no point in
using z to estimate it. The parametric components to be estimated are those of
the vector 8, = 0XB and, since Cov(z) = o'I, obv1ously the blue of 8 1S 212 .
The blue of any estimable function » 's[= 181 + 20, = (m "0uX + 1 0:X)8 =
)\'B] is clearly w8, + w21z with variance o’v v . It is easy to verify that the blue
w8 + w2 is the estimator that would also be obtained by minimizing the
ordinary sum of squares for deviations from the expectations E(y:) subject to
the stated constraints, and that the addition of further constraints on non-estima-
ble functions, all linear functions of which are also non-estimable, does not affect
the solutions presented. ’

It now only remalns to express the pre(eding results in terms of the originally
spemﬁed model. Let b’y be the blue of '8 in the model with no restrictions. Then
b Yy =n 211 + Vo 212 = (1/1 011 + Vo Olz)y so that b =" 011 + Vo 012 y al’ld smce
the column spaces of 01 and Oy, are mutually orthogonal it follows that O1m
is the orthogonal prOJectlon of b on the column space of O1: . Thus, Oy is ex-
pressible in the form 011”1 = P,b, where P, is the symmetric and idempotent
matrix projection operator on the column space of A, where A is the matrn\ of
cocfficients of blue’s of AB under no restrictions. We therefore have blue of X '8 =
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blue of ¥’ = (78) = w6 + w212 = w'zn + v2 210
- (zn — &) = bly — V1,011(‘1/ — XB),
8) where B, is any vector such that AGy = ¢,
= by — b'Puly — XB).
Further, the variance of the blue may be conveniently expressed as
9) Var(ys) = o'm'm = o (V'v — w'n)
= o'b'b — b'Pb.

The form of equations (8) and (9) points up the possibility of viewing the
problem of the linear model with restrictions as one which decomposes into two
simpler stages. In one stage one obtains results for the linear model without re-
strictions, and in the other, one computes the additional matrix orthogonal pro-
jection operator P, (= A (A’4)*A") which as shown in [18], may be obtained by
use of normal-type equations with coefficient matrix A’A. If the order of A’A is
small the additional matrix P, may be fairly quickly obtained.

In certain cases of interest the results (8) and (9) quickly lead to the following
special conclusions. When b’y is the blue in the model y = X8 + e with no re-
strictions on the parameters, of a linear function of the components of AB then
b is a vector belonging to the column space of 4, so that P,b = b, and b is ex-
pressible as b = Ap for some p, and hence the blue of \'8 is given by the formula
(8) as

by — b'Pa(y — XBo) = b'XBo = pA'XBy = p'ABo = ple,

a constant with variance zero.

Again if b’y is a blue of a parametric function A8 under the model with no re-
strictions, and if by is uncorrelated with every linear function of the form v'A’y
then the vectors b and Ay are orthogonal for every £ X 1 vector v, and hence
P.b = &. Under the model subject to the stated restrictions the formulae de-
rived yield at once b’y with variance ¢°b’b for the blue and its variance respectively
of the parametric function \'B.

It may be of interest to add that the present example furnishes a simple illus-
tration of the fact that when the covariance matrix is singular one may not
validly construct a set of normal equations by direct use of the Moore-Penrose
generalized inverse, [10], [11], in direct analogy with the well-known equations

(e~

which would apply if the matrix 1" were non-singular. It is casy to verify that for

. <z,. @>, e <zn @>,
& & g
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and hence that the equations

WASWIEIWASH

become X'X8 = X "y, which are not the correct equations for obtaining blue’s of
estimable functions under the model in which certain estimable functions are
known to satisfy specified constraints. The matter of how general normal equa-
tions may be validly constructed by using subclasses of the class of conditional
inverses has been recently investigated by Zyskind and Martin [19].

We finally point out, as was also noted by Goldman and Zelen, [5], that the
treatment of the general problem of a linear model with essentially known singu-
lar covariance structure may be reduced to that of the standard linear model with
specified restrictions on certain estimable functions. For, if the covariance matrix
is o'V, where V is known and is of rank s, then we can find a non-singular matrix

7~ (n)

TV = < L ﬁ)
gz

with T,VT, = I,. Thus, when the transformation T is applied to the observa-

tions y then
2 T
20 To Yy

where 2, = T1XB + The, with Var(z1) = ¢’I, , and ToX8 = 20, a known constant
vector once the data have been obtained, spemfymg restrictions on estimable
parametric functions.
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