EXTENSIONS OF A LIMIT THEOREM OF EVERETT, ULAM AND
HARRIS ON MULTITYPE BRANCHING PROCESSES TO A
BRANCHING PROCESS WITH COUNTABLY MANY TYPES!
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1. Introduction and summary. Let I be a countable set with elements 7, j, k,
-+ . Elements of I are called “types.” Let T be the collection of all sequences
z = {2(2):7 ¢ I} of non negative integers of which all, but at most finitely many,
are 0. We shall identify elements of 7' as real valued functions defined on 7. The
sum of two elements of 7 is again an element of 7. The 0 function shall be de-
noted by 0. The function which takes the value 1 at ¢ and 0 elsewhere shall be
designated by e; . Our branching process is a Markov chain Z, , Z, , Z,, - - - with
state space T' and stationary transition probabilities described as follows:

The conditional distribution of Z,,; given Z, = e; is p; where p; is a proba-
bility distribution on 7.

LetzeT. 2(11)) = ny, -+ ,2(0) = ny ;2(2) = 0if tisnot oneof 21, -+ - , % .
Then the conditional distribution of Z,; given Z, = z is the distribution of a
sum of n; + --- 4+ my independent random variables, taking values in T, of
which n; have distribution p,, , - - - , and n; have distribution p;, .

Finally, Pr {Z,1 = 0| Z, = 0} = 1 completes the description of the transition
probabilities of the process.

Let Z,(7) be the ith component of Z, , ie., Z,(¢) = 2(i) if Z, = 2. Z,(¢)
represents the size of the population of type 7 in the nth generation, and ) _; Z,(¢)
represents the size of the total population of the nth generation. Let (m,;) be
the expectation matrix of the process, ie., m:; = E{Z,u(j) | Z, = e}. Let
m{}’ be defined inductively by

mf;) = m;;, mﬁfﬂ) = Zk mﬁ,?)mkj.
We shall assume that all m.} are finite and the matric (m;) is irreducible. For an
extended real valued function f defined on I, we define functions Mf, fM by

Mf(i) = 22miif(); M) = Xaf(D)mj,
whenever the right sides of the equalities are well defined. Note that Mf, fM are
always well defined if f is non negative since m,; are non negative. (We shall
always adopt the following conventions concerning addition and multiplication
involving o :
a+ © =0 +a=o if a> —x,

¢ - o =00 -ag=0o if a>0,
=0 if a=0.
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Therefore, we have

(1) E(Zisn(5) | 26 = e} = mi}
and
(2) E{Zin(§) | Zi = 2} = 2M"(j).

If f is a non negative function, then
(3) E{Zif()Zkn() | Ze = & = 25eM"(DI(G) = 2ae()Mf(3).

In [6] it is shown that there is a unique non negative number r which is the
common radius of convergence of the power series Y w_y mi}'s". We shall always
assume r > 0.

In this paper we shall extend the far reaching theorem of Everett, Ulam and
Harris for a branching process with finitely many types to a branching process
with countably many types. Let us first describe the above mentioned theorem.
For a branching process with k types, the expectation matrix (m;) isak X k
matrix. The matrix is assumed to be positive regular. It has a largest positive
eigenvalue p with corresponding right and left eigenvectors u, v. If we normalize
Z, by dividing by p", the sequence {Z.p "} of vector valued random variables
converges to a vector valued random variable W with probability 1, if p > 1.
Furthermore, the direction of W, if W £ 0, coincides with that of v. The theorem
has been proven under some conditions on the existence of moments of Z; in
[1], [2], [3]. And recently Keston and Stigum have proven the theorem under less
stringent conditions [4]. In fact, the theorem has attained its best possible form
in their work. All these works are based on the theory of ergodic behavior of
(m{}’) which is described completely in the classical Perron Frobenius theory of
positive matrices.

For an infinite, irreducible, non negative (m;;) the number + shall take the
place of p of the finite case, in view of the fact that the radii of convergence of
series O w1 miPs™ are all equal to o for the finite case. The ergodic behavior
of (mi}) for an infinite matrix is far more complicated than its counterpart for a
finite matrix. However, it has been worked out in great detail in [5]. There are
two different but exhaustive cases:

Case I, Do ymiPr" < o for all 4, j;

Case IL. D 2 ym™r" = o for all 4, j.

In Case II there are two strictly positive functions u and » such that

(4) roM(z) = v(¢) forall<;
(5) rMu(z) = u(z) forall<.

They are unique (up to constant multiples), non negative functions satisfying
(4) and (5) respectively. The sum »_;u(7)»() may be finite or infinite. In
either Case I or Case II with Y ;u(i)v(i) = o we have lim,.. mPr" = 0.
This being the case, if the process is initiated by finitely many particles
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(Pr{Zy =2} = 1forsomezeT),
B{r"Z,(j)} = r"eM"(j) = " 2ia(d)mif — 0

as n — . Hence all sequences {r"Z,(j)} converge in mean to 0. One might say
that the conclusion of the theorem of E. U. H. remains valid with W = 0 and
mean convergence instead of convergence with probability 1. The most interest-
ing case we shall analyze in detail is Case IT with > u(d)v(i) < . In this case
the infinite matrix behaves strikingly like a finite matrix. We are able to use an
approach similar to that of Harris, which may be described as the mean square
approach. A condition is imposed on distributions p; so that all Z,(7) have finite
second moments. We remark that there are other varieties of conditions which
may serve the same purpose, but the one we have chosen has the appeal of being
simple in appearance. The main result is Theorem 1 in which we prove the mean
square convergence of {r"Z,(j)}.

2. Theorem and proof. Throughout this section, r is the common radius of

convergence of power series 2, miy's”. We assume r < 1 and the matrix (m.;)
to be aperiodic. We also assume that S .mPr" = « and the functions u, v of

(4) and (5) satisfy D u(i)v(i) = 1. Let us designate by L.(u) the collections
of all real valued functions f defined on I such that f(¢)/u(7) are bounded, and
by Li(u) the collection of functions f such that Siu(d) [f(3)| < . Similarly
we define collections Ly (v) and Li(v). We have Lo(u) C Li(v) and Lo(v) C
Li(u). We now list two properties of M"f and fM™ which will be used in the
sequel ([5] Theorem 5 and Theorem 6).

I If f e La(v), then Mf & Li(v) and limg.. r"M"f(¢) = vyu(7) for every i el
where v = 2. f(3)v(4).

IL. Of |f(4)| £ au(d) for all ¢ e I, then r |[Mf(¢)| £ ou(7) for all 7 ¢ I. Simi-
larly, if |f(4)| < Bv(4) for all ¢ ¢ I, then r [fM(¢)| = Bv(7) for all 7 & I. It follows
that f & Lo(u) implies Mf e Lo(u), and f € Lo(v) implies fM & Lo(v).

Let z be a non negative function defined on I and f be an extended real valued
function defined on I. We shall use the following notation, provided the right
side of (6) is meaningful:

(6) 2Afl = 22:2()f(9).

In particular, z[f] is always well defined for a non negative f. In using this nota-
tion, zM([f] is equal to z[M[] and is also equal to the sum S 2(D)maf(G) if f is
non negative. The usual product of two functions z, f is written as zf. Thus, if Z
is a random variable which takes values in T, then Z[f] is a real valued random
variable which takes the value ;2(4)f(i) when Z takes the value z. In using
(6), (3) becomes .

(7 E\Zialf1 | Zi = 2} = 2[M"f].
For two non negative functions f, g defined on I, we let
Cr.o(3) = B\ZilfIZ:lg] | Zo = e
C;., is a non negative function (possibly taking on the value « ) defined on I.



MULTITYPE BRANCHING PROCESSES 995

LemMa 1. Let f, g be two non negative functions defined on I and z ¢ T. Then

(8)  E{\ZnnilfZaunilgl | Zu = 2} + 2l(Mf) (Mg)] = 2[Mfle[Mg] + 2[Cy.q]-

ProoF. Let 2(41) = n1, -+ ,2(4x) = np ;2(2) = 0if {isnot oneof 4y, - -+ , % .
Let random variables X;%, --- , X ... X;® ... X% be independent and
have values in T of which the first 7, have distribution p;, , - - - , the last n; have

distribution p;, . Then
E{Znil flZuslg] | Zo = 2} = B{( D tcy 200 XiPUMN (X ia 214 X 9lg))}
= Z; p=1Tgq,p

where 1., = E{( 214 X, O (22 X, gh}.
If ¢ # p,

Tap = N Mf (i) Mg(2,),
while 74, = (N — ng) Mf(ig) Mg(iy) + neCye(iq).
Hence
E{Zn sl VZanilg) | Zo = 2 + 2o noMf(ig) Mg(i,)
= a1 nanMf(i) Mg(ip) + 25ma naClro(ia)
and (8) follows immediately.
By repeatedly applying (8) we obtain the following:
LeMMA 2. Let f, g be two non negative functions defined on I and z € T. Then
(9) E(Z.If1Z.g)| Zo = &} + 22050 2MM (M) (M *9)]
= M RIM"g) + D iZe M C sn—r-1s, un—r-15).
The following lemma follows immediately from Lemma 2.

LeMMA 3. Let W, = v"Z, and f, = r"M"f, g, = v"M"g where f, g are two non
negative functions defined on I. Then

(10) E{ W"[f]Wn[g] I ZO = Z} + Z:;Ol r2kZAIk[fn—kgn—k]

= 2lfullga] + " 22050 M (Cr o)

Let

(11) V(i) = Cuu(d) — 17 %%3).
The first term in the right side of (11) is E{(Zyu])®| Zo = e;} and the second
term (without the minus sign) is equal to the square of E{Zi[u] | Z, = e;. Hence
V(%) is the conditional variance of Zi[u] given that Z, = e, , and is therefore non
negative. It follows that C., .(2) = ¥ (1) for every i so that C.,., &€ Li(v) im-

plies that «* and V also belong to Li(v).
Now, let

(12) 0:(j) = DmeoreM"(H).
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By II, 6:(5) is finite and 6; € Lo(v) for every ¢ e I. Furthermore, for any z ¢ T,
ne0""2M" is an element of L,(v) and

2w M(G) = 2i2(0)6:(3).
Lemma 4. Let Pr{Zy = 2} = 1 where z ¢ T. If f, g are two functions belonging to
Lo(u) and if C,,. £ Ly(v), then
E{((W.[1)} < =,  E{(W.g)} < =
and
(13) Ny B(W[Walgl) = wn{(2lu))® + 7" 2.2(0)04V])
where 0; are given by (12), V, by (11) andy = D v(0)f(5), n = D:v(3)g(7).

Proor. Since Pr {Z, = 2} = 1, various conditional expectations given Z, = 2

become ordinary expectations. Let 2 = r**2M*, k = 0,1, 2, - - - . Then, in letting
f = wu,¢g = uin (10), we obtain
(14) E{(W.[u]) + 22050 alu’] = (2[ul)® 4+ v 20050 2ilCl ).
Since 2z € Lo(v), Cu,u € L1(v), the second term in the right hand side of (14) is
finite. It follows that the second term in the left hand side of (14) is also finite
since ¥ *u* £ C,,.. The first term in the right hand side of (14) is obviously
finite. Hence E{(W,[u])?} is finite. Let |f(¢)| £ au(4), |g(7)| < Bu(4) for all
i 1. Then E{(W,[f)} = E{(W.[u])"}, E{(W.lg]))"} < B°E{(W.[u])"} so that
both E{(W.[f])%} and E{(W.[g])?} are finite.

To prove (13), we shall prove for non negative f, g with y = 5 = 1. The
extension to general f, g is immediate. Let us assume m = n + p where p = 0.
Then, applying (7), we have
E{W.IWalglh = E{E{W.[fIW.lg]| Z.}}

= BW.AB(WAG) | ZJ) = EW.W.lg.) where g, = "M%,
Hence, by (10),

EW.fWalgh + 2205 alfacsgns] = 2lfalelgn] + 2285 240Cruis_yiomsii).
Since f4(7) = au(1), g.(7) =< Bu(7) by II, and since f,(7) — u(7), g.(2) — u(2)
by I, and since C, (%) is finite, we conclude
(15) limm.n-»o Cfn:am(i) = Cu,u(i)
and Cy,,,.(7) £ aBCy,.(7) for all 7 el. Since r < 1, > om0z € Lo(v), hence
DooalCu] = Dim02(3)Cun(i) < oo. For an arbitrarily given e > 0, there
is a finite subset F of I and a positive integer K such that

Zk>x,i¢r zk(i)cu.u(i) <e
Therefore, for m,n > K
Do 2lCr i omis) = im0 2lCudl|
(16) = le§K.w'eF 2(0)Crp_i_riomr_a (1) — Zkgx.isi zk(i)Cu.u(i)I
+ (a8 + 1e
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Applying (15), we conclude that the second term in the right hand side of (16)
has a limit of 0 as m, n — . Since ¢ is arbitrary, we obtain

litm msee D okmo 261 b omior] = Doneo 26[Cluul.
Similarly, we prove
i nver D it 2ilfrimit) = 2o 26tl’].
Hence
i o E{Wa(fIWnlghl = (eu))” + r"2LimealCunl — 2imozl’]
= (2lu))® + "o alV]
= (alu])” + "2 2(3)6:V].

In the above proof, it seems that m = = is assumed; but the situation may be

easily remedied by replacing the upper limit n — 1 of many summations which
appear in the argument by min (m, n) — 1.

TaEOREM 1. If C., .y € Li(v) and if Pr{Zy = 2} = 1 where z £ T, then there is @
non negative, real random variable Y with E{Y?} < o such that for every f ¢ Lo(u)
the sequence {W,[f]} converges in mean square to { Y v(i)f(i)} Y ; in particular, the
sequence {W,(2)} converges in mean square to v(1)Y for every ¢ € I. Furthermore,

E{YY = (2lu])’ + "2 i2(4)6,V] and E{Y} = z[u).
Proor. Let ¢ = (2[u])? 4+ "2 2(:)0V] and D = { D, v(¢)f(:)}*C. We have
E{W.[f] — Walfl)’ = E(W.f}* — 2B{W.[IW.l1} + B{W.lf)}°
= (B(W.[f}* — D) — 2(B{W.[IW.[f}} — D) + (E{W.[f}}* — D).
Now applying Lemma 4, we obtain limy ... E{W.[f] — Walfl}* = 0. Hence the

sequence {W,[f]} converges in mean square. Let us designate the limit by WIf].
(We shall see later on that the notation is well justified.) Then by Lemma 4

(17) E{W[IWlgh = C{22:v(5)f(2)} { 224 v(2)g(4)}
if g is another function belonging to L,(u). It follows, as a special case, that the
sequence {W,(7)} converges in mean square to a limit which we shall designate
by W (%) and
(18) E{W(@H) W)} = Co(2)e()).
For a non negative function %, integrating term by term and applying (18), we
obtain

B2 h()W (D)) = C( 2 ha)V (D)}
Since our f satisfies D_; |[f(z)] v(3) < =, we have E{ Y |f(i)| W(i)}* < o ; hence
the series »_;f(i)W (i) converges absolutely with probability 1 and also in

mean square.
Now we shall prove W[f] = 2 .f(i)W(s). We shall first prove for a non
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negative f. Using the diagonal procedure, we obtain an increasing sequence {7}
of positive integers for which { W, (7)} converges with probability 1 to W (<) for
every ¢ ¢ I and the sequence {W,,[f]} also converges with probability 1 to W[f].
Since Y_:f(4) W, (1) = W,,[f] with probability 1, in letting k — «, we conclude
D)W (i) £ WIf] with probability 1. However, integrating term by term
and applying (18), we have

E{2 i f()W@) = C{2: f(D)w()}* = E(WIf".

Hence Y. f(¢)W (i) = W[f] with probability 1. For an f which takes on negative
values, we set f = f7 — f~. Then
Wifl = WIf1— Wl 1 = 2/ @W ) — 2/ (W) = 25 f(W3).
From (17) we conclude that E{ D, f(:)W(7)}* = 0 whenever 2 f(¢)o(i) = 0.
It follows that D_.f(¢)W () = O with probability 1 if f satisfies the same condi-
tion. Now for every ordered pair (7, k) of elements of I we define a function
fix as follows:

fi(g) = v()7,
fu(k) = —v(k)™,
(@) =0 if ¢4, i{#Ek

Then Y _:f#(¢)v(i) = 0. Since the totality of all such functions is a countable
collection &, there is a set @ of probability 1 such that > f(Q)W() = 0on @
for all f ¢ &. Hence W(5)/v(j) — W(k)/v(k) = 0 for all §, k on Q. Let jo be a
fixed element of I and let Y = W (jo)/v(jo). Then W(k) = v(k)Y with proba-
bility 1 for all & & I. It is clear that E{Y? is finite and equal to C by (18) and
Wif]l = 2 f()W () = {>_:f(i)v(4)} Y. Since mean square convergence implies
mean convergence, we have, for every f ¢ Lo(u), {W,[f]} converging in mean to
(D f(5)v(5)}Y. It follows that E{W, [ul} — E[Y]. Since E{W.[ul} = 2[u] for
n=1,2 ..., we conclude that E{Y} = z[u].

In Theorem 1, random variable ¥ is well defined with probability 1 while this
probability measure assigns probability 1 to {Z, = 2z}. We may call this random
variable Y, . The values of Y, on sample functions of the process which do not
start from z are immaterial. Nevertheless a random variable Y which is well de-
fined with probability 1 for all possible initial distribution of {Z,} may be easily
obtained by defining Y piecewise in letting ¥ = Y, on sample functions starting
from 2. For this Y, using a diagonal procedure similar to that used in the proof
of Theorem 1, we can extract a subsequence {ni of the sequence of all positive
integers such that {W,,(7)} converges with probability 1 to »(¢)Y for all < and
all possible initial distribution of {Z,}. Clearly, E{Y | Z, = #} = z[u] by Theorem
1.

A few words on the condition C, . € E1(v). If the initial “distribution’ of the
process assigns “probability” v(¢) to {Zo = e} for all ¢ eI, and 0 to {Zy = 2}
for all other z ¢ T, then the “expectation” of (Zi[u])® is 2 :9(¢)Cu,.(4). The
condition may be described thusly: the “expectation” of ( Zi[u])? is finite if the
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initial “distribution” is so assigned. We use quotation marks here because
> :v(i) may not be finite; therefore, v(i) may not offer a genuine probability
distribution.

Finally, we shall illustrate Theorem 1 with a corollary.

Let m be a non negative function defined on I. For each j ¢ I, let Z(j) be a
non negative, integral valued random variable with Poisson distribution:

Pr{Z(y) = k} = ¢ "Pm()1¥/k!, k=01,2.-..

Let Z(j), j € I be all independent. It is easy to see that Pr{ Y., Z(j) = =} = 1
or Pr{>.;Z(j) < «} = 1according as »_;m(j) = « or p_;m(j) < ».In
the latter case, the sum Y, Z(j) is also an integral valued random variable which
is Poisson distributed with mean Y, m( 7). Thus the joint distribution of Z(j),
7 € I, defines a probability distribution on T which we shall call a multiple Poisson
distribution with mean m.

Let us suppose that our matrix (m,;) has all finite row sums. For each 7 ¢ I,
let m; be the function on I defined by m;(j) = m;; . Let p; be the multiple Poisson
distritution on 7' with mean m;. The collection of distributions {p;} defines
transition probabilities for a branching process as was described in Section 1.
We shall call it a Poisson branching process. For this branching process, the ex-
pectation matrix is (m.;), Cu,.(7) is given by

(19) Coru(?) = 783(0) + D0 ()mis,
and
(20) > i Cuu(D)o(3) = (F 4 1) i v(i)u*(5).

Hence, in order that C,,, ¢ Li(v), it is sufficient that the function u be bounded.
Thus we have the following corollary:

CoRroLLARY 1. For a Potsson branching process, if the function u is bounded and
if the process is initiated by finitely many particles, then the sequences {W,(7)} con-
verge in mean square to v(1)Y where Y is a real valued random variable.
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