EXACT BAHADUR EFFICIENCIES FOR THE KOLMOGOROV-SMIRNOV
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By INNis<G. ABRAHAMSON
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1. Introduction. In 1960, Bahadur [3] proposed two measures of the asymptotic
performance of tests: one approximate measure, based on the limiting distribu-
tion of the test statistic; and one exact, based on the limiting form of the prob-
ability of a large deviation of the statistic from its asymptotic mean. Although
knowledge of the exact measure is more desirable, it is often difficult to compute,
whereas the approximate measure is usually trivially available. It is to be hoped
that the approximate measure will nearly always be a good approximation to the
exact measure, and there is considerable evidence in support of this conjecture,
but counterexamples do exist (see e.g. [1], p. 20).

This paper explores the question for the Kolmogorov-Smirnov (K-S) and
Kuiper statistics—two closely related measures of goodness-of-fit based on
deviations of the sample distribution functions from the null case—in one- and
two-sample situations. In the case of the weighted one-sample K-S statistic and
the two-sample Kuiper statistic, it is possible to obtain exact measures although
the corresponding approximate measures are not available. The relative efficiency
(in a sense defined in Section 2) of the weighted one-sample K-S statistic to the
unweighted K-S statistic is computed in a number of cases, and the relative
efficiency of the Kuiper statistic to the unweighted K-S statistic is also examined,
from which it appears that the Kuiper statistic is always at least as good (and
often much better) than the K-S statistic.

In the cause of brevity, a great deal of the theory and all the computational
detail (generally very tedious) has been omitted. Much of it is available in [1].
However, a short résumé of the theory of the Bahadur measures of performance
and their properties is given in Section 2 for the sake of completeness, although
the details here are also omitted.

2. Summary of the theory of Bahadur efficiency. Let X be a random quan-
tity with sample space x. We denote the sample space of all sequences of observa-
tionson X by x = (x X x X ---) withx = (z1, 22 -+ +) as a typical element of
%, where ;e x. Let {Ps:0cQ} be a collection of probability measures on x,
where Q is an abstract parameter space, and let 2 be a proper subset of Q.
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1476 INNIS G. ABRAHAMSON

Consider the hypothesis H:0 € Qo . Let {T,(x)} be a sequence of non-negative
real-valued functions on x—i.e. statistics for use in testing H. Typically, T,
will be a function of the first n components of x, i.e. of (21, « -+, &a). {TWw(x)} is
called a standard sequence for testing H if the following three conditions hold:

I. Under H, {T,} converges in law to a non-degenerate random variable
whose distribution is continuous and independent of 6 & Qo; i.e. there
exists a non-degenerate, continuous distribution function, F, such that
for all 6 & Qp and real r,

limy.e Po{ T < v} = F(r).
II. There exists a constant a € (0, « ) such that asr — o,
log [1 — F(r)] = —(ar*/2)(1 + o(1)).

(This is true, for example, if the asymptotic distribution of {7,} is nor-
nal).

III. There exists a non-negative, real-valued function, b, on @ such that
(i) b(6) > O when 6 Q — Q, and
(i) T./n* —b(0) as. Py

(Po{T/n* = b(0)} = 1).

From I and III, we see that b(6) = 0 when 8 ¢ Qpand T'»(X) — « a.s. Pswhen
0eQ — Q. Since {T,} behaves when 6 £ Q, and blows up when eQ — Q, a
statistician testing H by means of T, would judge large values of T', to be sig-
nificant evidence against H. If he did not know (as is most often the case) the
exact distribution of T, under H, he could estimate the level attained by T'.(X),
which is the null probability of getting a more extreme value of T, than he has,
by the random variable

(ordinarily the statistician will know sufficient components of X to calculate
Tw(X)).

If H does not hold, L, — 0 a.s. The behavior of L, is better explored by ex-
amining the transformation

K, = K(T,) = —2log L(T,).
It can then be shown that, for all 0 £ Q,
K./n— ab(0)] as. Ps.

Thus K, is asymptotically linear in n, which prompts the definition of the
approximate slope (departing from the terminology of both [1] and [3]) of {T'}
(or the test based on T',) as the function

¢(8) = ab(0)T.
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The approximation arises in (2.1) where the asymptotic null distribution of
{T,} is used to compute L, , which approximates the true level attained by T, .

If £ Q — Q and e is regarded as being a convincing level of significance, how
large does N have to be for Ly = ¢ < Ly (i.e., for the level ¢ to be attained by

Tx)? N clearly varies with X and ¢; but, in fact, when e is small, N is essentially
a large constant, for

lime.oN/2 log (1/¢) = 1/¢(0) a.s. Py
or, more loosely, as e — 0
N ~2log (1/e)/c(6) a.s. Ps,0eQ — Q.

¢(8) can thus be interpreted as a measure of performance of {7,}: the larger
c(9}, the faster {T.} rejects H by the approximate test-based on the limiting F,
for arbitrarily small e.

The performances, as tests of H, of two standard sequences {7,.(X)} and
{U.(X)} with approximate slopes ¢z(8) and cy(8) respectively, may be compared
by considering the ratio of the sample sizes needed by each to attain the same level
using the same data. As e — 0, we have for all 6 e Q@ —Q o,

Nr/Ny — cu(8)/cr(0) as. P,

which suggests Ey,2(8) = cu(0)/cz(8) as an approximate measure of the asymp-
totic efficiency of {U,} relative to {T,}. If @ is a metric space and @ — @, is
dense in Q, then for 6, ¢ Q and {6,} a sequence in & — Qo with limit 6,, we can
define the approximate asymptotic limiting efficiency of {U} relative to {7’}
at 6y by

£U,T(00) = limv-»oo EU,T(OV)J

assuming that the limit exists. £y,7(6p) is really a function of the path of ap-
proach, {6,}, as well as 6y. It is useful in that it is precisely those values of 6
near 6, for which large sample sizes will usually be necessary for discrimination.
To get around the inexactness inherent in the foregoing analysis, more elaborate
conditions are needed. {T,} is a strictly standard sequence if I and III hold and
I1.” There exists a non-negative function ! on [0, ] such that
(i) I(z) > Oforze (0, ©), and
(ii) whenever {u,} is a sequence of real numbers for which u, /n —
2 (0, ), we have uniformly for all § & Q.

—limpe (2/n) log Po{T, = u.} = U(2).

Then the exact level attained by T, is L,"(X) = supseno Po{x: To(x) = To(X)}
and, with K,*(X) = —2log L,*(X), wehaveforallf ¢ @ — Q,

K,*/n — 1(b*(0)) as. Ps.
The function ¢*(8) = I(b’(0)) is called the exact slope of {T,}, and if, as before,
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N* is that sample size n at which {T,} “attains the level ¢”, it turns out that
N*/21og (1/e) — 1/c¢*(8) as. Py, forallfeQ — Q.

E¥ #(0) and £5,r are then defined as exact asymptotic and exact asymptotic
limiting efficiencies, to correspond with E and £ previously defined.

In general, it is not true that c(9) = ¢*(6). However, in most common cases
where both ¢(8) and c*(0) are available, we do have

(2.2) c*(0)/c(8) > 1 as 60— 0 eD.

If this can be shown to be the case, then there is considerable justification for
using ¢(6) instead of ¢*(0) near 2, (for the discussion of relative efficiencies, for
example) when the former is more tractable, and if { U,} and {7'»} are both stand-
ard and strictly standard and (2.2) holds for both, then £y,r = £5,7.

3. The one-sample problem.

3.1. The Kolmogorov-Smirnov Statistic. Let X;, X», --- be a sequence of
independent and identically distributed random variables with common con-
tinuous distribution function G(z), and let the sample distribution function
determined by Xi, - -+, X, be F,(z). For the purpose of testing the hypothesis
H:G = F (say), the (generalized) Kolmogorov-Smirnov statistic with weight
function ¥ is defined by

Ky = Sup, n'|F.(z) — F(2)[¥(F(z)).

Anderson and Darling [2] have investigated the general asymptotic theory of
Ky, ; but they obtained explicit results only in the well-known case where
¥ = 1, which yields the approximate slope (when the true distribution is G # F')
for the standard sequénce {K; .} as a(G, F) = 4d°(G, F) where

(3.1) d(@, F) = Sup. |G(z) — F(x)|.

cw(G, F) appears very difficult to obtain for ¥ 5 1, assuming that it exists, be-

cause the limiting distribution of Ky, under the null hypothesis is not available.
The exact slope, ¢,*(G, F), is implicit in the work of Sethuraman [11] and

Hoadley [9] and has been explicitly obtained by the author ([1], p. 24) as

a*(G, F) = a(G, F) + §d'(G, F)I(1 + o(1))

when d(@G, F) — 0, which also demonstrates the local (near F') equivalence of
a* and ¢ of Equation (2.2).

We shall now find (under certain conditions) c¢v*(@, F), but we shall be un-
able to demonstrate (2.2) because of the lack of a suitable closed expression for
the asymptotic distribution of Ky, .

The derivation depends on the following basic lemma:

LeMMA 1. Let Z1, Z, - - - be a sequence of independent observations on the random
variable Z. Let Z, be the mean of the first n observations, and o(t) = E(e'”) be the
moment generating function of Z. For a given ¢ > E(Z), suppose E('"9) =
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¢ “o(t) attains a minimum, p, at t = 7 in the interior of T = {t:p(t) < »};
i.e. r and p satisfy (where d/dto(t) = ¢'(t))

J(D)fe() = ¢ and p = ().

Then
(3.2) P{Z, 2z ¢ = o7, and
(3.3) liMpswn  log P{Z, = ¢ = log p.

For a proof of this Lemma, see e.g. [4].

It may be shown that no = can be found if ¢ £ E(Z) and, indeed, if this were
the case, P{Z, = ¢ = P{Z, — E(Z) 2 ¢ — E(Z)} — 1. The implicit function
theorem guarantees that 7 and hence p are differentiable functions of e. Further-
more dp/de = —7e (1) < 0, so that p is a decreasing function of e which the
result (3.3) would demand.

Returning to the one-sample problem, no generality is lost if we suppose
F(z) = z for z £ (0, 1). With this understanding, consider a fixed z in (0, 1)

and define the independent binomial random variables Uy, U, - -+ by
(34) U;=1 ifX; =z
=0 ifX; >z
Then
(3.5) Fu(z) = U
and under H
(3.6) e(t) = E(e'”) = ze' + (1 — z).
It follows from Lemma 1 and (3.5) that for e (0, 1),
(3.7a) limpoen " log P{F.(z) — z = ¢ = log m(x, €), and
(3.7b) limpawn " log P{F.(z) — z £ —¢} = log pa(z, ¢), where
(38a) m(z,¢) = (z/(z+ )T (L —2)/(1—2—¢) ", 0<z<1l—e
=0, l—e=s2z<1;
(3.8b) pa(z, €)1 = 0, 0<z e

=((1—a)/(1 —z+ &) (&/(x—e) e<z <L

Notice that p is a reflection of p» about z = 3:

(3'9) pl(x, e) = P2(1 -z, e)°
Let
(3'19) P(xa e) = max (Pi(xy 6); 1 =1, 2)’ € (0; ]-)

= 0, e=1.
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For € > 0, p(z, €) is a decreasing and continuous function of e.
It is then easy to prove:
Levma 2. Under H,

lim,,,n " log P{|Fa(z) — 2| = ¢ = log p(z, ).

TuaeoreEM 1. If ¥(x) is a finile, positive-valued and continuous function of x
i (0, 1);and (1 — 2)¥(z) > 0asz — 1— and 2 — ¥(z) —» 0 as z — 0+,
then under H,

limpseon " log P{Ky./n' = & = Supo<z<1 log p(, /¥ (x))

(where log 0 7s defined as — ).
Proor. We certainly have

P(Ky, 2 ') 2 P{Fa(2) — al¥(x)'z ¢
pn(x) (SaY), for any .

Thus log P{Ky,, = en’} = log p.(z) for any x, and hence for Lemma 2,

lo
lim inf,.., 7 ' log P{Kg, = en'} = lim,.. n" log pa(z) = log p(z, ¢/¥(z))
for any z, and therefore
(3.11) lim inf,.n ' log {Kv. = en'} = Sup, log p(z, ¢/¥(x)) = log ps™ (¢).

Notice that no use has yet been made of the restrictions on V.

pr (e) = Sup, p(, ¢/F(x)) is attained for some z ¢ (0, 1), for p(z, €) is non-
negative and jointly continuous in (z, €) and therefore, by the continuity of
W(zx), p(xz, ¢/T(x)) is jointly continuous in (x, €) for each fixed ¢ and hence
attains its supremum in [0, 1]. In fact, this supremum must be attained in (0,1)
because p # 0 and limg.op(z, ¢/¥(z)) = lim,.; p(x, ¢/¥(x)) = 0 by the con-
ditions on ¥.

Also, it is not hard to show that Sup, p(x, ¢/¥(x)) is a continuous function of
e in (0, 1). For if p(z’, €/¥(2")) = ps™(¢) and p(z”, €' /¥ (")) = pa™("),
and 0 < ¢’ < € < 1, then

o, & [2(@)) = p(e, €/U(E)) S pu™(€) = ()
< p(a”, €/u(@")) — p(a”, € /u(2")),

and since p(z, ¢/¥(z)) is continuous, |pe* (") — pu*(e)| —0as |’ — €| — 0.
Now

(3.12) {Kya/n* 2 ¢
c U0<,,<1{[Fn(x) — z[¥(z) Z ¢
= Uea [{Fa(z) — 2 2 ¢/¥(2)} U {Fu(z) — 2 = —¢/¥(a)}].

Thus, for any positive integer N, since F,(z) — z < F.(¢/N) — [(+ — 1)/N]
forze[(z — 1)/N, 2/N],
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Uicot {Fu(z) — 2 2 ¢/%(x)}
(313) < UL Uemcezin (Fu(z) — 2 = ¢/¥(x)}
c (U {F.(i/N) — i/N. 2 ¢/¥x"(i/N) — 1/N}]
U [Uwwsea{(l — 2)¥(z) 2 ¢ Usazyn{Fa(z) — 2 Z ¢/¥(2)}]

where ¥,°(¢/N) = Sup (¥(z):(s— 1)/N <z <i/N),2=2,83 --- N — 1,
Let M, be defined by 1 — (1 — 1/M,)" < ¢ ™. Then M, > N when n is
sufficiently large. Define ¥,°(1/N) = Sup (¥(z):1/M, £ « < 1/N). Then

U0<z§1/N{Fn(I'3) —z = ¢/¥(x)} C [U0<x§1/Mn{Fn(x) = ¢/¥(x)}]
U {F.(1/N) — 1/N 2 ¢/%,'(1/N) — 1/N}.
But Apy = Uoscociym, {Fa(1/M,) = ¢/%(z)} occurs oﬁly if there is at least one

observation X; which is no larger than 1/M,, or else Fn.(1/M,) = 0, so that
(3.14) P(Auww) =1 — (1 — 1/M,)" < ™ by definition of M, .

By assumption, we have (1 — z)¥(z) — 0 as * — 1—, so that for sufficiently
large N it is impossible that (1 — z)¥(z) = eforze[(N — 1)/N, 1].

Thus from (3.2), (3.8), (3.10), (3.13) and (3.14) we see that for N sufficiently
large and n satisfying M, = N,

PlUococr {Fu(z) — & = ¢/¥(2)}]
< SV P{F.(i/N) — 1/N 2 ¢¥"(i/N) — N} + [1 — (1 — 1/M.)"]
< NS "(1/N, /(i/N) — 1/N) + ¢™
< N Supym, <o<iyn p°(2, ¢/¥y"(z) — 1/N) + e

where ¥y *(2) = {Sup ¥(y): max (1/M,,z —1/N) =y =z}
A similar inequality may be proved for P[U, {F.(2) — < —¢/¥(x)}] so
that we have from (3.12)

P{Ky./n' = ¢ < 2N Supym,zeciunp’(z, ¢/¥x*(2) — 1I/N) + 26
Then,

7" log P{Ky,./n' = ¢ = (log 2N)/n

+n7" log Supym,sesi-yn p"(z, /¥ (x) — 1/N) + n log (1 + o(1))
so that

lim SUPnsw 7 lOg P{Ky ,/nt = ¢ =< log Supyu, <z <1y~ p(2, ¢/¥y*(z) — 1/N).
But N is arbitrary, so that we must have

(3.15) 1im SUPnow 1 log P{Ky./n* = ¢ = log pu™(e).

The theorem follows from (3.11) and (3.15).
Generally log ps*(e) has no nice closed form, and one has to settle for the
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TaBLE I
F(x) G(z) L1w,
Shift alternatives ®(x) d(x — 0) 1
6—0 C(x) ) C(x — 0) 1
Scale alternatives ®(x) &(6z) .68
90— 1 C(x) C(6x) .71
Ds(x) Dq(6x) .74
Dy(z) Dy(0z) .83
Mixture, § —» 1— ®(x) 6®(z) + (1 — 6)®(2x) .64

first one or two terms of the power series in ¢, when e is small. For example, when
v =1,

(3.16) log p*(e) = —(2¢ + &' + c(€));
and when ¥(z) = [2(1 — 2)]™ = W.(z) (say),
log pr™(e) = —(3€ + €' + o(")).

Thus the limiting efficiency of the statistic K;,, (the unweighted K-S) relative
to

Ky,n = n} Sup, [Fu(z) — F(2)|/[F(2){1 — F(z)}1},
is
£19, = 4limae,,-0Sup, |G(z) — F(2)*/Sup: [|G(z) — F(2)[/F(z){1 — F(x)}].

Some values of £;,v, for various F against alternatives G as G — F, are given in
Table I. (®(x) is the standard normal distribution function, C(z) =
/7 [20 (1 4+ 2*)7'dz, Di(z) = P{xi’ < =x}.) Thus it appears that Ky, is
usually at least as good as the unweighted Kj,, .

3.2. The Kuiper Statistic: Kuiper [10] proposed the goodness-of-fit statistic
for the one sample problem:

in the notation of Figure 3.1, and found its limiting distribution. { V,} is a stand-
ard sequence with approximate slope

(3.17) (G, F) = 4[Sup, {Q(z) — F(z)} — Inf, {Q(z) — F(z)}]"

Using the methods of Section 3.1, it is possible to obtain the exact slope of
{Va}.
THEOREM 2. With p*(e) defined by (3.11) when ¥ = 1,
liMpsen " log P{V,/nt = ¢ = log pi*(e).

Proor. The argument is basically the same as in Theorem 1, and will only be
sketehed below. We may assume F(z) = z forz e (0, 1).
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Vn/n% = Sups,, [{Fa(z) — 2} — {Fa(y) — y}]
2 [{F.(x) — Fu(y)} — {z — y}| for all z > .

Thus log P{V./n' 2 ¢ 2= Supes, log P{|{Fa(z) — Fa(y)} — (& — y}] Z ¢.
F.(xz) — F,(y) has the same distribution as F,(x — ), hence by Lemma 2,

(3.18) lim infy.en " log P{V,/n* = ¢ = Sup.s, logp(z — y, €)
= log ;™ (e).

Let N > 2/e. Toeachz, yin (0, 1) correspond ¢, j such that2/N <z < (¢ +1)/N
and j/N < y < (j + 1)/N, so that by the monotonicity of F,(z) and z,

P{{Fu(z) — Fu(y)} — (z — y) 2 ¢ .
S P{Fu(¢/N) — Fu(j —1/N) — (i — (j — 1))/N 2 ¢ — 2/N},
P{V./(n)! 2 ¢
< P{U{Fa(i/N) — Fu((j — 1)/N) — (s — (j — 1))/N z € — 2/N}}
< 2 4P{Fu(i/N) — Fu((G — 1)/N) — (i — (j — 1))/N = ¢« — 2/N}
= Npn*(e — 2/N)T.
lim SUPpow 7 " log P{V,/nt < € < limpa [0 log N* + log ;*(e — 2/N)];
= log ;*(¢ — 2/N);
but N may be arbitrarily large, which implies, by the continuity of p*(e),
(3.19) lim SUpPno ' log P{V,./nt = ¢ < ;™ (e).

(3.18) and (3.19) prove Theorem 2.
Thus, from (3.16) the exact slope of {V,} is seen to be

& (G F) = (G, F) + ¢ (G, F) + o(d (G, F)) as d(G,F)—0.
The exact asymptotic efficiency of {V,} relative to {Ki .} is
E7 x(F, @) = log p*(Sup (F — @) — Inf (F — G))/log ;" (Sup |F — @).

Since p1*(e) is a decreasing function of € and log p,*(e) < 0, By x(F, @) = 1;
i.e. V, is always at least as efficient at K, against any alternative whatever. If,
for definiteness, we suppose Sup (@ — F) = d(G, F), the limiting efficiency
of {V,} relative to {Ki.} is

(3.20) £vx = 1 + limg—r-0[2Sup (F — G)/Sup (G — F)
+ {Sup(F — @)/Sup (G — F)}"| = 1.

Some values of £y & for various F against alternatives G are given in Table II.
Ly.x is graphed in Figures 1 and 2 as indicated. Figure 1 shows that, against
scale alternatives, for Normal and Cauchy distributions £v & drops off quite
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TaBLe II
F(x) G(x) £V,K
Shift alternatives F(x) F(x + 6) 1
0—0 S
Scale alternatives | F(z) = 1 — F(—x) F(x0) 4
6—1 oz — ) >0) ®(6r — p) 1+ {@r@) — u)/@rk) + )}
-exp (— wr(w))]?
r(u) = [1 -+ w?/4]t
(See Figure 1(a))
Clx — )@ >0 C(oz — ) 4l + 1 — p(® + D2
(See Figure 1(b))
Mixtures F(z) =1— F(—z)| 6F(z) 4
+ (1 — 6)F(ez)
(x> 0) .
09— 1 ®(x) 03 () [1 4 {®(s — at) —B(as— t)}/
+ (1 — 0)@lax — u]| {Blas + 1) — B(s + a)}]?
(@>1,u>0) s = au/(a? — 1)
t = {s*+2(loga)/(a — 1)}
(See Figure 2)

sharply from 4 until at about u = 2, there is almost nothing to choose between
the two statistics. In Figure 2 for the case of Normal mixtures, we find that Va
is always at least four times as efficient as K, .

These results may appear quite startling in that they depend on the fact that
under H

(3.21) " log P{V, = nl¢ ~ n ' log P{Ki, = nle

which says that the distributions of V, and K, are of the same exponential order
in the tails. It is obvious that with high probability, V,, > K, and therefore the
limiting distributions must be quite dissimilar in their main parts. Thus one might
doubt the reliability of the conclusions in view of the fact that the tails and the
main parts of a sequence of distributions do not necessarily have the same limit-
ing properties. However, the Bahadur theory concerns itself with how well H
“explains” the sequences {V,} or {Ki,} when, in fact, H is false and V, and
K, are growing roughly in proportion to n}. The very fact that V, = Ki,, as-
sures that, according to (3.21) V, “‘attains a smaller level of significance’” than
does K, and therefore rejects H more emphatically.

4. The two-sample problem. It rarely happens that the null distribution
F(z), needed for Ky, and V,, is known. Most often, we will be confronted by
the two-sample problem, in which it has to be decided whether two samples could
reasonably be supposed to have been drawn from the same population.

4.1. The Kolmogorov-Smirnov Statistic: Let X1, Xz, - -+ , X and Yy, -+, Y,
be independent samples of independent observations on X and Y respectively,
#ith continuous distribution funetions F and G respectively. Let Fn and Gn
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be the corresponding sample distribution functions. For the purpose of testing
the hypothesis H that F' = @, the usual K-S two-sample statistic is defined by
Knn = [mn/(m + n)F Sups [Fu(z) — Gu(2) | = [mn/(m + )l d(Fn, Ga).

It is possible to weight this in a similar way to the one-sample case, but the
weight function would be of the form ¥(F,, G,)—i.e.,, random—and no exact
Tesults are as yet available for this case.
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We shall suppose that m and n increase in such a way that m/(m + n) —
v & (0, 1). In fact we shall require that » be rational. » = r/k where r and k are
integers and m = rM,n = (k — r)M.

Even without this last restriction, it may be shown that when F = G,

Kua/(m + n)t — fp(1 — )} d(F, G) as.
Since the limiting distribution of K, . is precisely that of K;,, , the approximate
slope of the standard sequence {K,.,} may be computed, and it is found to be
(4.1) a(G, F,») = 4»(1 — »)d(F, G)
(1 — »)a(G, F).

In order to find the exact slope of {Kn,.}, it is necessary to develop a two-
sample analogue of Lemma 1. .

Lemma 3. Let Z:®, Z," ... be independent sequences of independent random
variables z% i =1,2. Le.t> the mean of the first 1 observations in the ith sample
be Z,°. Let oi(t) = E(e*"").

Suppose there exists a positive number T in the interior of

T, = {t:e(t/v)ea((—8)/(1 — »)) < o}
such that, for a given number ¢ > E[Z® — Z?],
(42) &' (1/m)/e(r/v) — @ (—=1/(L = ) /ea(—7/(1 = »)) = ¢,

and let

(4.3) p = € “laa(r/v)VTee((—7)/(1 — »))]™".
Then P{Z,® — 7,” =z ¢ < "™
and limp oo (m + n) 7" log P{Z," — Z,” = ¢ = log p

where m, n — o« in such a way that m/(m + n) = r/k = ».

Proor. Let W be a random variable defined as the mean of r(s = 1) or
k — r(¢ = 2) independent observations on Z°. From the sequences {Z;"},
we can form independent sequences of independent observations on W, where
the (5 + 1)th observation is

W& = 250 + Z5a + - + Z50 )/
W = Znin + Z0me + -+ + ZE%)—T>(:‘+1)]/(79 - r)
so that
2 WM = Wa® = Z,°, ifi=1
=272, ifi=2
and therefore

(44) 7.0 — 2.0 — 7,0 _ W, = (WO Z w9),.



EXACT BAHADUR EFFICIENCIES 1487

The moment generating function of k(W® — W®) is
o*(t) = len(t/M)] oo —t/(1 = »))]" 7"
¢ (t) < o if and only if t ¢ T,. Hence by Lemma 1,
P(Wu® — Wu®) = ke < 0
where p is defined by (4.2) and (4.3), and
limaaw M " log P{e(Wa® — Wu'®) = ke} = klog p.

The desired result follows from (4.4) and the fact that kM = m 4+ n.

Admittedly, Lemma 3 is restrictive in that it only handles rativnal values of »
and demands that the sample sizes increase in a special way. However, these
conditions are not entirely unrealistic, and many of the existing results concern-
ing the two-sample Kolmogorov-Smirnov statistic require m = norr = 1 (e.g.
51, [71, 18D).

Again, we may assume that under H, F(z) = G(z) = z for z¢(0, 1). If
each Z has the same distribution as U in (3.4) and we identify F..(z) = Z,"
and G,(z) = Z,®, Lemma 3 establishes that, in the two-sample case, H implies

(4.5)  limpnsw (m + 1) log P{|Fn(z) — Gu(2)| = ¢ = log po(2, €)
where po(, €) = max (poi(, €), po,2(%, €)) is defined by
pon(2, €) = € "ou(r1/) e —1/ (1 — ¥))]'7,
poa(®, €) = € o — 7o/ Tpu(ra/ (1 — ¥))I,
ea(t) = ze’ + (1 — ),
2{e™” fou(11/v) — € T fo(—m/(L =)} = ¢,
ol fou( —1a/v) — €7 [ou(mo/(1 —¥))} = —¢,
THEOREM 3.
1iM msco (0 + 1) " 10g P{Kpa/(m + n)* = ¢
= Sup. log po(z, /(»(1 — »))})
= log po*(¢/(v(1 — »))Y),

where po*(¢/(»(1 — »))}) = Sups po(, ¢/(»(1 — »))*). The proof of Theorem 3 is
similar to the proofs of Theorems 1 and 2 and slightly simpler than the proof of
Theorem 4, and therefore we will not give it here.

It may be shown that

(4.6) log po*(¢/((1 — »))}) = —2¢" + 0(¢")

(for details, see [1], Section 3.2: the conjecture stated there can be proved to be
correct). Thus

a®(Q, F,») = (1 — »)d(F, G)(1 + o(1))
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(4.7) = a(G, F,»)(1 + o(1))
= (1 — »)a(G, F)(1 + o(1))

as d(F, G) — 0, so that the approxunate and exact slopes of {K,, .} are locally

equivalent.
4.2. The two-sample Kuiper statlstlc
The two-sample Kuiper statistic is defined as

Vi = [mn/(m 4+ n)P[Sup, {Fu(z) — Gu(2)} — Inf, (Fa(z) — Gu(2)}].

Kuiper [10] derived the limiting distribution of V., for the case where m = n
and this distribution is identical with the limiting distribution in the one-sample
case ( Kuiper’s normalization is different to that used here, which is more common,
with the result that the two distributions he gives appear different). On the
basis of our knowledge of one- and two-sample K-S and Cramer-Smirnov-von
Mises statistics, and Theorem 4, we may conjecture that (under the usual re-
strictions on m and n) the asymptotic distribution of V, , is in general identical
with that of V.. The non-availability of the general asymptotic distribution
of V.. means that we cannot compute the approximate slope of { V,...}, except
in the case where » = %, in which case it turns out to be

(4.8) (G, F,v) = »(1 —v)e(G, F),

with ¢.(@G, F') defined as in (3.17), which is consistent with the relationship (4.1).
We will show the corresponding analogue of (4.7), viz.:

& (G, F,v) = »(1 — »)e(G, F)(1 + o(1))

as d(@, F) — 0.
THEOREM 4.

iMoo (M + 1) log P{Vimna/(m + n)* Z ¢ = log p*(e/(v(1 — »))).
ProoOF.
{Vima/ (m + n)! = ¢}
= U {[IFa(z) — Gu(2)] — [Fu(y) — Gu(®)]] Z /G — »))Y}
D {|Fu(z) — Fu(y)] — [Gu(x) — Gu()]| Z ¢/(x(1 — »))}}
for any x > y. Thus from (4.5) we have
lim infp paw (m 4 1) log P{Vonn/(m + n)t = ¢
2 liMpnow (m + n)7" log P{|Fu(z) — Fa(y) — Gu(z) + Gu(y)|
2 ¢/(»(1 — )}
= log po(z — ¥, ¢/(»(1 — »))})

for'any x > y, which implies
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Hm infp naee (m 4 1) 7" log P{Vun/(m + n)} = &
(4.9) = Sup, log po(z, ¢/(»(1 — »))})
= log po"(e/(»(1 — »)).

Let N be a number so large that N >4((1 — ) /eandletz < 22 < -+ < an
be chosen so that (¢ — 1)/N £ Gu(z;) < ¢/N,%2 =1 --- N for m > N (the
z’s will vary with m). Then we have

(4.10) 0 < Gu(zi) — Gu(ziza) < 2/N.
When 2,1 < ¢ < z; and 2,1, < y < z;, monotonicity and (4.10) imply
[Fu(z) — Fu(y)] — [Gn(z) — Gu(y)]
= [Fu(zs) — Fu(i2)] — [Gui(zim1) — Gu(w))]
= [Fu(:) — Fu(zja)] — [Gu(®i) — Gu(zi21) — 4/N],
(Van/(m + n)* 2 & € UL U ([Fu(z) — Fu(zj)]
— [Gn(2:) — Gu(zia)] Z ¢/ (b(1 — »))* — 4/N}
P{Via/(m +n)t 2 ¢ = 2000 2005 PIFu(2:) — Fa(wia)]
— [Gn(z:) — Gu(z2)] Z /(W(1 — »))' — 4/N}
= Nloo™(¢/(»(1 — »))! — 4/N)]™*™.
Thus
lim SUPmnaee (1 + 1) log P{Vma/(m + n)! = ¢
< log po"(¢/(»(1 — »))" — 4/N).

This result is true for any sufficiently large N, and po*(¢) is continuous in e
(by an argument similar to that for p*(¢) in Theorem 1), so that we must have

lim sUpm,usee (M + 1) log P{Vimn/(m + 1) 2 ¢ = log po*(e/((1 — »))}).

This, together with (4.9), proves Theorem 4.
Theorems 3 and 4 could also be proved using Theorem 1 of [9] and the calculus

of variations.
From (4.6) it is evident that

(G, F,v)
= (1 — »)[Sup. {F(2) — G(x)} + Sup. {G(z) — F(2)}I" + o(d*(F, @)).

Thus the expression for the limiting efficiency of V,, . relative to K, , will be
the same as the limiting efficiency of V, relative to K, in the one-sample case.

6. Acknowledgments. The author is deeply indebted to: Professor R. R.
Bahadur for his advice and encouragement which made this paper possible;



1490 INNIS G. ABRAHAMSON

Dr. Bruce Hoadley for his valuable suggestions; the referee for his very careful
reading and constructive comments; and many others who have devoted some
of their time to the preparation of this paper.

REFERENCES

[1] ABraHAMSON, I. G. (1965). On the stochastic comparison of tests of hypotheses. Uni-
versity of Chicago. Unpublished dissertation.

[2] AnpERsON, T. W. aND DARLING, D. A. (1952). Asymptotic theory of certain “‘goodness-
of -fit” criteria based on stochastic processes. Ann. Math. Statist. 23 193-212.

[3] Bamapur, R. R. (1960). Stochastic comparison of tests. Ann. Math. Statist. 31 276-295.

[4] BaHADUR, R. R. AND RaNGA Rao, R. (1960). On deviations of the sample mean. Ann.
Math. Statest. 31 1015-1027.

[5] BLackmaN, J. (1958). Correction to ‘“‘an extension of the Kolmogorov distribution’.
Ann. Math. Statist. 29 318-324.

[6] DaruNg, D. A. (1957). Kolmogorov-Smirnov, Cramér-von Mises tests. Ann. Math.
Statist. 28 823-834.

[7] GnEDENKO, B. V. AND RvacEva, E. R. (1952). On a problem of the comparison of two
distributions. Math. Statist. Prob. 1 (1961) 69-72.

[8] GNEpENEO, B. V. (1952). Some results on the maximum discrepancy between two
empirical distributions. Select. Transl. Math. Statist. Prob. 1 (1961) 73-75.

[9] HoapLEY, A. B. (1967). On the probability of large deviations of functions of several
empirical cdf’s. Ann. Math. Statist. 38 360-381.

[10] KuirEr, N. H. (1960). Tests concerning random points on a circle. Proc. Konink. Ned.
Akad. van Wettenschaffen, A. 63 38-47.

[11] SerHURAMAN, J. (1964). On the probability of large deviations of families of sample
means. Ann. Math. Statist. 36 1304-1316.



