AN ASYMPTOTIC EXPANSION FOR POSTERIOR DISTRIBUTIONS
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0. Introduction and summary. Let ¢ be a real valued parameter for the
exponential family having densities of the form

(0.1) ps(z) = C(¢) exp [¢pR(z)]
with respect to a o-finite measure u over a Euclidean sample space.

Now assume that the parameter ¢ has a prior density p(¢). The posterior
density of ¢, given (X;, Xz, .-+, X,) = (21, 22, +--, %,), is proportional to

(0.2) [C(6)e*T'p(¢) where r = >.iiR(z:)/n.

The expression (0.2) is proportional to a density function and hence defines
a random variable ¢ whose density depends on r. But since r = D&y R(z:)/n,
the distribution of X when ¢ = ¢, generates a sequence (7;, 2;, ---) and a
sequence (R(21), 3[R(21) 4+ R(=2)], - - -) and ultimately an infinite sequence of
posterior densities of ¢. It is the asymptotic form of this sequence with which we
shall be concerned.

Neglecting for the moment the stochastic aspect of r, we see that if r is held
fixed, perhaps at the expected value of R(x), the density proportional to (0.2) is
exactly of the form considered in Johnson (1966, 1967). Accordingly, after
suitably centering and scaling, we obtain an asymptotic expansion having the
standard normal cdf as the leading term. Closely related to this approach is the
work by Bernstein and von Mises. Their results are for the Bernoulli situation,
and both use the usual parameter p rather than the ¢ = log [p/(1 — p)] which
results if the density is cast into the form (0.2). von Mises actually holds r
fixed as he passes to the limit. Their results, which give only the limiting normal
term, are reproduced in Bernstein (1934), page 406, and von Mises (1964),
Chapter VIII, Section C. von Mises also gives the multinomial generalization.
A more recent work following the same line of attack is given in Gnedenko (1962),
Section 65.

LeCam, in two basic papers (1953) and (1958), takes into account the
stochastic nature of (1, @, ---), and his Theorem 7 (1953) and Lemma 5
(1958) show that under very general conditions, the scaled posterior distribution
converges to the normal distribution for almost all sequences (x;, 2, - --) with
respect to the infinite product measure generated by (0.1). His conditions in-
clude a more general likelihood than ours and the case where the parameter ig
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multidimensional. See LeCam (1953), page 278, for a discussion concerning the
historical background on the problem of convergence of the scaled posterior
distribution.

The main theorem of this paper is given in Section 1 and the following two
sections give the details needed to.modify the approach of Johnson (1966,
1967) so that it works in the present situation. This theorem shows that when
the observations are taken from the population having density (0.1) with
¢ = ¢, not only does the centered and scaled posterior distribution converge to
the normal but there exists an asymptotic expansion in powers of n™*. Section
4 gives the first two correction terms of the expansion together with examples.

Throughout this work, we will use the following notational conventions.
® and ¢ are the standard normal edf and pdf respectively. F,(-, r) is the cdf
of n'0 where 6 is defined below by Equation (1.1).

1. A limit theorem for posterior distributions. Let X, X, - - - be a sequence
of independent, identically distributed random variables with density function
ps given by (0.1). Lehmann (1959), Section 2.7, has shown that p, is a proba-
bility density function for all ¢ belonging to some interval I. Nature chooses a
value ¢, for ¢ according to law p(¢), and we assume ¢ is interior to I. This will
always be the case when I is open and in any case, will have prior probability
one.

In the following, we shall find it convenient to use the parameterization

(L1) K(¢) = —log C(¢).

The density (0.1) may now be written as exp {¢R(z) — K(¢)} and the ¢th
cumulant of R(x) is the sth derivative of K.

We proceed to study the asymptotic form of the posterior distribution of ¢
after standardizing ¢ by centering at the maximum likelihood estimate $(r)
of ¢ and scaling according to a function of é. Thus we introduce

(1.2) 0 = [¢ — &(r)b(r)
where
(1.3) b(r) = {K"($)}%, & = &(r).

Note that b°(r) may be interpreted as the maximum likelihood estimate of the
variance of B or as Fisher’s information evaluated at ¢(r). The choice of the
centering and scaling quantities in (1.2) is discussed below in Section 3 after
the proof of Theorem 1.1.

Observe that r = ZR(xi) /n enters F, , the posterior cdf of 79, both from
the posterior distribution of ¢ and through the standardizing quantities ¢ and b.
To avoid a trivial case, we assume that R(x) 5 constant a.s. u.

We now state the main theorem of this paper.

TraeorEM 1.1. If p(-) s analytic in some neighborhood of ¢o and p(¢s) > 0,
then there exist functions {v;(&, 7)}5=1 and for each integer N, there exist constants
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A and N, such that
|Fa(, r) — ®(E) — D gmvi(g, In | £ An Y2 foralln > N,

on an almost sure set where the measure is generated by the infinite product Ips,(xx).
Here A depends on N, and N, depends on N and the particular sequence
r = (xl,xg, "').

2. Preliminaries. We first review some properties of the generalized density
(0.1). See Kullback (1959), pages 45-47, for similar statements and further
references. Define ry by

(21) Ty = E¢0R.

Lemma 2.1. [Lehmann (1959)]. C(-) s analytic in a neighborhood of the com-
plex variable ¢ + i\ whenever ¢ is interior to the natural parameter space I and the
derwatives of 1/C(¢) may be obtained by differentiation under the integral sign.

Lemma 2.2. There exists a dy > 0 such that for fixed r with |[r — ro| < dy,
exp {¢r — K(¢)} has a unique maximum at $(r) where $(r) satisfies

K'($) =r
or
(2.2) E3R =r

and exp {¢r — K(¢)} strictly decreases as ¢ moves away from & for all ¢ in I.
LemMA 2.3. é(r) 18 a continuous function of r satisfying $(re) = ¢o and b(r),
defined by (1.3), is a positive continuous function of r.
Define a function (6, r) by

(2.3) f(6,r) = exp {K(¢) — K(¢ + 0/b) +0r/b}, ifé+6/bel
=0, otherwise

where b = b(r) and ¢ = &(r).
From the definition of 8 given in (1.2), we see that the posterior density of
0, given > R(x;)/n = r, is proportional to

(24) p($ + 6/0)f"(8, 7).

Recall that 6 is related to ¢ by (1.2).

Tt is easily seen that for fixed 7, f(0, 7) = 1,£(0,7) = 0 and f(0,7) = —1
where prime denotes differentiation with respect to 6. Since f can be extended
to be analytic in 6 for some neighborhood of zero, we could employ Laplace’s
approximation directly and obtain an asymptotic expansion of the posterior
distribution of n%6. See Johnson (1966, 1967) for details of the method which
follows the development of de Bruijn (1961), Chapter 4. In this paper, we es-
tablish bounds similar to those of Johnson except that they hold uniformly for
7,in a neighborhood of ro. The previous argument will then provide a proof of
Theorem 1.1.
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3. Expansion of the posterior distribution. We now establish some lemmas
which ultimately lead to the proof of Theorem 1.1. In particular, the integrand
(2.4) is approximated on the 6 interval (—n*, n”?) and it is shown that the
remaining contribution may be neglected.

Lemma 3.1. Let p(-) be analytic <n some neighborhood of ¢o with p(po) > 0
and let (6, r) be defined by (2.3). Then there exist a 8, > 0, a sequence of functions
{Cin(r)} Tmeo and for each integer N, constants A; and A, depending on N such that

le(& + 0/0)f"(6, 1) — €™ Ltiman cin(r) (6°n) 6" |
< LA 4 AJ6°n|] all |6] < 6 and [n6f] £ 1

for r € No where N s defined below by (3.3). The constants Ay and A, do not de-
pend on r for r &€ Ng.

Proor. Consider f(8, r) as being defined for 6 complex and r real. Now
(0, 7o) = 1 so by the continuity of ¢ and b expressed in Lemma 2.3, there exist
a 8 > 0 and do > 0 such that the conditions |§] < & and |r — ro| = do imply
that |f(8, r) — 1] < % and that p($ + 6/b) is different from zero and analytic
in 6 for fixed r. Make 8, and do smaller if necessary so that Lemmas 2.1 and 2.2
are satisfied. Taking the principal branch for the log, define a function A(6, r) by

(3.1) (0, r) = log f(0, r).

It may aid the reader to note that h(6, r) satisfies h(0, r) = —I(H, & + 6/b)
where I(-, -) is the Kullback-Liebler information for the exponential family.
From the preceding discussion, there exists an M such that

(3.2) |n(6,7)] = M for |0 <8 and |r— r| £ do.
Define N, by
(3.3) No = {r:|r — | = do}.

For fixed r ¢ Ny, h(0, r) is analytic for |6] < & and its derivatives are given by
the Cauchy formula

(34) R0, r)/st = (2x) ™" [oh(t, )/t dt  fors=1,2, -
where T' = {¢: |t| = 280/3}. The Taylor expansion becomes
(3.5) nh(8,r) = —nb%/2 + (n6°) D ez au(r)6°

for |6] < & and |r — 7| £ do when the values of f(0, r), (0, ) and f*(0, r)
are introduced. The coefficients a,(r) are given by the right hand side of (3.4).
Let w = na’ and

(3.6) ¥, ) = Drgal(r)6
so that
(3.7) p($ + 0/0)f"(6, 1) = ¢""o($ + 6/b)e"* "

fér jw| = 1 and |6] = 8 . Applying the Cauchy inequality to (3.4) with the bound
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(3.2), it follows that there exists an M; such that |¢(6, r)| < M, for |6] £ §0/2
and 7 ¢ No. Bounding p separately, we obtain a bound for the second factor on
the right in (3.7). In particular, define a function P(w, 2, r) by

(3.8) P(w, z 1) = p(¢ + 2/b)e¥&" for |z2| < &, |w]| £1 and reN,.
P(w, 2, r) is analytic for 2| < & and |w| = 1 for each fixed r ¢ No. Also

(3.9) |P(w, 2z, r)] £ My for |2] £ &/2, lw] = 1, all reN,.
Now for each fixed r ¢ Ny, we have the expansion
(3.10) P(w, 2,7) = > imCm(r)w?™

where the coefficients are given by a two variable Cauchy integral formula (see
Fuks (1963), pages 39-40, or Markushevich (1965), pages 101-105). The usual
estimates, using the bound (3.9), show that for every integer N, there exist con-
stants A; and A, such that

| > timon Cam(P)w2™] £ Agjw]¥ 4 Ao for |w| S 1, |¢| £ s/4 all 7 e No.

The lemma follows with 8, = &o/4.
LevMa 3.2. Let f(0, v) be defined by (2.3). Then there exists a 63 > 0 depending
on N, such that

log f(8, r) < —6°/4  for all real 6 with 6] < & and reNy.

Proor. Apply the bound on ¢(8, r) to the expansion (3.5).
The last two lemmas remain true if §; and 8, are replaced by 6 where

(311) 0 = mm (63, 52).

LemMa 3.3. Let f(0, r) be defined by (2.3) and 6 by (3.11). There exists an
€ (0 < e < 1) such that

f(8,r) < e  forallreal 0 with |0| = & and reN,.

Proor. For each fixed r ¢ Ny, Lemma 2.2 gives the bound max [f(—38, r),
f(8, r)] and Lemma 3.2 enables us to bound this last quantity.

The first part of the proof of Theorem 1.1 parallels Johnson (1966, 1967) and
we only sketch the details. Denote by Py(w, 2, r) the truncated series
Z;mé ¥ Cm(1)W'%™ of P(w, 2, 7). The right hand side of (3.7) is approximated by
exp (—nb’/2)Px(nd’, 0, 7).

Proor or TaeoreM 1.1. Let N be arbitrary but fixed. Let § be given by (3.11).
Bounding b(r) by M and applying Lemma 3.3, we find that

(2 + [10(é + 6/b)f"(6,7)d0 < M allm and reNs.

From Lemma 3.2 and the fact that p(é -+ 6/b) is bounded, we assert the exist-
ence of an M, such that

T 4 [omusde( 4 6/B)6, 1) d8 < My exp (—ni/4) (n > &)
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for r & Ny . Since each ¢;.(r) is bounded uniformly for r & Ny,
(fz2 4 [o-1s}|Pule™?d0 < M, exp (—n'/4) (n > 1).

Combining the above with the approximation in Lemma 3.1, we obtain the
estimates

(3.12) |20 0(d + 0/0)f"(0,7) dbd — [Z, & "*Py(nb’, 0, r) do|
< By~ W2 alln > Np,
and
(3.13) [ o( + 6/b)f"(6, ) do — [Py (nd, 0, 1) df)]
< By @02 alln > Np,

some By, By, Ny, , and N, for all r ¢ Ny. This last exi)ression is uniform in &.
Integrating the approximation and collecting terms, we obtain the two ex-
pansions

Zop($ + 6/0)f"(0, 1) do ~ 2 Bi(r)n” V"
and

BT (G 0/D)FM(0, ) dB ~ 3 ay(£, r)n” I

where .
aj(£7 T) = Z =0 Cs ]-—s(T) f—oo y28+l vt/ dy eaChj = O, 1, 2, L)

and B; corresponds to o;( «, r). Clearly, a;(&, r) is bounded uniformly in ¢ and
r for r e Ny and B;(r) is bounded for all r ¢ No. Now Bo(r) = (2m)*p($(r))
which is lower bounded above zero for all » ¢ Noy. The quotient series then has
P(£) as a leading term and the remaining coefficients {v;(&, r)} satisfy a;(§, 1) =
Bo(r)vi(£,7) + 215 via(£,7)Bu(7) + Bi(r)®(£) foreachj = 1,2, - - - so that it
follows by induction that each v;(£, r) is bounded uniformly in £ and r for r ¢ N,.
Dividing the two expansions, we conclude that there exist an A independent
of r ¢ No and N, depending on A such that

[Fu(t, 1) — ®(8) — 25y rn™™ £ A2 (n > Ny)

where each v;(£, r) is bounded uniformly in £ and r for r ¢ Ny. The v;(&, r)
are obtained by formal division.

Now consider the stochastic aspeet of the problem. By the Strong Law of
Large Numbers, R = D i R(z:)/n — 7o almost surely on the product space
having measure Py, induced by IIpg,( ;) where py, is given by (0.1) with ¢ = ¢, .
For every * = (@1, 2, * - - ) belonging to an almost sure set, there exists an N,
such that B & N, if n > N, . Repeating the above argument for each z, we com-
plete the proof.

The conclusion of Theorem 1.1 states that almost surely, the observed se-
quence z provides a sequence of values of r for which the asymptotic expansion
of F,(& r) is valid. That is, the extra terms may be used as correction terms when
n is sufficiently large.
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It was decided to center at the maximum likelihood estimate ¢ after encounter-
ing difficulties with the expansion of log (6, r) while attempting to center at the
true value ¢, in which case convergence to the normal distribution may not be
true. As to where to evaluate the scaling constants, note that LeCam (1953)
used ¢ and in LeCam (1958), ¢ was used to show convergence to the normal
distribution for quite general likelihoods. The result of LeCam, specialized to
the density (0.1), is that the posterior distribution converges in variation almost
surely. Johnson (1966) shows that the present method leads to the same conclu-
sion for the density in (0.1).

4. Calculation of terms and examples. The results of Johnson (1966, 1967)
may be used directly, giving v; and v, in terms of ¢;, , although it must be re-
membered that the ¢, are functions of r. In particular,

(41) N ) = (BN a(r) (€ + 2) + an(r)]
and
(4.2) (& 1) = —o(&)caw (r)loa(r)E + (5ew(r) + eu(r))e
+ (15¢o0(r) + 3eu(r) + coo(r))E].

The following expressions for the ¢z, enable us to express vi(&, r) and v2(§, )
in terms of p(-) and C(-) and their derivatives. Here K is related to C by (1.1).

coo(r) = p
(4.3) ca(r) = p'/b(r), ao(r) = —K"($)/6b%(r)
coo(r) = p"/20%(r),  en(r) = p{K"($)/6°(r)}"/72
en(r) = —1/6(p"/b(r))(K"($)/6°(r)) — p/24(K""($)/b"(r))

where ¢(r) is the solution of (2.2) and b(r) is given by (1.3). Recall that the
derivatives of K are related to the cumulants of R(x). In fact, K" ($)/b%(r)
and K""($)/b*(r) are the maximum likelihood estimates of skewness and
kurtosis respectively. Note also that the derivatives of p are accompanied by
an appropriate number of b(r) to give a dimensionless ratio.

The manner in which the prior density enters the asymptotic expansion of
Theorem 1.1 is now apparent. In the term of order n%, it enters only as p'(¢)/
p($) and in the term of order n™", it appears as p”($)/p($) and as p'($)/p($)
when cu(r) # 0.

We now consider a few examples where ps(z) is given by (0.1) and the prior
density p( - ) satisfies the assumptions of Theorem 1.1. The first is the Bernoulli
case where ¢ = log[p/(1 — p)] and K(¢) = log (1 + ¢*). The transformed
variable 6 is equal to [¢ — log (r/(1 — r)]r(1 — »)J.

Upon calculating the derivatives of K( ), we find that

7k 1) = —e(8)[(2r — 1)(£ + 2)/6 + o'(r)/p(")]lr(1 — 1]
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and

yo(§ 1) = —e(E)lr(1 — NI{(2r — 1)8/72 — (" — r + 1)£/36
— (7" — 1+ 1)E/12 + (2r — 1)0'(r)£/6p(r)
+ [(2r — 1)p'(r) + 0" (r))/20(r)}.

The above result is not for the usual parameter. The fact that the posterior
distribution of n*(p — 7)/[r(1 — )]} does converge to the standard normal
distribution with probability one follows easily since p is obtained as a smooth
transformation of ¢. This result may be compared with von Mises (1964),
pages 345-347, and Bernstein (1934), page 406, who consider n}(p — r)/
[*(1 — 7)] and take limits while ignoring the stochastlc aspect of r. Both give

only the limiting normal distribution.

As a second example, we consider the normal distribution with known variance
oo and mean m. Here p,(z) has ¢ = m/os’, K(¢) = o0¢’/2 and R(z) =
The transformed variable 6 equals (¢ — #/oo’)oo which can be written as
(m — &)/oo. In this case, v1 = —o¢(£)p'(£)/o0p(Z) and va = —o(£)p"(7)/
o0’p(Z). Theorem 1.1 gives an expansion which may be compared with Gnedenko
(1962), page 414, second equation. Gnedenko shows that the limiting distribu-
tion is normal.
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REFERENCES

BERNSTEIN, S. (1934). Theory of Probability (Russian). Moscow.

BueHLER, R. J. (1965). The limit of the n-th power of a density. Ann. Math. Statist. 36
1878-1882.

Fuks, B. (1963). Analytic Functions of Several Complex Variables. Translations of Mathe-
matical Monographs 8. Amer. Math. Soc., Providence.

GNEDENKO, B. (1962). Theory of Probability. Chelsea, New York.

JorNsoN, R. A. (1966). Asymptotic expansions associated with the nth power of a density.
Technical Report No. 80 (Ph.D. Thesis). Univ. of Minnesota.

Jounson, R. A. (1967). Asymptotic expansions associated with the nth power of a density.
Ann. Math. Statist. GTTI, England.

KuLLBACK, S. (1959). Information Theory and Statistics. Wiley, New York.

LeCawMm, L. (1953). On some asymptotic properties of maximum likelihood estimates and re-
lated Bayes estimates. Univ. of California Publ. Statist. 1 277-330.

LeCawMm, L. (1958). Les propriétés asymptotiques des solutions de Bayes. Publ. Inst. Statist.
Univ. Pares. T 17-35.

LeaManN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

MARKUSHEVICH, A. (1965). Theory of Functions of a Complex Variable. 2. Prentice-Hall,
Englewood Cliffs.

voN MisEs, R. (1964). Mathematical Theory of Probability and Statistics. (Edited by Hilda
Geiringer.) Academic Press, New York.



