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THE EXISTENCE OF CERTAIN STOPPING TIMES
ON BROWNIAN MOTION!®

By D. H. Roor’
The Unwversity of Washington

1. Introduction. Let (2, B, ¢ = 0, P) be the space of continuous sample paths
of standard Brownian motion starting at zero. Let I be the unit interval with
Borel sets, £, and uniform measure \. In [8] Skorokhod showed that if X is a
random variable (rv) with ¢°(X) < « and E(X) = 0 then there is a stopping
time 7 defined on (2 x I, B, x £, P x \) such that X, and X are equal in law,
where X (w, s) = w(r(w, 8)) for (w, s) €@ x I. It is the purpose here to show
that for such a rv X there is a stopping time 7 defined on (2, ®;, P) such that
X and X are equal in law, where X.(w) = w(7(w)). A second method of defining
stopping times r directly on (2, ®;, P) such that X and X, are equal in law has
recently been given by Dubins [3].

2. Construction of the stopping time.

2.1 Tueorem. If X is a rv with ¢*(X) < » and E(X) = 0 then there is a
stopping time 7 defined on Q such that £(X) = £(X,) and E(r) = *(X).

Two lemmas will be established before proving this theorem.

22 Lemuma. If X ds a rv taking only a finite number of values and satisfying
E’(X) = 0, then there is a stopping time t defined on Q such that £(X) = £(X,)
and ¢*(X) = E(r).

Proor. If X = 0 then r = 0 suffices. Assume therefore that P[X = 0] < 1.
Set ps = P[X = ] > 0, where 2, < 22 < --- < z, are the possible values for

X and Z,qu = 1. Clearly z; < 0 < z, s1nceE(X) =0.Let 8 = (b1, -+, b,)
be an n-tuple of reals with 0 = b, = b, and 0 < b; < + o for all 4. Deﬁne a
stopping time 74 as follows:

(2.1) m8(w) = inf {{; w(¢) = x; and ¢ = b; for some 4}.

Then Xz = X, is a rv such that >P z] = 1. In [7] it is shown that 1f

7 is any stopping time and E(r) < 0 then (X,) = E(r) and E(X,) =
Thus E(Xg) = 0 and E(rs) = ¢°(Xs) because 75 is bounded by the first ex1t
time of [z, , ] which has finite mean. Define 4, by

(22) Ap = {(p1, -+, Pa); 0 2 0, D fupi = 1, 2 rypas: = 0}.
Geometrically this is a convex set in R” with a finite number of extreme points.
Define B, by

(2.3) By = {(b1, ++,ba); b1 = b = 0and 0 < b; < +}.
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This is also a convex set with a finite number of extreme points. By the previous
discussion, each 8 ¢ B, yields a stopping time whose associated rv has a distribu-
tion which is a point in 4,. Thus we have a well defined mapping f,: B, — 4.,.
Let A, be topologized by the Euclidian metric and B, by the metric d defined by

(24) d(B, B') = [2o5= (babi + 1) — /(1 4+ b)™)?,

where 8 = (by, +++, b,) and 8 = (b, -+, b,'). With these topologies both
A, and B, are homeomorphic to the unit ball in R"™. Thus to show that I
is onto it is sufficient to show that it is continuous, that it carries the boundary
of B, (8B,) onto the boundary of A, (d4.), and that its restriction to the in-
terior of B, is one-to-one. Continuity of f, is clear. For the rest we proceed by
induction on n. If n = 2 each space has only one point. Assume n > 2. The
induction hypothesis implies that f,:dB, — 04, is onto. Let 8 = (by, - -+, b,)
and B8 = (b, - - -, b,) be points in the interior of B, and assume £(X;) = £(X3).
Let K = {x;; b; < b;} and observe that P[Xze K] > P[Xs¢ K] if K is not
empty. Thus K is empty and § = 8. By symmetry 8 = 8. Lemma 2.2 is proved.

Before extending this result to non-discrete rv’s we introduce some concepts
which will be used in the proof of the extension.

2.3 DgerinITION. A barrier is a subset B of [0, o] x [— o, + «] satisfying

(1) B is closed,

(2) (4=, z) ¢ B for all z,

3) (t, o) eBforallte[0, + ],

(4) if (¢, z) ¢ B then (s, x) ¢ B whenever s > t.

Map the closed half plane H homeomorphically to a bounded rectangle F by
(t, ) — /(1 + t), /(1 4+ |z|)). Let F have the ordinary Euclidian metric p
and H the corresponding induced metric r. Define a metrie, also denoted by r,
on @, the space of closed subsets of H by:

(2.5) r(C, D) = max (Supgec r(x, D), sup,nr(y, C)).

Under r, € is a separable compact metric space and ®, the space of all barriers
is closed in € and hence compact. For B ¢ @ define 3 by

78(w) = inf {¢; (¢, w(¢)) € B}.

2.4 LemMA. If B is a barrier with corresponding stopping time r and E(r) < o,
then for any e > O there exists 8 > 0 such that if B ¢ ® and 7 is the corresponding
stopping time and r(B, B) < 6 then P[+ > 7 + ¢] < e.

Proor. Choose n > 0 so small that

Plsupycice 0(t) > 1 and inf,cice 0(t) < —n] > 1 — ¢/3.

Choose T > 3 E(7)/e then P[r = T] < ¢/3. Choose M and & so that if (¢, z) ¢ B
and ¢ < T and |z| £ M and r(B, B) < & then p((¢, ), B) < n where p is the
Euclidian metric. Each of these choices can clearly be made. Let A = {0 e Q; w
satisfies (i), (ii), (iii) below}:
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(i) SUPrprcicrre [0(8) — w(7)] > 1 and  infrppcicrre [0(8) — w(7)] < —n,
(i) (o) < 7T,
(i) Je(r(w))| < M.

From the definition of 4 and the choice of § we see that if w ¢ 4 then 7(w) <
7(w) 4+ e. From the choice of 9, T, M and the strong Markov property we see
that P[A] > 1 — e. Lemma 2.4 is proved.

Proor or TueorEM 2.1. Let {X,, n = 1} be a sequence of rv taking only a
finite number of values such that (a) E(X,) = 0for alln, (b) ¢ ’(X,) £ (X),
and (¢) £(X,) — £(X). By Lemma 2.2 we know that there are barriers B,
with corresponding stopping times , such that £(w(rs)) = £(X,.) and E(7,)
= ¢*(X,). From compactness we may without loss of generality assume {Ba}
is a convergent sequence. Let B be the limit of {B,} and r the corresponding
stopping time. Since { £(7,)} is uniformly bounded we may conclude from Lemma
2.4 that for any € > 0, P[r > 7, + ¢] > 0 asn — . Thus E(r) < «. We may
now conclude from Lemma 2.4 that P[|r — 7.| > €] — 0 as n — o . Without loss
of generality we assume 7, — 7 a.s. as n — . Thus £(X) = lim £(w(74)) =
£(w(7)). The finiteness of E(r) implies by [7] that E(7) o*(X). Theorem
2.1 is proved.

It can be shown that the barrier described in Theorem 2.1 correspondlng to
a normal random variable with mean zero and variance v is {(¢, z); ¢ = v}.
The barriers which correspond to the uniform distribution on [—1, 1] or the
centered negative exponential distribution, P[X < a] = 1 — e (a > —1),
are unknown.

2.5 TueoreM. If X s a rv and E(X) = 0 and E(Xz) < o and T 18 the
corresponding stopping time of Theorem 2.1, then E|X [ < o if and only if
E(r") < .

Proor. It is known that for each n there exist n constants a;, -+, a, such
that the process V, = X" + atX 224 ... 4 a,t" is a martingale defined on
(Q, P, ®:t > 0) (In ([1], Section IV) these polynomials are given as
(¢/2)"Han(z/ (2t)}) where H, is the nth Hermite polynomlal and it should read
()"*H,(z/#).) Assume E(r*) < «. Define 7,(w) = min (r(w), ¢). Since
{V,; s < t} is a uniformly integrable martingale, it follows from Chapter VII,
Theorem 11.8 of [2] that E(V,,) = Oor

(2.7) 0 = B(X) + aB(r. X3 + -+ + a.B(r").

Applying Holder’s inequality to this, we have
B(X%) < |a|E"(rM)E"™MXT)
+ @ B (r M BTVNXT) + e o |l B (7).
Hence there is a K, such that
E(X7}) < K,E(r") = K.E(7").

Since {X27, ¢t = 0} is a non-negative submartingale and lim.. X = X
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we have (see [2], pp. 324-325) lims.., E(X2') = E(X,”™). Thus E(X,”") <
K.E(").

To prove the converse, observe that for any stopping time = we obtain from
(2.7)

E(Ttn) < lanl—l[lallElln(Ttn)E(n—l)/n(szb) + . + E(Xf:')].
As before there exists k, such that E(r,") < k.E(X2") thus
E() = liMesw B(r") £ ky lime., B(X2) = EE(X,™).

3. Applications. The stopping times of [3] or [8] or Theorem 2.1 can be used to
represent sequences of processes, e.g. random walks, converging a.s. to Brownian
motion. It is also possible to represent the empirical processes so as to obtain a.s.
convergence of their sample paths to the sample paths of a Brownian bridge.
These representations are contained in [6] and will appear under the title, “Con-
struction of Almost Surely Convergent Random Processes.”
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