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AN APPLICATION OF THE SOBOLEV IMBEDDING THEOREMS TO
CRITERIA FOR THE CONTINUITY OF PROCESSES WITH A
VECTOR PARAMETER!

By Harorp J. KUSHNER

1. Introduction. Let f(z) be a real valued random process with parameter z,
and whose parameter set R is a set in E” (Euclidean n-space). Following the
usual terminology, a version of f(z) is any process f(x), defined for x ¢ R, which
satisfies P{f(z) = f(x)} = 1 for z ¢ R. It is sometimes useful to know that there
exists a version of f(z) which is wp 1. (with probability one) continuous, Holder
continuous, or perhaps differentiable in some component on R. In the sequel, we
give some criteria for these properties. The criteria are somewhat analogous to the
criteria, depending onintegrability of certain ‘weak’ derivatives, for the continuity
of a sure function (see Smirnov [4], Sec. 114-118). The work was motivated by
some problems in stochastic control theory of which one is very briefly discussed
in the example of Section 5.

The results involve notions of separability and measurability for vector param-
eter processes. The applicability of Doobs arguments concerning the existence of
separable or measurable versions was noted in Doob [1] (his remark preceding
Lemma 2.1, Chapter 2). Although the exact form of the required results does not
appear to have been stated, the proof of our Theorem 1 is almost identical in form
to that of Neveu [3], p. 91-92.

2. Separability and measurability. N, N; or N(y) denote null w-sets, where
o is the generic variable of the sample space. Let R be a bounded open set with
closure R. Let f(x) be a family of real random variables whose parameter 2 is
defined on some domain B < E" (Euclidean n-space). Let A be an arbitrary
open set in E" with closure A and write f(4) = U... f(z).If thereisan N and a
dense (in R) denumerable set 3 C R so that, for each z ¢ R and each w 2 N,

f(@) € Naea f(3 0 A)

where the intersection is taken over all open A containing x, then the process
f(+) is said to be separable, with separability set 3.

This (vector parameter) definition is a natural analog of the scalar parameter
definition of separability of Neveu [3]. If f(-) is separable then (the analog of the
definition of separability of Doob [1]) there is some null set N so that for any
compact real interval T, and any open set A, the w sets

{f(x) eT,ze An R}, {f(x) eT,ze AnRn3}
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518 HAROLD J. KUSHNER

differ by at most a subset of N. Furthermore, separability implies that, for w 2 N,
and any open set 4,

supgnzna f(x) = supzna f(z) infynena f(x) = infzna f(2).

Also, if f(-) is continuous® on R n 3, for w # Ny, then f(-) is continuous on R, for
we N 1 U N.

It is not hard to show that every process with parameter set R has a separable
version. The proofs are almost identical to those in the scalar parameter case. The
rest of the paper is concerned only with processes which are continuous in prob-
ability and only the proof in this simpler case will be given.

TuroreM 1. Let R be the closure of a bounded open Borel measurable set. Let f(-)
be continuous in probability’ on R. Then there is a version of f ( ) which is separable
and measurable (as a function of (z, w)). Any set 3 dense in R is a separabtlity set.

Proor. Write z = (2(1), --- ,z(n)), where the z(7) are the scalar components
of 2. By continuity in probability, for each integer m = 1, there is some
0 =< A, = 250 that

SUD; SUP|z(h—a (01 <8, P{If(2) — f(2")] 2 1/m} = 27

Suppose that R iscontained in the rectangle S = {2: —0 <[ < 2(4) £ u < =,
t=1,---, n}. For each m, let the points I = z(7; m, 0) < --- < z(¢; m, k)
<z(ymk+1) <--- <az(;m, M,) = udivide the interval [I, 4] into a finite
number (M, — 1) of segments, with |x(z; m, k + 1) — x(¢; m, k)| < A, , for
eachkt =0, --- , M, — 1. Define the half open rectangles

I"(k™, - k™) = {zia(d;m, k™) < 2(d) < z(d;m, k™ +1),¢=1,--- ,n},

where the k;" ranges over 0, 1, --- , M,, — 1, for each fixed m.

Define the ‘lower left’ vertex z[k", --- , k."] with components z(z, m, k™),
i =1,---,n Define 5, = [Ugm...t,m2[ks”, -+, k"]l n B and suppose that
Bpi1 D 3, . Define the function f*(-) on R as follows: If 2[k,", - - , k."] ¢ R, set
f™(z) equal to f(alk™, ---, k."]) for  in I"(k"™, ---, k,"). Otherwise, if
I"(k", -+« , k") n R is not empty, let f™(z) for « in I"(k™, - -+ , k™) equal the
value of f(z) at any point in the set. Write f(-) = lim,, sup /(). f(-) is meas-
urable, as a function of (z, ). Also P{|f(z) — f"(z)| = 1/m} < 27", forz ¢ R,
implies that f™(z) — f(z) wp 1. for each fixed z. Hence /(- ) is a version of f(- ).
Now write

= U, 5,

Since A, — 0, 3 is dense in B. Define f(z) = f(z) forz in R (the interior of R).
ForzednR,f(z) = f(2) = J(z) since s D Fn . The value of f(-) on R (the
boundary of R) does not effect measurability since oR has Lebesgue measure zero.
Define f(x) for z ¢ R, as follows: for each x ¢ 9R, there is a sequence 2, ¢ 3n R

2 By continuity on B nJ, we mean continuity with respect to the topology on B n 3

induced by that on E».
3P{|f(z) — f(@')| > ¢} » 0 as |[zr — 2’| — 0, where | | is the Euclidean norm.
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so that P{|f(z) — f(zn)| = 1/m} < 27" Let f(z) = lim,supf(z,) =
lim,, sup f(2»). Then f(x) = f(x) wp 1 for x ¢ R and, hence f(z) is a version of
f(z), forallz e R.

By construction, for each x ¢ R there is a sequence x,, — x so that x,, ¢ 3 and
f(z) = lim, sup f"(x,) = lim,, sup f(x,). Hence

f() e Neea (50 4)

and f(-) is separable, where N, the null set in the definition of separability, is the
empty set.

Suppose 3 = {x,'} and 3 = {x,,} are countable dense sets in . Then continuity
in probability implies that for each z, ¢ 3, there is a null set N,, so that, for
weN,.

(1) f(am) € nzmtAf(glnA)-

Thus, (1) holds for any w ¢ U,. N,. and any .. e 3. This implies that, if 3 is a
separability set, sois 3. Q.E.D.

The following Corollary will be useful in Section 4.

CoroLLARY. Let f(x, y) be a real valued random function of the m-vector x and
scalar variable y, where the latier takes values in a compact interval I. Let f(-, y)
and R satisfy the conditions of Theorem 1 and, in addition let f(-, -) be conttnuous
in probability on R % I. Let f(-, y) be continuous wp 1 for each fixedy in I, and
letf(z, ) be continuous, uniformly for x on R, wp 1. Then there is a separable
version of f(-, -) which is continuous wp 1 on B x I.

Proor. Let 5 C R be countable and dense in R, and § I countable and dense
in/. Then3 x JFis a separability set for f(-, - ) by Theorem 1. Since ¥ is countable,
there is a null set Ny so that, for w £ N1, f(-, y) is continuous for any y ¢ F. Let
« and &’ be in 3 and y and ' in &, and write

(2) lf(xy y) - f(%l, ?/I)| = |f(x7 y) - f(x,7 Z/)| + If(x,) '!/) - f(x,7 yl)l°

There is a null set N , not depending on z, 2, y or 3’ so that, for w £ Ny, the second
term on the right of (2) goes to zero (uniformly in z £3) as y — y’ along any
sequence in §. Also the first term goes to zero as &' — x, along any sequence in 3.
Thus, for w2 Ny, f(-, -) is continuous at each point of 3 x F in the induced
topology from E". Thus, f(-, -) is continuous wp 1 on B x I, by separability.
Q.E.D.

3. Continuity and differentiability. Preliminaries. Write D’ or D, for the
differential operatort 8°/0x;’ and write D; , D,, for D', D3, respectively. Let R be
a bounded open set with closure B. Let C;(R) be the Banach space of functions
¢(+) which are continuous, together with all of their mixed derivatives up to order
I, and with norm (the sup is over = ¢ R)

lelle:@ = sup le(x)] + Diet 2otgreetinmi SUP [ D1t -+ Dylo()].

4 In the sequel z: ,7 = 1, --- , n, will denote the scalar components of the vector z.
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C(R) denotes Co(R). C;°(R) denotes the sub (Banach) space of functions in
Ci(R) which, together with all their mixed derivatives up to order I, tend to zero
as ¢ — OR, the boundary of R. A measurable random function, denoted by
(Dif(+)) and satisfying [ E |(Dif(x))|"dz < «,p = 1, is to be called a weak
stochastic derivative® of the process f(-), if for each fixed o(-) € C:’(R),

(3) Jo(@)(Df()) dz = — [ Dip(x)-f(z) do

wp 1. Similarly, a measurable random function, denoted by (Dy't -+ D))
and satisfying [ E |(D:" -+ D,"f(z)[? dz < o for some p = 1, is called a weak
stochastic derivative of order (I , --- , I,) if, for all (- ) € C(R),

(4)  (=1'[ (D" - Da"f(@))e() dz = [ f(z)-Di"* --- Da'o() de

wp 1, where l = I, + --- 4+ 1. )

Now, suppose that (4) holds wp 1 for eachfixed ¢(-) e C P(R).Since thereisa
countable dense set A;in C(R), there is a null set N, so that » £ N; implies that
(4) holds for all w and ¢(-) ¢ 4,. We may suppose that (D, --- D,._l"f(')) is
integrable for w 2 N; . Thus, for w 2 N;, (4) holds for all ¢(-) in C(R). Thus,
wp 1, the weak stochastic derivative is a weak derivative in the ordinary sense.

A ‘mean square’ derivative is a weak stochastic derivative as seen by the follow-
ing: Let f(-) be a process with parameter set R, and suppose that Ef(x)f(y) =
S(xz,y) where the first and second mixed derivatives (with respect to
Zi,Yi,t=1,---,n),of S(z, y) are continuous on R x R. Thus the mean square
derivative of f(-) is continuous in probability. Let (D;f(-)) denote a measurable
version of the mean square derivative of f(+) with respect to z;. If, for each
o(-) e Clo(R)

(5) [ e(@)(Dif(z)) dv = — [ Dip()-f(x) dz
wp 1, then (Dif(-)) is a version of (D:f(-)). But (5) follows from the evaluation
E{[ le(z)(D(f(z)) + Dip(2)f(2)] da}* = [ [ [e(2)Dye(y)DziS(2, y)
+ ¢(y)Daio(2) Dy S(z, y) + ¢(x)e(y)DyD:,S(, y)
+ Dajo(2)Dye(y)-S(, y)l de dy = 0.

The properties of the weak stochastic derivative and separability can be used
to infer the existence of continuous or differentiable versions of () on R. How-
ever, since the weak stochastic derivatives are weak derivatives in the ordinary
sense wp 1, it is far more convenient to refer directly to the so-called imbedding
theorems of Sobolev (Smirnov [4], Section [114-118]). The proofs of these
theorems implicitly involve the construction of continuous or differentiable f(-)
in terms of integrals of the weak derivatives.

The Sobolev Embedding Theorems. Suppose R is bounded and open and there is
a sphere § interior to R with the property that any radius vector drawn from any
point on the surface of S intersects R only once. Then R is asid to be star shaped

5 If f(-) were a sure function, then a function satisfying (3) for each ¢(-) in C2(R) is
called a weak derivative.
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with respect to the sphere S. Let (Dy'* - -- D,.’_"\//(‘)) denote the weak (I, -+ , )
derivative of a function y(-) defined on R. Let Wi ,(R), p = 1, denote the
Banach space of functions with norm

Wlwepm = 2okm0 2tpreettamt |(D1' -+ Da™) ||z,
where
1l2,@ = [ ()] da.

The proof of the following theorem of Sobolev can be found in Smirnov [4],
Section [114-118].

TraEOREM S. Let pl > n and p > 1. Let the bounded open set R be the sum of
bounded open sets A , which are conmnected by bounded differentiable (n — 1) mani-
folds, and let each A ; be star shaped with respect to some sphere S; C A ;. Then any
Y(-) e Wi,(R) is continuous on R and every set of ¥(-) which is bounded in
Wi.»(R) is pre-compact in C(R). Also

Wllew = K |¥llw,,,@ ,

where K depends only on R, I, n and p. Let 0 < m < I — n/p. Then all the weak
derivatives or order m are continuous in R and bounded sets in Wi ,(R) are pre-
compact in Cp(R).

Remark. The definition of a weak derivative involves equivalence classes of
functions. The members of an equivalence class differ on at most a set of Lebesgue
measure zero. The Sobolev theorem states essentially that, if the weak derivatives
satisfy certain integrability properties, then ¥(-) (and perhaps its lower order
weak derivatives) can be chosen to be continuous.

4. Continuity and differentiability.

THEOREM 2. Let R satisfy the conditions of Theorem S. Let (Dy'* - D,"*f(-)) be
a version of the weak stochastic derivative of order ly , --- , I, of a process f(-) which
1s continuous in probability. Let the weak stochastic derivatives satisfy

(6) JE(D™ - Duf(2)) P de < oo

for all l; and k for whichO = iy + -+« + 1, = k = 1. Let pl > nandp > 1. Then
there is a version of f(-) which is continuous on R wp 1. For each ¢ > 0, there is an
w set B, P{B} > 1 — ¢, such that the set of f(- ), for w & B, is pre-compact in C(R).
Let 0 < m < 1 — n/p. Then there are versions of the weak stochastic derivatives of
order <m which are continuous on R wp 1. For each ¢ > 0, there is a set B,
P{B} > 1 — ¢, such that the set of f(-), for w & B, is pre-compact in C1(R).
Proor. The proofs are almost (but not quite) immediate consequences of
Theorem S since the weak stochastic derivatives are ordinary weak derivatives
for each sample function not in some null set N. By (6), we may suppose that the
(D" -+~ D,*f(+)) are in L,(R) for wgN. By applying Theorem S to each
sample function f(-), for w not in the null set N, we obtain that each sample
function is equivalent to a continuous function f(-) in the sense that both have
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the same weak derivatives. We must show that f(-) is measurable as a function
of (2, w) and is a continuous version of f(-).°

For any measurable version f(-), and » not in some null set N, and for any
e(+) e C(R), we now have

) [ Dig(2) (f(z) — F(z)) da = 0.

We will choose a suitable sequence of ¢,(-) which will yield for each pair z, y ¢ B
that

(8) f@) = J(y) = f(=) — f(¥)

for w not in some null set N (z, y). Suppose, for the moment, that (8) is true. Let 3
be a separability set for f(-). Then on 3nR, f(z) = f(z) + 2(w) for
w 2 Usegnz N(z, y), and where 2(w) = f(y) — f(y). Then, wp 1, f(-) is con-
tinuous on 3 n R. Now, by separability, some version of f(-) is continuous wp 1
on R. Thusz(w) = 0, since f(- ) is obtained by changing f(-) on a set of Lebesgue
measure zero wp 1, and f(-) and f(-) are continuous wp 1; and this version of
f(-) equals () on R wp 1. Finally, since f(- ) is continuous on B wp 1., and f(-)
equals f(+) on R, and f(-) is continuous in probability on R, there is a wp 1 con-
tinuous and measurable version of f(-) on R. Thus, we only need prove (8).
Define the vectors €’ = (c1, -+, Cic1, b, Ciz1, =+, Ca) and

"
x =(Cl,”‘,ci—lyci)ci-}-l)”'70")‘

Let ¢;” and b;” be sequences tending to ¢; from below and above, respectively, for
7 5 7. Define the rectangles Sn(2', ") = {2:b: S @ S ¢ ;¢ < x; < b",j # 4}
Let «’ ¢ R and suppose that [b; — ¢, is small enough so that the line connecting
# to 2" lies entirely in R. Define the functions of z (with all integrals to be in-
terpreted in the Lebesgue sense).

pe(x) = exp —[/(€ — [z[)], 2| S e
=0, lz] > ¢
ﬂ"m,e(xly .’13”, CB) = Kef Ym(x,; :I}”, y)Pe(y - x) dy:

where Y,.(z', 2", - ) is the characteristic function of S,(z’, "), and K. is the con-
stant for which fgam,e(x', &', z)dz = 1. Define the sphere B.(z) =
{Z: |x — % < €}, and the e neighborhood of S,.(z’, 2”) as the union of the spheres
B.(z), as z ranges over S,(z’, 2" ). For each sufficiently small ¢ > 0, S,,.(z’, 2")
is in R for all sufficiently large m and ¢m.(z, &”, z) is zero for  outside of
Sm.(z', z"). Then, for sufficiently small ¢ > 0, on. (2, 2", -) e C/(R) for all
I < o, and, as e — 0, its values tend to the inverse of the volume of Su(z, ")
interior to S,(z’, "), and to zero outside S,,(z’, " ).

¢ This is not obvious, since applying Theorem S to the function f(-) + €(-), where e(x)
=1at z = z° and is zero elsewhere and f(-) is differentiable, gives a continuous equivalent
() = f(-). Yet, the continuous equivalent would not have the same distribution as f(-)
+ ¢(+) at x = 2°. The assumption of stochastic continuity is used to eliminate this possi-
bility.
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Furthermore, for all sufficiently small e > 0 and all large m < «, there are dis-
joint neighborhoods A . , Ar’r’y,,e of ', 2", respectively, contained in R and with the
properties: Dipm. (2, 2", 2) > 0in Ay, Dipm (z, ", ) < 0in 4., and is
zero elsewhere. Asm — « and e — 0, A,I,,,e and 4, . tend to 2’ and z”, respectively.
Since g, (2, 2", -) is symmetric, we have, for large m and small e,

fA;,,,é Dipn (2, 2", z)de = —f,,gm D,xpm,e(x', x”, z)dx = dy,.e > 0.

Now, using om.(z’, 2", -) for the o(-) in (7), together with the continuity
wp 1 of f(+), yields the limiting relation

(9> j(xl) - f(x”) = limm—wo lime»o [fA,',,,e Di¢m,e(x,, x”, x)'f(x) dx
+ fan Dipn (', 2", 2)-f(2) dz]/dmc

wp 1 for each fixed 2, 2. Owing to the continuity in probability of f(-), the
right hand integrals converge to random variables with the distributions of
(hence, versions of) f(z') and —f(z"), respectively. Then (8) holds for any z, y
lying on a line segment contained in R and parallel to some coordinate axis.

Let « denote the direction ) e;a; , where e; is the unit vector in the 4th co-
ordinate direction and Y a = 1. Then we identify the ‘weak stochastic deriva-
tive in the direction o’ (Duf(-)) with > a:(D:f(+)) (where Do = D a:D;)
in the sense that, wp 1 for each o(-) & C\’(R),

[ Dapl@)-f(z) de = — [ () (Daf(x)) da.

By repeating the derivation of (9) with D, replacing D; and S, (2, ") oriented
in the « direction, we obtain that (8) holds wp 1 for any x, ¥ on any connected
line segment in R. Since any two points in R can be connected by a finite chain of
line segments in R, (8) holds as stated.

The compactness statement of the first paragraph of the theorem follows from
Theorem 8 since, by (6) for each ¢ > 0, there is a constant M. < « and a set
B., with P{BJ > 1 — e so that K ||f|/w, & =< M.forweB..

The proof of the statement of the last paragraph of the theorem is almost
identical to the proof of the first paragraph, using the fact that the ‘higher order’
weak stochastic derivatives are weak stochastic derivatives of the ‘lower order’
weak stochastic derivatives, and we omit the details. Q.E.D.

The proof of Theorem 3 is rather similar to the proof of Theorem 2 and we omit
the details.

TurorEM 3. Let R satisfy the conditions of Theorem 2. Let f(-) have continuous
sample functions wp 1, and let there exist continuous wp 1 versions of the weak
stochastic derivatives (Dif(+)), 4 = 1, --+ , 5. Then, f(-) has conttnuous deriwatives
wp 1 with respect to x;, ¢ = 1, -+, s. These derivatives can be identified with the
(Dif()>z7’ =1,---,s

Theorem 4 is useful in some cases where some parameter is ‘time’ and no weak
stochastic derivative with respect to ‘time’ exists; e.g., where, as a function of
time, the process behaves as a Wiener process. See example in Section 5.

TuroreM 4. Let f(x, y) be a separable process with parameter (z, y) and which s
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continuous in probability. Let x vary over R, where R obeys the conditions of Theorem

2, and let y be a scalar parameter varying over the compact interval I. For each fixed

pair y, y' let f(-, y) — f(-, ¥') = F(-, y, y') have the properties of the f(-) of

Theorem 2. For some real Ko < o« and «© > g = 1, let there be a real a > 0 so that
EfC,9) = G0 ,m = Kely — o1

then there is a wp 1 continuous version of f(-, -) on R x I. Also, for any 8 < /g,

there is a version of f(-, - ), and a K(w) < « wp 1, so that wp 1,

(10) 9y, ¥') = supeer [f(z, y) — f(z,¥)| £ K(w)ly — ¢/

ie., f(-, -) 7s Holder continuous in y, uniformly in z, wp 1.
Proovr. For simplicities sake, let I = [0, 1], and denote

F={k2"k=0,1---,2"n=1,2---}.

If 3is dense in R, then 3 x & is a separability set for f(-, - ) by Theorem 1. Sup-
pose that there is some K(w) < o wp 1 so that, for some version of f(-, -),

(11) 9(y,9) = K()ly — o’
for all y, % in & with ' > ¥, and w ¢ N, a null set. Then, for w ¢ N,
(12) f(2, ) — f(2, 4| £ K(o)ly — ¥

forz,y,4 in3 x § x F, and there is a separable version of f(-, -) so that (12)
holds for all z, y ¢ R x I and for all & not in some null set N; . Then, since there
is a version of each f(-, ) which is continuous wp 1., and a version of f(-, -) so
that f(z, - ) is Holder continuous, uniformly in z, wp 1., the Corollary to Theorem
1 implies that there is a version of f(-, ) which is continuous wp 1. Also, this
version satisfies (11) wp 1 for all y, ¥ in I. Thus, we need only demonstrate
(11) for y, 4’ €%,y > y and w £ N. The proof of this is essentially that given by
Neveu [3], Proposition III. 5.2, for the continuity of scalar parameter processes.

By Theorem 2, for each y ¢ I, there is a null set N(y) so that a version of
f(-, y) is continuous for w £ N(y). Let N; = U,.5 N(y). Then for any y, 3’ ¢ &,
v > y, and w ¢ Ny, Theorems 2 and S imply that these versions satisfy

9(y, ¥) £ KIfC,y) — fCo ) lwim -
By hypothesis
(13) Eg(y, ) < Kaly — o]

Write Z,, = supamsiso ¢(k27™™", (k 4+ 1)27™). Then, for any v > 0 for which
0 < a — vq = p, an application of Chebychevs’ inequality yields

P, = P{Z, = &™) £ 2"P{g(k2™", (k + 1)27™) = &™)
< K2m 2O (7T = K07,

Since D w1 P < o, there is some m(w) < o wp 1 so that m = m(w) implies
that supgmsrzo g(k27", (k 4+ 1)27™) < 27", Choose any random % > 0 so that
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h < 279 Let m be the unique random integer (=m(w)) satisfying 2/2 =
27" < h.

Let &k be any random integer (perhaps depending on y) so that |y — k27| < 27™.
Then g(y, k27™) £ 2> mZ,. If [y — 3| < 27, there is some random k so that
ly — k2™ < 2™ and |y — k27| < 27" Using this and ¢(y, ') < g(y, k27™")
+ g(k2™™, ') we have, for Ks = 2¢ 2.0 277,

(14) supjy—y'i<niza>vivwes 9(Y, y,) = SUPjy—yi<muspiwares 9(Y, y,)
<4y 7, < 2K27™.

(14) implies (11) for, 8 = v, K(») = K2 and |y — /| < 27™“/2. Since
m(w) < © wp 1., (14) implies (11) as stated for some K(w) <  wpl. Q.E.D.

5. Example. An application of Theorem 4, which has been found useful in a
problem in stochastic control theory [2] will be given. Let R satisfy the conditions
of Theorem 2, and let 2, be a Wiener process (see Doob [1] for the definition). If
Jod’(z,t,8)ds < M < o for (z,¢t) e B x [0, T], then, using the It6 or Wiener
definition of the stochastic integral ([1], IV, Section 2), the integral

(15) ‘p(t) = f(t) g(x: t: 8) dzs

is well defined wp 1 for each fixed (z,t) e B x [0, T]. Let £ be an elliptic (partial
differential) operator, let &; denote the formal expression dz./dt, and consider the
formal equation

(16) ou(z, t)/dt = Lulx, t) + o(z, )& .

Equations such as (16) appear in a natural way in certain problems in stochastic
control theory, where the object to be controlled is ‘distributed’ in space, and in
certain statistical estimation problems concerning the estimation of the solution
of du(z, t)/0t = Lu(x,t) + k(z,t), when noise corrupted observations of u (-, -)
are taken. See Kushner [2] for some more details.

In any case, it would be useful to define a precise solution, u(z, t), to (16),
which is consistent with its intuitive meaning and which is continuous wp 1 on
R x [0, T, and, perhaps, which is even a Markov process (with parameter ¢) and
values in a suitable space of continuous functions. (Some of these questions are
treated in [2].) Write

(17) uz, t) = [§deff Gz, 2’5, 8)o(a, s) da'}

where G(-, -; -, -) is the Greens function for (9/0¢ — £) with thenecessary
boundary conditions. Instead of treating (17) here, we will only consider the
derived form

(18) \Po((b, t) = f(t) dzsao(x, t, 8)
and give conditions on ao(-, -, ) which guarantee that there is a version of each
Yo(z, t) so that ¥o(-, -) is continuous wp 1 on £ x [0, T].

Assume that (A-1): (-, -, -) and Diao(+, +, ) = ai(+, -, ), 2 =1, ,m,
are bounded, uniformly in (z, t) by a square integrable function of s, s [0, T].
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(A-2): let
[T les(x + 8,8, 8) — aul, ¢, $)Pds— 0

as |8| — 0. (A-3): for some real K; and vy > 0
[tlai(z, ) s) — aiz, t, )P ds + [1 ai(z, , s)ds < Ki|t — £

By (A-l_), each ¢ (z, t) = fé ai(z, t, 8) dzs is well defined wp 1 for each
(z,t) e R x [0, T]. By (A-2) and (A-3),forA = 0,

Elyi(z + 8, + A) — ¢u(a, 1)
= E{[{ ai(z + 8,1 + A, 8) dey — [§ai(a, ¢, ) des)’
= [llas(z + 5, ¢+ A, 8) — ai(z, t, ) ds + [ al(@ 4+ 5,64+ 4, 5)ds
-0

as |6| — 0 and A — 0. Thus the (-, - ) are continuous in probability on R % [0,T]
and, by Theorem 1, there are separable and measurable versions and any dense set
in B x [0, T] is a separability set.

) Now, for any even integer r = 1, there is a real number B, for which (for
=t

Do E Wiz, t) — iz, )
(19) = B, Do ([ laila, £, 8) — au(z, b, ) ds + [ ai’(a, ¢ ) ds)™"
< (n+ DBK |t — "

Now, for each fixed ¢, ¢, ¥:(+, t) — ¥i(~, ¢') is the derivative in mean square
(with respect to ;) of yo(-, t) — wo(-, ¢). Hence, as noted in Section 3,
vi(+, 1) — ¥i(+, ¢') is a version of the weak stochastic derivative (D.(¥o(-, ¢)
— Yo(+,t)). Now, let I = 1 and r = n + 1. Then (19) implies that ¢o(-, ¢)
— (-, ¢) satisfies the conditions of Theorem 2 on f( - ). Furthermore, to each r
there is a real K, so that

Ello(-, t) — ol Olw.m = [z 2o E Wiz, t) — iz, ¥)] dx
< Kot — " = Ko, |t — €]

where, for sufficiently large even r, o, > 0. Then, since we can assume that
rzn-+1, Th_eorem 4 is applicable, and there is a version of ¥o(-, -) which is
continuous on £ x [0, T and Holder continuous in ¢, uniformly in z, wp 1.
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