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ON EXCESS OVER THE BOUNDARY'

BY GARY LORDEN?

Northwestern University

0. Summary. A random walk, {S,}.,, having positive drift and starting at the
origin, is stopped the first time S, > ¢ = 0. The present paper studies the “excess,”
S,—t, when the walk is stopped. The main result is an upper bound on the mean
of the excess, uniform in ¢. Through Wald’s equation, this gives an upper bound
on the mean stopping time, as well as upper bounds on the average sample numbers
of sequential probability ratio tests. The same elementary approach yields simple
upper bounds on the moments and tail probabilities of residual and spent waiting
times of renewal processes. '

1. Introduction and main results. In the study of cumulative sums, S, =X, +
-+-+X,, of independent random variables with common mean m > 0, stopping
times N(t) =inf{n:S, >t} are of central interest. For many applications in
probability theory and statistics, e.g. to estimate sample sizes of sequential decision
procedures, one is concerned with the first moment, EN(¢). Wald’s equation (1946),
mEN(t) = ESy(,y, holds whenever sup,,E[X,,| and EN(t) are finite, and can be
rewritten mEN(t) = t+ER,, where R, = Sy, —t. The positive quantity R, is
called excess over the boundary and is often presumed to be negligible. In his
fundamental treatise on sequential analysis (1947), Wald gave an upper bound for
sup,s>oER, in the case of independent, identically distributed X’s: the evidently
sufficient quantity sup,s o E[X—r | X > r]. This bound is exact for the exponential
distribution and is quite good in many cases (e.g. normal distributions) where
the common distribution function, F, has monotone increasing hazard rate,
(d|dx) {—log(1—F(x))}, for x = 0. In fact, for this class of distributions the
supremum of E[X—r|X>r] is attained at r = 0 and, since sup,>,ER, 2 ER, 2
(1-F(0))E[X [X > 0], evidently Wald’s bound is too large by at most a factor of

(1=F(0))™*, typically less than two. On the other hand, Wald’s estimate has -

apparent deficiencies: it may be difficult to calculate; it is frequently much too
large (for instance, when the distribution of X has large ‘“gaps”); in fact, it may
be infinite even if E(X *)? is finite, which is well known to be necessary and sufficient
for the finiteness of sup,s ¢ ER,.

The problem of finding other useful bounds on sup, s ER, has proved trouble-
some because excess over the boundary is the sort of phenomenon which seems to
behave in a pleasantly regular fashion only in the limit as ¢ becomes large. An
approach due to Farrell (1964) is of greatest interest in the case where E(X *)? = oo,
since Farrell’s bounds on ER, necessarily tend to infinity as ¢ becomes large. The
powerful methods of renewal theory yield impressive asymptotic results in the case
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of nonnegative X’s, where EN(?), usually denoted by U(¢), is the expected number
of renewal epochs in [0, ¢], counting the zero epoch. An excellent exposition of
these results is contained in Feller’s book ((1966) pages 355-357). For nonnegative
X with non-arithmetic distribution, a refinement of the renewal theorem yields
ER,— YEX?*/m and P[R, > u] - E(X—u)* [m as t — co0. The asymptotic expansion
of EN(t) has been further refined under suitable assumptions, e.g. in (Stone,
1966)).

For arithmetic distributions with span 4, limsup,_, ., ER, = 2EX?*/m+1%h, and h
may be as large as EX?/m. Considering ¢ = 0 and still assuming X is nonnegative,
we find ERy, = EX = EX?/m—Var X/m and if Var X is small compared to m then
sup,so ER, is at best nearly EX?/m.

Thus, in the nonnegative case, for ¢ at both ends of [0, c0) we may find ER, as
large as EX?/m. The proof that this quantity is an upper bound on ER, for all ¢ is
based upon the fact that, just as the asymptotic behavior of ER, is fairly regular, so
is its average behavior over intervals.

THEOREM 1. Suppose X, X, , -+ are independent, identically distributed random
variables with EX = m > 0 and E(X *)? < 0.
Let S, = X +-+X,, N(t) = inf {n: S, >}, and R, = Sy(;y—1t. Then

sup,so ER, < E(X*)?Im.

Proor. Whatever the values of X,, X,, -+, the chance function {R, ; ¢ = 0} is
piecewise linear, all pieces having slope — 1. We consider first the case where the
X’s are nonnegative. It is easy to see that for ¢ = 0

1) JoR dt = [¥© R dt— SN R dt = 1Y N X, 2— 1R 2.
Since R, = 0 for all ¢, we have by Fubini’s theorem and Wald’s equation
2) (6 ER,dt = LEX?EN(c)—ER>.

(Since EN(c) is finite under our hypotheses, the summation term in (1) has finite
expectation by Wald’s equation and since the other terms are nonnegative, they
also have finite expectations.)

By Jensen’s inequality and Wald’s equation

3) [¢ER,dl < im~'EX*(c+ER,)—3(ER,)*.

It is easy to see that for all ¢, u = 0 EN(t+u) £ EN(t)+ EN(u), since the con-
ditional expectation of N(¢+u)— N(¢) given N(¢t) = n, X; = x,, ", X, = x,-equals
EN(u—r), where r=x,+ " +x,—t >0 and N(u—r) is zero if r > u, so that
EN(u—r) = EN(u) in any case. It follows from Wald’s equation that ER, is likewise
a subadditive function of ¢ and therefore

@ 1cER, £ tcinfy<, <y (ER,+ER,_,) < [§°(ER,+ER,_))dt = [{ ER, dt.
Combining (3) and (4) and rewriting, we obtain

(5) (ER))*+(c—EX?/m)ER,—c(EX*/m) £ 0.
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The left-hand side of (5) is a quadratic in ER, which is non-positive only
between its roots, —c and EX?/m. Therefore, ER, < EX?/m, and since c is arbitrary
the proof is complete for the nonnegative case. The case where X, , X,, -+ may
take negative values reduces to the nonnegative case through consideration of the
associated sequence of positive ladder variables, which are independent and
distributed like Sy, (Blackwell, (1953)). Since R, is pointwise the same for
X,, X,, - and the sequence of ladder variables, and clearly 0 < Sy.o, < Xn(0) the
result for the nonnegative case implies

ES}o) < E(Xy0)? < E[(X,* )"+ +(Xyo)’] _ E(X*)?

sup,>o ER, = < < -
20T ESno) ESyo) E[X;+ "+ Xno)l m

by Wald’s equation, and the proof is complete.

If the X’s are nonnegative and are considered as waiting times of a renewal
process, then Theorem 1 yields the following estimate of U{I}, the expected
number of renewal epochs in an interval I of length 4:

' |U{I}—h/m| < EX?/m*.

The next result is useful for estimating the average sample numbers of a sequential
probability ratio test.

COROLLARY 1. Under the assumptions of Theorem 1, if a<0=b and N* =
inf{n:S,¢|a, b]}, then

EN* <

(1—o)b+aa E(X™)?
+ 5
m m

where o = P(Syx < a).

ESN* é (1 —a)b‘l'aa‘l'E(SN(b)—b) é (1—0()b+06a+E(X+)2/m,

PROOF. It is easy to verify that Sy, < min (Sys, b)+ Sy —b. Therefore,

and Wald’s equation yields the stated result.

In applying the corollary it is obviously desirable to have a lower bound on «
available. In the case of sequential probability ratio tests the standard argument
(Wald (1947)) establishes only an upper bound. This same argument, however,
demonstrates that

l—fa = E[exp(—SN*)|SN* > b],

where f is the error probability when the alternative distribution is true (the upper
bound being derived from the observation that the conditional expectation is at
most exp (—b)). By applying the conditional version of Jensen’s inequality and an
argument like that of the corollary, we obtain

E(X+)?
1_% 2 exp(—E[Sys|Sys > b]) 2 exp(—{b+ (1(__0())”1})'
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Using the standard upper bound o < exp (a),
E X+ 2
= (l—exp(a))exp| — b_|.,f7(7) i
(1 —exp(a))m

and a similar calculation using the alternative distribution yields a lower bound
on a.

2. Generalizations and applications to renewal theory. In trying to extend the ideas
of Theorem 1 to cover variables which are not necessarily independent or identically
distributed it is difficult to formulate general conditions under which EN(?) is
subadditive. The following theorem gives weaker results but shows that at least the
(uniform) average of ER, over intervals [0, c] is well behaved under quite general
circumstances.

THEOREM 2. Suppose X, , X, , '+ are random variables on some probability space
with N(c) and R, defined as above. If E[(X,*)?| N(c) 2 n] £ R E[X, | N(c) 2 n] for
n=1,2,--and ER, or EN(c) is finite, then

6) ¢ 1 [¢ ER, dt < R(1 +R/4c) if c¢=1R
<R-1c if ¢<4R
and ER, £ R+ (Rc)*.

ProoF. Relation (1) holds if X,? is replaced by ((S,— max,, S,)*)?, which is not
larger than (X, )2. Therefore,

(7) jg Rt dt é %Zﬁg (}(nJr)z—%Rcz'
Define 1,=1 if N(c¢) = n,
=0 if N(c¢) <n, for n=1,2,--:

Form =1, 2, -+, our hypothesis implies
" E(X,")I, < RY" EX,I,= REY"., X,I, < R(c+ER,),
since T X, =S¢ if N(c) > m;
=c+R, if N(c) < m.
Letting m — oo,
R(c+ER) z Y E(X, ") L, =EY.2 (X,")’ L, = EY, 9 (X,")%,

by monotone convergence.
Assume ER, is finite. (It is shown below that this is the case whenever EN(c) is

finite.) Then by (7) and the relation just stated, ER,? is finite and
®) JSER,dt = E [§R,dt < 3R(c+ER.)—3}ER.* < $R(c+ER,)—3(ER,)’.

The right-hand side of (8) is a quadratic in ER, with maximum value 1cR(1 + R/4c),
attained at ER, = 1 R. This proves (6) for ¢ = 1R. Also, since the left-hand side of
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(8) is nonnegative, R(c+ER,)~(ER,)? =0, whence ER, < {(R+(R?>+4Rc)?) <
R+ (Rc)*. Clearly t > uimplies R, = R,— (t—u). It follows by a simple computation
that 1/c[§ ER,dt < ER +4c. Now, if for some ¢ < R (6) does not hold, then
evidently R—c < ¢~ '[§ ER,dt £ ER.+}c, so that

9 ER, > R—c.

The quadratic on the right-hand side of (8) is decreasing for ER, > iR and
R—c > LR since ¢ < $R. Thus (8) and (9) imply

JoER,dt < 3R*~4(R~c)* = Re—4c?,

contradicting the assumption that (6) does not hold.
It remains to verify that ER, is finite whenever EN(c) is finite. First note that

(E[X,* [N(e) 2 n])* £ E[(X,*)*| N(¢) 2 n] < RE[X, | N(c) 2 n]
< RE[X,*" | N(c) = n],
so that E[X,* | N(c) 2 n] £ R. Then, if EN(c) is finite,
c+ERc = EZ:O=1 XnIn é EZ?:I Xn+In é :;O=1 EXn+In _S.- Z;:o=l REIn’
and this last equals REN(c), which is finite. Therefore, ER, is finite and the proof is
complete.
The next result generalizes Theorem 1 by giving upper bounds for arbitrary

moments of R,. These also provide alternative bounds on sup,, o ER, by virtue of
the relation (ER,)? < E(R,)? valid for p > 1.

THEOREM 3. Under the assumptions of Theorem 1,
p+2E(X*)P*!

sup,z0 E(R,)” < P for all p > 0.

REMARK. In the case of nonnegative variables with non-arithmetic distribution,
the pth moment of the limiting distribution of R, is E(X *)?*!/(p+ D)m.

PRrOOF. By the same kind of argument used for Theorems 1 and 2 we obtain
c E(X*T)r+1 E(R)PH!
(10) J ERpdr < BX " (4 pry BRI
0 (p+1m p+1
Letting L, denote Xy, we have by a similar computation

E(x+)p+1

(1 '[ EL’dt < (c+ER)—ER)™!.

0

We now show that for all u, v = 0
(12) R,., =< max(R,,L,),
where L, is distributed like L,. Let N’ be the smallest n > N(u) such that
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Xyew+1+ -+X,>v and set L, = Xy.. If R,,, > R,, then N(u+v)= N’ and
hence L,” = Xy(,+v) = Ry+,. Therefore, (12) holds and it clearly follows that

cERF < [§[ER/+ELL_/]dt.

Combining this last inequality with (10) and (11), and using obvious estimates, we
obtain

(p+2E(X*)P+! i o (DF2(ERP)PHDIP
T orbm [c+(ERD)P]+ P

The expression on the left-hand side is nonnegative if we set ERJP =
(p+2)E(X*)*!/(p+1)m and for this value of ER. and all larger values the ex-
pression is seen by differentiation to be an increasing function of ER.”. Therefore,
“for all ¢ = 0 ER,? is not larger than (p+2)E(X*)"*!/(p+ 1)m.

There is an alternative approach to the problem of bounding ER,” which uses
the relation R,., < R,+R,’, where R, is distributed like R,. This leads to the
result that ERP < 2PE(X )"Jr Y(p+Dm, which is sharper than the bound in
Theorem 3 only for p < 2. The approach of Theorem 3 can be used to obtain upper
bounds on other functionals of the distribution of R, , such as its moment generating
function.

In the case of nonnegative i.i.d. variables, one can apply Theorem 3 with p =2
and extend the argument of Theorem 2 to obtain (with R defined to be EX?/m)

1 2EX® R?
+— for all 4,¢=0.

=<0.

cER P—

3m 8

1 A+ ¢
—f ER dt—-%R

CJa
We now use relation (12) to derive upper bounds on the tail probabilities of R, .

THEOREM 4. If X, X, , * - * are independent, identically distributed random variables
with EX =m > 0and E(X*)> £ Rm < oo, then forall t,z 2 0

(13) P[R,2z] £ — E[(ZX 2)[{X = z}]( +R>

where I{X = z} is the indicator function of the set where X 2 z.

PROOF. Applying (12) and using the same kind of argument as in the proofs of
Theorems 1 and 3, we have

tP[R, 2 z] £ [4 P[R, 2 z]du+ [, P[L,_, = z]du
= EN(t)E(X —z)* —E(R,—z)" + EN()E[XI{X 2 z}]
—E[RJ{L, 2 z}]
< EN(OE[(2X —2)[{X = z}]—E[R,I{R, = z}]
<m Y(t+R)E[(2X —z2)I[{X = z}]—zP[R, 2 z],

using Theorem 1 to estimate EN(¢). The stated result follows immediately.
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A rough indication of the sharpness of (13) in the case of non-arithmetic non-
negative variables comes from the observation that E[QX—z)I{X = z}]/m is
smaller than EQ2X—z)*/m, which is two times lim,., , P[R, = 1z]. Equality holds
if X = m, z=m and ¢ is an integer multiple of m.

In renewal theory, R, is called the residual waiting time at epoch ¢, and in the
nonnegative, non-arithmetic case it has the same limit distribution as Q, =
t~Sy-1, which is called the spent waiting time. We now indicate how our
results about R, can be proved to hold in the nonnegative case for Q, as well, with
slight modifications. Using the same notation as in the derivation of (12), we note
that

(14) v, é max(Ru’ Lu+v)>

where Q" = v—[Xyuy+1+ "+ Xy -] and is distributed like Q,, by considering
the cases N(u+v) < N'and N(u+v) = N'.
We have, therefore, for all b, z> 0

bP[Q,=z] £ [SP[R, = z]du+[t*"P[L, = z]du
S EN(b+v)E[(2X —2)I{X = z}] for all v 2 0.
Dividing by b and letting b — oo, we conclude that
(15) P[Q, 2 z] £ m™'E[(2X —2)[{X 2 z}] forall v,z 20,

which is similar to Theorem 4.

The restriction to nonnegative variables is necessary for (14). Unlike R,, Q,
may be larger for a (possibly negative) sequence X, , X, , - - -, than for the associated
sequence of ladder variables. There is, therefore, no straightforward extension
from the nonnegative case.

For nonnegative variables, Theorems 1 and 3 hold with Q, in place of R,. The
proof of Theorem 1 uses the easily verified relation Q,” < R,+ Q,,,, which implies

bEQ, <[4 ER,du+[5*"EQ,du < [4""EL,du < EN(b+v)EX?,

and the conclusion follows upon dividing by b and letting b — co. Theorem 3 can
be proved either by a similar argument using (14), or by a direct integration, using
(15) to estimate tail probabilities. Since L, = R,+ Q,, we have for the nonnegative
case sup,»o EL, < 2EX?*/m and it is straightforward to derive estimates for the
moments and tail probabilities of L,.
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