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OF TWO LLD. RANDOM VARIABLES
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1. Introduction. Let X, and X, be two independent and identically distributed
(i.i.d.) random variables whose common distribution is the same as that of a
random variable X. The problem considered here is to characterize all possible
distributions of X which satisfy the following property H:

) H: The distribution of |X; — X;| and X are identical.

For instance, it is easy to verify that the discrete distribution with P(X = 0) =
P(X = a) =  for some positive constant a, and the exponential distribution with
probability density function (pdf) f where f(x) = @exp(—0x), for x =0, and
f(x) = 0 elsewhere, with 6 >0, both satisfy the property H. The reader may find a
different characterization based on |X,—X,| in Puri [6]. Basu [1], Ferguson
([4], [5]) and Crawford [2] have considered a different problem where they charac-
terize distributions with the property that min (X, X,) is independent of X, — X,.
Their methods naturally depend very heavily upon such an independence, which of
course is lacking in the present case.

Let F denote the distribution function (df) of X. It can be easily shown that if X
satisfies H, the distribution of X can either be only discrete or absolutely con-
tinuous or singular and no mixture is possible. Thus one needs to consider these
three possibilities separately. For the case when X is discrete let A denote the set
of possible discrete nonnegative values that X takes. More specifically, let

p,=P(X =y), yeA; with Y, ,p,=1

It is clear that if there exists a y = 0 with p, > 0, then in particular 4 contains zero
with p, > 0. Furthermore, from the property H, the following relations follow
easily:

)] Po = ngo szs
(3) py = 22x§0 pxpx-l-y; y > 0

Similar relations are satisfied by the pdf fif X satisfying H is absolutely continuous.
In Section 2, we show that under H, X has a moment generating function
(mgf) and hence all its moments are finite. Also in Theorem 1, we consider the case
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where X is bounded. Section 3 deals with the discrete case, and Theorem 2 charac-
terizes lattice distributions satisfying H. In Section 4, we consider the absolutely
continuous case. Here we study a more general question; namely, if X; and X, are
two nonnegative independent but not necessarily identically distributed random
variables (rv), and moreover if the distributions of X, and |X =X 2| are identical,
then given the distribution of X,, what can be said about the distribution of X, ?
The paper ends with a discussion in Section 5, where we have a few words to say
about the singular case.

2. Preliminary results. In the following lemma it is shown that for an X satisfying
H, its mgf and hence all its moments exist.

LEMMA 1. The mgf of a rv X satisfying H exists.

Proor. If X satisfying H is degenerate, it is clear that P(X = 0) = 1, and the
lemma holds trivially. Let X be nondegenerate. Then there is a number u > 0 such
that P(X < u) > 1. Using this and the property H, it follows that for every v = 0

4 P(X>v)=P(|X1—X2|>v)§2P(X>u+v)P(X.§u),
so that
P(X > u+v) < P(X > v)[2P(X £ u),

for all v = 0. A repeated application of this leads to

1 n—1
P(X <l ———— . =
(X > nu) :[ZP(X = u)] ; for n=1,2,

From this one can easily show the existence of an « > 0 such that E(exp((X))
exists for all |¢| < a.
The following theorem provides the answer to our problem when X is bounded.

THEOREM 1. Let X be nondegenerate. Then the following three statements are
equivalent.

(i) X is bounded and satisfies H.
(ii) X satisfies H and P(X = 0) = 4.
(ili) P(X = 0) = P(X = a) = 4, for some a > 0.

ProoF. Clearly (iii)= (i) and (ii). All we need to prove is that (i)=(iii)
and (ii) = (iii). Let (i) hold. Since X is bounded and nondegenerate, there exists
a least upper bound B >0, such that P(X > B) =0 and for every 0 <e= B,
P(X > B—¢) > 0. On the other hand, since X satisfies H, we have for every such ¢

(5) O0<P(X>B—¢)=P(X,—X,|>B—¢) < 2P(X <e)P(X > B—¢),

which implies that for every 0 < ¢ £ B, P(X < ¢) = % and, in particular, letting ¢
tend to zero we have P(X = 0) = 1. This implies that X must be a discrete random
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variable (rv). Using the notation introduced in Section 1 for such a case, we have
} S Po=Y.z0p,> <1 This yields

Po(l - Po) = Zx> 0 sz = (maxx> 0 px)(2x>0 px) = (maxx> 0 px)(l - p0)9
so that p, < max, ., p,. Hence we have

(6) 1S posmax,.op. S 1-py =4,

so that p, = max,.,p, =}, which implies that P(X = 0) = P(X = B) = }. This
proves that (i) = (iii) with B = a. Now let (ii) hold. Since p, =%, X must be a
discrete rv if it has to satisfy H. For this we have already seen that py(1 —p,) =
Y s>0px2. This means that we have

(7) Zx>0px2 = % and Zx>0px = %

But this holds if and only if p, = 1 for some x = a > 0, so that (iii) holds. []

Before closing this section we wish to remark that for the nondegenerate discrete
case, for X satisfying H we must have 0 < p, < 1; that p, > 0 follows from (2),
and the fact that ) ,.,p, = 1; that p, < 4 follows from the fact that for every
y > 0 with p, > 0, p, = 2p, p, under H.

3. Discrete case. We now consider the case where X is discrete and satisfies the
following additional condition C.

(8) C: There exists an interval (§,,,] with0 <9, <, < ©
such that P(6, < X £ 4,) =0.

Using the notation of Section 1, we first prove three lemmas needed to prove the
main result of Theorem 2.

LEMMA 2. Let X be discrete, nondegenerate and satisfy H and the condition C.
Then

(i) t=inf{x:x>0,p, >0} >0and p, >0, and
(ii) the set of possible values of X is given by kt; k =0,1,2,--.

PrOOF. (i) Since X is nondegenerate, it is clear that the set {x:x > 0,p, > 0} is
nonempty. Again, if p, = 1, (i) and (ii) are satisfied in view of Theorem 1, so that
let 0 < py < 4. By Theorem 1, this means that X is not bounded. Let S be the set of
possible values of X. In view of the property H, it is easy to show that S forms a
positive linear space in integers. By this we mean that if x;e S, i=1,2,---, then
|Yin;x;| €S for all integer values (positive or negative) of n;’s. Now for an un-
bounded set with this property, it is not difficult to show that either this set is dense
everywhere over [0, o) or is a lattice. On the other hand, in view of condition C, it
cannot be dense everywhere. Hence the lemma follows. []

In view of Lemma 2, let p, denote the probability Pr(X = kz), fork =0,1,2,- -,
so that ) ;2 o p, = 1. The analogues of (2) and (3) are given by

) Po= Z?;opiz,
(10) pk=22?;0pipi+k; k=12,
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We shall now restrict to the case with 0 < p, < }. Thus the set of possible values
of X, in view of Theorem 1, must be infinitely denumerable. Furthermore, from (12)
of the following lemma it follows that under condition C, p, >0, for k =1,2,---.

LeMMA 3. Let H and C hold and also let 0 < p, < 4. Then for k =1,2,---,

2p
@1n Pk%(l_zlpo)'PkH
and

2p,(1-2
(12) p1(1—2po)

Pr+1 = [a 200 +4p12]’Pk.
Proor. (11) follows easily from (10) by noticing that for k = 1,

(13) Pi(1—2po) —2p; P+1 = 22?::2P1P1+k,

and that the right side of (13) is nonnegative. To prove (12), we first notice from
(10) that for k = 1,

14 Dk+1 = 22?;0 DiDi+k+1s
or equivalently
(15) , Pi+1(1=2po) = 22111 DiPi+k+1-
Then using (11) for each p; on the right side of (15) we have
4p, 2 2p hd
(16) Pr+1(1—2po) 2 1—21p0 i§=:1 Di+1Pi+k+1 = T——Zl—po(zigi bpi pi+k)
2p
= 1 21 (Px—2Po P« —2P1 P+ 1)-
—<PDo

Here at the end of (16) we have again used (10). Finally (12) follows immediately
from (16) after a little simplification. []

For each sequence {p,} satisfying H (or equivalently (9) and (10)) and with
0 < po < 4, define

B = sup {b:b > 0 satisfying p, = bp,, for all k = 1} and
y =sup {¢:0 < ¢ < 1, satisfying p,,, = cp; for all k = 1}, so that

an Dk 2 BPis1s k=1,2,--,
and
(18) DPk+1 = " VD5 k=1,2,---.

From Lemma 3 it follows that for every sequence {p,} satisfying H and with
0 < po < 1, there always exist positive f and y. Also by definition of B, it is clear
that for every such sequence 0 < 8 < p,/p,. Here p, > 0; in fact because of (12)
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p >0 for all k = 1. Also y has to be strictly between 0 and 1. That it cannot be
equal to one follows from (18) and the fact that Y720 p; converges. The following
lemma is the essential lead to the main theorem of this section.

LEMMA 4. For every sequence {p,} with 0 < p, < % and satisfying H, By = 1.

Proor. From (17) and (18) it is clear that By < 1. It is sufficient then to prove
that By = 1. From (14) we have for k 2 2,

19) p(1=2po) = 22;’;1 PiPi+k-
Using (18) on the right side of (19), for each p; we have

22 22
(20) n(1—2po) é; Z Pi+1Pi+k = ; Z DiPi+k-1
i=1 i=2

Px—1—2Po Px-1—2P1 Pk],

1
Y
which after simplification, yields for k = 2,3, -,

2p,
a2yt ,
DPk-1=|7 1_2p0] Px

or equivalently for k = 1,2, -,

(21 P2 I:'Y'*'lipzlpo]l’ur

Comparing (17) and (21) and keeping the definition of f in mind, we have
@2) F-Dz o

Again, using (17) on the right side of (19), we have for k = 2,

(23) p(1=2po) 2 2/32?; 1Pi+1 Pi+k = B(ZZfiz PiPi+k-1)

= B[px-1—2Po Px-1—2P1 P
On simplification, (23) yields for k = 2,
» B(1—2p,) »
*=(1-2po+2p, ) "
or equivalently for k = 1,

_ B1-2p0)
*1= (1-2po+2p, B

Finally comparing (18) and (24) and using the definition of y, we obtain

) B(1—2p,)
= (1-2po+2p: B

(24)
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or after simplification
2p,
1-2p,

Now it easily follows from (22) and (25) that fy = 1. [
We are now in a position to state and prove the main theorem of this section.

(25) B-7)=

By.

THEOREM 2. Let X, and X, be two independent copies of a nonnegative discrete
random variable X satisfying condition C. Then X and the absolute difference
| X, — X;| have the same distribution if and only if the distribution of X is given for
some positive constant T, by

(26) Pr(X =0) = p,
Pr (X = k1) = 2po(1—po)(1—2po)*™; k=12,
where either po =1 0or 0 < p, < 4.

ProoF. The case with p, = 1 is that of a degenerate rv X. Also we have argued
before that for a nondegenerate X, we must have 0 < p, < 1. The case with p, = 4
is covered in Theorem 1. Let us assume then that 0 < p, < 4. From Lemma 4 and
equations (17) and (18) it follows that

(27) Pk+1 = ¥VDPxs k=12,
or equivalently
(28) Pk=')’k_1P1§ k=192a'“'

Now it is easy to show using (9) and the fact that ) 2, p; = 1, that y = (1—2p,)
and p; = 2po(1-po). [

4. Absolutely continuous case. Let f(x) denote the pdf of the nonnegative rv X
with the property H. The property H is then equivalent to f(x) satisfying the relations

(29) [8f(x)dx =1; f@ =23 f(x+0f(x)dx; forall 1=0.

Furthermore, in view of Theorem 1, X is unbounded. The following lemma gives
certain properties of an f satisfying (29), which we shall need later.

LEMMA 5. Let the pdf f(x) of a nonnegative rv X satisfy (29). Then it also satisfies
the following:

(i) f(x) is lower semicontinuous for all x = 0.

(ii) f(x) > 0, for all x = 0.
PrOOF. (i) From (29) for ¢t = 0, we have
(30) JO) =2[5fX(x)dx;  [Ff(x)dx =1,

so that we must have f(0) > 0. On the other hand, since
Y(2) = [§f(r+2) /() dy; -0 <z<o,
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is the pdf of X; — X, or equivalently the pdf of the convolution of X, and —X,,
¥(2) is lower semicontinuous for all —oo <z < 0o0. The last statement follows
from Fatou’s Lemma and the measurability of f. By virtue of (29) therefore, f(¢) is
lower semicontinuous for all ¢ = 0.

(ii) Assume that there exists an interval (a, ) with ¢ < a < b, such that f(x) =0
for all xe(a, b). Since f(0) > 0 and f(x) is lower semicontinuous at zero, there is an
&> 0, with a < b—¢/2, such that f(x) > 0, for all x€ [0, ¢]. Using this and (29), it is
now easy to show that f(z) =0, for all a < z < b+¢/2, a.e. u. By an induction
argument we then have f(z) =0 for all a <z < b+ne/2, ae. u, forn=1,2,:--.
Letting n — oo, we have f(z) = 0 for all a < z < o0, a.e. u. But this implies that X is
bounded, which is a contradiction. Thus there exists no interval I<[0, o) with
u(I) > 0 such that f(x) =0 for all xel. This implies that f(x) > 0 for all x =0,
a.e. u. Now let f(x,) = 0 for some x, > 0. Then

[@f(x+x0)f(x)dx =0=> [P f(x +x0)f(x)dx =0, forO<a<b< o,
=f(x+x0) =0, foralla <x < bwithf(x)>0,a.e.pu.

But pu[x:a<x<b,f(x)>0]=>b—a, which also yields p[x+x,:a<x<b,
f(x) > 0] = b—a > 0. This contradicts the fact that f(x) > 0, for all x =0 a.e. p.
Thus f(x) >0, forall x = 0. []

We shall now consider a more general problem. Let X and Y be two nonnegative
independently but not necessarily identically distributed random variables. Let F
and G denote the df’s of X and Y respectively. Given F and that the distributions
of Y and |Y—X| are identical, what can we say about the distribution of Y, i.e.
about G? The reader may find in Feller ([3], pages 208-209) a treatment of this
problem considered for a somewhat restricted case. That the distributions of Y
and |Y—X]| are identical is equivalent to the relation

31 G(1) = [ G(x+1)dF(x)+[§ F(y+1)dG(t); forall ¢=0.
The following theorem provides an answer to the question raised above.

THEOREM 3. Let X and Y be two nonnegative independent random variables with F
and G as their respective df’s. Let EX < oo and F have an absolutely continuous part.
Then G satisfies (31) if and only if G is absolutely continuous with pdf g where

(32) 9(y) = [1-F(»)]J/EX; forall yz0.

Proor. It is easy to verify that g(y) of (32) does satisfy (31). All we need to show
is that this is the unique g that satisfies (31). To this end, consider a sequence of

i.i.d. random variables X, X,, X3, - - -, with their common distribution same as that
of X. Define another sequence of random variables Z, recursively by
(33) Z,=X,, Zyyy1= |Zn_Xn+1|'

Then clearly {Z,} is a Markov chain (MC) with state space [0, c0) and the transition
df H, given by

(34) dH(x | y) =dF(x—y)+dF(x+y),
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so that if G, is the df of Z,, it is easily observed that G; = F and for n =2,3,- -,
(35) G,(») = [§ Guo1(x+y) dF(x)+ [§ F(x+y) dG,_ 1(x).

Letting n — 0o, we observe that any solution G of (31) is a stationary distribution
of the MC {Z,}. We have already observed that g(y) given by (32) is such a
stationary distribution. That this is the unique stationary distribution and hence
the unique solution of (31) follows from the fact that the above MC defined on
[0, ) is indecomposable, which is a simple consequence of the fact that F has an
absolutely continuous part.

In answer to our original question, we now have the following theorem.

THEOREM 4. Let X, and X, be two independent copies of a rv X with pdf f(x).
Then X and |X,— X, | have the same distribution, if and only if for some 0 > 0,

(36) f(x)=0e"%,  for x=0
=0 elsewhere.

Proor. Clearly if f(x) satisfies (36), the distributions of X and |X,—X,| are
identical. Assuming now that the distributions of X and |X, — X,| are the same, it
is easily seen that f(x) satisfies the conditions of Theorem 3, in view of Lemma 1
and Lemma 5. On the other hand, comparing (29) and (31), we have under H,
g(») =f(»), so that replacing g(y) with f(») in (32), and solving the resulting
equation for f(y) = F'(y) we obtain (36) with 6 = EX. []

5. A few concluding remarks. The lines of proof adopted for Theorem 3, and
hence of Theorem 4, in principle should also work for the discrete case of Section 3.
Let X and Y be two appropriate nonnegative discrete rv, both independently but
not necessarily identically distributed with {p,} and {p,} as the set of their prob-
abilities (as defined in Section 1). Given that the distributions of Y and |Y -X |
are identical, the analogue of equationi (29) is given by

(37) do = ngo Px9x
qy=2xgopqu+y+2xgoqxpx+y; for y> 0.

However, here essentially it is a matter of first guessing a general solution of (37)
for g,’s satisfying Y 5 0q, =1, in terms of p,’s, an analogue of (32). After this,
replacing g,’s with p.’s in this solution, p,’s can be explicitly obtained to yield the
answer to our original problem.

Concerning the singular case of an X with property H, at present we can only say
in view of Theorem 1, that X has to be unbounded. On the other hand, let us
consider again the approach adopted in Section 4. Let F(x) and G(y) respectively
be the continuous distribution functions of two nonnegative independent random
variables X and Y. This will cover both absolutely continuous and singular cases
of our problem. Introduce a MC similar to the one of Section 4, defined on
[0, o0), but with the assumption that X has the continuous df F(x), so that (31) and
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(35) are still satisfied. Any solution of (31) is a stationary df G of our MC {Z,,}.
On the other hand, if EX < oo, it is easily verifiable that

(38) dG(y)/dy = [1-F(x)J/EX; y20,

is a solution of (31) and hence a stationary df of MC {Z,}. The only problem here
is to show that (38) is the unique solution of (31). For this we need to show that the
MC {Z,} is indecomposable. Once this is established, (38) is the unique solution of
(31). The solution to our problem is then obtained by replacing G with F in (38)
and solving this for F. This turns out to be the same as (36). Thus, subject to the
uniqueness of the solution of (31), the solution to our original problem would be
(36) even when the df of X is given to be only continuous. This would mean that
there is no singular distribution with the property H. Our conjecture is that this is in
reality the case.

In Section 3 for the discrete case the result of Theorem 2 was proved subject to
the condition C. Our conjecture is that this result holds even without this extra
condition.

Again, as suggested by a referee (see also Rogers [7]), it is worth noticing that
the property H can be transformed by taking U; = exp[—X,], i= 1,2, to

39 H': The distribution of min(U,/U,, U,/U,) and U are identical, where U,
and U, are i.i.d. random variables whose common distribution is the same as that
of a positive random variable U. Clearly in order that U satisfies H’, we must
have 0 < U £ 1. The condition C now takes the form

(40) C': There exists an interval [A;,A,) withO < A; <A, £ 1,
such that Pr(A; S U < A,)=0.

As before, a rv U satisfying H' can either be only discrete or absolutely continuous
or singular and no mixture is possible. The following Corollaries 1 and 2 follow
easily now from Theorem 2 and Theorem 4 respectively.

COROLLARY 1. Let U, and U, be two independent copies of a positive discrete
random variable U satisfying condition C'. Then U and min(U,/U,, U,/U,) have
the same distribution if and only if the distribution of U is given for some constant
O<a<l,by

41) Pr(U=1)=p,
Pr(U = a*) = 2po(1—po)(1 —2po)*~'; k=1,2,--,
where either po =10r 0 <p, < 1.

COROLLARY 2. Let U, and U, be two independent copies of a positive random
variable U with pdf h(u). Then U and min(U,/U,, U,/U,) have the same distribution,
if and only if for some 6 > 0,

(42) h(w)=0u’"1', O<ucsxl

=0 elsewhere.
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Finally, if X, and X, are i.i.d. with df F, consider the property
43) H*: The df of X, — X, is given by }[F(x)+1—F(—x-)].

It is easy to see that when X is nonnegative, H* is equivalent to H of (1). Also,
it is easy to show that Theorem 1 still holds when H is replaced by H* and the
constant a is allowed to be either strictly positive or negative. This would cover the
case when X is bounded. For the unbounded case there appear to be several
distributions with the property (43). In particular, in answer to a referee’s
question whether there can be an X which has a pdf and satisfies H*, but is not
an exponential rv, we give below such an example. For the case, where F is
continuous, H* is equivalent to

C) A1) = o),

where Z(¢()) is the real part of the characteristic function ¢ of X. Let X have the
pdf given by

(45) f(x)= __a=p Pt _a-p exp(—(}_—ﬂ>x>, x>0

1-2B)1+p) 28-1D2-p B
- (1 _ﬁ) x/B R
T+Be-p° x<0
where 0 < B < 1. The characteristic function of this is given by
(46) o(1) = [(1 —it)(1—(Bit/1 =B+ pin)] 7,

which can be easily shown to satisfy (44).
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