ON THE L_p -CONVERGENCE FOR $n^{-1/p} S_n$, 0

By Y. S. Chow

Columbia University

Let $(X_n, n \ge 1)$ be a sequence of random variables and $S_n = X_1 + \dots + X_n$. By an ingenious method, Pyke and Root [4] prove that if X_1, X_2, \dots are i.i.d. random variables with $E |X_1|^p < \infty$ for some $0 , then <math>E |S_n - a_n|^p = o(n)$ as $n \to \infty$, where $a_n = 0$ if $0 and <math>a_n = nEX_1$ if $1 \le p < 2$. By using an inequality due to Essen and Von Bahr [3], Chatterji [2] extends the result to the following form: If X_1, X_2, \dots are dominated in distribution by a random variable X with $E |X|^p < \infty$ for some $0 , then <math>E |S_n - a_n|^p = o(n)$ as $n \to \infty$, where $a_n = 0$ if $0 and <math>a_n = \sum_{i=1}^n E(X_i | X_1, \dots, X_{k-1})$ if $1 \le p < 2$. In this note, by applying an inequality due to Burkholder [1], we will prove the following result, which relaxes the domination condition of [2] to uniform integrability.

THEOREM. Let $(|X_n|^p, n \ge 1)$ be uniformly integrable for some $0 . Then as <math>n \to \infty$

$$E\left|S_n-a_n\right|^p=o(n),$$

where
$$a_n = 0$$
 if $0 , and $a_n = \sum_{1}^{n} E(X_k | X_1, \dots, X_{k-1})$ if $1 \le p < 2$.$

PROOF. Define $Y_k = X_k$ if $0 and <math>Y_k = X_k - E(X_k \mid X_1, \cdots, X_{k-1})$ for $1 \le p < 2$. It is easy to see that if $(|X_n|^p, n \ge 1)$ is uniformly integrable, so is $(E(|X_n|^p \mid X_1, \cdots, X_{k-1}), n \ge 1)$. Hence $(|Y_n|^p, n \ge 1)$ is uniformly integrable. For $\varepsilon > 0$, choose M > 0 so that $\int_{[|Y_n| > M]} |Y_n|^p < \varepsilon$ for all $n \ge 1$. Put

$$Y_n' = Y_n I_{[|Y_n| \le M]}, \qquad Y_n'' = Y_n - Y_n'.$$

(a) If 0 ,

$$\begin{split} E \left| S_{n} \right|^{p} &= E \left| \sum_{1}^{n} (Y_{k}' + Y_{k}'') \right|^{p} \leq E \left(\sum_{1}^{n} \left| Y_{k}' \right| \right)^{p} + E \left(\sum_{1}^{n} \left| Y_{k}'' \right| \right)^{p} \\ &\leq E \left(\sum_{1}^{n} \left| Y_{k}' \right| \right)^{p} + \sum_{1}^{n} E \left| Y_{k}'' \right|^{p} \leq (nM)^{p} + n\varepsilon, \end{split}$$

and hence $E|S_n|^p = o(n)$ as $n \to \infty$.

(b) If $I , by Burkholder inequality [1] there exists a constant <math>A_p > 0$ satisfying

$$A_p E \left| \sum_{1}^{n} Y_k \right|^p \le E(\sum_{1}^{n} Y_k^2)^{p/2}, \qquad n \ge 1.$$

Hence

$$\begin{split} A_p E \left| S_n - a_n \right|^p &= A_p E \left| \sum_{1}^n Y_k \right|^p \le E (\sum_{1}^n Y_k^2)^{p/2} \\ &= E \{ \sum_{1}^n (Y_k'^2 + Y_k''^2) \}^{p/2} \le E (\sum_{1}^n Y_k'^2)^{p/2} + E (\sum_{1}^n Y_k''^2)^{p/2} \\ &\le E (\sum_{1}^n Y_k'^2)^{p/2} + E \sum_{1}^n |Y_k''|^p \le (nM^2)^{p/2} + n\varepsilon. \end{split}$$

Therefore $E|S_n - a_n|^p = o(n)$ as $n \to \infty$.

Received April 8, 1970.

¹ Research supported by the Office of Naval Research under Contract No. N00014-67-A-0108-0018, NR 042-205, and by the National Science Foundation under GP-06073. Reproduction in whole or in part is permitted for any purpose of the United States Government.

(c) Let p = 1. Then $\sum_{1}^{\infty} n^{-1} \{ Y_n' - E(Y_n' | X_1, \dots, X_{n-1}) \}$ converges a.s., since $|Y_n'| \leq M$. Therefore $\sum_{1}^{n} \{ Y_k' - E(Y_k' | X_1, \dots, X_{k-1}) \} = o(n)$ a.s. by Kronecker lemma; $E \left| \sum_{1}^{n} \{ Y_k' - E(Y_k' | X_1, \dots, X_{k-1}) \} \right| = o(n)$ by Lebesgue dominated convergence theorem. Since

$$E\left|\sum_{1}^{n}\left\{Y_{k}^{\prime\prime}-E(Y_{k}^{\prime\prime}\mid X_{1},\cdots,X_{k-1})\right\}\right|\leq 2E\sum_{1}^{n}\left|Y_{k}^{\prime\prime}\right|\leq 2n\varepsilon,$$

we obtain that

$$E\left|\sum_{1}^{n} Y_{k}\right| = E\left|\sum_{1}^{n} \left\{Y_{k}' - E(Y_{k}' \mid X_{1}, \cdots, X_{k-1}) + Y_{k}'' - E(Y_{k}'' \mid X_{1}, \cdots, X_{k-1})\right\}\right|$$

$$\leq o(n) + 2n\varepsilon,$$

and therefore $E|S_n - a_n| = E|\sum_{1}^{n} Y_k| = o(n)$ as $n \to \infty$.

REFERENCES

- [1] Burkholder, D. L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494-1504.
- [2] Chatterji, S. D. (1969). An L^p-convergence theorem. Ann. Math. Statist. 40 1068–1070.
- [3] ESSEN, C. and Von Bahr, B. (1965). Inequalities for the rth absolute moment of a sum of random variables, $1 \le r \le 2$. Ann. Math. Statist. 36 299–303.
- [4] PYKE, R. and Root, D. (1968). On convergence in r-mean of normalized partial sums. Ann. Math. Statist. 39 379-381.