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ON THE L,-CONVERGENCE FOR n~trS. 0<p<2!
By Y. S. CHow

Columbia University

Let (X,, n = 1) be a sequence of random variables and S, = X, + --- + X,. By
an ingenious method, Pyke and Root [4] prove that if X, X,, - - are i.i.d. random
variables with E|X,|” < co for some 0 < p < 2, then E|S,—a,|” = o(n) as n — oo,
where a, =0if 0 < p < 1 and a, = nEX, if 1 < p < 2. By using an inequality due
to Essen and Von Bahr [3], Chatterji [2] extends the result to the following form:
If X,, X, - - are dominated in distribution by a random variable X with E|X|? < oo
for some 0 < p < 2, then EIS,,—a,,[” = o(n) as n > oo, wherea, = 0if 0 < p < 1 and
a, = Y"1 E(X, | Xy, , X-p) if 1 £ p < 2. In this note, by applying an inequality
due to Burkholder [1], we will prove the following result, which relaxes the domina-
tion condition of [2] to uniform integrability.

THEOREM. Let (|X,|?, n = 1) be uniformly integrable for some 0 < p < 2. Then as

n— oo
E|S,—a,|" = o(n),

where a, =0 if 0 <p <1, and a,= Y1 E(X,| Xy, ", X,- ) if 1 £p<2.

ProOF. Define Y, =X, if 0<p<1 and Y, =X,—EX,|X,, -, X,_,) for
I <p<2 1t is easy to see that if (|X,|P, n=1) is uniformly integrable, so is
(B(|X,|P| Xy, X,—y), n2 1). Hence (|Y,|?, n 2 1) is uniformly integrable. For
&> 0, choose M > 0 so that [jy,;>|Y,|” <& for all n > 1. Put
Ynl = YnI[lY,.I§M]’ Yn” = Yn_ Ynl'
(a)Ifo<p<l,
E[S,|P = E[Y (Y, + Y|P < EQH | Y|P+ ECS | )P
SEQH W)+ XL E|Y " < (nM)P + ne,
and hence E|S,|? = o(n) as n — co.
(b) If I < p <2, by Burkholder inequality [1] there exists a constant A,>0
satisfying
A,E |Z'{ Yklp = E(Z'{ Y2)P2, nz=l.
Hence
A E|S,—a, = 4,E[Y1 Y < E(TE v
= EQQ1 (Y2 + Y2 S EQG Y ADPP+EQS Y/ 22
< B3 Y2+ EXL |G < (aM2)P2 4 e,
Therefore E|S,—a,|” = o(n) as n - co.
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(c) Let p=1. Then Y7 n" Y, —EQY, | Xy, KXo ) converges a.s., since
|Y,'| £ M. Therefore Y {Y/—E(Y,| Xy, -, X,_1)} = o(n) as. by Kronecker
lemma; EIZ'{{Y,"—E(Y,"IXI,---,X,‘_I)}I =o(n) by Lebesgue dominated con-
vergence theorem. Since

E>% (VW —EY"| X1, X )} S2EY |Y,"| < 2ne,
we obtain that

E|Y1 Y| =E|X1{Y —E(Y/ | X X ) +Y —EY | Xy, X2 )Y

=< o(n)+2ne,

and therefore E S, —a,| = E|Y% Y| = o(n) as n — co.
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