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1. Introduction and summary. Let X, X;, X5, -+ be a sequence of independent
random variables with common distribution function F(x). Let v be a discount
factor (0 < v < 1). Then we define

(1'1) Xv=ZI:o=kaXlu

which may be interpreted as the present value of a sum of certain periodic and
identically distributed payments X;.
We assume that the first three moments of X, are finite:

(1.2) p=[r2xdF(x) <o, ¢*=[r2(x—u)?dF(x)< oo,
p=[12|x—pl?dF(x) < .

It will be shown that the normalized random variable

(1.3) Z,- @(Xv_i>

o 1—v

is asymptotically normal for v —» 1. The analogue of the Berry-Esséen theorem
(see [1], [2], [3], [4]) will be established for the difference F,(x)— A", (x), F,(x)
being the distribution of Z,, whereas 4", (x) is the normal distribution with zero
mean and variance (1+v)~1:

3+ x
(1.4) #v(x)=(%2>f exp(_l;f_’tz)dt.

The proof uses those Fourier techniques which are masterfully presented in Feller’s
book [3] for the proof of the “ordinary’” Berry-Esséen theorem.

In the last section the corresponding estimate is established for the compound
Poisson process.

Other aspects of the Discounted Central Limit Theorem are treated in a paper
by Whitt [S].

2. The discounted version of the Berry—Esséen Theorem. We do not attempt to
prove asymptotic normality of Z, under the most general conditions; let us
proceed directly to the analogue of the Berry-Esséen theorem (from which
asymptotic normality naturally follows).
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THEOREM 1. If (1.2) holds, then for all x
(2.1 |F(x)— A (x)] £ Clpja)(1—0)*.
In the proof we shall see that this is true for C = 5.4.

ProoF. Of course we may assume u = 0. Let us denote by ¢ and ® the charac-
teristic functions of X, and Z, respectively. We need the following basic

LEMMA. Forall x and T > 0

22 Fyx)— A R PPN B S P
I SN 1L UG
with m = max A /(x) = A4",/(0) = <£i£)>T

2n

This lemma is a special case of Feller’s ““Lemma 2 ([3] page 512). Furthermore
we need Feller’s (5.6) of page 516: For |C| =< 02/p we have

(2.3) llog () +3070%| <
The formulas (1.1) and (1.3) mean that
(24 ®0 = ] ¢< i c)
such that
@5) log () = ¥ log¢>( o c)
k=0
From this and (2.3) we obtain for |{| < (1 —-v)_*a3/p
1 {2 S5p (I-0)*
(2.6) S Y e Pyt prarape 1+v+v |C|

Let 7= (1—0v)"*¢%/p. Thus the integrand in (2.2) is dominated by

1 12 5 p (1—v)?*
2.7 Cexp( -2 2P -1
27) |lep< 21+v>[exP<l2a3l+v+02|C‘
But the latter is, because of |¢'— 1| < |¢| - €!!, dominated by
5p (1—0) ¢ 5pQ
2.8 e _ A T4 B
(2.8) o3l soget &P 21+u+1za ]+v+02| |

St
2140 12631 +v+0?

5 1—0p)* 2 )t
p (—v) 2expf — 1 ¢ Sp (I-v) or).
]20 1+v+v

Extending the integral in (2.2) from —oo to + oo, using the above estimate, and
remembering that |12 1% exp (—1?)dt = (n#/2), lead to

29) |F()—A(0)] < plo® C(1 0,
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where

(2.10) C_15 1 11 5 1 “%+24(1+u)%
' 1241 +o+02\214+0 121+0+02 n(2m)t -

One may take C = 5.4, because for 0.96 < v <1 the above formula leads to a
smaller constant, whereas for 0 < v < 0.96 we find that 5.4 (1 —v)? is greater than
one, such that (2.1) is true anyway.

3. Further discussion. The factor (I —v)* in (2.1) cannot be improved for v — 1.
Indeed, for any alternative inequality to (2.1), with (1 —v)* replaced by some
function f(v), the passage to the limit (v — 1, t — 0, respectively) in the next section
shows that for some 4 > 0

e _ o

o 1101%—
[

The statement now follows from (log 1/v)* = (1 —v)* {1+ O0(1 —v)}.
Obviously the constant C can be improved, and it would be desirable to find
better estimates.

(3.1)

4. Formulation for the compound Poisson process. Let {X,},,, denote a com-
pound Poisson process with X, = 0. Thus

© k
@1 PIXsx]= Y e -m(“’)

F*(x).

Here « is the Poisson parameter, F(x) the distribution of the magnitude of the
individual jumps (which in our context, should be interpreted as payments). We
assume that the first three moments of the latter exist. It is easily verified that

(4.2) E[X]=atm, o= Var[X]=o[?2|x|?dF(x),
iim,_q p,/t = lim,_o E[|X,—atm|*]jt = a [£ 3 |x|> dF(x),
with m = [1® x dF(x).
Let § > 0 be a rate of interest. Thus the random variable
4.3) Xy=[Roe PdX,

represents the sum of the discounted payments. We wish to establish the Central
Limit Theorem for the corresponding normalized random variable

p t am
(4.4) Z, = <a_§mx—)) [X,,~_ﬁ-].

Let Fg(x) be the distribution of Z;.
The problem is easily solved by reduction to the discrete case, followed by an
obvious passage to the limit. From Theorem 1 and (4.2) one gets
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THEOREM 2. If {13 |x|* dF(x) < oo, then for all x
. <8 : [ |x]PdF(x)
(4.5) |Fp(x)‘~/V 1(x)i = C<&> m’

where we know that C = 5.4 does the job.
Clearly this estimate can be established for a larger class of homogeneous
processes with independent increments. One needs essentially that

(4.6) lim 2% (1 e=P)*
’ t—-0 0,
exists.
REFERENCES

[11 BerRry, A. C. (1941). The accuracy of the Gaussian approximation to the sum of independent
variates. Trans. Amer. Math. Soc. 49 122-136.

[2] Esséen, C. G. (1945). Fourier analysis of distribution functions. A mathematical study of the
Laplace-Gaussian law. Acta Math. 77 1-125.

[3] FELLER, W. (1966). An Introduction to Probability Theory and its Applications 2. Wiley, New
York.

[4] GNEDENKO, B. V. and KoLMOGOROV, A. N. (1954). Limit Distributions for Sums of Independent
Random Variables. Addison-Wesley, Reading.

[5]1 WartT, W. (1970). Discounted Central Limit Theorems and Stochastic Abelian Theorems.
Technical Report, Department of Administrative Sciences, Yale Univ.



