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INFINITESIMAL LOOK-AHEAD STOPPING RULES!

By SHELDON M. Ross

University of California, Berkeley
1. Introduction. Let X = (X,, ¢ = 0) be a strong Markov Process having stationary
transition distributions, and sample paths which are almost surely right continuous
and have only jump discontinuities. The state space .S of the process is assumed to
be a Borel subset of a complete separable metric space and we consider the problem
of selecting a stopping time T maximizing

M Efe " f(X)—[5e™* (X)) ds],

where f and ¢ are continuous real-valued functions on S, 1 =0, and E* denotes
expectation conditional on X, = x.

In the second section of this paper, we show that under certain conditions an
infinitesimal look-ahead procedure is optimal. This result generalizes certain
discrete time results given by Derman-Sacks (1960) in [5] and independently by
Chow-Robbins (1961) in [4]. In the third section, a related approach is described
and the resultant procedure is shown to be optimal under slightly more general
situations. The fourth section considers a class of continuous time Markovian
Decision Processes for which the criterion function is closely related to (1).

2. Infinitesimal look-ahead stopping rule. A stopping time 7 is defined to be any
nonnegative extended real-valued random variable such that for all >0, {t <t}
is contained in the sigma field generated by {X,, 0 <s<t}. A stopping time t* is
said to be optimal at xe S if

E e f(Xw) =[5 e " c(X,) ds] = max, EX[e™ " f(X)— s e (X ) ds].

If ©* is optimal at x for every xeS, then it is said to be optimal.
Define the infinitesimal operator a(x) by

(2) a(x) = limh_'0+ Ex[f(ih)—_f@],

h

We assume that fand X are such that the limit in (2) exists.
We first state the following well-known result. For a proof, the reader should
consult Breiman [3], page 376.

LeMMA 2.1. Suppose that both f and o are bounded and continuous.
(a) For any stopping time t© and A > 0,

Ee™f (X)]—/(x) = E*[[s e *((X,) — Af (X)) ds].
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(b) For any stopping time t such that E*t < oo,
Ef(X)]-f(x) = E[[d (X,) ds].
Now define the set B, =S as follows
B, = {x:a(x)— 4f(x)— c(x) < 0}
and let
7,* =inf{t 2 0: X,eB,}.
Let P* denote probability conditional on X, = x.

THEOREM 2.2. Suppose that f and o are bounded and continuous.
(a) For A>0, if B, is closed in the sense that
P*{3t=0:X,¢B,} =0 forall xeB,,

and if T, * is finite with probability one for all starting points xe S, then ©,* is optimal.
(b) For A =0, if B, is closed in the sense of Part (), if inf, c(x) > 0, and if 1o* is
finite with probability one for all starting points x€ S, then ty* is optimal.

PRrOOF.

(a) By Lemma 2.1, we have reduced the problem to one in which there is no
reward given for stopping, and there is a cost a(x) —Af(x) —c(x) per unit time for
being in state x. The result follows from this.

(b) If E*t = o0 and inf, c(x) > 0, then E*[ f(X,)—[§c(X,)ds] = — oo, and hence
we need only consider rules such that E*r < co. Now, by Lemma 2.1, we have that

A3) E[f(X)—[se(X) ds] = f(x)+ E*[[o («(X ;) — e(X,)) ds]

whenever E*t < c0. The argument now follows as in Part (a). []

What we have done can perhaps best be described as follows: We define 7,*, the
infinitesimal look-ahead (ILA) rule, to be the one which stops at state x if and only
if the infinitesimal look-ahead gain is no greater than the stopping gain. Theorem
2.2 then says that if the set of stopping states is closed then t,* is optimal. This
result is clearly the continuous time analogue of the Derman-Sacks, Chow-
Robbins result of optimality of the one-stage look-ahead rule in the monotonic
case (see [4] or [5)). '

ExamPLE 1. Let Y, Y,, :-- be a sequence of i.i.d. bounded random variables
with cdf F, and let (¥, t = 0) be a nonhomogeneous Poisson Process, independent
of the Y;’s, and with a continuous non-increasing rate function u(z). Let M, =
max(Y;, *--, Yy,), and consider the Markov Process {X, = (t, M,), t = 0}. We take
f(t, m) = m and assume that c(¢, m) is non-decreasing in both ¢ and m. This is, of
course, the continuous time analogue of the famous house-selling problem (though



INFINITESIMAL LOOK-AHEAD STOPPING RULES 299
for the sake of generality we have not required that F(0) =0, see [4], [5] and [10]).
M, ,—M
a(t,m) = lim,,_,oE[—”—"h———" M, = m:|

= u(H)E[max (Y, m)—m]
= () [y dF(y+m).
Since |,y dF(y+m) is non-increasing in m, it follows from Theorem 2.2 that
7,  =inf{t 2 0:pu(t) [y dF(y+M,) < c(t, M)+ IM,}
is optimal.

ExAMPLE 2. Now, consider Example 1 with the exception that once an offer is
rejected it is no longer available. Clearly, the optimal return for this problem is no
greater than the optimal return for the original problem. Thus, since the optimal
policy t* is a legitimate policy for this new problem (as it never accepts an old
offer) it follows that it is also optimal for this problem. This is related to certain
results given by Elfving [8] and Siegmund [13].

ExampLE 3. Let (IV,, 1 2 0) be a Poisson Process with rate u and consider the
Markov Process (X, =(, N,), t 2 0). Let (¢, N,) = N, and f(t, N,) = —u(T—1)?/2,
where T is some fixed constant. Then a(t, N,) = u(T—1t) and from Theorem 2.2 it
follows that 7,* =inf {r > 0: N, = u(T—£)(1+ A(T—1)/2)} is optimal. This problem
arises in determining the optimal intermediate time to dispatch a Poisson Process
(see Ross [11]).

ExaMPLE 4. Let (V,, = 0) be a nonhomogenecous Poisson Process with rate
u(t). Suppose the reward for stopping when N, = x is x and the continuation rate
at N, = x is c(x). Suppose further that u(¢) is continuous non-increasing, and ¢(x) is
continuous non-decreasing, and let 1 be the discount factor.

The state space is thus X, = (¢, N,) and

Nh_NO
h

a(t, n) = lim,_,, E""l:——
= ().
Thus, from Theorem 2.2, we have that

' f)—c(N,
7,% = inf{t =0:N, g%c(’)}
is optimal. This example with c(x) = ¢, and u(t) = u was treated in Taylor [14] by a

different method.?

2 Taylor’s answer differs somewhat from ours as he supposed that [log.(1 +A/u)]-*—c/i was an
integer.
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3. Arelated approach. Let Z, =e *f(X)—[oe *c(X,)ds, and let B,=
{xeS:E*Z, < f(x) for all = 0}. Thus, B, is the set of states at which stopping is
better than continuing for any fixed amount of time.

LeMMA 3.1. If P*{3120:X,¢B,} =0 for all xeB,, then
E(Z,|X,05u<s5]<Z, as. VxeB, Vs<t.
Proor.
EZ,|X,0<u<s]
‘ =Z+e ™ EXe 79 f(X)—[Le” ™9 o(X,) du—f(X,) | X,]
=Z+e MEX[e MO f(X,_)— [ e M e(X ) du—f(Xo)| X,]-
Since xeB, implies by hypothesis that X,eB,a.s., the result follows from the
definition of B;. []
LemMa 3.2. If E*|Z,| < oo and liminf, [, ,|Z(¢)|dP* =0 for all x and all 1, and if
P{3t20:X,¢B,} =0 V xeB,,
then
E*Z,. < f(x) VxeB, V1.

PRrOOF. From Lemma 3.1, we have that (Z,, ¢ = 0) is a supermartingale whenever
the initial state is in B;. Thus, the result follows from a standard supermartingale
systems theorem (see Breiman [3], page 302).

THEOREM 3.3. Under the conditions of Lemma 3.2,
Supt Ex(Zt) =f(x) X EE}.
=>f(x) x¢B,.

PrOOF. When xe B, sup = f(x) from Lemma 3.2. When x¢ B,, the result follows
from the definition of B,. []
Let us define the stopping time 7, by

7, =inf{t 2 0: X,e B,}.

Now, suppose that there exists an optimal stopping rule t for x. Let 7, =
min(7, 7,), then from Lemma 3.2 it follows that 7, is also optimal for x.3 But it is
easily seen that 7; must be a.s. equal to 7,, for if 7, <7, with positive probability
then with positive probability 7, will stop in some final state y¢B,. However, for
each y¢B,, there is a fixed time t, such that E*Z, > f(y). Hence, if we define the
stopping time 7, by

T, =T, if T, stopsina state yeB,,

=1,+t, if 7, stopsinstate y¢B,,

3 All of this is assuming, of course, the conditions of Lemma 3.2.
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then, using the strong Markov property, it follows that 7, will be strictly better
than 7, which would contradict the optimality of 7,. Therefore, if there exists an
optimal rule for each x, then it follows that 7, is optimal. It should also be noted
that 7, is just the continuous time analogue of the functional equation rule (see
Bellman [1]).

Some sufficient conditions for the existence of an optimal stopping rule are given
in Dynkin [7] and Taylor [14]. To determine the connection between 7, and the
ILA t,*, we first note that B, B, and so 7, = 7,*. To go the other way, we need
the following:

COROLLARY 3.4. If the conditions of Theorem 2.2 hold, then

B,=8B, and hence
f}' = T),*‘

PrOOF. If xe B, then since B, is closed, it follows that E*[ [, e ™ *(a(X,) — Af (X ) —
c(Xy)ds] <0 for all 7, and so the result follows from Lemma 2.1 and
Lemma 3.1. []

Aside from its own interest, the reason we have considered this approach is that
one may easily construct examples in which B, is closed but B, is not. The idea is
also illuminating, and we paraphrase it as follows: Call a state bad if stopping at
that state is better than continuing from that state for any fixed amount of time.
Then if this set of states is closed and if an optimal rule exists, then the rule which
stops the first time it enters a bad state is optimal. Since a discrete time Markov
Process may be regarded as a continuous time Markov Process (with X," = (¢, X})),
it follows that this result also holds for the discrete time problem.

4. Some related criteria. In this section, we consider the problem of choosing a
stopping time t maximizing either

_ B[t (X )~ fye* o(X,) ds]

4) Y. ETl—e ] , where 1 > 0
or
(5) ¢. = EL/(X)=loeX) ds], where 0 < E*1 < 0.

E*t

Criterion (4) represents expected total discounted return, and (5) the long-run
average return per unit time, when a sequence of independent stopping games are
played, each starting at x. These criterions also arise in connection with a 2-action,
continuous time Markovian Decision Process (see [12]) in which the “stop” action
resets the process to a fixed initial state x. (In this connotation, —f(y) is usually
thought of as the cost of resetting from state y.) For any constant b, let

(6) Yb) = (.~ BET[1—e™*]
@) = E"[e™ " f(X)—[5 ™" (c(X,) + Ab) ds],
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and let

®) ¢(b) = (¢.—b)E™®

® = E*[f(X) =[5 (c(X,) + D) ds].
LemMmA 4.1.

(i) If for.some b, 0 = ..(b) = max, \/(b), then b =\ » = max_ ., and conversely;
(ii) If for some b, 0= ¢ (b) =max, ¢ (b) where I = {1:0 < E*t < 00}, then
b= ¢.=max,. ., and conversely.

Proor. Follows directly from (6) and (8).

REMARK. Part (i) of the above lemma seems to be new, as criterion (4) does not
seem to have been previously considered in stopping rule literature. Part (ii) is not
new and may be found in either Breiman [2] or Taylor [14].

We shall suppose for the remainder that optimal rules exist for criterions (4) and
(5) and we let V' =max_ {,, and g = max, r¢..

THEOREM 4.2. Under the conditions of Theorem 2.2,

(i) If By = {x:0(x)—Af(x)—c(x) £ AV} is closed, and if t* =inf{t = 0:X,eB,}
is a.s. finite for all starting states, then t* is optimal for (4).

(ii) If By = {x:a(x)—c(x) < g} is closed, and if t* =inf{t=20:X,eB,} is as.
finite for all starting states, then t* is optimal for (5) whenever 0 < E*t* < c0.

Proor. Follows directly from (7), (9) and Theorem 2.2. []

ReMARK. Even though V and g are in general unknown, Theorem 4.2 is quite
useful as it often enables us to determine the structure of the optimal rule. Also
when bounds are known on V or g, then Theorem 4.2 may be applied to determine
the optimal action at least in some states. For example, if L V< U and the
conditions of Theorem 4.2 are satisfied, then it follows that the optimal rule stops
in state x whenever a(x)—Af(x)—c(x) £ AL and continues whenever a(x)— Af(x)—
c(x) > AU.

EXAMPLE 5. Let (N,, t 2 0) be any right-continuous counting process with left
limits. Let ¢(n) be the cost rate when there are » in the system, and suppose that

c(n) is nonnegative and non-decreasing. Let f(x) = —R (i.e., R is the reset cost).
Then the related Markov Process is
Xt=(Nsss§t)’ and
X, =0.

Hence, t* =inf{t > 0:¢(N,) = (R—V)} is optimal for (4), and t*=inf{t = 0:
c(N,) =2 —g} is optimal for (5). Thus, for the average cost case, it is optimal to
reset the process whenever the present cost rate is at least as large as the optimal
average cost per unit time.
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