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ON A CLASS OF RANK ORDER TESTS FOR REGRESSION WITH
PARTIALLY INFORMED STOCHASTIC PREDICTORS!

BY MALAY GHOsH? AND PRANAB KUMAR SEN
University of North Carolina

0. Summary. Hajek (1962) has obtained asymptotically most powerful rank order
tests for simple linear regression with non-stochastic predictors. His findings are
extended here to the multiple linear regression model with stochastic predictors,
including the situations where the predictors are partially informed. The proposed
tests are shown to be conditionally distribution-free. Their asymptotic properties
and efficiencies are studied, and the asymptotic optimality is established under the
conditions of Wald (1943).

1. Introduction. Consider a sequence of stochastic matrices Z, = (Z,,, -+, Z,,),
vzl, where Z), =(Y,,X,))=(Y,, X, XP)(p=1), 1<i<v are
Lid.rv (independent and identically distributed random vectors) having an
absolutely continuous df (distribution function) F(y, x;B), where x € R?, the
p-dimensional Euclidean space, and g = (f,, -, B,)' is some (fixed) point in R?
on which the df F, depends in the following manner. We assume that F,(co, x; §)
is independent of B and denote it by Fy; (x), x € R”; the corresponding density
function is denoted by f; ,(x). The conditional density of Y,;, given X,; = x,
depends on B and is assumed to be of the form f;, (y | x;B) = foolly—PFo—
v 1p'x]/o), where B, and o( > 0) are nuisance parameters. Thus, the density
function corresponding to the df F,(y, x; ) is

(1.1) Ny, x; B) =f01,v(X)f20([y—ﬁ0—v._*[f'x]/a), vz 1
We want to test the null hypothesis of no regression on Y,;on X,,, i.e.,
(1.2) Hy:p = 0 against the alternatives B # 0.

Note that under H,, f,(y, x;0) = fo, (X)f20([y—Bol/0), and hence Y,; and X,;
are stochastically independent. Also, the sequence of observations {Z,, v = 1}
together with the sequence of df’s {F,(y, x;B), v = 1} generates a sequence of
probability spaces {(X,, «,, P,(B)), v = 1}, where ¥, is the (p+1) v-dimensional
Euclidean space, </, is the o-field of Borel subsets of ¥ and for each (fixed)
B(e R), P,(P) is a probability measure defined on (¥,, «/,) determined uniquely
by [[io1FexisB) = [T7-1F (XD, .x;”;B). Consequently, P,0) is the
probability measure corresponding to H,. Similarly, {X,, v = 1} together with
{Fo1,(x), v 2 1} generates a sequence of probability measures {P,*} on the
pv-dimensional Euclidean space.
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We denote by 2 the class of all densities with finite Fisher information (cf. [8]
page 17) and assume that f,, € 9. For f,, and a df G with density g € 2, we define

(1.3) ¢(u) = —f2 o(Fr0 W)/ f20(F30 ),  ¢*w) = —g'(G™'(w)/g(G™ ' (),
O<u<l;
(1.4) I(f20) = [6 #*(u)du(< ) and I(g) = [§ ¢**(u)du(< o).

We introduce a class of scores a,(i), 1 < i < v, generated by the score function
¢*(w):0 < u < 1, in any one of the three ways considered in [8] pages 157,
164-165. Then, we have

(1.5) lim, ., fo {a,(1+[uv]) = ¢*(u)}* du =0,

where [s] denotes the largest integer contained in s. Also, assume that

(1.6)  E(X,;)=0 and or some &> 0,sup, E[X};X,;]**’<c< o0;

(1.7) EX,X]) = X, (positive definite [pd]), and lim,, X, = X is finite.

Further, we consider a class of scores b,,(i), 1 £ i < v(v 2 1), generated by the
score function Y, *(u): 0 < u < 1, where we assume that

(1.8) fov*(w)du =0,  [§|yi*(w)| du < o for some r>2;
(1.9 lim, . o, {6 {bu(1+[uv])—¥i*(u)}? du =0, for k=1,--,p.
For later use, we define here

Fi(x) = P[X{P < x], Fue,(x, x') = P[X{Y < x, X{” < x'],

and let HQ(u, v) = P[F, (X®) S u,Fp (X®¥) < 0], 0<u,0<1,1 <k # k' < p;

let then
(1.10) oliy = o’ = oY **(u) du, k=1,---,p
(1.11) oy = Jo Jo U *(uWE(v)dHR(u, v), fork#k' =1,---,p.

Finally, we assume that
(1.12)  EZ,9 =((¢{2,))is pd for all v=vo;  lim,_, X, = X© exists.

In Section 2, a class of permutationally invariant (conditionally) distribution-
free tests is proposed and studied. These tests are useful when the X,; are partially
informed, that is, they are not observable, but only the ranks on them are available
—a case that arises in many educational or psychometric problems involving
ranked data. In Section 3, the asymptotic permutation distribution of the proposed
class of test statistics (under H ) is developed. The asymptotic non-null distribution
theory is developed, along the lines of Hajek (1962), in Section 4. In Section 5, the
optimality properties of the proposed tests are established under the conditions
of Wald (1943), and the asymptotic efficiency results are briefly presented.
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2. A class of conditionally distribution-free rank order tests. Let R(Y be the rank

of Y,; among Y,;, -, Y,, and let R be the rank of X¥ among X%, ---, X%
fori=1,:-,v,and k = 1, ---, p. Thus, we use separate ranking for the different
rows of Z,. We define the collection (—rank) matrix by
(2'1) RV! = ((RV(I)))j=0, 1,"',p = (RV(O),’ Rv(l)l’ o b RV(p),),'
i=1,-+,v

Each row of R, is some permutation of the numbers 1, ---, v. Let
(22) Sv = (Slv’ T, Spv)l; Skv = V—%ZIY: 1 [bkv(Rtl:))_ Ekv][av(R(v(i)))_av]’

- k — 1’ . .’p’

where by, = v 'Y/ b(0), k=1,-,p, and a, = v 'Y} | a(i). The test
statistic to be considered is a quadratic form in S, and is based on the rank
permutation principle of Chatterjee and Sen (1964) (see also [12]).

Since each row of R, is a random permutation of the numbers 1, ---, v, R, is
a random matrix having (v!)?*! possible realizations. Now, under H, in (1.2),
the Y, are i.i.d. rv distributed independently of the X,;. Hence, under H,, the v!
possible permutations of Y,;’s are independent of the permutations of X{¥’s and
are equiprobable among themselves, each permutation having the probability
1/(v!). Let Ry =(R,V, -+ R, ). Two such matrices, say, R,,, and R},
are said to be permutationally equivalent when it is possible to arrive at one
from the other only by interchanging its columns. So if R}, is a matrix having
the same column vectors as of R, o, but so permuted that the first row of it consists
of the numbers 1, ---, v in the natural order, i.e.,

(23) Ro) = (RE =10 REY =1 1<igy,

then RY,, is permutationally equivalent to R,,. Thus, corresponding to each
R}, there will be a set #(R},,) of v! realizations of R, such that any member
of the set is permutationally equivalent to R¥,,. The probability distribution of
R, (o) over the (v!)? possible realizations will depend on Fy, ,(X) even under H,,
(unless Foy (x) = [ [7= 1 Fy,(x4)); thus, in general, S, is not distribution-free under
H,. However, given a particular set #(R},) (of v! realizations), the conditional
distribution of R o, over the v! permutations of the columns of R}y, would be
uniform under H,, i.e.,

(2.4) P[R, ) =Ty0) | FRYo), Hol =(»1)™! forall 1, L (R¥)

irrespective of Fy,; ,(x). Let &, denote the permutational (conditional) probability
measure generated by the conditional law in (2.4). Then, we arrive at the following
results by some standard computations:

(2.5) E[S,|2,]=0, E[SS/[2]=V,=((w,));
(2:6) v,y ={0=1)7" X [ (REY) = by JLbeo(RE) — b TH1 v X3 [a (i) - 3,17}
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for k, k" =1, ---, p. We propose the following test statistic
(27) Mv = Sv/Vv *Sv’

where V * is a generalized inverse of V,. Our test procedure is based on the
following test function:

{i(Z,)isequalto 1, 6, , or 0 accordingas M, >, =or < M, ,,
(2.8) where M, , and 9§, , are so chosen that E[{,(Z,) | 2] = o, the
level of significance.

This implies that E[{(Z,) | Ho] = a, i.e., {,(Z,) is a similar size « test. However,
this procedure requires the evaluation of v! possible realizations of M,. The
task becomes prohibitively laborious for large v, and for this reason, in the next
section, we simplify the large sample permutation distribution of M, .

To illustrate the proposed test procedure, we consider the simple case of
Wilcoxon scores for all the p+1 variates. In this case, a,(i) = b,,(i) = -+ =
b, (i) = i/(v+1), 1 =i = v. We denote the Spearman rank-correlation matrix

(of order p+1)
1 dy,
D, = ,
dOv Dv(O)

where dOv = (dOIvs T, dOpv),’ Dv(O) = ((dkk’v))k,k’: 1,-:+,p and

(29) dyy, = [12/(2=1)] T, (RD — (v 4 1)2)RS — (v+1)[2), 1,5 =0, 1, p.

Then, after some algebraic simplifications, one gets from (2.2), (2.6) and (2.7) that

(2.10) S, = [ = /(1204 1)dou;
(2.11) V, = [(v—1)/(144(v+1)*)]D,0);
(2~12) M, =(v— 1)d6vaﬂ?0)dov,

where D, is a generalized inverse of D,,. Thus, the proposed statistic is defined
explicitly in terms of the elements of the Spearman rank-correlation matrix. The
conditional (small sample) distribution can be constructed as above, while, as we
shall see in Section 3, M, has asymptotically (under H,) a central chi-square
distribution with p d.f. (degrees of freedom). Thus, for large samples, the test
procedure consists in rejecting the null hypothesis H, when M exceeds the upper
100a per cent point of the y* with p d.f. Some other special cases of M, can be
constructed similarly.

3. Asymptotic permutation distribution of A/,. We shall show that for large v,
one can approximate the permutation distribution of M, by the central y?
distribution with p d.f.; the later distribution function is denoted by Q,(x):
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0 < x < 0. We denote by Q(x; RYo)) = P[M, < x|RY,), 2,], where 2, denotes
that the conditional probability is computed under (2.4). Our main result (Theorem
3.3) is based on the following two theorems.

THEOREM 3.1. Under (1.4), (1.5), (1.8) and (1.9), whenever V, is asymptotically
pd

(3.1) lim,_, , {sup,so |Q(x; R0))—Q,(x)|} =0.

Proor. By (2.5) and (2.7), it suffices to show that as v — oo, the permutation
distribution of V,”*S, converges to the multinormal distribution with null mean
vector and dispersion matrix I,, whenever V is pd. For any fixed e = (e, -+, ¢,)’
(# 0), consider the linear compound e’S,, which by (2.2) can be written as

(3-2) V_%z:=1 [av(REf(i)))_av]cvi; Cyi = ZII:= 1 ek[bkv(R(v’i‘))—[’kv], =1,

Thus, by Theorems 4.1 and 4.2 of Hajek (1961), we have only to show that {c,;}
satisfies the Noether condition (cf. [6] (3.3)) and the {a, (i)} satisfies the Hajek
condition (cf. [6] (4.10), page 514). Since the c,; are linear compounds of the
[6(R¥Y—b,,1, k = 1, -, p, which by (1.8) satisfy (coordinate-wise) the Noether
condition, it follows by some standard computations that whenever V, is pd, the
{c,;} satisfies the Noether condition. Also, for any {k,},

MaX|<j < <ipy<v {V_l ,;'V=1 [av(ij)—c_zv]z} = ﬂ—v-lkv'lv(u)du,

where n,(u) = a,*@i), (i—1)/v<u Zilv, i =1, -, v, and a,*(7) are the ordered
values of the [a,(j)—a,]’,1 < j < v. Since by (1.4) and (1.5), [ 1,(u) du is finite, if
we let v_ 'k, — 0 as v — oo, it follows that
(Max; < <... <y <o '}"=1 [av(ij)—ﬁvlz/{2}=1 [a,(i)—a,]*}
= {J1-v-u,m(u) du}/{fon(u)du} — 0
as v — oo. Thus, (4.10) of Hajek (1961) holds. []
In the next theorem we prove that V, is pd in P, *-probability as v — oo} this

extends Theorem 4.2 of Puri and Sen (1966), without using their conditions on the
existence and boundedness of the first derivatives of the score functions.

THEOREM 3.2. Under (1.4), (1.5), (1.8) and (1.9), [V—1I(g) £,(9] - 0, in P *-
probability, as v — .

PROOF. Since by (1.4) and (1.5), v™' > _, [a,(i)— a,]* = I(f5o), as v — oo, and by
(1.8) and (1.9), by, =0, v 'Y, [bi(i)= by, ]* = oip)s k =1,--+, p, it suffices
to show that for k # k', as v — o0,

(3.3) v b (RW)be (RY) =0k, — 0, in P, *-probability.
Let now H,,(u) = v~ ! [Number of F, (X¥) < u], and Hy(u, v) = v~ ' [Number
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of Fi (X)<u, Fr (XU <], 0<u, v<1, for k £k’ =1,--+, p. Also, let
Ci(i/[v+1]) = by(i), i =1, -+, v. Then,
v Y= 1 b(RED)bie(RYY) = [6 Jo v ¥ (v) dH e (u, v)
+ [0 Jo [Cu(vH () (v + 1)) =i * (v (w) /(v +1))]
* Cis(VHie(0)/(v+1)) dH o (u, 0)
+ [0 J6 [Ces(VHi(0)/(v+ 1) =Y (vHir (0)/ (v + 1))]
34 Y Ho(1)](v + 1)) dHper(u, 0)
+ Jo Jo [V (P Hio(u)/(v+ 1) = ¥, (@) T (vHy (0) ) (v + 1)) dH e (u, v)
+ Jo Jo [WEOH(0)/(v+ 1)) = Yif(0)]i *(u) dH o (u, v)
= () + (D) + 1)+ (IV)+(V), say.
Since (I) = v=' 30 Y (Fi [ XSDDWE(Fie (X)) = v 2i=1 WS, say, where by
(1.8), EIWH"? < AL [ [vi* ()| dull [4 W) dv]}* < 0 (r>2), using the

Markov law of large numbers, we obtain that as v —» oo, [(D)—a'),| — 0, in

P,*-probability. Again using the Schwarz inequality on II and following some
standard manipulations [with the aid of (1.8) and (1.9)], it can be shown that as
v — 00, both (II) and (III) tend to 0, in P,*-probability. Also,

(35 |av) = {[ f 01 (wk* (v: 1 H,w(u)>—lpk *(u)>2 dev(u)]

[[[lmfonof

where by (1.9), the second factor is finite and it converges to (9. as v — oo.
Further, on defining U,, -+, U, as independent observations from a rectangular

(0,1) distribution, and ¥, **(u) = ¢, *(i/[v+1]), for Gi—1))v < u < ifv,i=1,---, v,
we have

] |, (0 (5 00 -0 a0 |

(G6)  =El Y (U HRY D+ 1) -9 (U)F]
=Elv Y (R + )=y (U} +{d™*(U) =4 XU}

Using then the inequality that (a+5)* < 2(a*+5?), we obtain that (3.6) is bounded
by

HED ™ 2o (R Dy +1]) - **(U)}]
(3.7) +HE[vT! Yo (U (U) =9 X (U)}T}
= 2HE[W M R/ + 1) =i (U + 5 [i* *(0) — i *(w)]? du).
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By Lemma 2.1 of [6] and by Lemma V.1.6 on page 164 of [8], the right-hand side
of (3.7) -0 as v — oo. This implies that (IV) — 0 in P, *-probability as v — 0.
Similarly, it follows that (V) — 0in P *-probability as v — co. []

An immediate consequence of the preceding two theorems is the following:

THEOREM 3.3. Under (1.4), (1.5), (1.8), (1.9) and (1.12),
Sup,s o [Qx; R¥o)—Q,(x)| =0, in P, *-probability asv— oo.

It follows from Theorem 3.3 that M, , and ¢, , defined by (2.8) converge in P *-
probability, as v —» oo, to x2, and 0, respectively, where Q,(x2,) = 1—a.

4. Asymptotic non-null distribution of M ,. The asymptotic non-null distribution
of M, is obtained along the lines of Hajek (1962) (see also [8]). This is achieved by
showing the “asymptotic equivalence” (in the sense that the difference converges
in probability to 0) of M, and another statistic to be defined subsequently. The
distribution of the latter is obtained by using the ‘“contiguity” of arguments of
Hajek (1962). In view of the basic difference that our predictors are stochastic,
while Hajek’s are non-stochastic, we need extensions and modifications of Lemmas
VI.2.1.a, VI.2.1.b (page 211), Theorem VI.2.1 (page 213) and Theorem VI.2.4
(page 216) of [8]. In deriving most of these results, first, we condition with respect
to the X,; and proceed as in [8], and then pass on to the unconditional results by
using some probabilistic arguments. In this context, we first prove the following
lemma which forms a basis for subsequent results.

LemMa 4.1. Under (1.6) and (1.7), as v — oo, (i) v ¥ max, ¢;<,|X¥| - 0 ae?,
and (i) v 'Y (XH-X, PP —EXP)? >0 ae. (where X, =Y1_, X)),
for k=1,---,p.

PrOOF. For a given v, (X%)% 1 <i < v arei.i.d., and by (1.6),

E{|XP|?**2 < ¢ < 0.

Using a result of Brillinger (1962), we get that for every & > 0, there exists
an integer v, = v,(¢), such that

P{'V—IZZZI(XS'I;) Z_E(X(vkl))zl > 8} é K82+§/2/v1+5/4’

for v = vo. Hence, v™ 1Y - (XW)?—E(X®)* > 0 a.e., as v oo. Similarly, from
(1.6), X, >0, ae., as v—oo. Hence, (i) is proved. Again, for some
§'(0 <9 < 6/2) and 8" =(6—28)/(2+0'), it follows that E(|XR[**%)**" =
E|X®|**? <c<oo. Now, as before v 'Y, |XWP* —E|X®|?*" 50 ae.
Using then the inequality v=' Y , |[X® — X ®|2+7 <21+ (=15 | x b2+ 4
|X,|?*%}, and proceeding as in (i), we get

(4.1) v_IZ,LI IXg'f)—Xv”‘)P”'—EiX(v"l)l“"'—> Oa.e., as v— o0.
31If we start with a basic probability space (I, &, Q) and regard {{P,*} as a sequence of

measures induced by some sequence of measurable transformations {X,} on this space, by
convergence a.e. we mean (in the sequel) convergence a.e. (Q).
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Since, by (1.6), sup, E|X®|?*¥ < 2+ *) < o0, (i) can be oblained from
(i), (4.1) and the following relation due to Hoeffding (1951):

(4'2) hm"”"’omax1<l<v(X(k) X ”‘))Z/Z 1(X(k) Xv(k))2 =0 ae <
m, ., [V (v Y X - X020

X Y (XKW — ORI 0 g,
-, )y {X®, 1 < i < v} satisfies

vi o

Note that the lemma implies that for each k(= 1, -
the Noether condition a.e., a basic requirement of Hajek (1962) with non-

stochastic predictors.
Define the statistic T, = (Ty,, -+, T,,)" as

=y * Zz 1 X(v’:)qs(on(Yv/i)) = v_%ZlY=1 X(v’? _fZIO(Yv/i)/fZO(Yv/i)]
(4.3) = _2"_%2;21 X(v';)[5§o(Y»'i)/szo(}’il)]§ $20(x) =f2%o(x)
and Y); =(Y,;—f,)/o.

We first derive the asymptotic null distribution of T, .

LEMMA 4.2. Under (1.2), (1.4) and (1.5), T, is asymptotically multinormal
0, I(f20)%) a.e.

ProoF. Define e = (e,, -+, ¢,)’ (# 0) as in Theorem 3.1, and write
(44) e,Tv = Zl 1 [Zl 1€k Xgl()](b(FZO( Yv(i))/v%'

It follows from Lemma 4.1 that the coefficients Y £_, e, X{¥/v}, 1 < i <v, satisfy
the Noether condition a.e., while ¢(F,o(Y,,)), | < i < v, arei.i.d. with 0 mean and
variance I(f,,)(< o). From Theorem V.1.2 (page 153) of [8], it follows that
conditional on the X,;,1 £ i < v held fixed, ¢'T, is asymptotically normal
0, y'(v" 1 Y021 X, X})y) a.e., where y = ¢~ 'B. The result follows on noting that
vy X, X} > Zae. (by Lemma4.1). []

For convenience, we stick to the notations of [8], as far as possible. Define
rvi(Zvi; ﬂ) =fv(Zvi; ﬁ)/fv(Zvn 0)9 hvi = v_%‘ylxvi’ 1 é i é Vs - 2(Zl l(r 1))9
L,=]]}=1rv and & =I(f30)(y'Ey). We intend to extend LeCam s second lemma
(see [8] page 205) to the case of stochastic predictors, that is, to show that (a)
log L,— W,+&/4 — 0 in P (0)-probability as v — oo, (b) log L, is asymptotically
normal (—¢/4, £), and (c) the probability measures P () are contiguous to P (0)
The proofis based on Lemmas 4.3-4.5. We omit the proofs of the first two lemmas
as they run parallel to those of Lemmas V1.2.1a and VI.2.1b (pages 211-212) of

(8].
LEMMA 4.3. Under (1.2)-(1.7), E(W,) » —¢&[4 as v —» 0.
LeEMMA 4.4, Under (1.2)-(1.7), Var (W,—y'T,) > 0 as v - oo.
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LeEMMA 4.5. Under (1.2), (1.4), (1.6) and (1.7),
4.5) lim,_, , max, gigvpv(o)uﬂi(zvi; Bl Zy:; 0)‘1| >e] =0,
where for every A, in ,, we denote by P ,(0)(Av), the probability of A, under

P (0)-measure.

PrOOF. Along the lines of [8], it follows by some simple manipulations that
(4.6) PO)[ fd(Z,:; B) f,{Zy:5 0)—1 | >e] < 8I*(f20)E[max1 <igv lhvil]'
Now, by Lemma4.1,
max; <i<y lhviI S ZII:=1 (v~ *max, <igvy lei()l)(rnaxl <ks<p i)’kl) -0 ae.

Further, E(max; <<, |h,])* < (max, <, 1) pv ™" Y0=1 E(max, ¢, | X)), and
E(max, ¢;<,|XP|)? £ (/[2v—11){E(XP)*}F < v¥e¥ 44 for all k = 1, -, p.
Hence,

sup, E[max, <, <, [h,{1* v} £ p?c?**? < 0.

Thus, we can use the Lebesgue dominated convergence theorem (viz., [11] page
162) to obtain E(max1§i§v|hvi|)—>0 as v —» 0. The lemma follows now from
(4.6).

We are now in a position to derive the asymptotic non-null distribution of S,
by using LeCam’s third lemma (see [8] page 208). We first define the following
statistics:

(4.7) Sey = v AN [b(RY) = by 1 *(F20(Yy)),

k :1,...’p; SV*=(ST\’"."S; /;
(4-8) T = V—izxy= 1 Wk *(Ui)¢ *(FZO(Yv/i));

k=1,’P, Tv* =(T1>!\<:a'”’ Tpt I,

where the U, are defined before (3.6). We prove that S *—T * - 0and S,—S,* - 0
in P(0)-(and hence by contiguity, in P,(f)-) probability as v — oo ; this implies that

4.9) S,-T,*70 in P (0)—(as well as P (f) —) probability, as v— co.
It is sufficient to show that as v — oo, for each k(= 1, ---, p)
(4.10)  E[SE-TZ3)?[P(0)] >0 and E[(Sy—S3)* [ Py(0)] -0,
(as the rest follows by the Bonferroni inequality). Since
E[(S¢— Tkt)z | P(0)] = v~ ! Ziv= 1 E[bkv(R(v’f)) — by, — ¥, *(Ui)]2
< 2007 Y E[b(RWY) — ¥ (U 1* + 264,31 (9),

the first part of (4.10) can be proved by proceeding as in Theorem VI.1.5.a (page
157) and Theorem VI.1.6.a (page 163) of [8] and using (1.5) and (1.9). A similar
proof follows for the second part of (4.10). Thus, (4.9) is proved.
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It follows now from (a), Lemma 4.3 and 4.4 and (4.6) that for every e # 0 of
fixed real constants, (log L,, €'S,) has asymptotically the same distribution as of
(T, —¢&/2,e'T,*). Now, define

(4.11) Eooy = ((Jo Jo v ()i o(v) dH e \(u, v)));

Vi) = F'(u), k. k' =1, -+, p,
and assume that
(4.12) lim,_, , Ego, =Eo, exists and is pd.

Then, proceeding analogously as in Theorem VI.2.4 (pages 216-218) of [8], we may
show that under H,, (y'T,—¢/2,e'T,) is asymptotically bivariate normal (—¢/2,0;
¢, (e'E,V%)I(g), (€' o0,7)(fo ¢(u)p*(u) du)) a.e. Using now LeCam’s third lemma,
it follows that under P,(B) measure, e'Tv* is asymptotically normal ((e'Eq,,y)
Jo d(u)p*(u)du, (e'E,V%)I(g)) a.e. whence T,* (and hence S,) is under P(B),
asymptotically multinormal (Eoo,¥(Jo ¢(u)p*(u) du), £, - I(g)) a.e. Since [by
(1.12)], £,{ > £, and £y, —» £ (both pd), recalling the definition of M, in
(2.7), it follows from Theorem 3.2 and Slutsky’s theorem that under P,(f), M, is
distributed asymptotically (a.e.) as a noncentral chi-square with p d.f. and non-
centrality parameter

(7" Eoo(E®) ™ Looy)( o $(u)p () du)*/1(g).

5. Asymptotic optimality and ARE of the proposed tests. Let B, = (8,,, ---, B
be the maximum likelihood estimate (m.le.) of B and let ¥, = ¢7'B,, v = 1.
Define L(Z,; B) = []}=1/(Z,:; B) and the likelihood ratio (l.r.) criterion

(5.1) A, = L(Z,; 0)/L(Z,; p).
Consider the statistic
(5.2) M* =T,/E,7'T,,  where T, is defined by (4.3).

We make assumptions on y, and L(Z,;f) as in Wald [14]. It may be noted that
Wald’s assumptions include some uniformity conditions on the m.le. as well as
a moment condition slightly more restrictive than the finite Fisher information.
These conditions, however, are met by most of the well-known distributions. Then,
we have the following:

THEOREM 5.1. M *+2log, A, — 0 in P(0) as well as P (B) probability, as v - 0.

Outline of the proof. Define 1, = E.((—(6*/dy, 0y, ) log, L(Z,; Bk =1, p
Then, it follows from the results of Wald (1943) that 2 log, 4,4 ,1,,9, = 0 in
P ,(0) probability as v — 0. Also, it follows by some routine computations that
T,—I,,%, = 0 in P,(0) probability as v — co. The first part of the theorem can
now be proved by the Slutsky theorem and the fact that I,, = X,. The second part
follows from the contiguity arguments. []



660 MALAY GHOSH AND PRANAB KUMAR SEN

Thus, a test procedure similar to the one considered in (2.8), but based on
M ,* instead of M,, possesses the asymptotic optimal properties of the likelihood
ratio test as described in Theorem VIII (page 478) of Wald (1943). In particular,
the test will be asymptotically most stringent and have best average power over
suitable ellipsoids in B. Further, using LeCam’s third lemma, it can be shown
that under P (), M * is distributed asymptotically as a noncentral chi-square
with p d.f. and noncentrality parameter (y’' X£y)I(f,,). Hence, the ARE (in the
sense of Hannan [9]) of M, with respect to M ,* is given by

(53) ) e =[(yEoo(Z”)” 1200)!)/(?/2?)][)22’

where p, = ([§ p(u)d*w) du)/[([§ d*(u) du)([5 ¢**(u) du)]*. Note that in the
particular case, ¢* = ¢, Y, * =, fork =1, .-, p, e = 1, i.e., the test based on
the statistic M, is asymptotically optimal in the sense described above.

We may remark that in general the ARE in (5.3) depends on y as well as on the
underlying df through the dispersion matrices Xy, and X‘®. However, using a
well-known theorem of Courant on the extrema of the ratio of quadratic forms
(see [2]), we obtain that

(5.4) min, (max,) e = minimal (maximal) eigenvalue of EZ7'Eqo(Z?)™'Eq,.

We shall have occasion to study (5.4) in some special cases later on.

It is interesting to observe that instead of considering the rank statistic S, as
defined in (2.2), if we consider the mixed statistic S,° = (S%,, -+, S5,)’, where
SO, =v Yy XWa(RY)—a,], k=1,-+, p, (which would be more logical
to consider when the X,; are observable), the appropriate statistic will be the
corresponding quadratic form in S,°, and the ARE of S, with respect to M * will
be equal to p,%. Thus, in particular when ¢* = ¢, the resulting test is asymptotic-
ally optimal. However, as already mentioned, the mixed statistics cannot be used
when the X,; are not observable. Also, unlike M, the statistic based on S,° is
not unconditionally distribution-free when we have p = 1. Note that the permu-
tation distribution of S;, agrees with its unconditional null distribution, and
vyy, is non-stochastic. Hence, for p =1, M, = S%,/v11,, is unconditionally
distribution-free under (1.2). Actually, here, we have from (5.3) that the ARE is
equal to p,%p,?, where p, is defined as in p,, with ¢ and ¢* being replaced by
Y, and ¥ * respectively. Thus, if ¢ = ¢* and Y, = ¥, *, the test based on M, has
Wald-optimality, while the one-sided test based on S, is asymptotically most
powerful (as in [7]).

We now study the special case when F,(y, x;B) is a nondegenerate (p+1)-
variate multinormal df, and for ¢*(u) or Y, *(u)(k = 1, -, p), we use either
u—% (the Wilcoxon scores) or @~ Y(u), the inverse of the standard normal df (the
normal scores). If for all the p+1 variates, normal scores are used, it follows
readily from (5.3) (by some standard computations) that e = 1, for all p = 1 and
all possible dispersion matrices. This proves the asymptotic optimality of the
normal scores procedure when the underlying df is normal. Also, if for all the
Y, *, k =1, ---, p, we use the normal scores, while for ¢* we use the Wilcoxon
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scores, e reduces to 3/n = 0.955. Again, if for ¢*, we use the normal scores,
while we use the Wilcoxon scores for the other k-variates, we have p, = 1, and
hence, e equals the first factor on the right-hand side of (5.3). Thus, when p = 1,
e = 3/r; for p = 2, the bounds in (5.4) depend on the grade correlations of the
X,;, and the minimum of the lower bound and the maximum of the upper bound
(over the variation of the parent dispersion matrix) when computed agree, incident-
ally, with similar bounds (0.866, 0.965) in [1] for the bivariate (one-sample)
location problem, while for p = 2, by proceeding as in [13], we have e < 1,
uniformly in the parent dispersion matrix. Finally, if for all the (p+ 1)-variates,
we use the Wilcoxon scores, p, = 3/m, and hence, all the values and bounds
obtained above need to be multiplied by 3/7. Thus, forp = 1, e = 9/n?, forp = 2,
the two bounds are (0.827, 0.922), while for p = 2, e < 3/n, uniformly in the
underlying dispersion matrices.
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