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FIRST PASSAGE TIME FOR A PARTICULAR GAUSSIAN PROCESS

By L. A. SHEPP
Bell Telephone Laboratories, Incorporated

We find an explicit formula for the first passage probability, Qu(T'| x)=
P.(S(t) < a,0 =t < T| S(0) = x), forall T > 0, where S is the Gaussian
process with mean zero and covariance ES(7)S(t) = max (1—|t—1], 0).
Previously, Q4T | x) was known only for 7 = 1.

In particular for 7 = n an integer and —o0 < x < a < 0,

1
Qa(Tl X) = — j‘u T jdet Oo(Yi—=Yyjs1+a)dys dynsy,
o(x)
where the integral is an n-fold integral on y,, * - -, ¥,4+1 over the region D
given by
D={a—x<y, <y < < Yns1)

and the determinant is of size (n+1)x(n+1), 0 < i, j = n, with yq = 0,
Y1 = a—x.

1. Introduction. Let S = S(#), 0 < t+ £ T be the Gaussian process with mean
zero and covariance

(1.1 ES(?)S(t) = l—lt—r[, |r—r| <1
=0, [t—‘c| > 1.

As observed in [5], S can be represented in terms of the standard Wiener process
W by

(1.2) S(t) = W(t)— W(t+1), t=0.
The first passage probability
(1.3) O[T | x)=P(S(t) <a,0 =t = T|S0) = x)

was studied by Slepian (1961), Mehr and McFadden (1965), and Shepp (1966).
Application to a signal shape problem in radar was found by Zakai and Ziv (1969).
We give an explicit formula for Q,,(T| x) as an integral ((2.15) below) in T-
dimensional space when T is an integer, and an integral ((2.25) below) in 2[T]+2
dimensional space when T is not an integer.

Slepian found Qa(T| x) for T = 1 by deriving a recurrence equation from a
certain Markov-like property of S which was later called the reciprocal property by
Jamison (1970). Shepp found an equivaltent form of Slepian’s result by using the
Radon-Nikodym derivative of S with respect to the Wiener process and integrating
in function space. Both of the above methods break down for 7 > 1: (a) The
reciprocal property is not valid for 7 > 1; (b) S is not absolutely continuous with
respect to the Wiener process for 7' > 1. The present method relies instead on an
identity of Karlin and McGregor (1959).
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In Section 2 we derive the formula for Q (T [ x). When T'is an integer the formula
is seen to be very similar to the Fredholm formula for the resolvent kernel. We study
this similarity in Section 3, showing that the generating function of EQ,(n | S(0)),
n=20,1,2,--- can be given in terms of a resolvent kernel. Unfortunately the
resolvent kernel does not seem to be easily obtainable and all attempts to find the
generating function in simple form have so far been unsuccessful.

2. Derivation of the formulas. Let X(¢), 0 < r < J, be a real-valued Markov
process with continuous sample paths and let X, ---, X, be independent copies of
X. Suppose ay < -+ < a, and b, < --- < b, and let db,, ---, db, be infinitesimal
intervals about by, -+, b, respectively. The result of Karlin and McGregor ([2]
page 1149) becomes

(2.1) P(Xo() < <X (),0=1= 1, and X(1)edb,i=0,-,n|X(0)
=a;,i=0,-,n) = detpla,,b;)-dby, -, db,

where p.(a, b)db = P(X(7) e db [ X(0) = a) and det stands for the determinant
of the (n+1)x (n+1) transition probability matrix. Specializing (2.1) by taking
X = the Wiener process, dividing both sides of (2.1) by P(X(7) e db;,i =0, -,
n| X(0) =a;,i=0,--,n) we obtain

22) P(Wyt)< -+ < W, (1),0 =t = r[ W0) =a;,, W(t) = b;,i =0, ,n)
= (det pt(ai7 b;))/n:‘=0 pr(ai’ bi)>

where W, ---, W, are independent Wiener processes. The transition probabilities
pa, b) are given by the well-known formula

pLa—Db).

2.3) pda, b) = (zni)_ exp [_% (a - b)z]
For simplicity we first consider the case when 7 is an integer, 7 = n, and argue
as follows. From (1.2) and (1.3),
(2.4) 0T | x) = PAW()—W(t+1) < a,0
=0, W(0)—-W(1) = x)

IA
IIA

n | W(0)

= P (W) < W(t+1)-’|-a < W(it+2)+2a < - < W(t+n)
0, W(0)— w(1) = x).

1

+na,0 <1< 1| W)

Integrating out over the values x; of W at times i = 0, ---,n+1, and letting Q
denote the event of the last term in (2.4) we have,

(2.5) QUT|X) = [ -+ | P(Q, W(0) € dxo, -+, Win+1) € dx,y, | W)
= 0, W(0)— W(l) = x).
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Restating (2.5) in terms of conditional probabilities, and noting that in (2.5) we
must have x, = 0, x, = —x because of the conditioning, we get
(2.6)  QUT|x) = [ JPAQ| W(0) = xo, -+, W(n+1) = x,41, W(0)
=0, W(0)— W(1) = x)P(W(0) e dx,, -,
W(n+1)edx,. | W(0) = 0, W(0)—W(l) = x).

We introduce the processes W;, i = 0,1, -, n

2.7) Wt) = W(t+i)+ia, 01,
We have
(2.8) Q={W,(D<W (@) < - <W(),0=r=1}

and under the conditioning involved in the first probability on the right side of
2.6),

2.9) Wi{0) = W(i)+ia = x;+ia, W) = W(i+1)+ia = x;4, +ia.

Thus

(2.10) QT |x)={-- [PQ| W(0) = x;+ia, W(l) = x;4 +ia,
i=0,1,,n We0) =0, Wy0)—Wyl) = x)
x P(W(0) € dxo, -+, Wn+1) e dx,., | W(0)
= 0, W(0)— W(l) = x).

The range of integration is the set where the first probability under the integral
is nonzero, that is where the inequalities in (2.8) hold for # = 0,7 = 1 and W(0) =
x;+ia, W{1) = x;;,+ia. The range is therefore the set where x;+ia < x;4+
(i+1a,i=0,--,n Since W(0)=0 and W(l) = W(0)—(W(0)—W(1)) = 0—
(x) = —x we must have

.11 xo = 0, X, = —X.

The first probability under the integral in (2.10) is given by (2.2) since x, = 0,
x, = —x, and the conditioned Wiener processes W; are independent. Thus
(2.12) PQ| W(0) = x;+ia, W(l) = x;+ia, i =0, n)
= (det qo(xi+ia—)5j+1—ja))/n?:0 o(x;+ia—x;, —ia),
where from (2.3)
(2.13) o) = (2-# exp [—4u?].
The second probability under the integral in (2.10) is simply

(2.14) H;‘:l o= X1 D] o(xg—X1), Xo=0,x, = —x.
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Putting (2.12) and (2.14) into (2.10) we obtain after the change of variables
Yyi = x;+ia, i =0, -+, n+1, the following formula for Qa(T, X), -0 <x<a<
o, T = n an integer.

1
2.15 QT |x) = —| - | det = Vi1 ta)dy, o dy, .y,
(2.15) (T| (P(X)J;) f Pyi=yir1+a)dy, - dy, .,

where the integral is an n-fold integral on Y25 ***5 Yu+1 OVer the region D given by
(2.16) D={a—x<y,<y; < < Vn+1}

and the determinant is of size (n + 1) x (n+1),0 £ 4,j < n,withy, = 0,y, = a—x.
Of course, O (t| x) = Ofora < x.
It is easily verified that for 7 = 1 we have

(2.17) 01| x) = ®(a)— 4G D(x)
o(x)

agreeing with ([4] page 349). For T = 2, the integral does not seem to be simply
expressible.

Next we derive the formula for Qa(T| x) in case T is not an integer say 7 =
n+0,0 < 0 < 1, and integer n = 0. We have

(2.18) QT |x)=P(W(O)—W(t+1) <a,0 <1< n+0| W) = 0, W(0)
—W() = x) = P(W(t) < W(t+1)
ta <. < W(t+n+1)+(m+1)a,0 £t <0, and
W(t+0) < W(t+0+1)+a < - < W(t+0+n)
+na,0 < 7 < 1-0 | W(0) = 0, W(0)— W(1) = x).

Integrating out over the values u; and v; of W at times i and i+0,i=0,1,2, ---
n+1, we have, letting Q' denote the event of the last term of (2.18),

(219) QT |x) = [ [P, W(0) € dug, -, W(n+1) e du,,,, W(0)e dv,,
oy W+ 140) € do, ., |W(0) = 0, W(0)— W(I) = x).

>

Restating (2.19) in terms of conditional probabilities, we get
(2:20) QLT |x) = [ [ PAQ | W(0) = up, -, Wn+1) = u,,,, W)
= Vo, 1, W(n+1+0) = v,,,, W(0) = 0, W(0)
—W(1) = x)P (W) € dug, -, Wn+1) e du,, ,,
W(0) € dvy, -+, Wn+1+40) e dv, , , | W(0)
= 0, W(0)— (1) = x).
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We introduce the processes W, i = 0, -, n+1; W/, j=0,-,n

(2.21) Wit) = W(t+i)+ia, 0=tr=90
W/ (1) = W(t+0+j)+ja, 0=st=1-0.

We have Q' = Q;nQ, where

(2.22) Q= {(Wo() < < Wy i(),0 =t =0}

Q, = (Wy'(x) < - < W,(1),0 < 1 < 1-0}

and under the conditioning involved in the first probability on the right side of
(2.20) we have for0 £ i = n+1,0 < j < n,

(2.23) W(0) = W(i)+ia = u;+ia
Wi0) = WO+i)+ia = v;+ia
W/(1-0) = W(j+bD+ja = u;.,+ja.

The processes W(t) and W;(7) conditioned to satisfy (2.23) are independent and
so the conditional probability of Q' in (2.20) is the product of the conditional
probabilities of Q; and Q,. Thus with u, = W(0) = 0, u, = W(0)—(W(1)—
W(0)) = —x, (2.20) becomes

(224) Q[T | x) = [ [PAQ | W(O) = us+ia, W(0) = v;+ia,i =0, -, n+1)
X PQ, | W;(0) = v;+ja, W;(1-0) = uj,,
+ja,j=0,1, -, n)P, (W) € du,, -,
Wn+1)edu,,,, WO) e dv,, -,

W(n+140) € dv,, | W(0) = 0, W(0)— W(1) = x).

Using (2.2) to express the first two probabilities under the integral in (2.24) and
letting x; = u;+ia, y; = v;+ia, i = 0,---,n+1 we obtain the final result for
T=n+0,0 < 0 < 1, n an integer as

(2.25) Qa(Tl X) = (P_(IXSJ‘D' J(det Po(x;i—y)det @ _o(y;i— x4, +a))
Xdxy o dxyyqdyg o dy,iq

where the integral is a 2n+2-fold integral over the region D’ given by

(2.26) D ={a-x<x, < <Xypy and y,<y; < - <y h

The first determinant in (2.25) is of size (n+2)x (n+2), 0 < i,j < n+1 while the
second is of size (n+1)x(n+1),0 < i,/ < n. In each, x, = 0, x, = a—x.

One may verify that for T < 1, Qa(T] x) agrees with the previous results found
in [4] and [5].



FIRST PASSAGE TIME FOR A PARTICULAR GAUSSIAN PROCESS 951

3. Remarks on the similarity with Fredholm theory. For large T the expressions
(2.15) and (2.25) are unwieldy and apparently not suited for either numerical
calculation or asymptotic estimation. For simplicity we restrict attention here to
integral 7 and to the unconditional probabilities,

3.1) F(a) =P(S() <a, 0=t < n).

D. Slepian pointed out the strong similarity between (2.15) and the formulas
involved in the Fredholm resolvent. Indeed, if we define

(3.2) , K(s, 1) = o(s—1+a)

then it can be seen from (2.15) that
—1) (= [ Y0, uy, e u,

(3.3) Fa) = ¢ )f ffK( “ u>du1~~-du,,
nl Jo Jo 0 Vs Uyy coey Uy

in the notation of ([6] page 70). Applying Fredholm theory [6] we find that the
generating function

G4 F(,a) = ) =0 A"Fy(a)
is given as
3.5) F(A, a) = [§ exp [—A [ H(A, u,u, u) dulH(A, 0, y, y) dy

where H = H(4, s, t, y) is the resolvent kernel of K, determined uniquely by the
resolvent equation

(3.6) H(, s, t,y) = K(s, )+ A [§ H(A, s, u, y)K(u, 1) du, 0=s5<y,

the parameter a being suppressed in both A and K.
We have included this section in the hope that (3.5) could be used to obtain
bounds on the radius of convergence of (3.4) or equivalently to find bounds on

(3.7) lim ., n~ ' log F,(a),

assuming the limit exists. Unfortunately, we were unable to complete this approach
because of the difficulty of estimating H sufficiently closely.
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