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MEAN-VARIANCE HEDGING IN CONTINUOUS TIME

By DARRELL DuFrFIE AND HENRY R. RICHARDSON

Stanford University and Metron, Incorporated

A hedger is faced with a commitment in one asset and the opportunity
to continuously trade futures contracts on another asset whose returns are
correlated with those of the committed asset. Optimal futures trading
strategies are presented in closed form for several mean-variance and
quadratic objectives.

1. Introduction. This paper presents a closed-form solution for the opti-
mal continuous-time futures hedging policy under various mean-variance and
quadratic objectives. The results include, as special cases, minimum-variance
hedging and policies achieving the minimum variance for a given mean.

Asset prices are assumed to be exponential correlated Brownian motions;
that is, each asset price is of the Black-Scholes type, while rates of return
between assets are correlated. We allow the coefficients for ‘“‘return, volatility
and correlation” to depend on time. The basic proof of optimality rests on
showing that the usual inner product associated with the normal equations for
orthogonal projection is defined by an ordinary differential equation in time
with an explicit solution. Our solution was conjectured from discrete-time
reasoning, and would have been difficult to obtain by standard dynamic
programming or variational methods [such as those in He and Pearson (1988)],
since the value function is not easy to guess beforehand.

This paper differs from most continuous-time results in that markets are
incomplete in an essential way: the hedger is risk averse and has a random
endowment that cannot be replicated by security trading, and whose risk
cannot, therefore, be eliminated at any cost. Duffie and Jackson (1990) and
Svensson and Werner (1990) have other results for somewhat different special
cases. Although the related abstract existence results of Shreve and Xu (1988)
as well as He and Pearson (1988) do not allow for random endowments, it may
be possible to extend their results for this purpose. Svensson and Werner
(1990) reviews the earlier literature.

2. Problem statement and solutions. We begin with a loosely stated
version of the hedging problem and solutions. The full mathematical definition
of the problem is completed in the following section. Asset price processes S
and F are determined by the stochastic differential equations

(1) ds, = u,S,dt + o,S,dB,,
dF,=m,F,dt + v, F,d¢,,
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2 D. DUFFIE AND H. R. RICHARDSON

where B and ¢ are Brownian motions whose increments have correlation
p, €10,1] at time ¢. The functions w, o, m, v and p are deterministic.
(Technical definitions are given at the beginning of the next section.) The
hedger is committed to & units of the first asset at some time T in the future.
The risk of the corresponding uncertain value kS, can be hedged by a futures
strategy 6 ={0,: 0 <t < T}, where 6, is the futures position at time ¢. A
futures position held at some constant level 6 between two dates ¢, and ¢,
generates a credit to the hedger’s margin account of 0(F(¢,) — F(t,)) during
that interval. This process of continually crediting profits (or collecting losses)
as the futures price changes is called resettlement, or marking to market, a
feature of futures contracts that distinguishes them from most other financial
securities. We will at first assume that there is a zero interest rate, so this
distinction is not important, but later return to consider interest on margin. In
the general case, a (stochastic) futures strategy 6 generates profits (or losses)
of G(6), = [} 0, dF, by any time ¢. The total final wealth as a function of the
strategy 0 is thus W(6) = kS, + G(0),.
The hedger’s problem is then

(2) IéneagE(u[W(ﬂ)]),

where u(w) = w — cw? for some constant ¢ and where © is the space of all
trading strategies. The futures strategy 6* solving this problem is given by

1[m, .
o7 = E[TE[L —6(6%),] - a8,

where L = (2¢)" ! and

m, + o,p,U, T M O p
at=Tkexp—jt( 3—,us ds|.

t vs

Indeed, 6* also solves
3 inE([W(6) — L]?),
3) minE([W(0) - L)

where L is any given target level for final wealth.
With constant coefficients m, v, 1, o and p, the minimum variance problem

(4) gréigvar[W(B)],

where var[ W(6)] is the variance of W(#0), is also solved by 6*, where we choose
L =kS,exp(p — (map/VIT).

Finally, for constant coefficients, we can trace out the mean-variance effi-
cient frontier (provided m # 0). That is, for any mean wealth level M, the
problem

(5) znigvar[W(O)] subject to E[W(0)] =M
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is solved by 6* with

_ M - kSOexp([,u — (mop/v) — (m/v)Z]T)
1 —exp(—(m/v)2T) '

We also solve these problems (2)-(5) with the added consideration of
interest rates on futures margin accounts.

There are well known objections to all of the preceding criteria, such as
nonmonotonicity outside of certain ranges and increasing absolute risk aver-
sion. In some problem settings, nonmonotonicity can be circumvented by
assumptions ensuring that only the monotonic increasing portion of the
domain of the utility function is relevant. Since geometric Brownian motion is
unbounded, it is generally impossible to obtain this kind of restriction in the
present setting, although the probability of entering the decreasing portion of
the utility function can be made arbitrarily small. In summary, the preference
structure in this model is quite limited from a theoretical viewpoint, despite
being relatively standard in practice.

The drawbacks of the quadratic criterion are less severe if one treats the
problem as that of a corporation hedging so as to reduce the expected costs of
financial distress, or to mitigate incentive costs in managerial decision making.
In the latter case, for example, a manager of a corporation may avoid other-
wise profitable corporate projects if the unhedged project cash flows impose a
risk upon the manager (through compensation or job security) because the
manager’s actions or abilities are not fully observable to the owners of the
firm. Hedging may reduce the costs of giving the manager the appropriate
incentives in such situations, and a simple hedging criterion, such as variance
minimization, may be quite satisfactory from a practical point of view. [Aside
from such incentive effects, or other capital market ““imperfections,” a stan-
dard Modigliani-Miller (1958) argument implies that the shareholders of the
firm are indifferent to corporate hedging in financial markets.]

In our problem setting, the optimal policy may generate a final level of
wealth that is negative with some probability, however small. Under the
additional constraint of almost sure nonnegativity of final wealth, the only
feasible policy, in the general case of imperfect correlation between the two
Brownian motions B and ¢, is the policy of zero hedging. Again, this is a
theoretical limitation of the model that is often ignored in practice.

The next section presents the remaining mathematical details in the prob-
lem formulation as well as our solution to problem (3), which is basic to our
approach. Section 4 presents results for the other problems and extends the
solution to handle interest on margin accounts. The final section displays some
numerical examples.

(6) L

3. The basic problem.

3.1. Rigorous problem formulation. First, we complete a rigorous state-
ment of (1)—(5), as follows. Let (B, ¢) be a standard Brownian motion in R% All
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probabilistic statements are made (suppressing ‘‘almost surely’’) with respect
to a probability space (), .7, P) on which (B, ¢) is defined, and using the
filtration [ of o-algebras which is the augmentation of the filtration generated
by (B, ¢).

Let w, o, m, v and p be bounded measurable functions on [0, T'] into R such
that v is bounded away from zero and p, € [—1, 1] for all ¢. Given this, we can
define the Brownian motion ¢ of (1) without loss of generality by

g,=/0‘psd33+f0t 1-p2de, tel0,T].

This completes the formalization of (1) for any S, > 0 and F, > 0. A trading
strategy is an F-predictable process 6 such that

E [TOthz dt| < oo.
0

The set ® of all trading strategies is a vector space. With the above, the
stochastic integral G(0), = ({6, dF, is well defined in L?(P) for all § € ® and
all ¢. Thus, problems (2)-(5) are now completely defined.

3.2. Reduction to an orthogonal projection. It is well known that L2(P) is
a Hilbert space under the inner product (‘| -) defined by (X|Y) = E(XY) and
the associated norm || - || defined by || X[ = [E(X?)]*/2. The set

M= {G(8),: 6 € ©)

is a linear subspace of L?(P) since G is linear and @ is a vector space.
Problem (3) is equivalent to

XeM

where Y = L — kS;. By the Hilbert space projection theorem [which can be
found, for example, in Luenberger (1969)], X is a solution to (7) if and only if
(Y — X|X) = 0 for all X in M. Equivalently, we have the following characteri-
zation of optimal trading strategies.

Lemma 1. A trading strategy ¢ is optimal if and only if, for any trading
strategy 0,

(8) (L — &Sy — G(¢)r|G(6)7r) = 0.

3.3. Solution of the basic problem. This subsection presents a solution to
problem (3). We define the “tracking process” Z by

9) z,= kew|~ [Tvas]s,  cefor),
t

where

m,o.p,
'yt=—v——/.Lt, tE[O,T].
¢
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(Note that Z, = kS;.) Given a target level L for terminal wealth, we next
define G* to be the solution of the stochastic differential equation

(10) dGF = ®(Gr)dF,, §F=0,

where

(11) oGy = =™ Lz g -2z
t th vt2 t t Ut t

A solution G* to (10) exists by standard arguments, as in Protter (1990),
and G} € L% P) for all ¢. We claim that the strategy ¢ defined by ¢, = ®(G})
solves problem (3). Moreover, ¢ is in a convenient feedback form, since
G = G(g), is readily observable as the trading gains to date, while Z, is a
simple function of the observable asset price S,.

ProPOSITION 1. The futures strategy ®(G*) defined by (9)-(11) solves
problem (3).

In order to prove this result, we construct an ordinary differential equation
(ODE) for the inner product function H defined by
(12) H,= (L -2, - GrIG(9),), te[0,T].
Then we show that the solution to the ODE is H, =0 for all ¢, which
completes the proof of Lemma 1. (Recall that Z, = £S.)

LEMMA 2. Let 0 be an arbitrary trading strategy, let ¢ = ®(G*) be defined
by (9)-(11) and let H, be defined by (12) for t € [0,T]. Then the derivative
H, = (d/dt)H, is well defined and

2
. my
(13) H=-—H, tel0,T].
U,
Proor. The proof is by direct calculation, using It6’s lemma, as follows.
First, by It6’s lemma, Z solves the stochastic differential equation
dZ, = (y, + /J't)Zt + 0,Z,dB,.
We also have, for G, = G(0),,
dG,= 0,m,F,dt + 6,F,v, d¢,

= 0,m,F,dt + 6,F,(p, dB, + /1 - p? de,).

By Itd’s lemma and Fubini’s theorem, if we let X, = Z,G, and X, = E(X,), we
have for almost every ¢ in [0, T'],
dX(t)
dt

=(y, +u,)E[Z,G,] + m,E[Z,6,F,] + o,u,p,E[Z,0,F,].
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Likewise, if we let Y, = G*G,,
dy(t)
dt
Finally, (dG(2))/dt = m,E(6,F,). This implies that H exists and
dG(t) dX(t) dY(¢)
L= & " Ta
After collecting all terms and using the definition of vy,, we have (13). O

=m,E(¢,F,G,) + m,E(6,FG}) + UtzE(‘PtethZ)-

H, =

The solution to (13) is

tm%
H, = Hjexp —j; 2 ds).

Of course, since G, = 0, we know that H, = 0, and therefore H, = 0 for all
t. In particular, H;, = 0. This implies (8) and proves Proposition 1 and the
optimality of the policy ®(G*) for problem (3).

4. Related problems.

4.1. Quadratic utility maximization. Problem (2) is equivalent to problem
(3) with L = 1/(2¢). Thus ®(G*) also solves problem (2) if we let L = 1/(2¢)
in the definition of .

4.2. Mean-variance efficiency. The mean-variance efficiency of the futures
policy ¢ = ®(G*) for any choice of L is established with the following lemma.

LEmMa 3. For any L, if ¢ solves problem (3), then ¢ is mean-variance
efficient.

Proor. Suppose ¢ solves problem (3) and E[W(¢)] = M. The proof is by
contradiction. Suppose there is a futures strategy 6 such that E[W(9)] = M
and var[ W(6)] < var{ W(¢)]. Then

var[W(0)] = var[W(6) — L]
=|W(0) — LI” — (M - L)?
<IW(e) = LI* = (M — L)* = var[ W(¢)].
But this implies that [|W(8) — L||* < [|[W(¢) — L||?>, which contradicts the opti-
mality of ¢ for problem (3). O

4.3. Minimum variance for a given mean. In this paragraph, we assume
for simplicity that the coefficient functions m, v, 1, o and p are constant and
abuse the notation by using the same symbols m, v, u, o and p for the
respective constants. The Appendix includes a calculation of E(G}), the
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expected gains from the optimal trading policy for a given target level L. We

have
E(G#) = L(l - exp(—(%)zT))

- kSO(exp(,uT) — exp

agpm m 2
) ()
v v

Since E(kS;) = kS, exp(uT), the mean M(L) of the total wealth achieved by

the optimal policy given the target level L is
mpo m\2

(") ()
v v

Unless m = 0, this implies that any mean M can be obtained by the unique
target level

+ kS, exp

M(L) = L(l - exp(—(%)zT

M - kS, exp([,u — (mpo/v) — (m/v)Z]T)
1- exp(—(m/v)QT) '

For example, in order to achieve a mean that is some multiple 6 of the
unhedged mean E(kS;), we can choose the target level

Lo kS, exp(,uT)(8 - exp(—[(mpa/v) + (m/v)z]T))
° 1- exp(—(m/v)zT) '

L(M) =

4.4. The minimum variance policy. This subsection provides the solution
to problem (4), minimize the variance of terminal wealth over all futures
strategies. For the case of martingale futures prices m = 0 this problem is
solved in Duffie and Jackson {1987), so we restrict ourselves here to the case
m # 0.

For any given mean M, the previous subsection shows the existence of a
target level L and a futures strategy ¢, that solves problem (3) with the
property that E[W(e,)] = M. The target level L =L = kS, exp(u —
(mpo/v)IT) has the special property that E[W(¢7)] = L. The following propo-
sition shows that ¢; is the minimum variance futures strategy. The proposi-
tion is stated and proved in a manner showing that it does not depend on our
particular assumptions (1) about price processes, but only on the assumption
that there is a unique target level that achieves a given mean.

LeEmMA 4. Suppose ¢ solves problem (3), where the target level L has the
property that L = E[W(p)]. Then ¢ solves problem (4) (minimize variance).

Proor. If m = 0, the result follows from Duffie and Jackson (1987), so we
take the case m # 0. We equip ® with the norm 6 — [E([T62F? dt)]'/2. Since
var(-) is continuous on L%(P) and the total gain 6 — G(8), is continuous on
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0 into L% P) (by the definition of stochastic integration), the function 6 —
var[ W(0)] is continuous on O (using the Cauchy-Schwarz inequality). Since 0
is a complete space and variance is bounded below by zero, there is some
strategy 6* € © solving the minimum variance problem (4). Let M = E[W(6%)].
Then

IW(0*) — MI* = IW(ey) — MIIP = IW(gy) — E[W(ey)]II?
> |W(6*%) — M|%.

The first inequality is due to the definition of ¢,, as the solution of problem
(8) for L = M. The second follows from the fact that

IW () — MI? = var[W(ey)] + (E[W(ey)] — M)* = var[W(e,)].

The final inequality follows from the definition of #* as the minimum variance
policy. Thus

IW(r) = MI* = var[W(6%)].

Since there is a unique target level L with the property that E[W(¢;)] = L,
we know that M = L and the proposition is proved. O

4.5. Accounting for interest on margin accounts. So far, we have assumed
that futures gains or losses are accumulated without interest until the termi-
nal date T'. Suppose, however, that » = {r,: 0 < ¢ < T} is a (bounded measur-
able deterministic) interest rate process that applies to margin accounts. This
implies that the total gain process G” with interest is defined for any futures
strategy 6 by the equation

dG"(8), = 6, dF, + r,G"(0), dt,

the additional term indicating the accumulation of interest. By applying It6’s
lemma, we have the solution

G (0)r = fOTB, exp(ftTrs ds) dF, = G(§")T,

where 0 is the futures policy defined by 6{” = 0, exp([,"r, ds). Suppose ¢
solves problem (4) with r = 0, zero interest on margin. If we redefine problem
(4) so that W(8) = kS + G’(8) includes interest on margin, it follows that the
tailed policy ¢'~", defined by

_r T
(Pj )=()Dtexp(_f rst),
¢

solves problem (4). Likewise, when we consider each of the problems in this
paper with the added complication of interest on margin, the solution is given
by the tailed version ¢‘~" of the solution ¢ without interest. In particular, the
location of the mean-variance frontier is not affected by interest on margin.
(This would not be the case if the futures contract is replaced with an asset
requiring an initial investment.)
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We also remark that, with £ = 0 and r = 0 (no hedging motives or interest),
the problems faced here are a special case of those solved by Richardson
(1989). A related problem is solved by Pliska (1988).

5. Numerical examples.

This section compares the continuous-time op-

timal hedging policy with the fixed optimal hedge. Since continuous-time
hedges include discrete-time hedges for arbitrary period length as special cases,

TABLE 1

Parameter cases

Case i o m v p T*

1 0.20 0.30 0.20 0.30 0.9 1.00

2 0.20 0.30 0.20 0.30 0.0 1.00

3 0.20 0.30 0.20 0.30 0.9 2.00

4 0.20 0.30 0.20 0.30 0.9 0.25

5 -0.20 0.30 0.20 0.30 0.9 1.00

6 0.40 0.30 0.20 0.30 0.9 1.00

*Time measured in years.
TABLE 2
Hedging comparisons
Unhedged Fixed hedge Dynamic hedge
Cases Mean Variance Mean Variance Mean Variance

la* 1.2214 0.1405 1.2214 0.1405 1.2214 0.0908
2a 1.2214 0.1405 1.2214 0.1405 1.2214 0.1138
3a 1.4918 0.4389 1.4918 0.4389 1.4918 0.1844
4a 1.0513 0.0251 1.0513 0.0251 1.0513 0.0225
5a 0.8187 0.0631 0.8187 0.0631 0.8187 0.0408
6a 1.4918 0.2096 1.4918 0.2096 1.4918 0.1354
1b* 1.2214 0.1405 1.0230 0.0277 1.0202 0.0184
2b 1.2214 0.1405 1.2214 0.1405 1.2214 0.1138
3b 1.4918 0.4389 1.0533 0.0899 1.0408 0.0424
4b 1.0513 0.0251 1.0052 0.0048 1.0050 0.0043
5b 0.8187 0.0631 0.6858 0.0125 0.6839 0.0083
6b 1.4918 0.2096 1.2496 0.0414 1.2461 0.0275
1ict 1.2214 0.1405 1.5268 0.7549 1.5268 0.4770
2¢ 1.2214 0.1405 1.5268 0.4077 1.5268 0.2804
3c 1.4919 0.4389 1.8648 1.2849 1.8648 0.5164
4c 1.0513 0.0251 1.3141 0.9177 1.3141 0.8171
5¢ 0.8187 0.0631 1.0234 0.3392 1.0234 0.2143
6¢c 1.4918 0.2096 1.8648 1.1262 1.8648 0.7115

*Cases la through 6a: As in Table 1 with minimum variance for unhedged mean.

Cases 1b through 6b: As in Table 1 with minimum variance.
*Cases 1c through 6c: As in Table 1 with minimum variance for 1.25 times unhedged mean.
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TABLE 3
Hedging comparisons

Unhedged Fixed hedge Dynamic hedge
Case Mean Variance Mean Variance Mean Variance
la* 1.2214 0.1405 1.2214 0.1405 1.2214 0.1022
2a 1.2214 0.1405 1.2214 0.1405 1.2214 0.1138
3a 1.4918 0.4389 1.4918 0.4389 1.4918 0.2396
4a 1.0513 0.0251 1.0513 0.0251 1.0513 0.0232
5a 0.8187 0.0631 0.8187 0.0631 0.8187 0.0459
6a 1.4918 0.2096 1.4918 0.2096 1.4918 0.1524
1bf 1.2214 0.1405 1.1132 0.1069 1.1052 0.0780
2b 1.2214 0.1405 1.2214 0.1405 1.2214 0.1138
3b 1.4918 0.4389 1.2570 0.3388 1.2214 0.1885
4b 1.0513 0.0251 1.0258 0.0189 1.0253 0.0174
5b 0.8187 0.0631 0.7462 0.0480 0.7408 0.0351
6b 1.4918 0.2096 1.3597 0.1595 1.3499 0.1164
1lc* 1.2214 0.1405 1.5268 0.5971 1.5268 0.3956
2¢ 1.2214 0.1405 1.5268 0.4077 1.5268 0.2804
3c 1.4919 0.4389 1.8648 1.0092 1.8648 0.4775
4c 1.0513 0.0251 1.3141 1.0092 1.3141 0.7270
5¢ 0.8187 0.0631 1.0234 0.2683 1.0234 0.1778
6¢ 1.4918 0.2096 1.8648 1.8908 1.8648 0.5902

j‘Cases la through 6a: As in Table 2, except p = 0.5.
'Cases 1b through 6b: As in Table 2, except p = 0.5.
*Cases 1lc through 6c: As in Table 2, except p = 0.5.

Mean-Variance Frontier: p=0.9 (Case 1)

Continuous-time hedging

———

1
0 0.8 1.7 25 3.3 4.2 5
Variance

Fic. 1. Efficient frontier comparison (u = 0.20,0 = 0.30, m = 0.20,v = 0.30,p = 0.9, T = 1.00).
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Mean-Variance Frontier: p= 0.5 (Case 1)

4}
3 Continuous-time

£ hedging
© 25 /_
g

——

1 L 1
0 0.8 17 25 33 4.2 5
Variance

Fic. 2. Efficient frontier comparison (u = 0.20,0 = 0.30, m = 0.20,v = 0.30,p = 0.5, T = 1.00).

the results of this section bound the results that one can achieve with
discretely adjusted hedging strategies.

Table 1 shows some of the numerical examples we explore. Tables 2 and 3
present the mean and variance in each case with that obtained from the
optimal fixed hedging position. (The calculations for the fixed hedge are from
Appendix B.) Figures 1 and 2 are plots of the mean-variance frontier for the
continuous-time and the fixed hedge cases, for two particular parameter cases.

APPENDIX A

Calculation of variance. We wish to calculate the variance of the total
wealth W = G + Z, of an optimal policy. This variance, var(W) = E(W?) —
[E(W)}, can be calculated (tediously) by first calculating

E(W?) = E(G3?) + 2E(G3Z;) + E(Z3),
then subtracting
[E(W)]* = [E(G})]® + 2E(G§)E(Z) + [E(Z,)]™.

Each of these six terms can be calculated explicitly using Itd’s lemma and the
definitions

m,p.0y

dz, =

Z,dt + 0,Z,dB,,

Uy

0,0y

m
dGy = U—;(L ~Z, - G¥) -
t

t

Zt][mt dt +v,(p,dB, + /1 - p? de,)].
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(a) Let g, = E(G}). We have
/‘t
0
t mi
- fo 2

where Z = E(Z,), using Fubini’s theorem. This implies the ordinary differ-
ential equation

m

&=k 2
US US

i USmSpS
(L-2,~G*) - Z,|ds

_ m —
(L - Zs - gs) - % Uspszs}ds’

S

. dg(¢) m? = TMmpy m;
(14) 8 = dt = Ut2 (L_Zt_gt) - v, Zt=fr_ Ut2 84>
where
2 2
m? m5  om,p, )\ -
= —L—|— + Z,.
f v} ( v} Uy ) ‘

The solution to an ODE like (14) has the standard form

_fot(%;)ds) + [Otfs exp(—ft(:rj})du) ds.

Here, g, = 0 and we can solve the expression in a simple closed form when the
coefficient functions m, v, u, o and p are constant. (For simplicity, we use the
same symbols m, v, u, o and p for the respective constants.) In that case, we
have

m\2 omp m\?
g = L(l — exp(— (—) t)) - Zo(exp((——)t) — exp(— (—) t)),
v v v
where Z, = kS, exp((n — (amp /v)IT).

(b) Let R, = E(Z?. Then, following the same procedures outlined for
calculating g,, we have the ODE R, = (2mpo /v + o?)R,, which implies that
R, = Z¢ exp((2mpo/v) + o21t).

(c) Let @, = E(Z,G,). Then

. _[mL m m\2 opm m
Q, =2 ——(——l—ap) - R, (—) +2—— +o%?| - —Q,
v v v v

v

8: = 8o €Xp

where Z, = Z, exp(o mp /v)t). The solution is

o oo (75 o222

v



CONTINUOUS-TIME HEDGING 13

where
¢, =LZ,,

(m? + 20pmuv + v20%?)Z2

Co =

b

20mpv + o?? + m?
c3 = —(c; +¢y).

(d) Let J, = E[(G#)?]. Then

. m? 2mL 1 m _ m 2 m?
g, = L2 - (—+pa‘)Zt+(—+p0) R, - 4,
v

v? v v v

The solution is
J, = L%+ b, exp(—(m/v)*) + b, exp((mpa/v)t)
+ byexp([(2mpa/v) + o2]t),
where

(m + opv)?Z2

by = 2LZ, — L* - :
! 0 a?v? + 2mpov + m?

&)
¥
I

~2L7,,

(m + opv)®Z2

o202 + 2mpov + m?’
(e) We are ready to calculate var(W;) = var(G# + Z;). We have
var(W) = E(G#) + 2E(G§Zy) + E(Z3) - [E(GP)]®
- 2E(G§)E(Zy) - [E(Zy)]”
=Jr +2Qr + Ry — g7 — 28724 — Z7,
where J;, @, Ry, g and Z, are stated previously, with Z, = kS, exp((u —

(mpo/v)IT). The solution is
Z2r?(1 — p?)v? 2, (2mpa) 7)o —(ﬁ)zT

7 v P v
m\? m\2
+(L - ZO)Q(exp(—(j) T) - exp(—Z(j) T))

W) =
var(W) m? + 2pomv + o2v?
APPENDIX B

(exp

The optimal fixed hedge. For comparison purposes, we work out the
optimal hedge and its characteristics in the case in which the hedge must be
fixed at time zero and not adjusted.
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Again, for given L, we start with problem (3), but have the new definition
W(6) = kS + 6(Fr — F), 9 ER,

for terminal wealth given any fixed futures position 6. It is easy to check from
the first order conditions that the solution is

g _ LE(Fr — Fy) — KE[ S (Fp — Fy)]
E|[(F, - F,)’]

Using the properties of the log-normal distribution, this eventually reduces to

gt — L(exp(mT) — 1) — kSy[exp((p + m + pov)T) — exp(uT)]
B Fo(1 — 2exp(mT) + exp((2m + v*)T))

In order to achieve a given mean M (provided m # 0), we can choose the
target level L to be

(M — Sy exp(uT)(1 — 2exp(mT) + exp(2m + v?)T))
(exp(mT) — 1)°

L(M) =

. kS,(exp((n + m + pov)T) — exp(uT'))
exp(mT) — 1 )

In particular, the target level L that produces a mean equal to itself (and,
therefore, the minimum variance) is

kS exp(uT)
1 — exp(v?T)

ol

X (exp(opvT) + exp(—mT) — exp((—m + pov)T) — exp(v?T)).
Finally, the mean and variance of the optimal position are
E[kS, + 0%(Fy — F,)]| = kS exp(uT) + Fy0%(exp(mT) — 1),
var[ kS, + 0%(Fyp — F,)| = k2SZ(exp((21 + 02)T) — exp(2uT))
+(6%)°F¢(exp((2m + v®)T) — exp(2mT))
+ 20*F,kSy(exp((n + m + pov)T)

—exp((pn +m)T)).
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