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LARGE DEVIATION RATES FOR BRANCHING PROCESSES.
II. THE MULTITYPE CASE

By K. B. ATHREYA! AND A. N. VIDYASHANKAR

Iowa State University

Let {Z,: n > 0} be a p-type (p > 2) supercritical branching process
with mean matrix M. It is known that for any / in R?,

lZn_l(ZnM) nd l'Z,._l'U(l)
1.2, 1-2Z, a 1-Z, 1.0

converge to 0 with probability 1 on the set of nonextinction, where v(! is
the left eigenvector of M corresponding to its maximal eigenvalue p and
1 is the vector with all components equal to one. In this paper we study
the large deviation aspects of this convergence. It is shown that the large
deviation probabilities for these two sequences decay geometrically and
under appropriate conditioning supergeometrically.

1. Introduction. Let {Z,: n > 0} be a supercritical p-type Galton—
Watson branching process (see [2] for a definition) with offspring generating
functions 7 (s),i = 1,2,..., p, and mean matrix M. Let p be the maximal
eigenvalue of M (necessarily greater than 1) with the corresponding left and
right eigenvectors vV and uV, respectively. It is known that for any vector !

(see [2])
(l-Zlel-(ZnM)) and (l-Z,, l-v(l))

1.Z, 1.Z, 1.Z, 1.00

converge to 0 with probability 1 (wpl) on the set of nonextinction and that
(W, =@V.Z,)/p" n >0} is a nonnegative martingale sequence and hence
converges to a nonnegative random variable W with probability 1.

The questions addressed in this paper concern the large deviation aspects
of the above convergence. It turns out that, under certain moment conditions,
the rate of decay of the probabilities of large deviations is geometric, while
conditionally on W > a (a > 0), the rate is supergeometric. The corresponding
results for single-type branching process are available in [1] and [3]. In [8]
large deviation aspects of P(W < x) and P(W > x) a x — 0 and x — oo,
respectively, are studied.

As in those papers, we reduce the problem (using the moment conditions on
the offspring distributions) to a study of decay rates of iterates of generating
functions £,

The paper is organized as follows: Section 2 contains notations, definitions
and assumptions, Section 3 gives statements of the results and Section 4 con-
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LARGE DEVIATION RATES 567

tains some of the proofs. For ease of exposition, we assume p = 2 throughout
the rest of the paper.

1

X

IS

2. Notations, definitions and assumptions.

€5 = [0,1]x[0, 1] is the unit square in R%, the two-dimensional Euclidean
space.

. o9 = {(i1,i2): i,€ Zy, i2 € Z.}, where Z, is the set of all nonnegative
integers. o

For s € €3 and j € &2, s/ = s]'s)’

1= (1: 1): ey = (1) 0)) ey = (0’ 1) and 0 = (0: 0)

Z,=(Z A 22)) is the population vector of the nth generation.

P;(-) = P(-|Zy = ¢;) is the probability measure for the process with Z¢ =
e; and E;(-) = (E(-|Zo = e;)) is the corresponding expectation for i = 1,2.

7. Pi(j1, j2) = P(Z1 = (j1,J2)|Zo = &;).

10.
11.
12.

13.

Al

A3.
Ad.

A5.
A6.
AT,

For s € €a, [ (s) = E(s%|Zo = ¢;), i = 1,2. If n = 1, we shall write
f1(s) and fa(s) for £{"(s) and f{(s).

Forn > 0and s € €2, ™(s) = (f”(s), f(s)), where for n = 0, f”(s) =
s and f(s) = fV(s). It is known that (see [2]) for all n > 1,

F(s) = F(F" 1 (s)).

For s € €3, ||s|| = max(s1, s2) and ||E(-)|| = max(| E1(-)|, | E2()]).

R% = {(x1,%2): %1 >0, x2>0}.

For i, j = 1,2, D;j(s) = (dfi(s))/ds;, aij = D;j(0), mij = Dij(1-), A =
((gij)) and M = ((m;j)).

For any matrix E its transpose will be denoted by E*.

ASSUMPTIONS (not all valid at all times).

1(0,0) =0.

M is positively regular with maximum eigenvalue p and the associated
right and left eigenvectors u(" and vV, respectively.

p>1

There exists 0 < y < 1 such that A”y" converges to a matrix Po that is
nonzero and has finite entries.

|| E(exp(8o(1- Z1))|| < oo for some 6o > 0.

[|E(1- Z1)?°|| < oo, where ro is such that p™y > 1.

P;(ZV <1)=0and P(Z{" =2)>0fori=1,2

3. Statements of results. It is known (see [2]) that f(s) — 0 (for

sin €2 — 1) as n — oo. Our first theorem gives the corresponding rate of
convergence under A4 and is the key to the main result of the paper contained

in

Theorem 2.
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THEOREM 1. Under Al and A4, there exists a map Q: €2 — R? such that

1 f’;(ns) — Q(s) asn— oo

and Q(-) is the unique solution of the vector functional equation
2 Q(f(s)) = vyQ(s)

subject to

3) Q(0) =0, QO)=Py and 0<Q(s)<oo for0<s<1
(see A4 for definition of Py).
REMARK 1. Assumption Al can be removed by considering f,(s)—g, where

q is the extinction probability vector, that is, ¢; = P;(Z, = 0 for some n > 1)
and A = (a;j), where a;; = D;;j(q).

The next theorem is a large deviation result for functionals of the process
under a moment hypothesis on the offspring distribution function.

THEOREM 2. Assume that A1-A4 and A6 hold. Let | = (11, 13) be a nonzero
vector with 1 # ls. Then, for every ¢ > 0 and i = 1,2,

{1 Zur 1 (ZuM)
@) Jim y P‘( 1.2, 1-Z, €
- 1-Z, 1.v0
® iy P[5 Tom| > )

exist and are positive and finite.

The proofs of Theorem 1 and (5) of Theorem 2 are presented in the next
section. We also have a number of results that are related to these and gener-
alize the corresponding one-type case results proved in [1]. These are stated
below for the sake of completeness. Their proofs as well as that of (4) of The-
orem 2, though similar in spirit to those of the one-type case, are not entirely
straightforward. We do not provide the proofs for considerations of space. The
reader is referred to [4] and [9] for complete proofs.

The next theorem gives a rate of decay for the generating functions when
A = 0 and every particle produces at least two particles of its kind.

THEOREM 3. Under AT,
(n)
lim —log I;in (s)

n—oo

=Ri(s) fori=1,2

exists and satisfies the vector functional equations
Ri(f(s)) =2R;(s)
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and

lslg)lRi(S) = —o0.

Our next theorem considers the case when A4 does not hold but A7 does. In
this case the rate of decay of probabilities of large deviations is supergeometric.

THEOREM 4. Assume A1-A3, A5 and A7 hold. Then for I # 0 and ¢ > 0,
there exist constants 0 < C1(g), Co(&) < 0o and 0 < A1(&), Ae2(e) < 1 such that

Pi<‘l‘zn+1 l-(Z,M)

1.Z, 1.Z,

> 8) <Cy- /\(12,.)

and

1.Z, 1-v®
P"(|1.zn T 1.0

> e) < CeA)
fori=1,2.

The next result is of independent interest and in also needed in the proof
of Theorem 6 below (see [4]).

THEOREM 5. Under A5 there exists 0¢ > 0 such that

(6) su;l) [|E(exp(60W,))|| < oo.

Theorem 6 asserts that the decay rate of P(|W — W,,| > ¢) is always super-
geometric.

THEOREM 6. Assume A1-A3 and A5 hold. Then there exist constants 0 <
C3 < oo and 0 < A3 < oo such that for & > 0,

P(|W-W,|>¢e)<Cs eXp(—/\332/3(p1/3)”),

The next theorem shows that conditioned on W > a, a > 0, large deviation
probabilities in Theorem 2 decay supergeometrically.

THEOREM 7. Assume Al1-A3 and A5 hold. Then there exist constants 0 <
Cy, Cs, Cg, C7 < 00 and Ay, As > 0 such that for every & > 0 and a > 0 there
exists 0 < I(&) < oo such that

Pi(‘l‘zn-ﬂ l-(Z,M)

1.Z, 1.Z,

>3|W2a)

< Cyexp(—al(e)ép™) + Csexp(—As(a(l — £))23(p?3)")
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and

1-Z, 1.vW
P'(‘l.zn_l-uw

>s|W2a)

< Csexp(—al(e)ép™) + Crexp(—As(al(l — £))23(p3y")

for every 0 < £ < 1.

4. Proofs. As mentioned earlier we supply the proofs of only Theorem 1
and (5) of Theorem 2.

PROOF OF THEOREM 1. For s € Cy write [ as
f(s)=sB+ g(s) where B= A’
Iterating the above equation and dividing by y" yields
n—1
(7 y " f"M(s)=vy"sB"+ )y "g(f "1 (s)) B
£=0

The first term on the right converges to s P}, (by A4) as n — oo.
The second term is the same as

n—1
v [ T y-kg(f"”(s))(y-lB)"—l—k].
k=0

We shall show that
(k)
g(f®(s)) _

k
k>0 Y

®

From this it will follow (by the dominated convergence theorem applied to
counting measure space &75) (see [1] and [7]) that

(n) (k)
© i () ()_ P4 (Zg(f (s») P2 (o).

k+1
n—00 70

Note that for s € €5,
(10) F (Il < IIsll and |[|g(s)I| <|ls|>.

Using this it is easy to see that, to establish (8), it is enough to establish that
for s € €5 — 1,

|5

i n> 0} is a bounded sequence.

We do this via the following two lemmas.



LARGE DEVIATION RATES 571
LEMMA 1. Let {a,: n > 0} be a sequence of positive numbers satisfying

n—1
11 an<C1+C2) n*ay, n>1,
k=0

where 0 < n < 1 and Cy and Cq are finite positive constants. Then

sup a, < Q.
n>0

The proof straightforward and therefore omitted (see [4]).

LEMMA 2. For each s € €9 — 1, there exist positive constants C and & (de-
pending on s) with 0 < § < 1, such that for every n > 1,

(12) " ()l < Co".
PROOF. Assume for the moment that
2
(13) 0<Ea,~j<1 foralll<i<2.
i=1

We see by the continuity of Z?:l D;;j(s) that there exist a positive number 7
and 0 < 8 < 1 such that for ||s|| < 7,

2
Dij(s) <é§ foralli=1,2.
j=1

J
Forn=>1,

IFENO )] = (1N () — frN ()]
= max(£i(f "N D(s)) ~ Fi(fHND(0))).
For s € €5 — 1, since f,(s) — 0, given 7 > 0, 3 No(%, s) such that for n > Ny,
1 n(S)Il < 7.

However, by mean value theorem, for each i,

Fe( NV (s)) — fi(fTNomD(0))
= 22: fﬁ'“N"_l)(S)%(S*) [for some s* € (0, f** N0~V (s))]
=1 j

2

< |IF " No=D(8)|| 3 Dyj(s*)

j=1
< [If N s)]8.
Iterating, we have
[[F (N ()| < || fNo)(s)||8" < C8"* N for some O < C < oo,

completing the proof of the lemma under (13).
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Since for each i, 1. Z, — oo with probability 1, under P; it follows that
there exists N such that

Za(N) P(1-Zy=1)<1 foralli.

Applying the above argument to the sequence {f"V(s): 0 < n < oo} we see
that ||f*N(s)|| < C6". Now use (10).

To complete the proof of (11) [and hence (1)], observe that by (7), (10),
Lemma 2 and (A4), a,, = ||f ") (s)/y"|| satisfies the hypothesis of Lemma 1 for
an appropriate choice of C;, Co and 7.

Finally, the facts that @ is nontrivial and satisfies the functional equation
(2) subject to (3) follow from (9). The proof of uniqueness is standard and
omitted. O

REMARK 2. Even for the single-type case one can construct a proof based
on the above method. However, in this case, finiteness of 3,1 (g(f™(s)))/y"
[see (8)], where y = f'(0), can be seen by an application of ratio test. The
advantage of the above method is that it gives an explicit formula for the

limit Q(-).

REMARK 3. Using Theorem 1 one can show that there does not exist a large
deviation principle (see [6]) for the convergence of averages in a multitype
branching process. The details are similar to the single-type case (see [3]).

PROOF OF THEOREM 3. We prove only assertion (5). Without loss of gener-
ality assume !/ is not a multiple of the vector 1. Let k¢ be fixed (to be chosen
later). For n > k,

> 8)

1-Z, 1.,
Pi(’l-zn_l—v(l)

1-Z, 1.vO
= E<P(‘ﬁ “Tm| 7 8'2”—’“’))
1-Z, 1.u9
- P<’ >e|Z,_ kD—J)P(Zn ko = J)-
=L N1z, oo

Consider the event

1-Z, 1.oW

1-Z, 1-v0 =€
conditioned on Z,_;, = j. By the branching property,

J1 Jo
(14) Zy=)20 +Y z¥?
=1 r=1

ko,r ko,r?
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where for fixed i,i.i.d., {Z (’)r 1 are &/s-valued random variables distributed
as the population at time ko lmtlated by a particle of type i at time 0. Now

l’Zn> l’U(1)+
1.z, \1T.00 " °

if and only if

1.0

1-Zy—1-(jM™>) > <1

oy +s)(1 Z,—1-(jM*))

(1)
+(l D +s)<1 (JM*)) —1- (M)

1
.M (Z, — (JM™))
o (- (s o)) S
(C+e)l=1). jMk
(uV . j)pko

where C = (1-v®)/(1.vD).
From the Frobenius theorem (see [2], Lemma 1, page 194) it is known that
if F={x=(x1,%)x; >0, x-u¥ =1}, then

lim sup ||xM"p~" — vV|| = 0.

n—»oo xcF

Consequently, for each 7 > 0 there is k¢ < oo such that

1.
sup ||xM™ 0 — ol| (2111 + &) < X 2 2.
xeF

Thus, for j # 0,

1-Z, 1.0
17 lv( +e and Z, p=j
imply
l.vWM (Z, — jM*) o e@-vD)
<l_1—'m+3)l’W>((C+g)l—l)'v —T.

The left side above is a sum of two random walks with mean 0 and hence, by
Markov’s inequality,

1-Z, l v . 1
(15) P(l 7z > 1® +e| Z, ko—J)—0<W)

due to the following lemma.
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LEMMA 3. Let {X;}{ be i.i.d. with EX, = 0, EX?" < oo for some r > 1.
Then

P(|X,| > &)= 0<i).

nr

PROOF.

E(J/n| X,|)*
ernr )

P(IX,| > &)= P(V/n|X,| > e/n) <

By a result of Brown (see [5]), under the given hypothesis sup, E(/7|X ,|)%"
< oo and the lemma follows.

Thus
1-Z, 1.vD 1 r

Pll—spr — — n — -
(16) E< (yl-zn 1om|~ “17 )) : C(l- znko)
For any positive random variable X and 0 < r < oo,
) [(r)E(X™T) =/ E(e X)) 1 dt,

0

where

r = * —x . r—1 d .
(r) /(; e *x x
Applying (17) to E(1- Z,)™", we have
L(r)Ei(1-Z,)" = f°° (et ety dt.
0

By Theorem 1, for each 0 < ¢ < oo,

M (et e )

n

hn,i (t) =

converges to Q;(e~%,e~*). Also from (7) and the boundedness of {y~/B’} (due
to A4) there exists 0 < C < oo such that

h,i(t) <CQi(et,e?) for 0 <t < oo.
If we now show that for each i,
(18) [ Qutet ettt < o,
then by LDCT it would follow that
lim fo Y R () di = /0 @i, et dt < oo
This in turn would imply by a generalization of LDCT (see [1]) that for each i,

—1—P lZn . l'v(l) Pi(Zn—kozj)
v \|17Z, 1.0 "

. s) = Y PIC) > €1Zamso = J)
J
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converges to

(19) Ed’(])k())g) gi,j < 00,
where
. 1-Zy, 1.0 :
d’(.], k0,8)= P(‘l' Z];O - 1. 0D > 8lZ0= J)

For [ not a multiple of 1, the infinite series (19) is nonzero since ¢( j, ko, £) > 0
for each j # 0. We now establish (18). Since ||Q(s)|| = O(||s|]) in {s: |Is|] <
A <1}, [ Qi(e e )"t dt < oo and so it suffices to show that Y}3° I,, < oo,
where

—n+1

I, =/ Qi(e e Ht 1 dt.
p—'l
Setting ¢ = xp~" and using (2),
rNn [ (n)(,—p" r—1
W= [ QU ) d,

Note that f;”)(exp(—xp”)l) = Ej(exp(—x(1- Z,)p™")) and it converges uni-
formly to E;(exp(x(1-vV)W)), where W is the limit of the martingale W, =
uV. Z,p7". Since r > 1, E;(1- Z1)* < oo for all i, the X log X condition is
satisfied and so W is nontrivial and hence

sup Qi(f}" (exp(~xp™)1)) < oo.

1<x<p
1<j<2

Now since yp” > 1, we have that }_,.; I, < co. We are grateful to the referee
for this elegant modification of our earlier argument. O
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