The Annals of Applied Probability
1995, Vol. 5, No. 4, 1061-1086

THE ASYMPTOTIC EVOLUTION OF THE GENERAL
STOCHASTIC EPIDEMIC!

BY GESINE REINERT

Un;versity of Southern California, Los Angeles

Generalizing Sellke’s construction, a general stochastic epidemic with
non-Markovian transition behavior is considered. At time ¢ = 0, the popu-
lation of total size K consists of aK individuals that are infected by a
certain disease (and infectious); the remaining bK individuals are suscep-
tible with respect to that disease. An initially susceptible individual i,
when infected (call A¥ its time of infection), stays infectious for a period
of length r;, until it is removed. An initially infected individual i stays
infected for a period of length #; until it is removed. Removed individuals
can no longer be affected by the disease. A deterministic approximation as
(as K — «) to the empirical measure
' 1 oK 1 K

¢k = e l::,l 80,7y + ?lgl S(ak, AK+ry)s

describing the average path behavior, is established using Stein’s method.

Introduction. The general stochastic epidemic (GSE) is a complicated
birth—death process where the temporal evolution of one individual depends
“uniformly” on those of the others. The following construction, based on
Sellke’s [11] approach, yields an epidemic model that generalizes the GSE.
However, as it is of the same type, we apply the term GSE to this more
general model.

A population with total size K is considered. At time ¢ = 0, aK of these
individuals are infected by a certain disease (and infectious; the infectious
period and the period of being infected are assumed to coincide); the remain-
ing bK = (1 — a)K individuals are susceptible to that disease. Infectious
individuals will get removed after some time, for example, by lifelong immu-
nity or death, and are then no longer affected by that disease. (Thus, we have
an SIR model.) ‘

Let ({;,r;);cn be a family of positive i.i.d. random vectors and let (7,); < 5
be a family of positive, independent random variables. Assume that the
families (I;, 7;); c n and (#,); c y are mutually independent.

An initially infected individual i stays infectious for a period of length 7;;
then it is removed. (That the 7, need not be identically distributed reflects the
possibility that an infected individual has already been infectious for a
certain period before, at time ¢ = 0, it is observed.) An initially susceptible
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1062 G. REINERT

individual i, once 1nfected stays infectious for a penod of leng‘th r;, until it is
removed. Furthermore, an initially susceptlble individual i accumulates ex-
posure to infection with a rate that depends on the evolution of the epidemic;
if the total exposure reaches [;, the individual i becomes infected. The
possible dependence between /; and r; for each fixed i reflects the fact that
both the resistance to 1nfect10n and the duration of the infection may, for a
fixed individual, depend on its physical constitution.

An initially susceptible individual i gets infected as soon as a certain
functional, depending on the course of the epidemic, exceeds the individual’s
level [; of resistance. Denote its infection time by A¥. To be more precise, if
Z,(t) denotes the proportion of infected individuals present in the population
at time ¢t € R,, then A¥ is given by

- inf{t eR,: f(o t],\(s,zK) ds = l,.},

for a certain function A.

Since, for epidemics, the length of the infectious period of an individual is
usually very small compared to its life length, we neglect births and removals
that are not caused by the disease, as well as any age dependence of the
infectivity or the susceptibility. Furthermore, the population is idealized to be
homogeneously mixing. Despite these restrictions, there are many useful
applications of the model (cf. [4] and [2]), and the process is still quite simple.
This last fact helps one to understand the underlying method, which is an
application of Stein’s method for proving convergence of stochastic processes
(cf. [3] and [9D.

In special cases, there are already some asymptotic results for the propor-
tion of susceptible and infectious individuals. However, the previous results
were obtained for cases where [, and r; are independent and where the
transition behavior is “Markovian,” that is, #(l,) = exp(1). This case, in the
special form A(¢, x) = AM(x(¢)), was analyzed by Wang [14, 15]. For general A,
Solomon [13] has discussed a related, age-dependent population model that
deals only with one class of individuals. The very special case A(t, x) = x(¢)
and (#),(r;) bemg iid. exp( p) yields the classical GSE, as constructed by
Sellke [11]

In this paper, we not only discuss a more general model, but also describe
the asymptotic evolution in a more detailed form. We investigate, for K — o,
the empirical measure

aK 1 X
éx Z 5(0 ) + = Z S(AK AK+r)’

considered as a substochastic measure on [0, )%, where the half-open inter-
val [a, b) C [0, ®) is represented by the point (a, b) € [0,)% (In general, §,
shall denote the Dirac measure at the point a.) In this way we obtain the
asymptotic average path behavior. Usually, in epidemic models, the propor-
tion of infected individuals and the proportion of susceptible individuals are
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investigated. These quantities can easily be reconstructed via &x. For in-
stance, if ¢ > 0,

1 ¢K bK
Ec([0,¢] x (t,)) = E Y 1o,4)() + X ) L ax, axery(t) = Ig(2)
i=1 i=1

describes the proportion infected at time ¢. Moreover, we can also investigate
quantities like

Ee([0,s] X(t,=]),  t> s,

giving the proportion of individuals that were infected before time s and are
not removed before time ¢, that is, the infectivity at time ¢ in the population
resulting from individuals that were infected before time s. Thus we gain new
insights concerning the behavior of the epidemic.

In Section 1, the results on the asymptotic behavior of the GSE are
presented, a heuristic argument is given to explain how the results are
obtained and some applications are indicated. Section 2 concerns the connec-
tion with “classical” results for the GSE, as given by Wang [14]. Finally,
Section 3 contains the proofs.

1. Results and heuristics.

1.1. Assumptions. As described in the Introduction, let (I;,,r,);cn be a
family of positive i.i.d. random vectors, let ¥ be the common distribution
function of the (I;);cy, let ® be the common distribution function of the
(r);en- let (F);cn be a family of positive, independent random variables
with distribution functions (®,); .y and assume the (/;, r));cn, (), <N to be
mutually independent (whereas, for each fixed i, /; and r; may be dependent).
Let D, = {x: [0,0) - [—1,1] right continuous with left-hand limits} and let
A R,xD,-> R, be the “accumulation” function. Then, for an initially
susceptible individual i, its infection time AX is given by

(1) AKX = inf{t eR,: [ s, Zg)ds = li},
,t]

with

1 aK K .
Zg(t) = e > 1[o,fj)(t) + e > 1[AJK,AJK+rj)(t)
j=1 Jj=1

'being the proportion of infected individuals present in the population at time
¢t € R,.[We use the notation 1,(¢) to denote the indicator function on the set
C. The notation I[¢ € C] refers to the indicator of a set, not considered as a
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function.] This gives a recursive definition of the Af’s: If [ jy is the jth order
statistic of /,,..., l,x, corresponding to the individual i;, say, then

Afj:inf{teR+: 0.1 A( Z 1[0 £ )+ Z l[AK AR +r; )ds=l(j)}.

This completes the description of the model. Furthermore, we make some
technical assumptions.

1. There is a probability measure g on R, such that, forall TeR_,

sup -0 (K- ).

0<t<T

K ZP[?’ t] _ﬁ‘([o’t])

Denote its distribution function by d.

2. The function A: R, X D, — R, satisfies,forall¢t e R, x,y € D :
(a) A(t, x) = A(t, x,), where, for t,u e R,, x € D, x,(u) = x(t A w).
(b) There is a positive constant a such that

[A(2, %) = M2, ¥)| < @ sup |x(s) —y(s)].
0<s<t
(c) There is a positive constant y such that sup,_,_, A(s, x) < v.
3. There is a positive constant B such that, for each x € R, ¥, (¢) =
P[l, < t|r, = x] satisfies, for all s,t € R,

|P.(t) — ¥ (s)] < Blt - sl.

The basic tool to obtain the desired convergence result is Stein’s method in
the form of Theorem 4.5, combined with Proposition 4.9, in Reinert [9]. This is
a fairly obvious generalization of Corollary 2.6 in Reinert [10]. Let E c R? be
a locally compact Hausdorff space with a countable basis. Denote by M°(E)
the space of bounded Radon measures on E and by M,(E) the subspace of all
positive Radon measures on E with total mass less than or equal to 1, and for
¢ € C(E), ve MY(E), v, d) = [pdv.

PROPOSITION 1.1.  Let (g )k < 5 be a family of random elements with values
in M\(E) and let p € M(E). If for all m € N, fe C;R™), ¢y,...,¢, €
Cy(E), we have for all ¢ € C;(E),

(2)  E[f({ng, d1)s g, b)) — g, $)] 20 (K-> ),
then '

Png) =w 8, (K—>).

1.2. Results. We now want to apply this proposition. First, in Theorems
1.2 and 1.3, we find a candidate for the measure w. In general, the natural
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choice would be u = limg _,, E[nx], where the limit is taken in the vague
topology. Theorem 1.4 then verifies the convergence in (2).

For the required measure u, observe that during the course of the epi-
demic not necessarily (hopefully) every susceptible will get infected; AX = o
for some i is possible. Therefore, if such a u exists, it will in general not be a
probability measure but a positive measure with total mass less than or
equal to 1. Furthermore, as the existence of Er; or EF;, i € N, is not
assumed, we restrict the observations to finite intervals [0, T] X [0,T] for
a T € R, arbitrary and fixed. This leads to some notation. For Te R,
put [0,T]% =[0,T] X [0,T] and &y =B(0,T1?). Let v € M,(R?). Then

vT =V|$T

is the restriction of v on %y [hence, v € M,([0, T]?)]. For A € Z(R?), put
vT(A).=v(AN[0,T]*);

this defines »T also on % (R?). If in addition X is a random element with
AX)=v,then,forall Te R,, f€ L(v), A € BR?),

E"f(X) = [f(x)v"(dx),
P'[XeA] = flA(x)vT(dx),

ZT(X) =Z(f(X))|a,

are the corresponding restrictions. Our aim is to show a weak law of large
numbers (w.lln) type of result for ¢;. For that purpose, we define, for
feCR,,R),teR,, an operator 2 and an operator L:

Zf(t) = a(l = &(0)) + BV(f(1)) —bf | W.(f(t = x)P[r, € ds],
®) ’
Lf(t) = j(o ., A(s, ZFf) ds

’

(as Zf € D,, the latter expression is defined). Let || fllz = sup, . |f(s)| de-
note the supremum norm on C([0,T]. Then we can prove the following
results.

THEOREM 1.2. For T € R_, the equation

(4) f(t) = j(o , As,Zf)ds, 0<t<T,

’

has a unique solution Gp. This solution can be obtained by an iteration
procedure: Choose an arbitrary f, € C(0,T] and put f; = Lf,, f, = Lf,_,
for n € N. Then

(6/2)" (1 + 4aBT(n + 1))/ -1
1-b/2 4aBT(n + 1)

If, — Grllr < I fo — Lfolir,
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where

1
n= sup{t <T: '[(O,T] (1+®(s))ds < %}

TuEOREM 1.3. For T € R, let Gy be the solution of (4) and i € M(R?)
be given for r,s € (0,T] by

@ ([0,r] x[0,8]) = [ W (Gr(1)PTry € d]

(0,(s=r)vo
+ V. (Gr(s —x))PT[r, € dx].
((s=r)v0,s]
Put
pT = a(8, x p)" + bl
Then

1 oK 1 6K
—Z LZ7((0,7)) + — LZT((AK, Af + 1)) =, uf (K- ).
K5 K5 :

Note that it might be more intuitive to think of a7([0, r] X [0, s]) in the
form

a7([0,r] X [0,s]) = PT[l; < Gy(r),1; < Gp(s —1y)].

THEOREM 1.4. Let u” be as in Theorem 1.3. Then, forall TER,,
(&)=, 8 (K- ).

1.3. Heuristics. The problem consists essentially of approximating the
average distribution of the infective periods (1/K)X¥, A((AX, AK + 1), as
it reflects the dependence structure of the process. This distribution is
determined by the averages (1/bK)L!X P[AX <5, AX +r, <t], s,t €R,.
Fors,teR,,let

1
Hy(s,t) = b—K#{i <bK: Af <s, A¥ + 1, <t}
H(s,t) = lim Hy(s,1),

a d
h(S,t) = zEH(S,t),

-and suppose that H and & exist. Then we have, for all s > 0,

bK
T E 1[A{‘,A{‘+r,)(s) ~H(s,») — H(s,s).
bK ;5
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Furthermore, by our first assumption, we have, for all s > 0,

1 oK A
& L lo.n(8) = 1= $(s).
i=

Thus,

) Zy(s) = a(1 - &(s)) + b(H(s,») — H(s,s))
=:Z(s).

Let

G(t) = f(o , s, Z) ds.

Then, from (1) and (5), we have AX = G~1(1,), where f (y) = inf{x: f(x) =
y}, and inf & = ., Applying the sl.ln.,

1 . .
H(s,t) = E#{i <bK:G (1) <s,G7Y(1) +r; < t}
= P[l; < G(s), L, < G(t - )]

= Y (G(s))P[r, € dx
(0,(t—5)v 0] x( (S)) [ 1 ]

+ ,(G(t —x))P[r, € dx].
((t=9s)VvO0,t]
Hence, recalling (3), Z =~ 2'G. This motivates the integral equation (4) as a
way of solving for G and thus for Z also. Intuitively speaking, a(l — d(s))
describes the proportion of initially infected that are at time s not yet
removed, bW(G,(s)) describes the proportion of new infected individuals up
to time s and b, ,\¥,(Gy(s — x))P[r; € dx] describes the proportion of new
infected individuals that are already removed at time s.

The proof of Theorem 1.2 is technical, the basic procedure being much the
same as for proving the Picard-Lindel6f theorem (see, e.g., [1], pages
104-106). Observe, however, that the Picard-Lindelof theorem cannot be
applied directly, because we do not yet know whether A(s, 2f), as a function
of f, satisfies a Lipschitz condition; this was only assumed to hold for A(s, f).
Thus, we still have to prove a contraction property for A(s, 2f). Then, as for
the Picard—Lindel6f theorem, the contraction theorem gives both the unique-
ness and the claimed iteration procedure and thus finishes the proof.

Once Theorem 1.2 is established, for Theorem 1.3 we can reason as follows.
For T € R, fixed and B, = [u,,u,] X [0,v] € ZRZ),

1 aK 1 aK
EiEPT[(O,ﬁ') eBl] = E{E:IPT[O € [ul,uzl»f'i € [O’U]]

(80 X f’«)T(Bl)-

n



1068 G. REINERT

For B, = [0, u] X [0,v] € #(R2), we have, as calculated above,
1 T[( AK AK
ﬁ{igp [(A¥, A¥ + 1) € B,]

= Y (G(w))PT[r, € dx
(0, (w—u)Vv 0] x( ( )) [ 1 ]

+ ¥ (G(v — x))PT[r, €dx
Jrirvo o (G0 = 2))PTLr € ]

= ~T(B2)’
and Theorem 1.3 follows by making the approximations rigorous.

Now the third theorem can be obtained with help of Proposition 1.1. Let
T eR, and f € C;(R), ¢, ¢ € C;(0, T1?). Then, for the above u”,

1 oK r 1 K r
E _ . —
f K i=zl 8(0,r,-) + K i§1 6(A;Ky Af+ry) ¢

><<,u,T—

~E a(8,x )" +b h(u,u +v)8% ., dvdu, >)
[f(<(o py ] o )8,y A0,

1 af T 1 %{ T
= 22 80,7y T 5 2 Olak, ax r.),ll’
Ki=1 ( i) Ki:l (A7 it z)

r 1 oKX r 1 X r
X — | = R —
w (Kigl 6(0,ri) + K igl 5(AF,A§+r,~))’ ¥
=f(<a(60 X ﬁ)T + bj;o w)’/;o oo)h(u,u +0)8L 4,y dvdu, ¢>)

x(af—bd h(u,u +v)8% .., dvdu, >,
<“ . -I;o,oo)f(o,oo) ( ) 20 v

and the last term is equal to 0 due to Theorem 1.3. With Proposition 1.1, this
would prove the assertion. In the proof, however, as the existence of % is not
ensured, we will approximate §2A(u,v) by H(u + §,v + 8) — H(u + 8,v) —
H(u,v + 8) + H(u, v), and we will have to restrict ourselves on .

1.4. Some applications. Typically, in epidemic models, the proportion of
infected individuals and the proportion of susceptible individuals are investi-
gated. As mentioned in the Introduction, these quantities can be recon-
structed via £x. For ¢ > 0,

£k ([0,2] X (2,%)) = Ix(2)
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gives the proportion of infected at time ¢,
1 bK

Ee((t,] X [0,]) = X )y I[A{( > t] =: Sg(¢)
i=1

gives the proportion of susceptibles at time ¢ and

¢x([0,t] X [0,2]) = Ry(?)
is the proportion of removed at time ¢. We can determine the limiting

behavior of these quantities, since from Theorem 4.2 of Kellenberg ([7], page
32) we obtain the following lemma.

LEMMA 1.5. Let T€ R, and T € #(R?2) be such that u"(JT) = 0. Then
EE(D) »p (T) (K- ).

Furthermore, £4([0,%] X [0,%]) = 1. By Theorem 1.3, (16) below and this
lemma we hence have, for all t € R, with 4({¢}) = 0 and for all T' > ¢ with
Plr,=T-t¢t]=0,

R(t) = P-éim Ri(?)

(6) . b
= ad(t) + ?fm ., V,(Gp(t — x))P7[r, € dx],

S(t) = P- lim Sy (¢)

=b(1 - ¥(Gr(1))),
I(2) = P- lim L(t)

(7) =a(1 —(i)(t))

+ b(qr(GT(t)) - [(O WG (t - x))PT[r, € dx]|.

In this way classical quantities like the total size and the maximum size of
the epidemic can easily be determined. Moreover, our results provide addi-
tional information about the epidemic. Suppose, for example, that an epi-
demic is known to be taking place in a region, and that after some time ¢,
every remaining susceptible in that region is immunized. Thus there are no
new cases, although infectives may still be present. To decide at what time
the region, which was probably put under quarantine, can be opened to the
public again, we are interested in estimating the remaining infectivity in
the population at times s > ¢,. This is given by £ ([0, ¢,] X (s,)), which is
the proportion of individuals that were infected before the time ¢, and are
still present in the population at time s. For large K and T,

£¢ ([0, 2] X (s5,%))

= a1~ $(9) + B[ ¥(Gr(0)) - [ WulGr(s —2)PTLry < ],
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Thus, as soon as this expression is smaller than a certain critical level, we
can abandon the isolation.

2. Comparison with known results. Our asymptotic results can be
compared with those obtained by Wang [14], which seem to be the most
general ones for the GSE known so far. As is made more explicit in [15],
Wang [14] considers a population of total size N = K and, in our notation,
made the following assumptions:

1. P[a particular susceptible individual becomes infected during the time
interval [¢,¢ + 8t]] = MIy(2)) At + o(At), for a function A that is positive,
bounded and Lipschitz on [0, 1], and A(0) = 0.

2. Pla particular infected individual stays infected for at least a period of
length t] = F(t), for a function F with F(0) = 1 and F(¢) \ 0 as t — .

3. At time 0 there are NIy(0) = x(N) infected individuals s,,..., s, pres-
ent, where s; represents also the total time that the ith individual has
been infected up to time 0. There is assumed to exist a positive density
q € L,(R,) such that, for all se R,,

1 *(\N)

Jim % L To,a(s:) = [ a(w) du.

With

F
8(s,0) = T2 TR () >0,

¥(t) = f:g(s,t)q(s> ds,

Wang proves that (Iy(¢), Iy(¢) + Ry(¢)) converges to the unique positive
solution (P(¢), B(¢)) of the system

P(t) = y(t) + f(o g M P(u))(1 — B(u))F(t — u) du,
(8) ’
B(t) =P(0) + [ A(P(w)(1-B(w)du,

in the sense that, for every £ > 0,

lim P[ sup |Iy(u) — P(w)| +|Iy(x) + Ry(x) — B(w)|> &| = o.
Now | yel0,1)
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Now consider in our model the special case that the (/,) have an exp(1)
distribution, that [, and r; are independent for each i, that there are
s; € R,, i € N, such that, with ®(¢) = 1 — F(¢),

1 - ¢(t + Si)
1-2(sy)
that A(¢, x) = AM(x(¢)) and that there is a positive density ¢ € L,(R,) with

,gggg E Lo,o(s:) = [ a(u) du.

P[F >t] = , 1€N,

Then the second assumption of Wang’s model is obviously satisfied. Further-
more, by the lack of memory of exponentials,

P[the initially susceptible i gets infected in [¢,¢ + At]]
= P[AF e [t,t + At]|AF > {]
= MIx(t)) At + o(At).
Thus, Wang’s first assumption is also fulfilled. To see that the restrictions on
F; are a special case of our restrictions, observe that
K 1 - D(t+s;
—ZP[r >t]——2%($i)‘)

i=1

1-P(t+x)

1= o(x) q(x) dx
= ai([t,%)).

Thus, /i is a probability measure on R, and 1 — fu((¢,®)) = ®(¢) is a continu-
ous distribution function, as the set of d1scont1nu1ty points of @ has Lebesgue
measure 0. Therefore, the convergence of <I>K(t) = (1/aK)L¢E P[F;, < t] to
&(¢) is uniform (cf. [5], page 265, Lemma 3). Thus, Wang’s model is a special
case of the one we consider.

To see that in"this special case the resulting expressions coincide, it
suffices to prove that (I(¢), I(¢) + R(¢)) satisfy (8). (In what follows we
suppress the subscript 7' and the superscript 7'.) In view of (7) and (6), we
have to show that, for y(¢) = a(1 — &(¢)) and ¥(x) =1 — e %,

a+b(l-—e %) =q+ bf(o ]A(I(s))e"G(s) ds,

9) ! .

I(t) = y(¢) + 5[  A(I(5))e (1~ @(t —5)) ds.
€0,¢]

Observe that G'(¢) = AM(I(t)) by construction. Thus (9) is obviously satisfied
(for the second equation apply integration by parts). This proves the coinci-
dence of our deterministic approximation with that Wang obtained for this
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special case. However, our formulation covers a much wider class of models
and gives much more detailed information about the process.

3. Proofs.

PrOOF OF THEOREM 1.2. First observe that every solution f:[0,7] —» R of
(4) is continuous, as for all s, ¢ € [0, T],

1706 = F(s) | =| [, au 21)

By the same argument, Lf € C(0,T]. Furthermore, (C({0,TD,|l-llr) is a
complete metric space. In what follows, we basically proceed as in the proof of
the Picard-Lindel6f theorem. That is, we show that Lf is a contraction on
small intervals and then employ the contraction theorem. This gives us
unique solutions of (4) and the iteration procedure on small intervals; their

composition proves the assertion.
Let f,g € C(0,T). Then, forall t € R,

< vylt - sl.

|Lf(¢) — Lg(t)|
< af(o , st;pl-?f(u) -zg(u)|ds
o YD ~ ¥
(10) (8~ ) - V(f(x - 2)
XP[r, € dx]|ds
< aﬁbl|f‘g|lz£0,t] (1 + ®(s)) ds.
Now put

' 1
= t<T: 1+ ds < ——}.
n-swples T [ (14 0(s)ds < 5]
Then, for t < 7,
b
ILf — Lgll, < -2-I|f— gl:.

Thus L is a contraction on C([0, n]). By the contraction theorem, (4) has a
unique solution G, on C([0, .

For k € N, define the space of continuous extensions on C([0,(k + 1)n] of
' a unique solution of (4) on C([0, k7)) as

C,([0, (k + 1)n]) = {f € C([0, (k + 1)n]): Lf(x) = f(x) for x < kn).
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Now we proceed by induction. Suppose L is a contraction on C,((0, k).
Then, for all £, g € C,(0,(k + D7),

Lf(t) —Lg(t) =0, t<kn,
and for kn < t < (k + Dn, by (10),
|Lf(t) — Lg(¢)]

< ab{f sup
(kn,tlkn<us<s

Y(f(u)) - ¥(g(u))

(11) i (O’u_kn]{‘l’x(g(u —x)) = Y,(f(u - x))}P[r,

< aﬁbllf—glltf(k ”(1 + ®(s — kn)) ds
Ul

b
< 5lIf =&l

which proves the contraction property on every C,([0,%kn]). Let & € N be
such that kn < T < (k + 1)n. Then it follows that (4) has a unique solution
Gr on C,([0,T]. Because every solution of (4) must be in C,([0, T'D, we have
also umqueness on C(0,TD.

The contraction theorem also gives us the following iteration procedure, for
k € N. Choose an arbitrary f, € C,(0,(k + 1)n] and put f; =Lf,, f, =
Lf,_,, for n € N. Then, if G 1), is the unique solution on C,([0, (%2 + 1)n)),

(/)

”fn - GT”(k+1)n = b/2

"fo Lfo||(k+1)n~

For the claimed iteration procedure, choose an f, € C([0,T]. Let f; = Lf,
and f, = Lf,_,, for n € N. Due to the contraction theorem, we have

(6/2)"

”fn _GT”‘H— b/2

—— 5 lfo = Lfolly.

Furthermore, for & € N, to get an estimate on I|f, — Gzll(x+ 1)y, Put
20(5) = G(s)I[s < kn] + fo(s)I[ s > n].
Let g, = Lg, and g, = Lg,_,, for n € N. Then,

||fn - GT"(k+1)‘q =< ||Lfn_1 - Lgn_1||(k+1)n + Ilg,, - GT”(k+1)17

(6/2)"

I_——b_/EHgo - Lgo||(k+1)n,

<ILf,_1 — Lg,_1lle+nq +
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as g, € C,((0,(k + Dn). For s < kn, as Lgy(s) = LG (s) = Gp(s) = go(s),

Ilgo - Lgoll(k+ 1

= sup  |fo(s) — Lgo(s)|
s€ (kn,(k+1)n]

<lfo = Lfollrs g + sup  |Lfy(s) — Lgo(s)].
se€ (kn,(k+1)n]

Moreover,

ILf, -1 — Lgn_1llk+1yn

Sllfn_GTllkn+ sup |Lfn—l(s) _Lgn—l(s)l‘
se€ (kn,(k+1)n]

Now, for kn <t < (k + Dn, t < T, we have by (10),

|Lf(¢) — Len(t)] < aBb{ [, Il ds

+‘/;0,t] f(o,s] | fu(s —x) — g,(s —x)[P[r, € dx] ds}.

Splitting up the integrals yields
|Lfn(t) - Lgn(t) |

saﬁb{tufn—gnnkn+<t—kn) sup |£o(s) — 2:(5)]

kn<s<t

+1f, — &allin [(0 )

>

d(s)ds
1}

(12) =gl (9() = 0(s ~ kn)) d

+ sup | £.(3) —gn(s)|j;kn ; ®(s — kn) ds}

kn<s<t

b
< aﬁsz”fn - GT”k"I + 5 sup |Lfn—1(s) —Lgn—l(s)l’

2 kn<s<t

where we employed the definition of 1. For n = 0, we get by construction that
for kn<t<(k+1nt=<T,

(13) |Lfo(t) — Lgo(2)| < 2aBbTfo — Grllen.
~ Solving the recursion given by (12) and (13) yields

n b 1
sup |L£,(6) - 1g,(8)| < 2B0T L f, .~ Grl 3 )
i=0

kn<t<(k+1nm
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Combining these estimates, we obtain the recursion

7 n—-1 i
Hﬂ-Gﬂm+nn5Hﬂ-Gﬂhn+2aBbT2:Hﬂ_bd—(%mm(g)
i=0
+( /2 fe = Ll + 2aBBTIf, — Gl
b/2 0 olli(k+ 1)y 0 Tk )>
(b/2)"
If, = Grlly < 355l = Lol

For an estimate on ||f, — Grll(x+1),, suppose that, fora c, € R,,

(b/2)"
£, = Grllen < 355 1fo = Lfollencs.
Then
(6/2)"
1, = Grllwssm < 3= 75 1o = Lfollos mes1;
where

Cre1 =Cp(1 4+ 4aBT(n + 1)) + 1.
Finally, solving this recursion on ¢, with ¢, = 1, we get

( /2)" (1 + 4aBT(n +1))/"? -1
b/2"f° Lollr 4aBT(n + 1)

If, — Grllr <

This proves the iteration procedure and thus the assertion. O

ProoF oF THEOREM 1.3. This proof consists, to a large extent, of justifying
the heuristics. Let T' € R, be fixed and let G be the unique solution of (4) in
C(0,T). Let B, =[uy,u,] X [0,v] € #(R2). Then, due to the assumptions,

1 aK 1 aK
— T[(o,# =— Y5 PT[F <
aKi=21P [(0,%) € By] aKi§1 o([uy, u, )P < v]

- (8, x )7 (By).
Thus,

1 aK
% L2(0,7)) =, (50 x &)
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For the second sum (1/K)L?X, #T((AX, A¥ + 1)), consider B, = [0, u] X
[0, v] € #(R2). Then, as by symmetry all AX and r; have the same distribu-
tion,

1 &K
K .ZIPT»[(A{‘,A{‘ +r;) € By]
i
= [R PT[AX <u, A + r; <vlr; =x]|P[r, € dx]

= ‘I’x(GT(u))PT[rl € dx]

©0,(v-—u)vo0l
+ V,(Gr(v — x))PT[r, €dx] + R, + Ry,
(v-u)vo,v]
where
Ri=[ o BTIAE s ulr = o] = %,(Gr(w)}PTr, € d],
R, = PT[AX <v —x|r, = x| = ¥ (Gp(v — x))}PT[r; € dx].
2 f((v—u)vo,v]{ L4 Iry = #] = ¥(Gr(v = )))P"[ry < dx]

Thus, if we can show that, forall Te R,

i |PT[ A < tIr, = x] — ¥,(G(2))|PT[r, €dx] > 0
14 <t=< »

it would follow that R, — 0, R, — 0 (K — =) and thus
1 6K
e ZPT[(A{(aAz{{"‘"i)EBz] - i (By) (K - ).
bK /5
This would establish the assertion. Thus it is sufficient to prove (14).
PrOOF OF (14). For ¢t < T € R, fixed, let
Fy(t) = f(o ; (A(s, Zg)) ds.

Then Fy € C([0,T) and is nondecreasing and
Af = Fg'(y).
. Thus, for all x € R,
PT[AF <tlr) = x| — ¥,(Gr(2))
= PT[l, < Fg(t)|r; =x] — PT[l; < Gp(2)|ry = 2],
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and therefore

f(o . |PT[A¥ < tIr, = 2] — ¥,(G4(2))|[PT[r, € dx]

< '[(O’T] [PT[Gr(¢) <1, < Fy(2)|r, = x]

+PT[Fy(t) <1y < Gp(t)|ry = x]JPT[r, € dx]
<PT[G,(t) <1, < Fg(t)] + PT[Fg(t) <l < Gp(2)].
As for all £ > 0,
P[Gr(t) <1y < Fg(2)] + P[Fe(t) <l < Gr(2)]
< P[Gp(t) <1, < Gyp(t) + €] + 2P[|Gy(t) — Fx(t)| = €]
+ P[G(t) — e <1y < Gyp(2)]
< 2Be+ 2P[|IG; — F¢lir = ¢],
it suffices for (14) to show that
(16) |Gy — Fgllr »p 0 (K — ). O

(15)

PROOF OF (16). As Gy is characterized by being the fixed point of the
operator L in the proof of Theorem 1.2, we look for a similar characterization
for Fy. Define

Ay = {h: h(t) = /;0 ; A(s, g) ds for a step function

g:[0,0) - [0,1],¢ < T}.

Then, a.s. every realization of Fy is in /#;. For h €.%;, put

aK bK
Zxh(t) = Ve x Li0,7,(2) + Fe Y L1y, a1y rp(t)s
: i=1 i=1

Lih(t) = f(o ; A(s, Zxh) ds.

’

Then, Ly Fy = F; a.s. by construction. Therefore, for all ¢ < T and for a.s.
every realization of Fy, we have

| Fx(¢) — Gp(t)| =|LgFg(t) — LGy(t)|
< sup |Lgh(t) — Lh(t)| +|LFg(t) — LGp(t)].
he#y

Suppose for the moment that we have shown

(17) sup sup |Lgh(t) —Lh(t)|>p 0 (K - ).
0<t<T he#p
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Then, for n = sup{t < T: [, 4(1 + ®(s))ds < 1/(2apB)}, we have by the con-
traction property of L on C([0, n]) (see the proof of Theorem 1.2)

| b
Gy = Filly < sup 1k — Lh| + Z1Gr - Fyl,
he#y T
that is,
1
G, - F, s———” Lh—Lh”,
” T K”TI 1 —b/2 :2};;' K I .

and therefore, with (17),

IGy — Flly »p 0 (K > o).
For T > 7, we proceed as in the proof of Theorem 1,2. Suppose that for £ € N
we have shown

(18) IGr = Filly 2 0 (K =),
Then for kn < T < (k + 1)n, we have a.s.
| L Fx(t) — LGr(2)|
< abB{anIGT — Fyllpn + (t —km) sup |Fgx(u) — Gp(u)|

kn<u<t

+ sup |Fg(u) — Gp(u)|®(s — kn)ds
(kn,t] kn<u<t

H[ Gy~ Felhysup (0(a) ~ &(u ~ k7)) ds}

(kn,t u<s

< aBb{”GT — Fgllen(k + 1)7

+ sup |Fx(u) —GT(u)|f(kn t](1+<I)(s)) ds}.

kn<u<t

where we employed (11) for the second inequality. Thus, as

G, — FK“(k+1)1; <|| sup |[Lgh — Lhl|| + Gy — Fyllin
heZyp T
+ sup |LFy(u) — LG ()|,
kn<us<(k+1)m

we would have

1
— F, </ Lyh — Lh
Gz = Fills« l_b/2{|\::;%| h = L]

b
. +Gp — FK||k7,(1 + aBE(k + 1)1])}

-p 0 (K—)OO)
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due to (16) and (17). Thus, if (17) holds, it follows by induction that (18) is
true for all 2 € N, and this proves (16). Therefore it is sufficient to prove (17).
O

PrOOF OF (7). The proof of (17) is based on a Glivenko—Cantelli argu-
ment. First observe that, for every A € %;, t < T and a.s. every realization of
LK’

|Lgh(t) — Lh(t)| < aTsup|Zxh(s) —Zh(s)|
s<T

< aTsup(aR,(s) + bR;y(s)),

s<T
where
1 o N
Ri(0) =| 2 L1y (0 = (1= ()]
1 bK
2(t) _K Z 1[h 1),k l(l)+r)(t) - ‘I’(h(t))

+f Y, (h(t —x))P[r, € dx]‘.
(0,11
For R(t) observe that

R,(t) < Z(I[r > t] — P[#; > ¢])

1 oK 1 oK
- Ao> — lim — ro> .
g & PlRi>t] = lim = 2L P[F > 1]

The first summand tends to 0 (K — «) uniformly in ¢ due to the
Glivenko—Cantelli theorem for the nonidentically distributed case (cf. [12]),
and the second summand tends to 0 (K — ) uniformly in ¢ due to the
assumption. Thus, independently of A,

supR,(¢) » 0 as.(K — ).
t<T

For R,(¢) first observe that

bK
Ry(t) = K _Zl Ln-rqy, n-2a+rp(8) = Bl a1+ () |-
i

We now use a Glivenko—Cantelli theorem that is closely related to Theorem
11.2.2 of Pollard ([8], page 8).

PROPOSITION 3.1. Suppose ({);cn = (&1, ..., &), e n are i.i.d. Ré-valued
random elements with common distribution function F(x) = P[¢{ < X, J =
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., dl, x € R? (for fixed i, {,..., {? need not be independent). Let ¥ be a
class of integrable functions f: R - R with the following approximation
property. For all & > 0, there is a finite set &, such that for all f € F there are
functions f, ;, f, , €F, with

fon(2) <f(x) <f, (x), x€R? and E[f, (&) ~f(&H)] < ¢(s),
for a function ¢ > 0 with ¢(g) - 0 (g - 0). Then

-0 a.s.(n—>x).

sup |—
feF| T

PrOOF. It is sufficient to show that

n—>w

lim inf mf( ¥ £(4) - Ef( ;1)) > 0
i=1
and

1
lim sup iup (Ef( &) — ; Z f({)) > 0.
Let & > 0 be fixed. For f € # choose f, € % such that f, < f and Ef.({,) >
Ef(¢) — ¢(&). Then

n—o

liminf 12;"( Z (&) —Ef( 51))

> liminf lnf( _Z (&) —Ef( §1))

n—o f

S| =

> liminf inf (

n—o fsef};

S L) - BA(L) ) + inf (BA(4) — EF(4)
i=1 res

> liminf min( (&) —Ef( 51)) + ¢(&)
i=1

n—-w fse.z
>0,
as &, is a finite set, and
1 r
noe i=1

by the s.lln. Thus the first inequality is proven. The second inequality
follows by the same argument (choose £, > f). O

' To apply this proposition, note that
L1y, n-1aperp(8) = I[ &1 < R()]I[ & > h(s — £2)]
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with ¢; = ({;, r,). [Thus, (), c x are i.i.d.] Choose

F= {fh,s:R2 >R, [, (1, %5) =I[x1 = h(s)]I[xl > h(s —x2)]

for some h €77, s < T}.

The proof of the approximation property for & follows by standard integral
approximation for & €% and by discrete approximation of 0 < s < T'. Thus,

sup sup R,(¢) = sup sup
s<T hep s<T he#p
sup

1 K
sup| 7 L £(4) ~ Bf(4)

-0 as.(K- x).

1 K
E{_iglfh,s( gz) - th,s( gl)

I

Together with the result for R,(¢), this proves (17) and thus completes the
proof of Theorem 1.3. O

PROOF OF THEOREM 1.4. In view of Proposition 1.1, it suffices to show that
for all T € R, and for all m € N, f € C;R™), ¢,,...,d,,, ¥ € C5(0,T1?),

E[f(CEF, ¢1)s o s CEE, )XW — E5,9)] 5 0 (K > ).

For this, we proceed as sketched in the heuristics. Let f, ¢,..., ¢,,, ¥ be as
above and u, [i, it as in Theorem 1.3. Then

E[f(<§1?,¢1>,,(§g, ¢m>)<MT— flg‘,l//>]
1 bK
= E[f(<a(50 X ﬁ)T + X Z 5(71‘1{",A{‘+r,.), ¢l>, l= 1,...,m)
i=1
><<MT-§,?,¢>} +R,
with

f(<§1?}¢l>’l= 1,"',m)

R1 :EI:
r 1 oK )
_f a(SOXﬁ) +E 26(1{{,11{{4‘7‘!)’(#[ ,l=1,...,m
. i=1

X{pl = 51?,40].
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Now let 8§ > 0 be arbitrary and fixed; put, as proposed in the heuristics,
Hyp(s,t) = a"([0,s] x [0,¢])

and
Ay nHp=Hp((k+1)8,(k+m+1)8) — Hp((k + 1)8,(k + m)d)
(19) —Hp(kS,(k+m+1)8) + Hp(k8,(k + m)d)
= i"([k8,(k +1)8) X [(k+m)s,(k+m+1)8)).
Then

E[f(K&F, 0,1 =1,...,m)ul — &L, 4)]

- E[f(<a,(3o X ,TL)T +b Y Ay Hr8hs, hrmysy ¢l>, I = 1’.“,m)

k,m=0
X{ul' — &8, )| + Ry + Ry,
where
r 1 bK
R,=E|[{f|{a(8 x i) +E28&5{,Alx+m,¢l Ji=1,...,m
i=1

——f(<a(80><,a)T+b )y Ak,mHTa(gﬁ;(k+m)8)’¢l>’l=1""’m)}

k,m=0
X</""T - f,-?, ‘l/>}

Using the same approximations for ¢F in ( uf — &7, ), we obtain

E[f((EE, &), 1=1,...,m){ul — &5, 9]

N il
= E[f(<a(80 Xp) +b Y Ak,mHT5(€a,(k+m)a), ¢l>, 1=1,..., m)
k,m=0

+R,+R,+R;+R,,

X <b/1T —b Y Ay Hr8%s,(hemysys ‘/’>
k,m=0

R3=E

~\T ad .
f( <a(80 X i) +b Y Ay nHr8Gsmems) ¢z>, I=1,.., m)
k,m=0

r 1 aK
><<a(80 X f) — e 2 85,5 ¥ )|
i=1
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R4=E|:f(<a(8oxil)T+b Z Ak,mHTa(grS,(k+m)6)’ ¢l>’l= 1,...,m)
k

,m=0

1 K ©
X<b,U«T K Z ( Z Ak,mHTs(EB,(k+m)6) - 8(7;4{‘,Af‘+ri))’ ‘/’>]
i=1\k,m=0

The last term is deterministic: Put

AT d
Rys=f <a(80 X ) +0b > Ak,mHT3(71;a,(k+m)a), ¢l>, l=1,..., m)

k,m=0

><<bi.lT—b Yy Ak,mHTa(grS,(k+m)8)"/j>‘
k,m=0

It suffices to show that the remainders tend to zero, as 6 — 0 and K — .

Estimation of the remainders. Estimation of R; and Ry. In R, and Rj,
we approximated (1/K)L¢X 87 ;) by a(8, X f)". Hence, R, and R, can be
dominated in the same way. With Taylor’s expansion we have

1 aK r r
X P 00,7y ~ a(8y X i), ¢ )|,
i=1

m
IR, < 2llyllIDFII Y. E
I=1
1 oKX r T
IR < IfIIE e Y 80,7y — a(8, X i) , ¢,
i=1

where we suppressed the subscript « in the norms. For all ¢ € C;([0,T 19,
we have by the Cauchy—Schwarz inequality and the independence of the 7;’s,

1 aK r r
E EI—{E"I(O\(O”A“)_(SOX“) ,tl/>

o1 aK R 172 1 ok ) N
< {Var EE,lt/,(o,ri) + EI—{iglE(//(O,ri)—«sox,u) )

1 ek . . 1 ok )
<a—K ZA©R) - fim g 5205, ¢>‘

1 1/2
< (a—K) lyll +

-0 (K——)OO)

due to the assumptions. Hence, R; — 0 and R — 0 (K — ).
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Estimation of R, and R,. These remainders deal with the approximation
of (1/K)LEX 8%k axs vy BY D5 1o oBp, mHr 845, +mysy- We have by Taylor’s
expansion

|R,| < 2[lyllIDf I

1 oK ©
X Z E <K Z ( (AK, AK+r) — Z Ak,mHT5(€a,(k+m)a)), ¢l> ’
i=1 k,m=0

1 bK
|R4| =< ”f”E <E Z (3&5,145”,.) Z Ak mHT (CTR (k+m)8)) t/’>|

i=1 ,m=0

Abbreviate the indicator function
" Lkm, s = ks, k+1)8) X [(E+m)5,(k+m+1)8).

With the same notation as in the proof of Theorem 1.3, observe that for every
¢ € C;(0,T1%), by Taylor’s expansion and the Cauchy—Schwarz inequality,

1 %K ®
E <E Z (S(a{(»Af‘Hi) - Z Ak,mHT5(€6,(k+m)a)), t/’>‘

i=1 k,m=0

1 oK ©
Y (v(AK, Af + 1) — y(k8,(k +m)d))
i=1k,m=0
X1, m, 5 AF AF +1y)
1 &K [ .
+ET|— Y {w(ks,(k+m)d)
Ki=1 k,m=0

Xl(k,m,a)(FIEI(li)’Flzl(li) +r;)

_E[l(k,m,a)(Gil(li)’ Gr'(L) + "z)]}}

K

o

1
T
< 2b||Dyll6 + E z

§_0{¢(ka,(k +m)d)
X (L, m, oy (Fic ' (1), Fg (L) + 1)

_l(k,m,a)(GT_l(li)’Gfl(li) + rz))}‘

[y

k,

1=

K * .
E g, mZ= Y(ké,(k + m)d)

X{ om, (G (1), GrH (L) + 1)
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—E[l(k,m,a)(GEl(li)’ Gr'(l) + ri)]}

T
< 2b||Dy s + 2b||tl/||§{Ba + P[lIFx — Gyllr > £]}

1/2
rj’j € N)}

T
< Z{bIIDdIIIb‘ + blltllllg{ﬁa + P[lIFx — Gylir > &]}

i=1k,m=0

r r 1 bK o
+ET|{Var EZ Y Orim.s

i llll
t— ’
oK
for all & > 0, writing 0, ; ,, 5 = ¥(k8,(k + m)&)1, , (Gr'(1), G () + 1)
and using (15) and (16). Hence lim,_,limy_ IR,/ =0 and lim,
limg IR, =

Estimation Of R;. Finally, R; reflects the approximation of i’ by the sum
O’:, m =0Ak, m HT 8(7];3,(]2 +m)s) We have

<I1Ta ‘//> - Z l/’(ka’(k + m)8)Ak,mHT
k,m=0
T/8
Y (ks,(k +m)d)
k,m=0
X{aT([%5,(k + 1))

X[(k+m)8,(k+m+1)8))

< 20| fI{I1DylI8 +

_Ak,mHT}

|

where we emplo&ed Taylor’s expansion. By (19), the last summand is 0.
Hence, lim; _, , R; = 0. This completes the proof. O

ProoF oF LEMMA 1.5. Let C, = {f:[0,T]*> - R, continuous} and let ¢ be
a random element on R? with _‘Z(f) = §,r. As we have from Z(&F) =, 8,7
(K — «) that

<=<Z(§}%‘), f> —4q <6,U,T’f>;

for all f e C,, it follows by Theorem 4.2 and Lemma 4.3 of Kallenberg ([7],
page 32) that

¢k (B) —4 £(B),
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for all B € Z, = {B € #;, £(dB) = 0 a.s.}. Now, for all A € %, B € ZR?),

P[¢c(B) €Al = [ I[n(B) € AP (B) < dn]

M{(R?
A =I[u"(B) € A],

that is, {x(B) = 8,73, a.s.; hence, Z( &L(B) =, 8,7y The assertion now
follows from Proposition 11.1.3 of Dudley ([6], page 305). O
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