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We investigate the existence of an absolutely continuous martingale
measure. For continuous processes we show that the absence of arbitrage
for general admissible integrands implies the existence of an absolutely
continuous (not necessarily equivalent) local martingale measure. We also
rephrase Radon—-Nikodym theorems for predictable processes.

1. Introduction. In Delbaen and Schachermayer (1994a) we showed that
for locally bounded finite-dimensional stochastic price processes S the exis-
tence of an equivalent (local) martingale measure, sometimes called risk neu-
tral measure, is equivalent to a property called no free lunch with vanishing
risk NFLVR). We also proved that if the set of (local) martingale measures
contains more than one element, then necessarily there are nonequivalent
absolutely continuous local martingale measures for the process S. We also
gave an example [see Delbaen and Schachermayer (1994a), Example 7.7] of
a process that does not admit an equivalent (local) martingale measure but
for which there is a martingale measure that is absolutely continuous. The
example moreover satisfies the weaker property of no arbitrage with respect
to general admissible integrands. We were therefore led to investigate the
relationship between the two properties: the existence of an absolutely con-
tinuous martingale measure (ACMM) and the absence of arbitrage for general
admissible integrands (NA).

From an economic viewpoint a local martingale measure Q that gives zero
measure to a nonnegligible event, say F, poses some problems. The price of
the contingent claim that pays one unit of currency subject to the occurrence
of the event F is given by the probability Q[F]. Since F is negligible for
this probability, the price of the commodity becomes zero. In most economic
models preference relations are supposed to be strictly monotone and hence
there would be an infinite demand for this commodity. At first sight the prop-
erty ACMM therefore seems meaningless in the study of general equilibrium
models. However, as the present paper shows, for continuous processes it is
a consequence of the absence of arbitrage (NA). We therefore think that the
ACMM property has some interest also from the economic viewpoint.
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Throughout the paper all variables and processes are defined on a proba-
bility space ({2, % P). The space of all measurable functions, equipped with
the topology of convergence in probability is denoted by L°(Q, % P) or sim-
ply L°(Q) or LO. If F € & has nonzero measure, then the closed subspace of
functions vanishing on the complement F¢ of F is denoted by L°(F). The con-
ditional probability with respect to a nonnegligible event F' is denoted by Pp
and is defined as Pyz[B] = P[F N B]/P[ F]. To simplify terminology we say that
a probability Q that is absolutely continuous with respect to P is supported
by the set F if Q is equivalent to Pg; in particular, we then have Q[F] = 1.
Indicator functions of sets F' and so forth are denoted by 1z and so on. The
probability space () is equipped with a filtration (%) <;.».- We use the time
set [0, oo[ as this is the most general case. Discrete time sets and bounded
time sets can easily be imbedded in this framework. We will mainly study
continuous processes and in this case the discrete time set makes no sense at
all. However, Section 2 contains some results that remain valid for processes
with jumps.

We assume that the filtration (%;)<;.», satisfies the usual assumptions;
that is, it is right continuous and saturated for P-null sets. Stopping times
are with respect to this filtration. We draw the attention of the reader to
the problem that, when P is replaced by an absolutely continuous measure
Q, these usual hypotheses will no longer hold. In particular we will have to
saturate the filtration with the Q-null sets.

The process S, sometimes denoted as (S;) <t is a fixed cadlag, locally
bounded process that is a semimartingale with respect to ({2, (%) g<t<co» P)-
The process S is supposed to take values in the d-dimensional space R? and
may be interpreted as the (discounted) price process of d stocks. If T'; and
T, are two stopping times such that T'; < T, then [T, T'5] is the stochastic
interval {(¢, w) | t < o0, T1(w) <t < To(w)} C [0, oo xQ2. Other intervals are
denoted in a similar way.

If H is a predictable process, we say that H is simple if it is a linear com-
bination of elements of the form f1j; 7,;, where Ty < T, are stopping times
and f is S -measurable. For the theory of stochastic integration we refer to
Protter (1990) and for vector stochastic integration we refer to Jacod (1979).
The reader who is not familiar with vector stochastic integration can think
of S as being one-dimensional, that is, d = 1. If H is a d-dimensional pre-
dictable process that is S-integrable, then the process obtained by stochastic
integration is denoted H - S; its value at time ¢ is (H - S),.

A strategy is a predictable process that is integrable with respect to the
semimartingale S and that satisfies H, = 0. As in Delbaen and Schacher-
mayer (1994a), we will need the concept of admissible strategy.

1.1. DEFINITION. An S-integrable predictable strategy H is k-admissible,
for £ € R,, if the process H - S is always bigger than —% and if the limit
lim;_, (H - S), exists almost surely. In particular, if H is 1-admissible, then
H.S=>-1.
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For a discussion of this topic and its origin in mathematical finance we refer
to Harrison and Pliska (1981).

We also refer to Harrison and Pliska (1981) for a discussion of the fact that,
by considering the discounted values of the stock price S, there is no loss of
generality in assuming that the “riskless interest rate r” is assumed to be zero,
as we shall assume throughout the paper to alleviate notation. The outcome
(H - S), can be seen as the net profit (or loss) by following the strategy H. If
the time set is bounded, then of course the condition on the existence of the
limit at infinity becomes vacuous. As shown in our previous paper [Delbaen
and Schachermayer (1994a), Theorem 3.3], the existence of the limit at infinity
follows from arbitrage properties.

Fundamental in the proof of the existence of equivalent local martingale
measures are the sets

H# ={(H -8S)s | H is a 1-admissible strategy},
X ={(H-8S), | H is admissible}.

From Delbaen and Schachermayer [(1994a), Corollary 3.7], we recall the
following definition.

1.2. DEFINITION. We say that the semimartingale S satisfies the no arbi-
trage (NA) condition with respect to general admissible integrands if

& NLY(Q) = {0}

We say that the semimartingale S satisfies the no free lunch with vanishing
risk property (NFLVR) with respect to general admissible integrands if, for
a sequence of S-integrable strategies (H,),-; such that each H, is a §,-
admissible strategy and where §,, tends to zero, we have that (H - S),, tends
to zero in probability P.

The following theorem describes the relation between the NFLVR property
and the existence of a local martingale measure. The equivalence of these two
properties [(a), resp. (d), below] is the subject of Delbaen and Schachermayer
[(1994a), Corollary 3:8 and Theorem 1.1]. The equivalence with properties (b)
and (c) below was proved in Delbaen and Schachermayer [(1994¢c), Theorem
4]; see also Delbaen and Schachermayer (1994d).

1.3. THEOREM. For a locally bounded semimartingale S the following prop-
erties are equivalent:

(a) S satisfies NFLVR.

(b) (i) S satisfies the property NA and (ii) 2% is bounded in L°.
() () S satisfies the property NA, and (ii) there is a strictly positive local
martingale L such that at infinity L, > 0, P-a.s., and such that LS is a local
martingale.

(d) S admits an equivalent local martingale measure Q.
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In the present paper we will enlarge the scope of the preceding theorem by
giving conditions for the existence of an absolutely continuous local martingale
measure. In particular we shall prove in Section 4 the following central result
of the paper.

1.4. MAIN THEOREM. If the continuous semimartingale S satisfies the no
arbitrage property with respect to general admissible integrands, then there is
an absolutely continuous local martingale measure for the process S.

The paper is organized as follows. Section 2 contains some well known ma-
terial on the existence of predictable Radon—-Nikodym derivatives. The results
are mainly due to C. Doléans and are scattered in the Séminaires. We need
a more detailed version for finite-dimensional processes. More precisely, we
treat the case of a predictable measure taking values in the set of positive
operators on the space R? and we investigate under what conditions a vec-
tor measure has a Radon-Nikodym derivative with respect to this operator-
valued measure. In this context we say that an operator is positive when
it is positive definite. (If we were aiming for a coordinate-free approach, we
would rather interpret such an operator-valued measure as taking values in
the set of semipositive bilinear forms on R%.) This Radon-Nikodym problem,
even for deterministic processes,.is not treated in the literature (to the best
of our knowledge). The proofs are straightforward generalizations of the one-
dimensional case. For completeness we give full details.

We need these techniques to prove in Section 3 the fact that if the contin-
uous semimartingale S = M + A does not allow arbitrage (with respect to
general admissible integrands), then dA may be written as dA = d(M, M)h
for some predictable R%-valued process 4. This result seems well known to
people working in mathematical finance, but to the best of our knowledge at
least the d-dimensional version of this theorem has not been presented in the
literature. In Section 3 we then investigate the no arbitrage properties and we
introduce the concept of immediate arbitrage. We also give an example that
illustrates this phenomenon.

In Section 4 we prove the main theorem stated above.

After finishing this paper we were informed of the paper of Levental and
Skorohod (1995), which has a very significant overlap with our results here.
In particular, although our framework is more general, the content and the
probabilistic approach we give here to proving Theorem 3.7 are essentially
identical to that of Lemma 2 of Levental and Skorohod (1995). Their proof
appears to have been constructed earlier than ours, although this theorem
based on a rather more complicated analytic proof had already been pre-
sented by the present authors during the SPA conference in Amsterdam
in June 1993 [see Delbaen and Schachermayer (1993)] and in the seminar
at Tokyo University in September 1993. Also, Theorem 1 of Levental and
Skorohod (1995) corresponds to our main theorem, Theorem 1.4, under the
additional assumption that the local martingale part M of the continuous
semimartingale S is of the form M = 3 . W, where W is a d-dimensional
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Brownian motion defined on its (saturated) natural filtration and % = (2;)o<s<;
is an adapted matrix-valued process such that each X, is invertible.

2. The predictable Radon-Nikodym derivative. In this section we
will prove Radon—-Nikodym theorems for stochastic measures. We first deal
with the case of one-dimensional processes. A stochastic measure on R, is
described by a stochastic process of finite variation. In our setting it is conve-
nient to require that the measure has no mass at zero; that is, the initial value
of the process is 0. If we have two predictable stochastic measures defined by
the finite variation processes A and B, respectively, we can for almost every o
in ) decompose the A measure into a part absolutely continuous with respect
to the B measure and a component that is singular to it. We are interested in
whether such a decomposition can be done in a measurable or even predictable
way. Similar problems can be stated for the optional and for the measurable
case. For applications in Section 3, we only need the case of continuous pro-
cesses. However, the more general case is almost the same and therefore we
treat, at little extra cost, processes with jumps.

2.1. THEOREM. (i) If A: R, x Q — R is a predictable, cadlag process of
finite variation on finite intervals, then the process V, defined by setting V,
equal to the variation of A on the interval [0, t], is cadlag and predictable.

(i) If A: R, x Q — R is a predictable, cadlag process of finite variation on
finite intervals and if V is defined as in (i), then there is a decomposition of
R, x Q into two disjoint, predictable subsets, D* and D™, such that

t
A, =/O(1D+ ~1,)dV.

(i) If A: R, x Q — R is a predictable, cadlag process of finite variation on
finite intervals and if V is cadlag, predictable and increasing, then there are
predictable ¢: R, x Q) — R and a predictable subset N of R, x Q such that

A, = 1 dA d =0.
o= [, eedVet fm n(w)dA, and [ 1ydv,

PROOF. (i) We give the proofs only in the case Ay = Vy = 0. For the
proof we need some results from the general theory of stochastic processes
[see Dellacherie and Meyer (1980)]. One of these results says that there is a
sequence of predictable stopping times (7', ),-; that exhausts all the jumps of
A. Fix n and let (7)9<r<n, be the finite ordered sequence of stopping times
obtained from the set {O: 12, ...,n/2",Tq,...,T,}.

Put V" = Ziv:() ' lA7’k+1 B ATkl 1|I“'k+11°°|[' )

Because A is predictable, the variables A, are &, -measurable and hence
the processes V" are predictable. Because V" tends pointwise to V, this pro-
cess is also predictable.

(i) The second part is proved using a constructive proof of the Hahn—
Jordan decomposition theorem. It could be left as an exercise, but we promised
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to give details. Let V = var(A) as obtained in the first part. Being predictable
and cadlag, the process is locally bounded [Dellacherie and Meyer (1980)] and
hence there is an increasing sequence (T',),-; of stopping times such that
T, t o0 and V; < n. Define now

H = {cp | ¢ predictable and E[ o> qu] < oo}.
With the obvious inner product (¢, ¢) = E[[ ¢, ¢, dV,], the space # di-

vided by the obvious subspace {¢ | E[[ ¢2dV,] = 0} is a Hilbert space. For
each n we define the linear functional L" on /# as

L) =E[ [ e.da,]

Ry

Since

1/2
dA | < dv, < 2dvV ,
flo,m% ‘T flo,m euldVu = ﬁ<f[o,Tn1¢“ ”)

the functional L” is well defined. Therefore there is " such that

n — n
L) =E[[  eusidv].
Clearly the elements ¢ and y"*! agree for functions ¢ supported on [0, T',].
Hence (with the convention that Ty = 0) we have that ¢ = 3., ¢"Ljp 7
is predictable and satisfies, for all n,

L) =E[ [ ovav]

Now let C, = A, — f(f ¢, dV,. We will show that C = 0. First we show that
C is continuous. Let T be a predictable stopping time. Define ¢ = AC, 1. By
definition of C and by the property of ¢ we have for all n that E[(AC)?,, ] = 0.
This shows that C is continuous. Next we put ¢ = C1y, 7 .4 and we find that
E[CZ% ,,] = 0. From this it follows that for all ¢ we have that C, = 0. Because
Cis gadlag, this implies that the process C vanishes identically.

So far we proved that in a predictable way dA = ¢ dV. Now let D™ = {¢ =
1} and let D~ = R, x O\ D*. Both sets are predictable and from ordinary
measure theory we deduce that A, = f(f(l p+ — 1p-)dV. This gives us the
desired Hahn—Jordan decomposition.

(iii) The third part is again standard, a constructive proof of Lebesgue’s
decomposition theorem. Let A and V be given. As in ordinary measure theory,
we decompose A into its positive and its negative part. Part (ii) shows that
this can be done in a predictable way. It is therefore sufficient to prove the
claim for A increasing. We define B = A + V. We now repeat the proof of
the second part and we find a predictable ¢, 0 < ¢ < 1, and dA = ¥ dB.

‘Let N = {¢ = 1}, a predictable set. We find dA = ¢y dA + ¢y dV. As in the
classical proof we deduce from this equality that dA = 15 dA + ¢ dV, where
[15dV =0 and where ¢ is predictable. [J
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2.2. COROLLARY. If A and V are as in part (iii) of Theorem 2.1,if dA < dV
with respect to the predictable sigma-algebra; that is, for each predictable set
N the property [1ydV = 0 implies that also [1y dA =0, then for almost all
o the measure dA(w) is absolutely continuous with respect to dV(w) on R,.

For applications in finance we need a vector measure generalization of the
preceding results. The theory was developed by Jacod (1979). We need two
kinds of vector measures. The first kind is an ordinary vector measure taking
values in R?. The second kind is an operator-valued measure that takes values
in the set of all operators on R?; in daily language, in the space of all d x
d matrices. Positive measures on R, are generalized as measures that take
values in the cone Pos(]Rd) of all positive semidefinite operators on R¢. In
this setting the variation process V becomes a predictable, cadlag, increasing
process V: R, x ) — Pos(R%). On the set of all operators we put the nuclear
norm,; for positive operators this simply means the trace of the operator. Now
let A, = trace(V,). The process A is predictable, cadlag and increasing. Again
we assume V, = 0, which results in Ay = 0. We have that dV « dA in
the sense that all elements of the matrix function define measures that are
absolutely continuous with respect to A. If we calculate the Radon—Nikodym
derivative using dyadic approximations we see that dV = o d\, where o is a
predictable process taking values in Pos(R?).

For a positive operator a we have that the range R(a) is invariant under a
and that on R(a) the operator a is invertible. If we define P, as the orthogonal
projection on R(a) we see that a=! = a~! o P, is a generalized inverse of a.
More precisely we have a oa™! := a~! oa = P,. The correspondence between
a, a1 and P, can be described in a Borel measurable way. This is an easy
exercise, but we promised to give details.

First note that, for each strictly positive operator by, the map b — blis
continuous at by.

To calculate P, we simply take the limit

lima o (a + eid) 1.
el0

This constructive definition shows that the mapping a — P, is a Borel mea-
surable mapping. The same trick is used to obtain the generalized inverse

a!=limao (a+ eid)™2
e}0

The processes o~ ! and P, are therefore still predictable since they are the
composition of a predictable and a Borel measurable mapping.

We will now describe a kind of absolute continuity of a vector measure with
respect to an operator-valued measure. Let v be a measure defined on the
o-ring of relatively compact Borel sets of R, and taking values in RY. Let
be a measure defined on the same o-ring and taking values in Pos(R?). We
say that v < p, if whenever f: R, — R? is a Borel function such that either
f(t) =0 or ||[f(¢)| = 1, the expression du f = 0 (as a vector measure) implies
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f'dv = 0 (as a scalar measure). (Here f’ is the transpose of f.) One can show
that in this case the measure v has a Radon—Nikodym derivative with respect
to u. Again we will need a predictable version of this theorem, so we give
details. )

Suppose that A: R, x Q) — R? is predictable, cadlag and of finite variation
on finite intervals. Suppose that A; = 0. Let V be as above, predictable, cadlag,
taking values in Pos(R?) and increasing. Suppose that for every predictable
process f: R, x Q — R%, such that ||f(¢, )| is either 0 or 1, the relation
dV f = 0 implies that ' dA = 0. This means that dA « dV in a predictable
way. Let A = trace(V) and let N be a predictable null set for A; that is,
1y dA = 0. For such a predictable set N and for each predictable £ we have
1, dV k = 0. The hypothesis on A then implies that 17k’ dA = 0. This shows
that dA « dA and the predictable Radon—Nikodym theorem (applied for each
coordinate) shows the existence of a predictable R%-valued process g such that
dA = gd\. Now (id— 000 1)dV =dV (id—ooo!)=(id-ooo)odr =0
and by the assumption on A we have (id — o 0 071) dA = 0. This implies that
(id — 0 oo~ 1) gdA = 0 and that up to null sets for A, we have g € R(o). Now
let » = 0~1(g). Then obviously o(h) = g [because g € R(o)], h € R(o) and
dA = ochdA = dV h. The range R(o) could have been called the infinitesimal
range R(dV) of the measure V. It is easy to show that it does not depend on
the control measure. We have completed the proof of the following theorem.

2.3. THEOREM. If V is an increasing, predictable, cadlag process, taking
values in the cone of the positive semidefinite operators on R?, then the vector
measure defined by the predictable R%-valued cadlag process A of finite vari-
ation is of the form dA = dV h, for some predictable R%-valued process h, if
and only if for each predictable R%-process f, such that | f(¢t, »)|| is either 0 or
1, the relation dV f = 0 implies f'dA = 0.

2.4. REMARK. If S is a semimartingale with values in R?, then the bracket
[S, S] and (if it exists) also the bracket (S, S) define increasing processes with
values in Pos(R?). The fact that values are taken in Pos(R?) is a reformulation
of the Kunita—Watanabe inequalities:

dS', 87] < \JdIS, Si1d[S/, 871,

d(S", 87)] < /(S Sy d(S4, SI).

3. The no arbitrage property and immediate arbitrage. We now
turn to the main theme of the paper, a detailed analysis of the notion of “no
arbitrage.” We start with an easy lemma, which turns out to be very useful.
It shows that the general case of an arbitrage may be reduced to two special

-kinds of arbitrage.

3.1. LEMMA. If the cadlag semimartingale S does not satisfy the no arbi-
trage property with respect to general admissible integrands, then at least one
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of the two following statements holds:

(i) There is an S-integrable strategy H and a stopping time T, P[T < oo] >
0, such that H is supported by [T,T+1[, H-S>0and (H-S); >0 fort > T.

(ii) There is an S-integrable 1-admissible strategy K, & > 0 and two stop-
ping times T, < Ty such that Ty < 0o on {T; < oo}, P[Ty < o0] >0, K =
Kljp 7 and (K - S)g, > € on the set {T'y < oo}.

PrOOF. Let S allow arbitrage and let H be a 1-admissible strategy that
produces arbitrage, that is, (H - S),, > 0 with strict inequality on a set of
strictly positive probability. We now distinguish two cases. Either the process
H - S is never negative or the process H - S becomes negative with positive
probability. In the first case let T' = inf{¢: (H - S); > 0}.

Let (6,)°, be dense in ]0,1[ and let H = 52, 2-"Hljy 1,4 Then H
satisfies (i). We thank an anonymous referee for correcting a slip in a previous
version of this paper at this point.

In the second case we first look for £ > 0 such that P[inf,(H-S); < —2¢] > 0.
We then define T'; as the first time the process H - S goes below —2¢. That is,

T, =inf{¢ | (H - S), < —2¢}.

On the set {T; < oo} we certainly have that the process H - S has to gain at
least 2¢. Indeed at the end the process H - S is positive and therefore the time

T2 = lnf{t I t> Tl’ (H . S)t > —8}

is finite on the set {T'; < oo}. We now put K = H1j 1. The process K is
1-admissible since (K - S); > —1 + 2¢ on the set {T'; < oo}. Also (K -S)p, > ¢
on the set {T'; < o0}. O

3.2. DEFINITION. We say that the semimartingale S admits immediate ar-
bitrage at the stopping time 7', where we suppose that P[T < oo] > 0, if there
is an S-integrable strategy H such that H = Hlj; . and (H - S), > 0 for
t>T.

3.3. REMARK. (a) Let us explain why we use the term immediate arbi-
trage. Suppose S admits immediate arbitrage at T and that H is the strategy
that realizes this arbitrage opportunity. Clearly H - S > 0 and (H - S)p,; > 0
for all ¢ > 0 almost surely on {T' < oo}. Hence we can make an arbitrage
almost surely immediately after the stopping time T has occurred.

(b) Lemma 3.1 shows that either we have an immediate arbitrage opportu-
nity or we have a more conventional form of arbitrage. In the second alterna-
tive the strategy to follow is also quite easy. We wait ‘until time T'; and then
we start our strategy K. If the strategy starts at all (i.e, if Ty < oo), then

. we are sure to collect at least the amount & in a finite time. It is clear that
such a form of arbitrage is precisely what one wants to avoid in economic mod-
els. The immediate arbitrage seems, at first sight, to be some mathematical
pathology that can never occur. However, the concept of immediate arbitrage
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can occur, as the following example shows. In model building one therefore
cannot neglect the phenomenon.

3.4. EXAMPLE. Take the one-dimensional Brownian motion W=(W,);[o,1
with its usual filtration. For the price process S we take S, = M, + A, =
W, + +/t, which satisfies the differential equation dS, = dW, + d¢/(2/%).
We will show that such a situation leads to “immediate” arbitrage at time
T = 0. Take H, = 1/(+/#(In t)?). With this choice the integral on the drift
term [j H, du/(2/u)) = 1(In(¢71))! is convergent.

As for the martingale part, the random variable f(f H, dW, has variance
J5 1/(u(In u)*) du which is of the order In(¢-1)=3. The iterated logarithm law
implies that, for ¢ = {(w) small enough,

I(H - W)(0)| < C\/ (In(¢71))3 In In((In(¢-1))?) < C'(In(¢ 1))~/

It follows that, for ¢ small enough, we necessarily have that (H - S),(w) > 0.
We now define the stopping time 7" as T' = inf{¢ > 0 | (H - S), = 0} and, for
n>0,T,=Tnan' Clearly (H-S)r > 0 and P[(H - S)r, > 0] tends to 1
as n tends to infinity. By considering the integrand L = }77, a, H1 1 for
a sequence «, > 0 tending to zero sufficiently fast, we can even obtain that
(L - S), is almost surely strictly positive for each ¢ > 0.

We now give some more motivation why such a form of arbitrage is called
immediate arbitrage. In the preceding example, for each stopping time T > 0
the process S — ST admits an equivalent martingale measure Q(T') given by
the density f7 = exp(—3 le(l/ﬁ) daw, —1/8 fjl.(l/u)du). We can check this
by means of the Girsanov—Maruyama formula or we can check it even more
directly via It6’s rule. This statement shows that if one wants to make an
arbitrage profit, one has to be very quick since a profit has to be the result of
an action taken before time 7.

Let us also note that the process S also satisfies the NA property for sim-
ple integrands. As is well known it suffices to consider integrands of the
form flyp 7y where f is Fr,-measurable [see Delbaen and Schachermayer
(1994e)]. Let us show that such an integrand does not allow an arbitrage.
Take two stopping times Ty, < T';. We distinguish between P[T;, > 0] = 1 and
Ty = 0. [The 0-1 law for %, (Blumenthal’s theorem) shows that one of the two
holds.]

If Ty > 0, P-a.s., then the result follows immediately from the existence of
the martingale measure Q(7T,) for the process S — S7o.

If Ty =0, we have to prove that S; >0 (or Sy, <0) implies that S; =0 a.s.

We concentrate on the first case and assume to the contrary that ST1 >0
and P{S7, > 0} > 0. Note that it follows from the law of the iterated logarithm

" that inf{¢|S; < 0} = 0 almost surely. Hence the stopping times

T, =inf{t > ¢|S, < —¢}
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tend to zero a.s. as ¢ tends to zero. Let ¢ > 0 be small enough that {T', < T}
has positive measure to arrive at a contradiction:

0 > Eqr,)[St,1(1,<1)] = Eq(r,)[ST, 1 (7,<1)] = 0.

The following theorem, which is based on the material developed in Sec-
tion 2, is well known and has been around for some time. At least in dimension
d = 1 the result should have been known for a long time [see also Ansel and
Stricker (1994)]. For dimension d > 1, the presentation below is, we guess,
new.

3.5. THEOREM. If the d-dimensional, locally bounded semimartingale S
satisfies the NA property for general admissible integrands, then the Doob-
Meyer decomposition S = M + A satisfies dA = d{(M, M) h, where h is a
d-dimensional predictable process and where d{M, M) denotes the operator-
valued measure defined by the d x d matrix process ((M, M)); ;4. The process
h may be chosen to take its values in the infinitesimal range R(d(M, M)).

PrROOF. We apply the criterion of Section 2. Take f a d-dimensional pre-
dictable process such that the measure d{M, M)f is zero and such that either
f has norm 1 or norm 0. It is obvious that the stochastic integral [’ - M ex-
ists and results in the zero process. If the process f’ - A is not zero, then we
replace f by the sign function coming from the Jordan—-Hahn decomposition
of /- A. This sign function ¢ is a predictable process equal to +1 or —1. The
predictable integrand g = ¢ f still satisfies g- M = 0, but the component g’- A
now results in an arbitrage profit. This contradiction shows that the criterion
of Section 2 is fulfilled and hence the existence of the process A is proved. If
we write d(M, M) as o d\ for some control measure A and an operator-valued
predictable process o, then we may, by the results of Section 2, suppose that
h, is in the range of the operator o,. [J

The following theorem is the basic theorem in dealing with the NA property
in the case of continuous price processes.

3.6. THEOREM. If the continuous semimartingale S with Doob—-Meyer de-
composition S = M + A satisfies the NA property for general admissible inte-
grands, then we have dS = dM + d{(M, M)h, where the predictable process h
satisfies the following:

() T =inf{¢| [y b, d(M, M), h, = o0} > 0 a.s.

(ii) The [0, co]-valued increasing process fé h,d(M, M), h, is continuous.
In particular, it does not jump to oco.

’ PrOOF. The existence of the process & follows from the preceding theorem.
The stopping time T is well defined. The first claim on the stopping time T
follows from the second, so we limit the proof to the second statement. We will
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prove that the set
T+e
F={T<oo}n{/T h’td(M,M)tht=ooVs>O}

has zero measure. Clearly F is, by right continuity of the filtration, an element
of the o-algebra . As the process (M, M), is continuous, assertion (ii) will
follow from the fact that P[F] = 0. Suppose now to the contrary that F has
strictly positive measure. We then look at the process 17(S — ST), adapted
to the filtration (#7,,);>0 and we replace the probability P by Pz. With this
notation the theorem is reduced to the case T' = 0. This case is treated in the
following theorem. It is clear that this will complete the proof. (I

3.7. IMMEDIATE ARBITRAGE THEOREM. Suppose the d-dimensional continu-
ous semimartingale S has a Doob-Meyer decomposition given by

where h is a d-dimensional predictable process. Suppose that a.s.

@ /:h;d(M,M)tht=oo Ves0.

Then for all & > 0 there is an S-integrable strategy H such that H = Hly,
H.-S >0and P[(H-S), > 0] =1 for each t > 0. In other words, S admits
immediate arbitrage at time T = 0.

The proof of the theorem is based on the following lemma:

3.8. LEMMA. If (1) holds almost surely, then for any a, &, n > 0 we can find
0 < 8 < /2 and an a-admissible integrand H with

H = Hlﬂa’s]l,
[ 1H dAl + [ H, d(M, M), H, <2 +a,

P[(H-8),21]>1-n.
PROOF. Fix a, e, > 0 and let R > max{8/7((1+ a)/a)?, (1 + a)?}. Since

(1) is satisfied almost surely, we have that

840
Ktoo

Hence we can find a K > 0 and a 0 < § < /2 such that

° >[5 Ln<ky k; d(M, M), h, > R
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on an J-measurable set A with P[A] > 1 — 5/2. Let
t
T = 1nf{t >0 | fs l{lhlsK} h’td(M, M)tht > R} N &

and let H = ((1 + a)/R) hlBS,T]I 1{|h|5K}' Then

€ (1+a)?
/OHsd(M,M)sHss =

and
/08 |H,dA|, < (1+a) as.

Therefore H is S-integrable. Moreover, (H - A), =1+ a on A.
Since |H-M||3 = E[f; H,d{M, M), H,] < (14+a)?/R we obtain from Doob’s
inequality together with Tchebycheff’s inequality (both in their L? version)

2
1+a) 1 <2.
2

2) Pl((H-M) >a] < 4( 7=

We now localize H to be a-admissible. Let
Ty=inf{t >0|(H -M), < ~a}AT.
Then Ty =T on {(H - M)* < a} and from (2) we obtain
PI(H Yjo,7,1- 8); =2 1] 2 P[{(H - A), = 1 +a} N{(H - M)" < a}]
>P[A]-P[(H-M)" >2a]>21-m,

which proves the lemma. O]

PROOF OF THE IMMEDIATE ARBITRAGE THEOREM. Assume that (1) is valid
for almost every w € ). We will now construct an integrand which realizes
immediate arbitrage. Let &y > 0 be such that ¢, < min(e, %). By Lemma 3.8
we can find a strictly decreasing sequence of positive numbers (¢,),.o with
lim, ., &, — 0 and integrands H, = H,1y, . such that H, is 47"-
admissible, f:,:q |(H,),dA,| + fgi”H(Hn)’sd(M, M),(H,)s < 3/2"™ and P[(H,

S),, =27 >1-2" Let H=Y2, H,. Then H is S-integrable. Define
T =inf{t> 0| (H-S),=0}.

We claim that T'(w) > 0 for almost every o € Q. Since P[(H,, - 8),, <2 =
27", we obtain from the Borel-Cantelli lemma that for almost every w €
there is an N(w) € P with (H, - S), (w) > 27" for all n > N(w). If n > N(w)
and g,,; <t < ¢,, then

(FI -8)(w) = i(Hk . S)ek(w)+(Hn - S)(w) > é_ﬁ]ﬁ

k>n
>_2-(n+1)

>2-n
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and we have verified the claim. Hence

lg%]?[(H IHO,T]] . S)t > O] =1.
Finally, let
e A
H=)" 27" H1yy ppe g
n=1

to find an S-integrable predictable process supported by [0, €] such that
(H-S),>0foreach¢>0. 0

4. The existence of an absolutely continuous martingale mea-
sure. We start this section with the investigation of the support of an
absolutely continuous risk neutral measure. The theory is based on the
analysis of the density given by a Girsanov—Maruyama transformation. If
dS, =dM,+ d{M, M), h, defines the Doob—Meyer decomposition of a con-
tinuous semimartingale, where % is a d-dimensional predictable process and
where M is a d-dimensional continuous local martingale, then the Girsanov—
Maruyama transformation is, at least formally, given by the local martingale
L, = exp(f(f -k, dM, — 1/2f0t h,d(M,M), h,), Ly = 1. Formally one can
verify that LS is a local martingale. However, things are not so easy. First
of all, there is no guarantee that the process A is M-integrable, so L need
not be defined. Second, even if L is defined, it may only be a local martingale
and not a uniformly integrable martingale. The examples in Schachermayer
(1993) and in Delbaen and Schachermayer (1994b) show that even when an
equivalent risk neutral measure exists, the local martingale L need not be
uniformly integrable. In other words, a risk neutral measure need not be
given by L. Third, in case the two previous points are fulfilled, the density
L, need not be different from zero a.s.

What can we save in our setting? In any case, Theorem 3.6 shows that in
the case when S satisfies the no arbitrage property for general admissible
integrands, the process A satisfies the following properties:

1. T=inf{¢| [y W d{M,M)h = o} > 0 a.s.;

2. The [0, oo]-valued proces fot h,d(M, M), h, is continuous; in particular, it
does not jump to co.

In this case the stochastic integrals 2 - M and A - S can be defined on the

interval [0, T and at time T we have that L4 can be defined as the left limit.
The theory of continuous martingales [Revuz and Ypr (1991)] shows that

T
{Ly=0}= {f B, d(M, M) h, = oo}.
- LJo
If after time T, that is, for ¢ > T, we put L, = 0, the process L is well defined,

it is a continuous local martingale, it satisfies dL; = —L, h;dM, and LS is a
local martingale. The process X = 1/L —1 is also defined on the interval [0, T
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and on the set {Ly = 0} its left limit equals infinity. The crucial observation
is now that, on the interval [0, T, we have that dX, = (1/L,)h;dS,.

This follows simply by plugging in Itd’s formula [compare Delbaen and
Schachermayer (1994c¢)].

For each ¢ >0 let 7° be the stopping time defined by 7¢ = inf{¢ | L, < &}.
Because the process X is always larger than —1, the stopped processes X ™ are
outcomes of admissible integrands. If Q is an absolutely continuous probability
measure such that S becomes a local martingale, then by Theorem 1.3 we have
that the set # = {X7, | ¢ > 0} is bounded in L°({dQ/dP > 0}). However, it
is clear that on the set {L; = 0}, the set & is unbounded.

As a consequence we obtain the following lemma.

4.1. LEMMA. If the continuous semimartingale S satisfies the no arbitrage
condition with respect to general admissible integrands and if Q is an abso-
lutely continuous local martingale measure for S, then {dQ/dP > 0} C {Lp >

0}

In order to prove the existence of an absolutely continuous local martingale
measure Q we therefore should restrict ourselves to measures supported by

F={Lp >0}

Note that the no arbitrage condition implies that P[F] > 0. Indeed, suppose
that P[F] =0 and let

. 1
U= lnf{t: Lt < 5].

We then have that P[U < oo] = 1, Ly = 3 and therefore Xy = 1. Hence
H = (1/L)W 1y is a 1-admissible integrand such that (H - S =Xyp=1,
a contradiction to NA.

So we will look at the process S under the conditional probability measure
Pg.
Our strategy will be to verify that S satisfies the property NFLVR with re-
spect to Py which will imply the existence of a local martingale measure Q for
S which is equivalent to P and therefore absolutely continuous with respect
to P. However, there are difficulties: Under the measure Py the Doob-Meyer
decomposition will change, there will be more admissible integrands and the
verification of the no free lunch property with vanishing risk for general ad-
missible integrands (under Py) is by no means trivial.

We are now ready to reformulate the main theorem stated in the Introduc-
tion in a more precise way and to commence the proof:

4.2. MAIN THEOREM. If the continuous semimartingale S satisfies the no
arbitrage property with respect to general admissible integrands, then with the
notation introduced above, it satisfies the no free lunch property with vanishing
risk with respect to Pg.



CONTINUOUS LOCAL MARTINGALE MEASURES 941

As a consequence there is an absolutely continuous local martingale measure
that is equivalent to Pp; that is, it is precisely supported by the set F.

The proof of the theorem still needs some auxiliary steps which will be
stated below.

We first deal with the problem of the usual hypotheses under the measure
Pz. The o-algebras % of the Pp-augmented filtration are obtained from % by
adding all Pg-null sets. It is easily seen that the new filtration is still right
continuous and satisfies the usual hypotheses for the new measure Py. The
following technical results are proved in Delbaen and Schachermayer (1994d).

4.3. PROPOSITION. If 7 is a stopping time with respect to the filtration
(%7)1=0- then there is a stopping time T with respect to the filtration (7)o
such that Pgp-a.s. we have 7 = 7. If 7 is finite or bounded, then T may be chosen
to be finite or bounded.

_4.4. PROPOSITION. If H is a predictable process with respect to the filtration
(%)s=0> then there is a predictable process H with respect to the filtration

(F4)is0> such that Pg-a.s. we have H=H.

This settles the problem of the usual hypotheses. Each time we need an & -
predictable process, we can without danger replace it by a predictable process
for 7. Without further notice we will do this.

The process S is a semimartingale with respect to the system (¥, Pg). This
is well known; see Protter (1990).

Note also that for Py we have that fg’" h,d(M,M), h, < co a.s. We will
need this later on.

As a first step we will decompose S into a sum of a Pp-local martingale
and a predictable process of finite variation. Because Py is only absolutely
continuous with respect to P we need an extension of the Girsanov—-Maruyama
formula for this case. The generalization was given by Lenglart (1977). We
need the cadlag martingale U defined as

Note that U is not necessarily continuous, as we only assumed that S is
continuous and not that each %;-martingale is continuous.
Together with the process U we need the stopping time

1
0, =E{ gt

vy =inf{t| U, =0} = inf{t > 0 | U,_ = 0}

[see Dellacherie and Meyer (1980) for this equality].

4.5. LEMMA. We have v = T, P-almost surely.
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PROOF. We first show that for an arbitrary stopping time o we have that
L, > Oontheset {U, > 0}. Let A be asetin &%, such that PfAN{U, > 0}] > 0.
This already implies that P[A N F] > 0. Indeed we have that

E1,15 | F]=P[FI1,U,

and hence we necessarily have that P[A N F] > 0. The following chain of
equalities is almost trivial:

L(,:/ALUI{UU>O}z]P[F]fAL(,U(,:/AL‘,IF=/AnFLU.

The last term is strictly positive since L, > 0 on F. This proves that for each
set A such that P[A N {U, > 0}] > 0 we must have [, _q Ly > 0. This
implies that L, > 0 on the set {U, > 0}, hence v < T'.

The converse inequality is less trivial and requires the use of the NA prop-
erty of S. We proceed in the same way. Take G € %, such that G c {L, > 0}
and P[G] > 0. Suppose that U, = 0 on G. We will show that this leads to a
contradiction. If U, = 0 on G, then clearly G N F = &. However, on F° we
have that L, tends to zero and hence 1/L, tends to infinity. We know that
1/L, — 1 can be obtained as a stochastic integral with respect to S. We take
the stopping time u = 0o on G°¢ and equal to inf{¢ | L, < %La} on the set G.

The outcome
1 1
15 = (_ _ ._) L1
G L” Lo- G

/An{U,,>0}

is the result of a 1-admissible strategy and clearly produces arbitrage. We may
therefore suppose that P[G N F] > 0 and hence we also have [, U, > 0. Again
this suffices to show that U, > 0 on the set {L, > 0} and again implies that
T < v. The proof of the lemma is complete now. [J

PROOF OF THE MAIN THEOREM. We now calculate the decomposition of the
continuous semimartingale S under Pr. If S = M + A is the Doob—Meyer
decomposition of S under P, then under Pr we write S = M + A, where
A, =A,+ [(d(M,U),)/(U,); see Lenglart (1977). This integral exists for the
measure Pz since on F the process U is bounded away from 0. A more explicit
formula for A can be found if we use the structure of (M, U). We thereto use
the Kunita—Watanabe decomposition of the L2-martingale U with respect to
the martingale M. This is done in the following way [see Jacod (1979)]. The
space of all L2-martingales of the form a - M is a stable space and in fact we
have ||(a - M)y |z = E[f« d{(M, M) a]. The orthogonal projection of U,, on
this space is given by (8- M),, for some predictable process 8, where of course

E[/B"d(M, M) B] < .

In this notation we may write
d{M,U)=d{(M, M)B.
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It follows that also [B’'d(M, M) B < oo a.s. for the measure Pz and the mea-
sure dA can be written as

dA = d(M, M) (ht + %) = d(M, M)E,.
t

Here we have put £ = A+ B/U to simplify notation.

To prove the NFLVR property for S under Pr we use the criterion of Theo-
rem 1.3 above.

Step 1. The set of 1-admissible integrands for Py is bounded in L(F). From
the properties of B8 and & we deduce that, for the measure P, the integral

/0 Kd(M, M)k, <co Ppas.
The Py local martingale L is now defined as
T ¢ ’ 14 1/t ’
i = exp(—/o E,dM, — E/o E,d(M, M), k,,).
It follows that

L,>0 Pg-a.s.

It is chosen in such a way that LS is a Py-local martingale and therefore the
set % constructed with the 1-admissible, with respect to P, integrands is
bounded in LO(Py).

In particular this also excludes the possibility of immediate arbitrage for S
with respect to Pp.

Step 2. S satisfies NA with respect to Py (and with respect to general ad-
missible integrands). Since by Step 1 immediate arbitrage is excluded, the
violation of the NA property would, by Lemma 3.1, give us a predictable in-
tegrand H such that for Py the integrand is of finite support, is S-integrable
and is 1l-admissible. When the support of H is contained in Joy, 05] it gives
an outcome at least ¢ on the set {0, < oo}. All this, of course, is with respect
to PF' .

The rest of the proof is devoted to the transformation of this phenomenon
to a situation valid for P.

Without loss of generality we may suppose that for the measure P we have
o1 < o9 < T. We replace, for example, the stopping time o, by max(oy, 0y)
and then we replace o; and oy by, respectively, min(7', o7) and min(T, o).
All these substitutions have no effect when seen under the measure P. Since
Pp[{o; < 09 < 00}] > 0, we certainly have that P[{oy < 05 < T}] > 0.

Roughly speaking we will now use the strategy H to construct arbitrage on
the set F and we use the process 1/L to construct a sure win on the set F,
as on the interval [0, T, the process 1/L — 1 equals K - S for a well chosen
integrand K. When we add the two integrands, H and K, we should obtain
an integrand that gives arbitrage on () with respect to P and this will provide
the desired contradiction,
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Let the sequence of stopping times 7, be defined as
. 1
Typ = inf t l Lt < ; .

We have that 7, 1T for P and 7, 1 oo for the measure Pg. Since we have that
L, >0as., we also have that U, > 0 a.s. It follows that on the o-algebra &;
the two measures P and Py are equlvalent We can therefore conclude that for
each n the integrand H1j, .  as well as the integrand K1j , j is S-integrable
and 1-admissible for P. The last integrand still has to be renormalized.

In fact on the set F itself, the lower bound —1 for the process K - S is too
low since it will be compensated at most by . We therefore transform K in
such a way that it will stay above &/2 but will nevertheless give outcomes
that are very big on the set F°. Let us define

&
K = K1{0.1<T}—2-L0.1,
Kn = K]‘[IO,T,,]I’
H= H1{01<T}’
ﬁn = Hlﬂo’.‘,"]].

From the preceding considerations it follows that the integrands H” are all
1-admissible for P and that the integrands K" are s/2-admissible for P. The
outcomes (K" -8), tend to co on F°N{oy < T}, and the outcomes (H" - -S),,
become larger than ¢ on the set F N {07 < T}. When we add them we see that
on the set {o; < T'} we have

liminf((H + K)- S),, =liminf((A" +K")-S), = g

Define now the stopping time u as

w =7, ifn is the first number such that (A" + K")- S), = 4

The stopping time p is finite on the set {0y < 7}. The integrand J =
(H+ K )1 4 is now S-integrable and is certainly 1 + ¢/2 admissible. By
the definition of the stopping time u we have that (J - S), > (¢/4)1g, <1},
producing arbitrage. Since the process S satisfied the NA property, we arrived
at a contradiction.

Step 2 is therefore completed and this completes the proof of the theorem. [l
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