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Consider the partial sums {St } of a real-valued functional F(�(t)) of a
Markov chain {�(t)} with values in a general state space. Assuming only
that the Markov chain is geometrically ergodic and that the functional F is
bounded, the following conclusions are obtained:

Spectral theory. Well-behaved solutions f̌ can be constructed for the
“multiplicative Poisson equation” (eαF P )f̌ = λf̌ , where P is the transition
kernel of the Markov chain and α ∈ C is a constant. The function f̌ is an
eigenfunction, with corresponding eigenvalue λ, for the kernel (eαF P ) =
eαF (x)P (x, dy).

A “multiplicative” mean ergodic theorem. For all complex α in a
neighborhood of the origin, the normalized mean of exp(αSt ) (and not the
logarithm of the mean) converges to f̌ exponentially fast, where f̌ is a
solution of the multiplicative Poisson equation.

Edgeworth expansions. Rates are obtained for the convergence of the
distribution function of the normalized partial sums St to the standard
Gaussian distribution. The first term in this expansion is of order (1/

√
t)

and it depends on the initial condition of the Markov chain through the
solution F̂ of the associated Poisson equation (and not the solution f̌ of the
multiplicative Poisson equation).

Large deviations. The partial sums are shown to satisfy a large deviations
principle in a neighborhood of the mean. This result, proved under geometric
ergodicity alone, cannot in general be extended to the whole real line.

Exact large deviations asymptotics. Rates of convergence are obtained for
the large deviations estimates above. The polynomial preexponent is of order
(1/

√
t) and its coefficient depends on the initial condition of the Markov

chain through the solution f̌ of the multiplicative Poisson equation.

Extensions of these results to continuous-time Markov processes are also
given.

1. Introduction. Consider a Markov process � = {�(t) : t ∈ T} taking
values in a general state space X and with time being either continuous, T =
[0,∞), or discrete, T = {0,1, . . .}. Let F : X → R be a given functional on the
state space of �.
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Our interest lies in the long-term behavior of

St =
∫
[0,t)

F
(
�(s)

)
ds, t ∈ T,(1)

where, in discrete time, the integral is a sum and St are simply the partial sums

Sn =
n−1∑
i=0

F
(
�(i)

)
, n ≥ 1.(2)

1.1. Multiplicative ergodic theory. For simplicity we first discuss the case of
a discrete-time Markov chain � with a countable state space X. If � is positive
recurrent with invariant probability measure π , then for any F with finite mean
π(F ) =∑x π(x)F (x),

1

n
Ex[Sn] → π(F ), n → ∞,(3)

where x = �(0) is the initial condition, Sn are the partial sums defined above, Px is
the law of � conditional on �(0) = x and Ex is the corresponding expectation.

Often we can quantify the rate of convergence in (3) by showing that the limit

F̂ (x) = lim
n→∞ Ex[Sn − nπ(F )](4)

exists where, in fact, the function F̂ solves the Poisson equation

P F̂ = F̂ − F + π(F ).(5)

Here P denotes the transition kernel of �, P (x, y) := Pr{�(1) = y | �(0) = x}
and P acts on functions f : X → R via Pf (x) =∑y P (x, y)f (y). Results of this
kind hold for a wide class of Markov chains on a general state space, as shown
in [37] in discrete time and in [36, 38] in continuous time.

In this paper we seek multiplicative versions of the ergodic results in (3)–(5).
Let α ∈ C and consider the product

n−1∏
i=0

exp
(
αF(�(i))

)= exp(αSn).

For countable state space chains in discrete time, multiplicative results correspond-
ing to the ergodic theorems (3)–(5) were established in [2] when α is a real number.
The mean ergodic theorem (3) corresponds to the multiplicative limit

1

n
log Ex[exp(αSn)] → �(α), n → ∞,(6)

for some analytic function �(α) ∈ R, and the stronger limit theorem (4) has the
multiplicative counterpart

f̌α(x) = lim
n→∞ Ex

[
exp
(
αSn − n�(α)

)]
,(7)
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where f̌α solves the natural analog of (5), the multiplicative Poisson equation

P f̌α = exp
(−αF + �(α)

)
f̌α.(8)

Our first aim is to provide natural conditions under which the multiplicative
ergodic results (6)–(8) hold. As we indicate in several instances, our conditions
(and the results obtained under them) are often optimal or near optimal (see
Proposition 6.2 and the examples in Section 7). Equipped with these results, we
go on to prove precise expansions for some classical probabilistic limit theorems
satisfied by the partial sums Sn. Specifically, the multiplicative mean ergodic
theorem (7) leads to Edgeworth expansions for the central limit theorem and to
exact large deviations asymptotics.

There are numerous approaches to multiplicative ergodic theory and its related
spectral theory in the literature; a brief survey is given at the end of this
Introduction. The conditions given in this paper considerably extend known
criteria for the existence of solutions to the multiplicative Poisson equation and
for the validity of the multiplicative mean ergodic theorem.

Most closely related to the approach taken here are the results of [2], developed
for discrete-time Markov chains � on a discrete state space along the following
lines. For any real α, define the new kernel P̂α by

P̂α(x, y) = exp(αF (x))P (x, y), x, y ∈ X,(9)

where P (x, y) is the transition kernel of the Markov chain �. In this notation, the
multiplicative Poisson equation (8) can be rewritten as

P̂αf̌α = λαf̌α(10)

with λα = exp(�(α)). That is, the solutions f̌α of the multiplicative Poisson equa-
tion (8) are eigenfunctions for the new kernel P̂α with associated eigenvalues λα .
[Throughout this paper, we try to maintain the convention that lowercase letters
denote quantities that are exponential versions of the corresponding uppercase let-
ters; e.g., λ = exp(�).]

Under a monotonicity assumption on F , it is shown in [2] that well-behaved
eigenfunctions for (10) exist for real α in a neighborhood of zero. Based on such
an eigenfunction f̌α with corresponding eigenvalue λα , the twisted kernel P̌α is
defined as

P̌α(x, y) = λ−1
α f̌ −1

α (x)P̂α(x, y)f̌α(y)(11)

and the convergence in (7) is deduced from the properties of P̌α .
For bounded functionals F and assuming only that � is “geometrically

ergodic,” results corresponding to (6)–(8) are obtained in Section 4 of the present
paper for Markov processes � on a general state space, in continuous or discrete
time and for complex α. For our purposes, a Markov chain � is geometrically
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ergodic if it is ψ-irreducible, aperiodic and a Lyapunov function V : X → [1,∞]
exists such that the following condition holds:

(V4) For a “small” set C ⊂ X and constants δ > 0, b < ∞, PV ≤ (1 − δ)V + bIC .

Precise definitions and a more general version of condition (V4) for Markov
processes in discrete or continuous time are given in Section 2.2.

Geometric ergodicity for � is our main assumption and it will remain in effect
throughout the paper. Section 1.3 offers a discussion comparing (V4) to several
of the standard assumptions in the relevant literature and in Section 7, geometric
ergodicity is verified for several classes of important examples. Note also that
what we call geometric ergodicity here is equivalent to the notion of geometric
ergodicity used in [37], where it is stated slightly differently.

In the following section we briefly describe the probabilistic implications of the
spectral theory outlined above. Along a different direction, in [26] we extended our
present results to the case of products of random matrices. This extension leads to
an interesting and nontrivial application of the present ideas to a stability question
arising from systems theory.

1.2. Probabilistic limit theorems. The multiplicative mean ergodic theorems
in (6) and (7) offer precise information about the asymptotic behavior, as n → ∞,
of

mn(α) := Ex[exp(αSn)], α ∈ C.

When α = iω is imaginary, mn(α) is simply the characteristic function of the
partial sums Sn, and it is well known that information about the convergence of the
characteristic functions leads to Edgeworth expansions related to the central limit
theorem [17, 24, 46]. Similarly, when α is real, mn(α) is the moment-generating
function of the partial sums Sn, and the precise convergence of the corresponding
log-moment generating functions to a smooth limiting �(α) as in (6) leads to exact
large deviations asymptotics; see [13, 7].

Suppose � is a geometrically ergodic Markov chain and let F be a bounded,
nonlattice, real-valued functional on the state space of �. In Section 5, we obtain
an Edgeworth expansion for the distribution function Gn(y) of the normalized
partial sums [Sn − nπ(F )]/σ√

n,

Gn(y) = Px

{
Sn − nπ(F )

σ
√

n
≤ y

}
, y ∈ R,

where σ 2 is the asymptotic variance of Sn/
√

n. In Theorem 5.1 we show that, for
all x ∈ X,

Gn(y) = G(y) + γ (y)

σ
√

n

[
ρ3

6σ 2 (1 − y2) − F̂ (x)

]
+ o(n−1/2), n → ∞,
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uniformly in y ∈ R, where γ (y) denotes the standard Normal density, G(y) is the
corresponding distribution function, F̂ is the solution to the Poisson equation (5)
given in (4) and ρ3 is a constant related to the third moment of Sn/

√
n.

A similar expansion is obtained in the case of lattice functionals F . These results
generalize the Edgeworth expansions in [41, 30, 8], where they are derived under
much more restrictive assumptions. In particular, in all these papers the conditions
given are stronger than Doeblin recurrence, which is significantly stronger than
the form of geometric ergodicity assumed in this paper; see the discussions in
Sections 1.3 and 7.

In Section 6 we discuss moderate and large deviations for the partial sums Sn.
Under geometric ergodicity, the multiplicative mean ergodic theorem (7) implies
that a moderate deviations principle (MDP) holds for the partial sums Sn. Note that
geometric ergodicity is essentially equivalent to the weakest conditions known to
suffice for the MDP [10, 11] (although weaker assumptions can be used to obtain
the MDP lower bound).

By standard large deviations techniques [13], the convergence of the log-
moment generating functions in (6) to a smooth limiting �(α) can be used to
prove large deviations estimates for the partial sums Sn: Suppose � is a Doeblin
chain and let F be a bounded, real-valued functional on the state space of �. In
Proposition 6.2 we show that under the stationary distribution π of �, the partial
sums Sn satisfy a large deviations principle (LDP) in a neighborhood of the mean
π(F ), that is, for any c > π(F ) close enough to the mean π(F ),

1

n
log Pπ {Sn ≥ nc} → −�∗(c), n → ∞,(12)

where �∗(c) is the Fenchel–Legendre transform of �(·). (A corresponding result
holds for the lower tail.)

Note that this result cannot in general be extended to a full LDP on the whole
real line. For example, Bryc and Dembo [5] have shown that the full LDP may
even fail for the partial sums of a Doeblin chain with a countable state space.

Furthermore, the more precise convergence result (7) leads to exact large
deviations expansions analogous to those obtained by Bahadur and Rao [1] for
independent random variables: For geometrically ergodic chains and nonlattice
functionals F , in Theorem 6.3 we obtain the following: For any c > π(F ) close
enough to the mean π(F ) and all x ∈ X,

Px{Sn ≥ nc} ∼ f̌a(x)

a
√

2πnσ 2
a

e−n�∗(c), n → ∞,(13)

where a ∈ R is chosen such that �′(a) = c, f̌a(x) is the solution to the
multiplicative Poisson equation (10), �∗(·) is as in (12) and σ 2

a = �′′(a).
A corresponding expansion is given for lattice functionals.
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These results generalize those obtained by Miller [39] for finite-state chains and
those in [30], proved under conditions stronger than Doeblin recurrence (in [30]
a version of the domination assumption in (15) below is assumed, together with
additional regularity conditions).

The problem of obtaining exact large deviations asymptotics [such as in (13)
above] has been considered in [28, 42] using a “pinned” multiplicative mean
ergodic theorem for a ψ-irreducible and aperiodic Markov chain. It is shown that
for a “small” set C ⊂ X,

lim
n→∞

1

n
log Ex

[
exp(αSn)I

(
�(n) ∈ C

)]= �(α),(14)

and from this, under additional conditions [assuming a variant of the “uniform
domination” condition (15) discussed in the following section], large deviations
expansions are proved along the same lines as indicated above. The difference here
is that, because of the additional constraint imposed by the small set C in (14), the
resulting expansions are not for the probabilities Px{Sn ≥ nc} as in (13), but for the
“pinned” probabilities Px{Sn ≥ nc and �(n) ∈ C}.

Finally note that authors of much of the relevant literature often consider a
Markov additive process model instead of simply the partial sums of a given
Markov processes. For simplicity (and without loss of generality), we restrict our
attention to the asymptotic behavior of the partial sums themselves.

1.3. Related approaches. In this paper we attempt to place within a single
framework results from two previously disparate research areas: The theory of
positive operators as developed in [45, 44], where rα = (λα)−1 is the convergence
parameter for the semigroup generated by P̂α , and from the theory of positive
harmonic functions for diffusions, where �(α) = log(λα) is known as the
generalized principal eigenvalue [47]. The reason that the constant λα is given two
different names is that, so far, the discrete-time theory of ψ-irreducible Markov
chains and the related continuous-time theory of positive harmonic functions have
been developed independently. Looked at together, many of the results of the
latter continuous-time theory can be replicated, improved or generalized by lifting
results from the discrete-time setting.

These and some other relevant approaches in the existing literature are
summarized below. Whereas this literature is very extensive, the following
discussion is not intended to be a complete review.

A. ψ-Irreducible operators. The most general approach to understanding the
eigenfunction equation (10) has been developed for discrete-time Markov chains,
based on renewal theory and the theory of positive, ψ-irreducible operators; see
Nummelin’s monograph [45]. In this framework �(α) = − log(rα), where rα is
the convergence parameter for the semigroup generated by the kernel P̂α defined
in (9).
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Although, in general, useful solutions to (8) cannot be constructed, if � is
aperiodic and rα > 0, then from the definitions it can be shown directly that for
any “small” set C,

lim
n→∞

1

n
log
(
P̂ n

α (x,C)
)= �(α) = − log(rα) a.e. x ∈ X,

where P̂ n
α denotes the n-fold composition of the kernel P̂α with itself. From this,

the “pinned” multiplicative mean ergodic theorem (14) is easily obtained. The
drawback to this approach is the restriction imposed by the small set C in (14).
As we will see, this restriction is not necessary when � is geometrically ergodic.
Nevertheless, in the case of first-order large deviations [as opposed to more precise
estimates as in (13)], these methods provide what appear to be the most general
large-deviations results to date [9, 12].

B. Lyapunov functions and compact sublevel sets. A well-behaved solution to the
multiplicative Poisson equation (10) can be shown to exist under suitable bounds
on the transition kernel P . For example, (8) will admit a bounded solution f̌α

under the “uniform domination” assumption of [51], Section 6: For some ε > 0
and all measurable A ⊂ X,

P (x,A) ≥ εP (y,A), x, y ∈ X.(15)

Condition (15), as well as its variants in [28, 16, 30, 13], are significantly stronger
than geometric ergodicity and are rarely satisfied for noncompact state spaces.
In particular, they imply that the process is Doeblin recurrent, a property that is
equivalent to geometric ergodicity with a bounded Lyapunov function V ; see [37],
Chapter 16.

Similar conditions are used in Donsker and Varadhan’s classic papers; see [52]
for a general exposition. Variations on their assumptions are used throughout the
large-deviations literature (including the recent work by Wu; see [56] and the
references therein) and they all imply the validity of a condition stronger than
geometric ergodicity, the multiplicative regularity condition (mV3), stated and
discussed in Section 2.2. In particular, Varadhan [53] assumes directly that (mV3)
holds.

C. Spectral gap. In all of the aforementioned works, only the case where
α ∈ R is considered. Specifically, the positivity of the semigroup generated by the
kernel P̂α in (9) is exploited in constructing solutions (λα, f̌α) to the eigenvalue
problem (10). Nagaev [40] treated the special case of ergodic Markov chains that
converge to the stationary distribution at a uniform geometric rate,

|P t(x,A) − π(A)| ≤ B0e
−b0t for all x = �(0), all measurable A ⊂ X.(16)

This condition is equivalent to Doeblin recurrence. A version of the multiplicative
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mean ergodic theorem is proved, under (16), for purely imaginary α = iω in a
neighborhood of zero. The gist of this approach is to formulate the problem in
a vector-space setting similar to that considered here. Noting that the transition
semigroup {P n} of the Markov chain converges in operator norm to the invariant
probability measure (as n → ∞, where P n is viewed as a linear operator from
L∞ → L∞), the continuity of the norm is exploited to obtain convergence of the
semigroup {P̂ n

α }.
Operator-theoretic approaches have been extensively used in the classical theory

of Markov chains, and the assumption of uniform geometric ergodicity (16) is
traditionally used to ensure a spectral gap, and hence convergence, as in [40].
Generalizations have typically involved an alternative vector-space setting, such
as an Lp space for p < ∞; see [54, 29, 4] and also [22, 21]. In particular, under
the assumption of hypercontractivity, Deuschel and Stroock [14] derived large
deviations properties for Markov chains. Note that, as hypercontractivity implies
L2-ergodicity at an exponential rate, it also implies that (V4) holds [37].

In a different vein, in [37, 38] the weighted-L∞ space was considered,

LV∞ :=
{
g : X → C : sup

x

[ |g(x)|
V (x)

]
< ∞

}
,

with V : X → [1,∞) being the Lyapunov function in condition (V4). The
convergence of the semigroup {P n} in the induced operator norm on this space
is equivalent to geometric ergodicity [37, 38] and, based on this equivalence, we
show in this paper that (V4) leads to multiplicative mean ergodic theorems of
the type (6)–(8) for complex α, and also to criteria for the existence of solutions
to (10) under conditions far weaker than those used in, for example, [47, 52]. We
also substantially strengthen the conclusions of both [47] and [42, 43] since we
can apply the V -uniform ergodic theorem of [37] to obtain uniform geometric
convergence in (7).

In earlier work related to the ergodic theory of Markov processes (as opposed
to the multiplicative ergodicity and large deviations issues considered here),
Kartashov [31, 32] considered weighted norms and a version of the V -uniform
ergodic theorem for countable state space chains first appeared in [25].

D. Nonlinear semigroups. For a continuous-time Markov process � (typically a
diffusion), Fleming [20] and Feng [18] considered a nonlinear operator H defined
as a modification of the generator A of the process �:

H(G) := log
(
(g−1)Ag

)
where g = eG.

For any function F ∈ L∞, the multiplicative Poisson equation is given in
continuous time as Af̌ = exp(−F + �)f̌ , where � = �(1) [recall the definition
of �(·) in (6)]. If g = f̌ is a solution for a given F , then

H(G) = log
[
(g−1)(e−F+�g)

]= −F + �.
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Define the functional G on L∞ as G(F ) = log(cf̌ ), where f̌ solves the
multiplicative Poisson equation and c = π(f̌ )−1 is a normalizing constant. The
operator G is an inverse of −H in the sense that H ◦G = −I on some appropriately
defined domain.

Under (V4), the results of the present paper imply that G is a bounded nonlinear
operator, whose domain contains an open ball in L∞ centered at the origin. In
particular, our results provide methods for verifying the structural assumptions
of [18, 19]. A thorough investigation of this nonlinear structural theory and its
intimate relationship to large deviations properties has been carried out in a
subsequent work [33] for Markov processes that satisfy the stronger assumption
of multiplicative regularity.

1.4. Organization. The rest of the paper is organized as follows. In Section 2
we collect the basic notation and definitions that will remain in effect throughout
the paper. We present background results from the ergodic theory of Markov chains
and processes, and briefly discuss several different conditions for ergodicity and
the relationships between them.

In Section 3 we collect some results about the convergence parameter of a
positive semigroup. Section 4 develops the spectral theory and multiplicative
ergodic theory along the lines discussed above. Analogs of (6)–(8) are proved for
geometrically ergodic Markov processes.

Sections 5 and 6 contain the probabilistic results outlined in Section 1.2. Finally
in Section 7 we give numerous examples of Markov chains and processes that
satisfy the assumption of geometric ergodicity.

2. Ergodicity. In this and the following section we review some necessary
background results from certain parts of the ergodic theory of Markov chains
and processes [37], and some results regarding the convergence parameter of a
positive semigroup as defined in [45]. All of this concerns a ψ-irreducible and
aperiodic chain or process � on a general state space X (see below for precise
definitions). We assume that X is equipped with a σ -field B and that B is
countably generated. The distribution of � is described by a transition semigroup
{P t : t ∈ T}, where T is taken to be either the nonnegative integers Z+ (in discrete
time) or the nonnegative reals R+ (in continuous time), and where for each t ,
P t is the transition kernel

P t(x,A) := Pr{�(t) ∈ A | �(0) = x}, x ∈ X, A ∈ B.

Recall that P t acts on functions f : X → R and signed measures ν on B via

P tf (·) =
∫

X
P t(·, dy)f (y) and νP t(·) =

∫
X
ν(dx)P t(x, ·),(17)

respectively.
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2.1. ψ-Irreducibility. For any θ > 0, we define the resolvent kernel Rθ by,

Rθ :=


∞∑
0

(1 − e−θ )e−θnP n, discrete time,∫
[0,∞)

θe−θtP t dt, continuous time,

(18)

and we write R for R1.
If for some σ -finite measure ψ on B , some θ > 0, and all functions s : X →

[0,∞) with ψ(s) = ∫ s(x)ψ(dx) > 0, we have

Rθ(x, s) :=
∫

X
Rθ(x, dy)s(y) > 0, x ∈ X,

then the semigroup {P t : t ∈ T} is called ψ-irreducible and ψ is called an
irreducibility measure. If the transition semigroup {P t} associated with the
Markov process � is ψ-irreducible, then we say that � is ψ-irreducible. The set
of functions s : X → R+ with ψ(s) = ∫ s(x)ψ(dx) > 0 is denoted by B+ and all
such s are called ψ-positive.

Throughout the paper, we will assume that � is ψ-irreducible. Moreover,
without loss of generality we assume that ψ is maximal in the sense that any other
irreducibility measure ψ ′ is absolutely continuous with respect to ψ [37]. We will
also assume that the semigroup {P t : t ∈ T} is aperiodic, that is, for any s ∈ B+
and any initial condition x,

P t(x, s) > 0 for all t sufficiently large.

If the semigroup associated with the Markov process � is aperiodic, then we say
that � is aperiodic.

A measurable subset C of X is called full if ψ(Cc) = 0 and it is called absorbing
if Rθ(x,Cc) = 0 for x ∈ C (for some θ ). We recall that, for a ψ-irreducible �, a
nonempty absorbing set is always full ([37], Proposition 4.2.3).

A function s ∈ B+ and a measure ν on B are called small if, for some θ > 0,

Rθ(x,A) ≥ s(x)ν(A), x ∈ X, A ∈ B.(19)

In [37] , Proposition 5.5.5, it was shown that for a ψ-irreducible �, one can always
find a θ and a pair (s, ν) satisfying the bound (3.2), such that s(x) > 0 for all x and
ν is equivalent to the maximal irreducibility measure ψ (in the sense that they are
mutually absolutely continuous). A similar construction works in continuous time
as well.

If a small function s is of the form s = εIC for some ε > 0 and C ∈ B , then
the set C is called small. We denote by B+

p the set of all small functions s ∈ B+
and we denote by M+

p the set of all (positive) small measures ν which satisfy (19)
for some s ∈ B+

p . Both M+
p and B+

p are positive cones and they are closed under
addition.
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2.2. Ergodicity conditions. Let V : X → [0,∞] be an extended real-valued
function with V (x0) < ∞ for at least one x0 ∈ X. Let SV denote the (nonempty)
set

SV = {x :V (x) < ∞}.(20)

In most of the results below our assumptions will guarantee that SV is absorbing,
hence full, so that V (x) < ∞ a.e. [ψ].

Let LV∞ denote the vector space of measurable functions h : X → C satisfying

‖h‖V := sup
x∈X

|h(x)|
V (x)

< ∞.

Similarly, L
f∞ will denote the corresponding space for an arbitrary nonnegative

(measurable) function f on X. We define the V -norm |||P̂ |||V of an arbitrary kernel
P̂ = P̂ (x, dy) by

|||P̂ |||V := sup
‖P̂ h‖V

‖h‖V

,(21)

where the supremum is over all h ∈ LV∞ with ‖h‖V = 0.
In what follows, it will be convenient to describe some important properties of �

in terms of its generator A rather than in terms of its transition semigroup {P t}. For
a function g : X → C, we write Ag = h if for each initial condition �(0) = x ∈ X
the process {m(t) : t ∈ T} defined by

m(t) :=
∫
[0,t)

h(�(s)) ds − g(�(t)), t ∈ T,(22)

is a local martingale with respect to the natural filtration {Ft = σ(�(s),
0 ≤ s ≤ t) : t ∈ T}. In discrete time the generator is simply A = P − I .

Next we introduce two different regularity conditions on �, taken from [37].
As we will see, the first one guarantees the validity of ergodic results as in
equations (3)–(5), whereas the second one will be used to prove their multiplicative
counterparts (6)–(8); see Section 4.

Throughout this paper we assume that the function V is finite for at least one
x ∈ X.

(V3) For a function f : X → [1,∞), a probability measure ν on B , a constant
b < ∞, a function s : X → (0,1] and a V : X → (0,∞],

AV ≤ −f + bs,

R ≥ s ⊗ ν.

(V4) For a probability measure ν on B , some constants b < ∞ and δ > 0, a
function s : X → (0,1], and a V : X → [1,∞],

AV ≤ −δV + bs,

R ≥ s ⊗ ν.
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Note that condition (V4) is stronger than (V3): When (V4) holds, (V3) also
holds with f = V , V ′ = V/δ and b′ = b/δ. The assumption that (V4) holds for a
Markov chain � is the main condition required for most of our results and it will
remain in effect essentially for the rest of the paper. To formalize this assumption
we introduce the following definition:

GEOMETRIC ERGODICITY. A Markov process � is called geometrically
ergodic (with Lyapunov function V ) if it is ψ-irreducible, aperiodic and satisfies
condition (V4) (with this V ).

In Section 7, numerous examples are given for which the validity of (V4) is
explicitly verified; see also [37], Chapter 16. For comparison, we also introduce
the following related condition for continuous-time Markov processes, which we
think of as the natural multiplicative analog of (V3):

(mV3) For a function f : X → [1,∞), a probability measure ν on B , constants
δ > 0 and b < ∞, a function s : X → (0,1] and a V : δ → [1,∞],

log(e−V AeV ) ≤ −δf + bs,

R ≥ s ⊗ ν.

As discussed in the introduction, condition (mV3) is very closely related to
the conditions in the well-known Donsker–Varadhan large deviations results. In
particular, under the conditions of [52], especially Assumption (3) on page 34,
it follows from Theorem 3.3 below that (mV3) is satisfied. Moreover, when the
state space is not compact, Varadhan’s conditions imply that (mV3) holds with
an unbounded f with compact sublevel sets, an assumption already stronger
than (V4) as the following proposition shows. A detailed study of the Markov
processes satisfying (mV3) is given in [33], where the analog of (mV3) for
discrete-time Markov processes is also given. In the context of diffusions, more
specific results can be found in [27]. Proposition 2.1 is proved in [33].

PROPOSITION 2.1. Suppose � is ψ-irreducible and aperiodic. If (mV3)
holds, then so does (V4).

2.3. Ergodic theorems. Under either (V3) or (V4), there exists a unique
invariant probability measure π on B (see below). Given such a π , we define
� as the kernel

� = 1 ⊗ π

so that �(x,A) = π(A), x ∈ X and A ∈ B . If π(V ) := ∫X π(dx)V (x) < ∞, then
� acts on LV∞ as a bounded linear operator.



316 I. KONTOYIANNIS AND S. P. MEYN

A fundamental kernel is a linear operator Z :Lf∞ → LV∞ (for some measurable
functions f ≥ 1, V ≥ 1) that satisfies

AZ = −(I − �).(23)

That is, for any F ∈ L
f∞, the function F̂ = ZF ∈ LV∞ solves the Poisson equation

AF̂ = −F + π(F ),(24)

where π(F ) = ∫X π(dx)F (x). Equivalently, the stochastic process

m(t) = F̂ (�(t)) − F̂ (�(0)) +
∫
[0,t)

(
F(�(r)) − π(F )

)
dr, t ≥ 0,(25)

is a local martingale with respect to {Ft}.
The following two theorems give equivalent conditions for � to be ergodic or

geometrically ergodic, respectively. Corollary 2.3 states that a fundamental kernel
exists and the ergodic results (3)–(5) given in the Introduction indeed hold as soon
as � satisfies (V3).

For any C ∈ B , let τC denote the hitting time

τC := inf{t ≥ 1 :�(t) ∈ C}.

THEOREM 2.2 (Ergodicity). Suppose that � is ψ-irreducible and aperiodic.
For any function f : X → [1,∞) the following are equivalent:

(i) The process � is positive recurrent with invariant probability measure π

and π(f ) < ∞.
(ii) There exists a small set C such that

sup
x∈C

Ex

[∫
[0,τC)

f (�(t)) dt

]
< ∞.

(iii) Condition (V3) holds with the same f .

If any of these conditions holds, then the set SV defined in (20) is absorbing and
full, and

sup
g : |g|≤f

|P t(x, g) − π(g)| → 0, t → ∞, x ∈ SV .(26)

Moreover, for any small measure ν there exists a fundamental kernel Z which is a
bounded linear operator,

Z :Lf∞ → {
h ∈ LV∞ :ν(h) = 0

}
.

If Z′ is any other such fundamental kernel, then ‖ZF − Z′F‖V = 0, F ∈ L
f∞.
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PROOF. The discrete-time version of (i)–(iii) is a consequence of the f -norm
ergodic theorem in [37]; the continuous-time version follows from [35], Theo-
rem 5.3. The construction of the fundamental kernel and the uniform bound is
given in [23], Theorem 2.3. �

Recall the definition of St in (1).

COROLLARY 2.3 (Ergodic theorems). Let � be a ψ-irreducible, aperiodic
Markov process that satisfies (V3). If F ∈ LV∞ with f as in (V3), then for x ∈ SV :

(a) Ex[1
t
St ] → π(F ) as t → ∞.

(b) There exists F̂ ∈ LV∞ with π(F̂ ) = 0, so that F̂ solves the Poisson equation

AF̂ = −F + π(F ).

(c) If, in addition, π(V ) < ∞, then F̂ satisfies

F̂ (x) = lim
t→∞ Ex[St − tπ(F )].(27)

PROOF. The convergence in norm (26) implies the convergence,

Ex[F(�(t))] → π(F ), t → ∞, x ∈ SV ,

which gives (a). For (b) we can take F̂ = ZF , where Z is given in Theorem 2.2.
When π(V ) < ∞ it follows that, for some b1 < ∞,∫

T

∣∣Ex

[
F
(
�(t)

)]− π(F )
∣∣dt ≤ b1‖F‖f V (x), x ∈ SV .

This is given as Theorem 14.0.1 of [37] in discrete time. The continuous-time case
follows on considering the skeleton chain �(δk), k = 1,2,3, . . . , as discussed on
page 247 of [36]. This implies that one version of the fundamental kernel may be
expressed as

Z(x,A) =
∫

T

(
P t(x,A) − π(A)

)
dt, x ∈ SV , A ∈ B,

and Z is a bounded linear operator from L
f∞ to LV∞. This gives (c). �

The solution F̂ of the Poisson equation given in Corollary 2.3(b) arises in almost
every limit theorem considered below. In particular, it can be used to define the
asymptotic variance σ 2 in the central limit theorem; see Theorem 17.4.5 of [37].
In the discrete-time case, σ 2 < ∞ as soon as π(F̂ 2) < ∞, and equation (17.44)
of [37] gives the representation,

σ 2 = lim
n→∞

1

n
Varx{Sn} = Eπ

[
F̂
(
�(n)

)2 − (P F̂
(
�(n)

))2]
, x ∈ SV .

Next we obtain a characterization of the case when σ 2 = 0. In discrete time, a
similar result was derived in [3] using different methods.
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PROPOSITION 2.4 (Variance characterization). Suppose that � satisfies (V3)
with π(V 2) < ∞. Then, for any F ∈ L

f∞, the asymptotic variance

σ 2 := lim
t→∞

1

t
Varx{St}(28)

exists for any initial condition �(0) = x ∈ SV . Writing F = F − π(F ), σ 2

satisfies, for all t > 0,

σ 2 = 1

t
Eπ

[(
F̂
(
�(t)

)− F̂
(
�(0)

)+ ∫
[0,t)

F
(
�(s)

)
ds

)2]
< ∞.(29)

Moreover:

(i) If σ 2 = 0, then there exists G ∈ LV∞ satisfying∫
[0,t)

F
(
�(s)

)
ds = G

(
�(t)

)− G
(
�(0)

)
a.s. [π ].(30)

When time is discrete, this can also be expressed as P (x,Sx) = 1, x ∈ SV , where
Sx = {y ∈ X :G(y) = G(x) − F(x)}.

(ii) Conversely, if (30) holds for some G ∈ LV∞, then σ 2 = 0.

PROOF. Result (i) is an immediate consequence of (29), which follows
from the martingale characterization of F̂ [see (25)]. Result (ii) is immediate
from (28). �

THEOREM 2.5 (Geometric ergodicity). Suppose that � is ψ-irreducible and
aperiodic. The following are equivalent:

(i) There exists a probability measure π and a V : X → [1,∞] such that P t

converges to π in the V -norm,

P t → 1 ⊗ π, t → ∞.

(ii) There exists a small set C and ε > 0 such that

sup
x∈C

Ex[exp(ετC)] < ∞.

(iii) Condition (V4) holds for some V : X → [1,∞].
If any of these conditions holds, then the set SV defined in (20) is absorbing
and full for any function V satisfying (iii), and there exist constants b0 > 0,
B0, B ′

0 < ∞ and an invariant probability measure π on B such that

|||P t − 1 ⊗ π |||V ≤ B0e
−b0t , t ∈ T,∣∣Ex[St − tπ(F )] − F̂ (x)

∣∣≤ B ′
0‖F‖V e−b0t , F ∈ LV∞, x ∈ SV , t ∈ T.

PROOF. The discrete-time result is from [37], Theorem 15.0.1, and the
continuous-time version is the main result of [15]. �
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3. The generalized principal eigenvalue. As in the previous section, we
assume that � is a geometrically ergodic Markov process. We fix throughout this
section a bounded (measurable) function F : X → R and a real number α ∈ R, and
we define the semigroup {P̂ t

α : t ∈ T} by

P̂ t
α(x,A) = Ex[exp(αSt)IA(�(t))], t ∈ T,(31)

where St is defined as before by (1). In this section we consider the general
properties of this positive semigroup; we therefore suppress the dependency on α

and F and simply write {P̂ t} for {P̂ t
α : t ∈ T}.

We say that an arbitrary positive kernel P̂ is probabilistic if P̂ (x,X) = 1 for all
x ∈ X. Similarly, a semigroup {P̂ t} is called probabilistic if P̂ t is probabilistic
for all t . Clearly, the semigroup {P̂ t} = {P̂ t

α} is, in general, nonprobabilistic.
The definitions of ψ-irreducibility and aperiodicity carry over to nonprobabilistic
semigroups immediately. (Further extensions to kernels defined for complex
numbers α ∈ C will be treated in Section 4.) Note that {P̂ t} is irreducible and
aperiodic as soon as {P t} is. We also define a family of resolvent kernels R̂θ

for θ > 0 exactly as in (18), with P̂ t in place of P t . To ensure that these are
finite for all x ∈ X and a suitable class of A ∈ B , we usually consider θ ’s in the
range θ > |α|‖F‖∞ (and as before, we write R̂ = R̂1). With R̂θ replacing Rθ , the
definitions of small functions, measures and sets carry over verbatim.

Finally, we define the generator Â of a general semigroup {P̂ t : t ∈ T}: We write
Âg = h if

P̂ tg (x) = g(x) +
∫
[0,t)

P̂ sh (x) ds, t ∈ T, x ∈ X.(32)

The following resolvent equations will play a central role in a lot of what follows:

ÂR̂θ =
{

(eθ − 1)(R̂θ − I ), discrete time,

θ(R̂θ − I ), continuous time.
(33)

In continuous time, the resolvent equation can be used to establish the identity
∞∑

n=1

R̂n
θ z−n = θz−1

∫
[0,∞)

exp
(−(1 − z−1)θt

)
P̂ t dt, z ∈ C,(34)

whenever the sum and integral converge absolutely. This is tremendously valuable
in consolidating continuous- and discrete-time theory.

Since the semigroup {P̂ t} is ψ-irreducible, the kernel R̂θ satisfies the following
minorization condition: There are s ∈ B+

p and ν ∈ M+
p such that

R̂θ ≥ s ⊗ ν.

(Note that, since the semigroup {P̂ t} is derived from {P t}, the above domination
condition is satisfied with s and ν that are small with respect to {P t}.) Let
{κn :n ≥ 1} denote the positive sequence defined by

κn = ν(R̂θ )
n−1s, n ≥ 1.



320 I. KONTOYIANNIS AND S. P. MEYN

This sequence is supermultiplicative,

κn+m = νR̂n−1
θ R̂θ R̂

m−1
θ s

≥ ν(R̂θ )
n−1(s ⊗ ν)(R̂θ )

m−1s

= κnκm,

so there exists some L(θ) ∈ (−∞,∞] such that

1

n
log(νR̂n

θ s) = 1

n
log(κn+1) → L(θ), n → ∞.

The constant

rθ := exp(−L(θ))(35)

is called the convergence parameter for the kernel R̂θ [45]. It satisfies
∞∑

n=0

[R̂n
θ s(x)]rn

{= ∞, for all x ∈ X, if r > rθ ,

< ∞, for a.e. x ∈ X [ψ], if r < rθ .
(36)

To move from the resolvent back to the original semigroup, we apply the
resolvent equations (33). These relationships establish the major part of the
following theorem.

THEOREM 3.1 (Generalized principal eigenvalue). Suppose � is ψ-irreduc-
ible and aperiodic. Then there is a λ◦ ∈ (0,∞] such that, for any s ∈ B+

p :

(i) ∫
T

λ−t P̂ t s(x) dt

{= ∞, for all x ∈ X, λ < λ◦,
< ∞, for a.e. x ∈ X [ψ], λ > λ◦;

(ii)

1

t
log
(
P̂ t s(x)

)→ �◦ := log(λ◦) a.e. x ∈ X [ψ], t → ∞.

PROOF. Result (i) follows from Theorem 3.2 of [45] for discrete-time chains
and follows from (34) for the continuous-time case, where we may translate to the
discrete-time case using the resolvent R̂θ . Then with λθ = r−1

θ ,

λ◦ =
{

eθ + (1 − eθ )λθ , discrete time,

exp
(
θ(1 − λ−1

θ )
)
, continuous time.

(37)

The second part follows from an argument similar to that used in the proof of
Lemma 3.2 of [2]. �

We call the constant λ◦ the generalized principal eigenvalue (g.p.e.) of the
semigroup {P̂ t : t ∈ T}. This generalizes the corresponding definition of [47] and,
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as we will see in Theorem 3.3, λ◦ does indeed play the role of an eigenvalue.
The interpretation of (ii) is the pinned multiplicative mean ergodic theorem (14)
discussed in the Introduction,

1

t
log Ex[exp(αSt)IC

(
�(t)

)] → �(α), t → ∞,(38)

for a.e. x ∈ X [ψ]. This follows from taking s = εIC in (ii) with C small and ε > 0.
Theorem 3.1 leaves open what happens in (36) when λ = λ◦. The semigroup

{P̂ t} is called:

1. λ◦-transient if ∫
T

λ−t◦ νP̂ t s dt < ∞;
2. λ◦-recurrent if ∫

T

λ−t◦ νP̂ t s dt = ∞;
3. λ◦-geometrically recurrent if the function

(λ◦ − z)

∫
T

(νP̂ t s)z−t dt

is analytic in a neighborhood of z = λ◦.

In (1)–(3), (s, ν) is any pair with s ∈ B+
p and ν ∈ M+

p . The particular small
function or small measure chosen is not important [45].

The construction of h in part (ii) of the following lemma is an extension of
the minimal harmonic function in [45], Proposition 3.13, where here we allow the
semigroup {P t} to possibly be transient.

LEMMA 3.2. (i) Suppose that {P̂ t : t ∈ Z+} has g.p.e. λ◦ < ∞ and suppose
that the following minorization condition holds for some s ∈ B+

p and ν ∈ M+
p :

P̂ ≥ s ⊗ ν.

Then ∞∑
t=0

λ−t−1◦ ν(P̂ − s ⊗ ν)t s ≤ 1

with equality if and only if the semigroup is λ◦-recurrent.

(ii) If in (i) we take {P̂ t : t ∈ Z+} to be the probabilistic semigroup {P t : t ∈ Z+},
then

h(x) :=
∞∑
0

(P − s ⊗ ν)ns (x) ≤ 1,

∞∑
0

(P − s ⊗ ν)nP s (x) = −s(x) + (1 + ν(s)
)
h(x) ≤ 2 for all x ∈ X.

In this case, if {P t : t ∈ Z+} is 1-recurrent, h(x) = 1 for a.e. x ∈ X [ψ].
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PROOF. Part (i) is Proposition 5.2 of [45]. The essence of this result is the
inversion formula[

Iz − P̂
]−1 = [Iz − (P̂ − s ⊗ ν)

]−1
(
I + 1

1 − κ
s ⊗ ν

)
,(39)

where

κ = ν
[
Iz − (P̂ − s ⊗ ν)

]−1
s.

From (39) it may be seen that, for z > 0,

κ = 1 if and only if ν[Iz − P̂ ]−1s = ∞.(40)

The proof of (ii) is by induction. Define, for n ≥ 0,

hn =
n∑

t=0

(P − s ⊗ ν)t s.

For n = 0, h0 = s and s ≤ 1 by assumption. If true for n, then

hn+1(x) = (P − s ⊗ ν)hn (x) + s(x)

≤ (P − s ⊗ ν)1 (x) + s(x)

= [P (x,X) − s(x)ν(X)] + s(x)

= 1,

where in the last equation we have again used the fact that s ≤ 1. It follows that
h(x) = limhn(x) ≤ 1 for all x.

To see the second bound, write

(P − s ⊗ ν)nP s = (P − s ⊗ ν)n+1s + (P − s ⊗ ν)n[s ⊗ ν]s.
Summing over n gives the desired result. �

The reason we call the constant λ◦ a generalized eigenvalue is clarified by the
next theorem, where it shown that if the semigroup {P̂ t : t ∈ T} is λ◦-recurrent, then
there is a function f̌ : X → [0,∞) so that (f̌ , λ◦) solve the eigenvalue problem

P̂ f̌ = λ◦f̌ .(41)

Equation (41) is an instance of the multiplicative Poisson equation. Conditions for
the existence of a solution to (41) based upon Lemma 3.2(i) are well known in the
discrete-time case. A candidate solution is given by

f̌ =
∞∑

n=0

rn
θ R̂θ (R̂θ − s ⊗ ν)ns,(42)

where (θ, s, ν) satisfy θ > λ◦, s ∈ B+
p , ν ∈ M+

p , R̂θ ≥ s ⊗ ν and rθ is the
convergence parameter defined in (35).
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THEOREM 3.3 (Existence of an eigenfunction f̌ ). Suppose that � is
ψ-irreducible and that the g.p.e. λ◦ of the positive semigroup {P̂ t} is finite. Then
the function f̌ given in (42) is finite a.e. [ψ] and the following statements are
valid:

(i) If {P̂ t : t ∈ T} is λ◦-recurrent, then f̌ solves the multiplicative Poisson
equation

P̂ t f̌ = λt◦f̌ , t ∈ T.(43)

(ii) If {P̂ t : t ∈ T} is λ◦-transient, then for any small function s ∈ B+
p , there

exists δ > 0 such that

P̂ f̌ = λ◦f̌ − δs.(44)

Hence, in the λ◦-transient case there is a solution f to the pointwise inequality

P̂ f ≤ λ◦f(45)

with f finite a.e. [ψ] and where the inequality is strict whenever f (x) < ∞.
(iii) The solution (42) is minimal and essentially unique: If f : X → (0,∞) is

any solution to the inequality (45), then there exists c ∈ R+ such that f (x) ≥
cf̌ (x) for all x.

If {P̂ t : t ∈ T} is λ◦-recurrent, then we have f = cf̌ a.e. [ψ] and f (x) ≥ cf̌ (x)

for all x.

PROOF. These results are all based on Theorem 5.1 of [45] in the discrete-time
case.

If θ > 0 is taken large enough, then the resolvent R̂θ satisfies νR̂θ s < ∞ for any
small s, ν satisfying the domination condition R̂θ ≥ s ⊗ ν. We then set

f̌θ =
∞∑

n=0

rn
θ (R̂θ − s ⊗ ν)ns,

where rθ is the convergence parameter for R̂θ . We have

rθ (R̂θ − s ⊗ ν)f̌θ = f̌θ − s

and hence

f̌ := R̂θ f̌θ = r−1
θ f̌θ − δθ s,(46)

where δθ = r−1
θ − ν(f̌θ ) ≥ 0. This constant is strictly positive if and only if the

semigroup {R̂n
θ } is r−1

θ -transient [see Lemma 3.2(i)].
Results (i)–(iii) then follow from the resolvent equation in discrete or continu-

ous time. �



324 I. KONTOYIANNIS AND S. P. MEYN

4. Spectral gap and multiplicative mean ergodic theorems. The following
assumptions will be held throughout the remainder of this paper:

ASSUMPTION 1. The Markov process � is geometrically ergodic with a
Lyapunov function V : X → [1,∞) such that π(V 2) < ∞.

ASSUMPTION 2. The (measurable) function F : X → [−1,1] has zero mean
π(F ) = 0 and nontrivial asymptotic variance σ 2 := limt Varx{St/

√
t} > 0.

Note that the additional assumption π(V 2) < ∞ can be made without any loss
of generality: (V4) implies (V3) with f = V as discussed above, which implies
that π(f ) < ∞ ([37], Theorem 14.0.1). Moreover, Lemma 15.2.9 of [37] says
that (V4) also holds with respect to

√
V (and some, possibly different, small

function s), so we can always take V in (V4) such that π(V 2) < ∞.
Until Section 4.2 we specialize to the discrete-time case for the sake of clarity.
With V as in Assumptions 1 and 2, the spectrum S(P̂ ) ⊂ C of a bounded linear

operator P̂ :LV∞ → LV∞ is defined to be the set of nonzero λ ∈ C for which the
inverse (Iλ − P̂ )−1 does not exist as a bounded linear operator on LV∞.

Recall that an arbitrary kernel P̂ acts on functions (on the right-hand side)
and on signed measures (on the left-hand side) as in (17). With that in mind, we
think of a kernel P̂ as an operator acting on an appropriate function space. The
kernel P̂ is a bounded linear operator on LV∞ provided its V -norm |||P̂ |||V is finite,
since this is precisely the induced operator norm. For an arbitrary linear operator
P̂ :LV∞ → LV∞ we continue to define the norm |||P̂ |||V as in (21). Also we re-
call that P̂ acts on a suitable space of measures (on the left) as

νP̂ (A) := ν(P̂ IA), A ∈ B.

For α ∈ C the kernel P̂α defined in (31) yields an operator P̂α :LV∞ → LV∞
acting via

P̂αg (x) = exp(αF (x))Pg (x), x ∈ X, g ∈ LV∞.(47)

Its spectrum is denoted Sα = S(P̂α). The n-fold composition of the kernel P̂α with
itself acts on LV∞ as

P̂ n
α g (x) = Ex[exp(αSn)g(�(n))], x ∈ X, g ∈ LV∞, n ≥ 1,

where {Sn :n ≥ 1} denote the partial sums (2). Letting MV
1 denote the space

of signed and possibly complex-valued measures µ satisfying |µ|(V ) < ∞, we
obtain analogously

µP̂ n
α (A) =

∫
Ex

[
exp(αSn)I

(
�(n) ∈ A

)]
µ(dx), A ∈ B, µ ∈ MV

1 , n ≥ 1.

In this section we identify a region � ⊂ C such that, for geometrically Markov
chains, eigenfunctions f̌α ∈ LV∞ and (positive) eigenmeasures µ̌α ∈ MV

1 exist
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for P̂α , corresponding to a given eigenvalue λα ∈ Sα and α ∈ �. Suppose that
such f̌α, µ̌α are found and assume that they are normalized so that

µ̌α(f̌α) = µ̌α(X) = 1.(48)

We then let Q̂α :LV∞ → LV∞ denote the operator Q̂α = f̌α ⊗ µ̌α ,

Q̂αg (x) = µ̌α(g)f̌α(x), g ∈ LV∞, x ∈ X.

Note that Q̂α is a projection operator, that is, Q̂2
α = Q̂α .

The main results of this section are summarized in the following two theorems.
In particular, the multiplicative mean ergodic theorem given in (50) will play a
central role in the proofs of all the subsequent probabilistic limit theorems.

THEOREM 4.1 (Multiplicative mean ergodic theorem). Assume that the
Markov chain � and the functional F satisfy Assumptions 1 and 2. With δ and
b as in (V4), define

a :=
(

e − 1

2b − δ

)
δ > 0.(49)

Then there exists ω > 0 such that, for any α in the compact set

� = {α = a + iω ∈ C : |a| ≤ a, and |ω| ≤ ω},
there is an eigenvalue λα ∈ Sα which is maximal and isolated, that is,

|λα| = max{|λ| :λ ∈ Sα} and Sα ∩ {z : |z| ≥ |λα| − δ0
}= {λα}

for some δ0 > 0.
Moreover, for any such α, there exist f̌α ∈ LV∞ and µ̌α ∈ MV

1 , satisfying (48),
and the following statements are valid:

(i) The functions f̌α solve the multiplicative Poisson equation

P̂αf̌α = λαf̌α

and the µ̌α are eigenmeasures for the kernels P̂α:

µ̌αP̂α = λαµ̌α.

(ii) There exist constants b0 > 0 and B0 < ∞ such that for all α ∈ �, x ∈ X,
n ≥ 1, ∣∣Ex

[
exp
(
αSn − n�(α)

)]− f̌α(x)
∣∣≤ B0|α|V (x) exp(−b0n),(50)

where �(α) := log(λα) is analytic on � and Sn are the partial sums defined in (2).
More generally, for any g ∈ LV∞,∣∣Ex

[
exp
(
αSn − n�(α)

)
g
(
�(n)

)]−Q̂αg (x)
∣∣≤ B0‖g‖V V (x) exp(−b0n).
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PROOF. The existence of an isolated, maximal eigenvalue λα is given in
Proposition 4.12. It is nonzero for α = a ∈ [−a, a] by Proposition 4.3, and since it
is analytic in α (by Proposition 4.12), we can pick ω > 0 small enough such that
λα is nonzero on �.

The existence of an eigenfunction and an eigenmeasure as in (i) follows from
Proposition 4.12 combined with Proposition 4.8. To see that a > 0 note that,
under (V4),

π(V ) = π(PV ) ≤ (1 − δ)π(V ) + bπ(s).(51)

Hence, b ≥ δπ(V )/π(s) ≥ δ.
To prove the limit theorems in (ii), consider the linear operator

U(z,α) = [Iz − (λ−1
α P̂α − Q̂α)

]−1
.

From Proposition 4.8 we can find ε0 > 0 such that U(z,α) is an analytic function of
two variables (z,α) = (z, a + iω) on the domain

D = {|z| > 1 − ε0, |a| < a + ε0, |ω| < ω + ε0
}
.

We may also assume that ε0 > 0 is suitably small so that, for some b < ∞, we
have |||U(z,α)|||V ≤ b for all (z,α) ∈ D .

Set b0 = − log(1 − ε0) > 0. The following bound then holds for all (z,α) ∈ D ,
g ∈ LV∞, x ∈ X and n ≥ 1 by representing U(z,α) as a power series and using the
fact that Q̂α is a projection operator:

bV (x) ≥
∣∣∣∣∫ 2π

0
exp
(
i(n + 1)φ

)
U(exp(−b0+inφ),α)g(x) dφ

∣∣∣∣
= exp

(
(n + 1)b0

)∣∣(λ−1
α P̂α − Q̂α)ng (x)

∣∣
= exp

(
(n + 1)b0

)∣∣λ−n
α P̂ n

α g (x) − Q̂αg (x)
∣∣.

This gives the second bound in (ii). The first one follows from the second since,
when α = 0 and g = 1, ∣∣λ−n

α P̂ n
α g(x) − Q̂αg(x)

∣∣= 0

for all n ≥ 1, x ∈ X. �

Next we give a weaker multiplicative mean ergodic theorem for all α = a + iω

in a neighborhood of the iω axis. A function F : X → R is called lattice if there are
h > 0 and 0 ≤ d < h, such that

F(x) − d

h
is an integer, x ∈ X.(52)

The minimal h for which (52) holds is called the span of F . If the function F can
be written as a sum,

F = F0 + F�,
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where F� is lattice with span h and F0 has zero asymptotic variance [recall (28)],
then F is called almost-lattice (and h is its span). Otherwise, F is called strongly
nonlattice.

Although these definitions are somewhat different from the ones commonly
used when studying the partial sums of independent random variables, in the
Markov case they lead to the natural analog of the classical lattice/nonlattice
dichotomy. This dichotomy, which is close in spirit to the discussion in [50], is
stated in Theorem 4.13.

THEOREM 4.2 (Bounds around the iω axis). Assume that the Markov chain �

and the functional F satisfy Assumptions 1 and 2.

(NL) Suppose that F is strongly nonlattice. For any 0 < ω0 < ω1 < ∞, there
exist b0 > 0 and B0 < ∞ ( possibly different than in Theorem 4.1) such that∣∣Ex

[
exp
(
αSn − n�(a)

)]∣∣≤ B0V (x) exp
(−b0n), x ∈ X, n ≥ 1,(53)

for all α = a + iω with |a| ≤ a and ω0 ≤ |ω| ≤ ω1.

(L) Suppose that F is almost-lattice with span h > 0. For any ε > 0, there
exist b0 > 0 and B0 < ∞ ( possibly different than above and in Theorem 4.1) such
that (53) holds for all α = a + iω with |a| ≤ a and ε ≤ |ω| ≤ 2π/h − ε.

PROOF. By Theorem 4.13 we have the bound ξ̂α < ξ̂a = λa for the range of
α ∈ C considered in the theorem. This implies that there is an ε1 > 0 and b1 < ∞
such that ∣∣∣∣∣∣[Iz − e−λa P̂α

]−1∣∣∣∣∣∣
V < b1

for all |z| ≥ 1 − ε1 and all α in this range. An argument similar to the proof of
Theorem 4.1(ii) then gives the desired bounds. �

4.1. Spectral radius and spectral gap. Recalling our standing assumptions,
Assumptions 1 and 2, we fix the Lyapunov function V : X → [1,∞) throughout
this section.

For complex α we wish to construct �(α) ∈ C satisfying the multiplicative
mean ergodic limit,

�(α) = lim
n→∞

1

n
log Ex[exp(αSn)], x ∈ X.
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This requires a generalization of the notion of the g.p.e. in Section 3. The
previous definition is meaningless when α /∈ R, since the definition of a small
set depends on the linear ordering of R.

Spectral radius. For a bounded linear operator P̂ :LV∞ → LV∞ we define the
spectral radius of P̂ by

ξ̂ := lim
n→∞

(|||P̂ n|||V )1/n = exp
(

lim
n→∞

1

n
log |||P̂ n|||V

)
.(54)

Note that in the above definition P̂ is not assumed to be a positive operator and
it is possibly complex-valued. Since ||| · |||V is an operator norm, the sequence
{log(|||P̂ n|||V ) :n ≥ 1} is subadditive [48]. Therefore ξ̂ always exists, although it
may be infinite.

We let ξ̂α denote the spectral radius of the operator P̂α defined in (47). When
α = a is real, from the definitions we have that ξ̂α ≥ λα , where λα is the g.p.e. of
the positive kernel P̂α . One of the main goals of this section is to show that the
spectral radius ξ̂α coincides with λα for real α in a neighborhood of α = 0. We
first establish upper and lower bounds:

PROPOSITION 4.3. Under Assumptions 1 and 2, the spectral radius ξ̂α of P̂α

is finite and

ξ̂α ≤ (b + 1)e|a|

for all α = a + iω ∈ C. Moreover, for α = a ∈ R,

ξ̂a ≥ e−a > 0.

PROOF. The function s in (V4) is necessarily bounded by 1. Consequently,
under (V4) we have for any g ∈ LV∞ and α = a + iω ∈ C,

|P̂αg (x)| ≤ e|a|‖g‖V PV ≤ e|a|‖g‖V (1 + b)V .

This implies that |||P̂α|||V ≤ e|a|(1+b). The operator norm ||| · |||V is submultiplica-
tive,

|||P̂ n
α |||V ≤ |||P̂α|||nV ≤ e|a|n(1 + b)n, n ≥ 1,

giving the upper bound.
When α = a is real, for any g ∈ LV∞, g ≥ 0, we have

P̂ n
a g (x) ≥ e−anP ng(x).

It follows immediately that ξ̂a ≥ ξ̂0e
−a = e−a . �
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Spectral gap and V -uniform operators. Recall the following classical result
from [48], page 421:

THEOREM 4.4 (Decomposition theorem). Let P̂ :LV∞ → LV∞ be a bounded
linear operator and suppose that z0 ∈ S(P̂ ) is isolated, that is, for some ε0 > 0,

S(P̂ ) ∩ D = {z0} where D = {z ∈ C : |z − z0| ≤ ε0
}
.

Then, the bounded operator on LV∞ is well defined,

Q̂ = 1

2πi

∫
∂D

[Iz − P̂ ]−1 dz,

and moreover:

(i) Q̂ :LV∞ → LV∞ is a projection operator, that is, Q̂2 = Q̂;
(ii) P̂ Q̂ = Q̂P̂ = z0Q̂;

(iii) S(Q̂) = {1} and S(P̂ − z0Q̂) ∩ D = ∅.

We say that z0 ∈ S(P̂ ) is a pole of finite multiplicity if z0 is an isolated point in
S(P̂ ) and the associated projection operator Q̂ can be expressed as a finite linear
combination of some {si} ⊂ LV∞ and {νi} ⊂ MV

1 :

Q̂ =
n−1∑
i,j=0

mi,j [si ⊗ νj ].(55)

In particular, we call z0 a pole of multiplicity 1 if (55) holds for n = 1 and also
there exists ε0 > 0 such that

S(P̂ − z0Q̂) ⊂ {z : |z| ≤ ξ̂ − ε0
}
,

where ξ̂ is the spectral radius of P̂ .
We say that P̂ admits a spectral gap if there exists ε0 > 0 such that S(P̂ ) ∩

{z : |z| ≥ ξ̂ − ε0} is finite and contains only poles of finite multiplicity.
Furthermore, we say that P̂ is V -uniform if it admits a spectral gap and also

there exists a unique pole λ◦ ∈ S(P̂ ) of multiplicity 1, satisfying |λ◦| = ξ̂ . In that
case, λ◦ is called the generalized principal eigenvalue, generalizing the previous
definition. In particular, if P̂α is V -uniform for some α ∈ C, then we write λα for
its associated g.p.e.

Much of the development of this section, is based on properties of rank-one
operators of the form M̂ = s0 ⊗ν0 for some s0 ∈ LV∞ and ν0 ∈ MV

1 . The associated
potential operator is defined as

Ûz := [Iz − (P̂ − M̂)
]−1

, z ∈ C,(56)

whenever the inverse exists. The potential operator is used to construct eigenfunc-
tions and eigenmeasures for a V -uniform operator:
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PROPOSITION 4.5. Suppose that P̂ is V -uniform with g.p.e. λ◦ and suppose
that the associated s0 and ν0 in (55) are chosen so that the potential operator Ûz

in (56) is bounded for z in a neighborhood of |z| ≥ |λ◦|. Then, setting f̌ = Ûλ◦s0

and µ̌ = ν0Ûλ◦ , we have f̌ ∈ LV∞ and µ̌ ∈ MV
1 ,

P̂ f̌ = λ◦f̌ and µ̌P̂ = λ◦µ̌.

PROOF. From V -uniformity we know that there exists ε0 > 0 such that the
inverse [Iz − P̂ ]−1 exists and is bounded as a linear operator on LV∞ for all
|z| ≥ ξ̂ −ε0, z = λ◦. Moreover, for such z we may apply the inversion formula (39)
to obtain the identity

[Iz − P̂ ]−1 = Ûz + (Ûzs0) ⊗ (ν0Ûz)

1 − ν0Ûzs0
.(57)

Since λ◦ ∈ S(P̂ ) and λ◦ /∈ S(P̂ − s0 ⊗ ν0), it follows from this equation that
ν0Ûλ◦s0 = 1.

Applying [Iz − P̂ ] to (57) on the left and s0 on the right then gives

s0 = [Iz − P̂ ]Ûzs0 + [Iz − P̂ ](Ûzs0)(ν0Ûzs0)

1 − ν0Ûzs0
.

Multiplying both sides by (1 − ν0Ûzs0) and then setting z = λ◦ gives 0 = [Iλ◦ −
P̂ ]Ûλ◦s0, which shows that f̌ is an eigenfunction.

The proof that µ̌ is an eigenmeasure is completely analogous and follows by
applying [Iz − P̂ ] to (57) on the right-hand side and ν0 on the left-hand side. �

The following proposition provides useful characterizations of V -uniformity.

PROPOSITION 4.6. The following are equivalent for an operator P̂ with finite
spectral radius ξ̂ :

(i) P̂ is V -uniform.
(ii) There exists λ ∈ C satisfying |λ| = ξ̂ , and ε0 > 0, s0 ∈ LV∞ and ν0 ∈ MV

1
satisfying

sup
{|z − λ||||Iz − P̂ |||V : |z| ≥ ξ̂ − ε0

}
< ∞

and
sup
{|||Ûz|||V : |z| ≥ ξ̂ − ε0

}
< ∞,

where Ûz is the potential operator defined in (56) with M̂ = s0 ⊗ ν0.
(iii) There exists λ ∈ C satisfying |λ| = ξ̂ , and f̌ ∈ LV∞ and µ̌ ∈ MV

1 such that

λ−nP̂ n → f̌ ⊗ µ̌, n → ∞,

where the convergence is in the V -norm.
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PROOF. If (i) holds, then the matrix-inversion formula (39) gives

[Iz − P̂ + λ◦f̌ ⊗ µ̌]−1 = [Iz − P̂ ]−1 − λ◦
z(z − λ◦)

f̌ ⊗ µ̌.

The left-hand side is bounded for |z| ≥ ξ̂ − ε0 under (i). Hence we may set f̌ = s0
and µ̌ = ν0 to obtain (ii).

The implication (ii) ⇒ (i) also follows from the matrix inversion formula (39)
since (57) then holds for all |z| ≥ ξ̂ − ε0, z = λ. This implies the limit

Q̂ := lim
z→λ

(z − λ)[Iz − P̂ ]−1 = (Ûλs0) ⊗ (ν0Ûλ)

ν0Û
2
λ s0

(58)

and (i) holds with this Q̂, and λ◦ = λ.
The equivalence of (i) and (iii) follows exactly as in Theorem 4.1(ii). �

For a probabilistic kernel P̂ , the following proposition says that V -uniformity
implies that the chain with transition kernel P̂ is geometrically ergodic. The
converse is also true; see Proposition 4.10.

COROLLARY 4.7. If P̂ is a V -uniform, probabilistic kernel, then the Markov
chain with transition kernel P̂ is geometrically ergodic.

PROOF. Since P̂ is probabilistic, applying the limit result of Proposi-
tion 4.6(iii) to the constant function 1 implies that λ = 1 and that f̌ is constant. By
rescaling we can take f̌ = 1 and µ̌ to be a probability measure. From Theorem 2.5
it the follows that P̂ is geometrically ergodic. �

Proposition 4.5 applied to the family of kernels {P̂α} gives the following:

PROPOSITION 4.8. Suppose that P̂α0 is V -uniform for a given α0 ∈ C. Then
there exists ε0 > 0 such that P̂α is V -uniform (with associated g.p.e. λα) for
all α ∈ C, |α − α0| < ε0. Moreover, for each such α there exist f̌α ∈ LV∞ and
µ̌α ∈ MV

1 such that:

(i) f̌α solves the multiplicative Poisson equation, P̂αf̌α = λαf̌α;
(ii) µ̌α is an eigenmeasure for P̂α , µ̌αP̂α = λαµ̌α;

(iii) the g.p.e. λα is an analytic function of α and so is f̌α(x) for any fixed
x ∈ X.

PROOF. The existence of eigenvectors in (i) and (ii) is immediate from
Proposition 4.5 when α = α0. Define Ûz = Ûz,α by (56) with P̂ = P̂α , and
M̂ = s0 ⊗ ν0:

Ûz,α := [Iz − (P̂α − s0 ⊗ ν0)
]−1

.(59)
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From V -uniformity we know that M̂ can be chosen so that Ûz,α0 is a bounded
linear operator for z in a neighborhood of λα0 . Since P̂α is continuous in V -norm,
it then follows that Ûz,α is a bounded linear operator for (z,α) in a neighborhood
O of (λα0, α0). This combined with Proposition 4.5 proves (i) and (ii).

Write J(z,α) = ν0(Ûz,αs0), z ∈ C, α ∈ O, so that

J(λα,α) = 1,

∂

∂z
J(z,α)

∣∣∣∣
z=λα

= ν0(Û
2
z,α)s0 = µ̌α(f̌α) = 0, α ∈ O,

where f̌α and µ̌α are the eigenfunction and the eigenmeasure given in Propo-
sition 4.5. We conclude that λα is an analytic function by the implicit function
theorem.

The proof that f̌α(x) is analytic in α for x ∈ SV = X follows from the expansion

f̌α = Ûλα,αs0 =
∞∑

n=0

λ−n−1
α (P̂α − s0 ⊗ ν0)

ns0.(60)

This expression for f̌α converges uniformly for α ∈ O and for each n, the finite
sum is analytic, which completes the proof of (iii). �

The eigenfunction (60) will not in general satisfy the required normaliza-
tion (48). The following eigenfunction and eigenmeasure do satisfy this condition,
and are the unique solutions:

µ̌α = ν0Ûλα,α

ν0Ûλα,α1
∈ MV

1 , f̌α = Ûλα,αs0

µ̌αÛλα,αs0
∈ LV∞.(61)

Given such f̌a and λa for some real a, we define the twisted kernel P̌a by

P̌a(x, dy) = λ−1
a f̌ −1

a (x)P̂a(x, dy)f̌a(y)

[cf. (11) in the Introduction] and we let V̌a = V/f̌a . (As we will see below,
f̌a is bounded away from zero for real a in the range of interest.) The
following proposition describes the relationship between the transition kernels, the
eigenfunctions and the eigenmeasures {P̌a, f̌a, µ̌a :a ∈ R}.

PROPOSITION 4.9. Suppose that P̂a0 is V -uniform for a given real a0. Then
there is an open set O ⊂ R containing a0 such that, for all a ∈ O, with f̌a and µ̌a

given in (61) and with P̌a equal to the associated twisted kernel, we have:

(i) The operator P̌a is V̌a-uniform;
(ii) d

da
�(a) = d

da
log(λa) = π̌a(F ), where π̌a is the invariant probability

measure for P̌a ;
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(iii) F̂a := d
da

log(f̌a) is a solution to the Poisson equation,

P̌aF̂a = F̂a − F + πa(F ).(62)

For a = 0, this is the unique solution satisfying π(F̂ ) = 0:
(iv) d

da
f̌a ∈ LV∞, d

da
µ̌a ∈ MV

1 .

(v) F̂a ∈ L
1+log(Va)∞ .

PROOF. The existence of O follows from Proposition 4.8, and from its proof
we know that |||Ûλa,a|||V < ∞ when a ∈ O, where Ûz,a is given in (59).

The linear operators P̂a and P̌a are related by the scaling λa and a similarity
transformation,

P̌a = λ−1
a (I

f̌a
)−1P̂aIf̌a

,

where Ig , for an arbitrary function g, denotes the kernel Ig(x, ·) := g(x)δx(·).
Hence P̂a is V -uniform if and only if P̌a is (I−1

f̌a
V )-uniform. Result (i)

immediately follows.
Consider the unnormalized eigenfunction given in (60). Differentiating the

expression f̌a = Ûλa,as0 and applying the quotient rule gives

f̌ ′
a = d

da
[Iλa − P̂a + s0 ⊗ ν0]−1s0

= −Ûλa,a[Iλ′
a − IF P̂a]Ûλa,as0(63)

= −Ûλa,a[(λ′
a − λaF )f̌a] = λaÛλa,aIf̌a

[F − �′(a)].
The right-hand side of (63) lies in LV∞ since F ∈ L∞, f̌a ∈ LV∞ and Ûλa,a :
LV∞ → LV∞ is a bounded linear operator. This proves the first bound in (iv) since
the two versions of f̌a are related by a smooth normalization. The proof that
d
da

µ̌a ∈ MV
1 is identical.

Differentiating both sides of the eigenfunction equation gives

Fλaf̌a + P̂af̌
′
a = λ′

af̌a + λaf̌
′
a.

Dividing this identity by λaf̌a shows that (62) does indeed hold. To conclude
that π̌a(F ) = �′(a) we will show that π̌a(|F̂a|) < ∞. The invariant probability
measure π̌a may be expressed as

π̌a = kaµ̌aIf̌a
,

where ka is a normalizing constant. Hence,

π̌a(F̂a) = π̌a

(∣∣∣∣ f̌ ′
a

f̌a

∣∣∣∣)= kaµ̌a(|f̌ ′
a|) < ∞.
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Finiteness follows from (iv) and the fact that the eigenmeasure µ̌a lies in MV
1 . This

proves (ii) and the identity in (iii).
To complete the proof of (iii) we must show that π(F̂0) = 0. This follows from

the normalization (48) (assumed to hold for all a) which implies the limits

f̌a → 1, µ̌a → π, a → 0.

To prove (v) we obtain an alternative expression for F̂a . We again consider the
unnormalized eigenfunction (60). Observe that a fundamental kernel is derived
from Ûλa,a through a scaling and a similarity transformation

Za = λaI
−1
f̌a

Ûλa,aIf̌a
= [I − P̌a + sa ⊗ νa]−1

with sa = λ−1
a f̌ −1

a s0 and νa = ν0If̌a
. We have PaZaG = ZaG − G whenever

πa(G) = 0.
Using (63) then gives

F̂a = f̌ ′
a

f̌a

= Za

(
F − �′(a)

)= Za

(
F − π̌a(F )

)
.

It again follows that F̂a solves the Poisson equation: It is the unique solution in LV∞
with νa(F̂a) = 0.

The desired bound on F̂α is obtained as follows. Using Jensen’s inequality we
know that V̂α = log(V /f̌α) = log(V̌α) solves a version of (V3),

P̌αV̂α ≤ V̂α − ε + bs,

where ε > 0 and b is a finite constant. Using the bound f̌α ∈ LV∞ it follows directly
that the function V̂α is uniformly bounded below. The bound on F̂α then follows
from [23], Theorem 2.3. �

PROPOSITION 4.10. Suppose that Assumptions 1 and 2 hold. Take P̂ = R and
define the potential operator Ûz as in (56) with M̂ = s ⊗ ν. Then B1 := |||Û1|||V ≤
2bδ−1 and

|||Ûz|||V ≤ B1(1 − |z − 1|B1)
−1, |z − 1| ≤ B−1

1 , z ∈ C.

Hence both R and P are V -uniform.

PROOF. Under (V4) we have, by (18),

(e − 1)(R − I )V = R(P − I )V ≤ −δRV + bRs.

Rearranging terms then gives

(R − I )V ≤ −
(

δ

e − 1 + δ

)
V + b

(
1

e − 1 + δ

)
Rs,
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which we write as

(R − s ⊗ ν)V ≤ V − δ1V − ν(V )s + b1Rs,

where δ1 = δ(e − 1 + δ)−1 and b1 = b(e − 1 + δ)−1.
Iterating gives, for all n ≥ 1,

(R − s ⊗ ν)nV ≤ V − δ1

n−1∑
i=0

(R − s ⊗ ν)iV +
n−1∑
i=0

(R − s ⊗ ν)i
(
b1Rs − ν(V )s

)
.

Letting n → ∞ and applying Lemma 3.2(ii) yields

δ1Û1V ≤ V − ν(V ) + 2b1 ≤ 2b1V

or |||Û1|||V ≤ 2b1/δ1 = 2b/δ.
To obtain a bound for z ∼ 1 write

Ûz = [I (z − 1) + [I − (R − s ⊗ ν)]]−1 = [Û1(z − 1) + I
]−1

Û1.

Provided |||Û1|||V |z − 1| < 1, we can write Ûz =∑n(1 − z)nÛn+1
1 and |||Ûz|||V ≤

B1/[1 − |z − 1|B1]. �

PROPOSITION 4.11. Suppose that Assumptions 1 and 2 hold, let a ∈ R satisfy
|a| ≤ | log(1 − δ)| and suppose that there exists g : X → (0,∞), satisfying g ∈ LV∞
and P̂ag ≤ λag. Then P̂a is V -uniform.

PROOF. The conditions of the proposition imply that there exists b1 < ∞ such
that

P̂aV ≤ e|a|(1 − δ)V + e|a|bs ≤ V + b1s.

From the resolvent equation (18) we then have, for some b2 < ∞,

R̂θV ≤ V + b2R̂θ s,

where R̂θ is the resolvent kernel defined through P̂a .
We also have �(a) > 0 for all a = 0 under Assumptions 1 and 2 and hence

the g.p.e. γθ for R̂θ is also strictly greater than 1 when θ > |a| > 0 [see (37)].
Choosing s0 ∈ B+

p and ν0 ∈ M+
p so that Rθ ≥ s0 ⊗ ν0, we find that

γ −1
θ (R̂θ − s0 ⊗ ν0)V ≤ V − εV + b2R̂θ s0,

where ε = 1 − γ −1
θ > 0. Exactly as in the proof of Proposition 4.10 we conclude

that

εÛγθ
V ≤ b2Ûγθ

R̂θ s0 ≤ 2b2Ûγθ
s0,

where Ûz =∑z−n−1(R̂θ − s0 ⊗ ν0)
n.

From Theorem 3.3(iii) and the conditions of the proposition we know that
f̌ = Ûγθ

s0 satisfies f̌ ≤ cg for some constant c and hence f̌ ∈ LV∞. It follows
that |||Ûγθ

|||V < ∞, from which V -uniformity of R̂θ , and hence of P̂a , immediately
follow. �
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PROPOSITION 4.12. Suppose that Assumptions 1 and 2 hold. Then there
exists ε0 > 0, b < ∞ such that:

(i) S0 ∩ {z ∈ C : |z| ≥ 1 − ε0} = {1};
(ii) |||[Iz − (P − 1 ⊗ π)]−1|||V ≤ b when |z| ≥ 1 − ε0;

(iii) P̂α is V -uniform for all α = a + iω ∈ C satisfying

|ω| ≤ ε0 and |a| ≤ a :=
(

e − 1

2b − δ

)
δ;

moreover, the associated g.p.e. λα is an analytic function of α in this range, and
so is the corresponding eigenfunction f̌α(x) ( for each fixed x ∈ X);

(iv) the eigenfunctions f̌a are (uniformly) bounded from below when a is real:

inf−a≤a≤a
f̌a(x) > 0, x ∈ X.

PROOF. Results (i) and (ii) follow immediately from Proposition 4.10. To
prove (iii) we must establish an appropriate range of real a for which P̂a is
V -uniform. From Proposition 4.10 we know that P = P̂0 is V -uniform.

For any function G0 ∈ L∞, set g0 = exp(G0) and consider the kernel Ig0R,
where, as before, Ig0 denotes the kernel Ig0(x, ·) := g0(x)δx(·). We assume that
the convergence parameter for this kernel is equal to 1. It then follows from
Proposition 4.10 that the function

ǧr (x) =
∞∑

k=0

[
Ig0(R − s ⊗ ν)

]k
Ig0s

lies in LV∞ provided ‖g0‖−1∞ > 1−B−1
1 and it is clear that Ig0R is in fact V -uniform

in this case. Applying Lemma 3.2(i) we know that ν(ǧr ) = 1.
The function ǧr solves the eigenfunction equation[

Ig0(R − s ⊗ ν)
]
ǧr = ǧr − Ig0s �⇒ Rǧr = g−1

0 ǧr .

Setting ǧ = Rǧr = ǧrg
−1
0 and applying the resolvent equation (18) then gives

(P − I )ǧ = (P − I )Rǧr = (e − 1)(R − I )ǧr = (e − 1)ǧ − (e − 1)g0ǧ.

Hence ǧ is the solution to the multiplicative Poisson equation for the function
G = log(g) := − log(e − (e − 1)g0). The map g0 �→ g is one to one.

We have already remarked that ǧr ∈ LV∞ provided ‖g0‖−1∞ > 1−B−1
1 , and hence

ǧ ∈ LV∞ whenever g0 satisfies this bound. If B1 ≤ e, then this constraint is trivially
satisfied. For B1 > e, equivalently the function g must satisfy

‖g‖∞ <
1

e − (e − 1)(1 − B−1
1 )−1

= B1 − 1

B1 − e
.(64)
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From the inequality log(1 + x) < x, x = 0, we obtain

log
(

B1 − 1

B1 − e

)
= − log

(
1 − e − 1

B1 − 1

)
>

(
e − 1

B1 − 1

)
≥
(

e − 1

2b − δ

)
δ,

where the last inequality uses the bound B1 ≤ 2b/δ.
This gives the sufficient condition ‖G‖∞ ≤ a. Proposition 4.11 implies that IgP

is V -uniform and ǧ ∈ LV∞ when this uniform bound holds.
The function G falls outside of the class of functions F satisfying Assump-

tions 1 and 2, since �(a) > 0 for all a = 0 when π(F ) = 0, and we have already
noted that the spectral radius ξ(g) of IgP is equal to 1. However, given any a, the
function G = aF − �(a) satisfies ξ(g) = 1 and G(x) ≤ |a| − �(a) < |a|, x ∈ X,
so that the normalized function satisfies (64) when |a| ≤ a. This transformation
immediately gives the desired conclusion in (iii).

To see (iv), take any λ satisfying λ ≥ max(λa, λ−a) and set

Ĝa =
∞∑
0

λ
−n−1

P̂ n
a .

By irreducibility we can find s0 : X → (0,1) and a probability distribution ν0 on B
satisfying the uniform bound,

Ĝa(x,A) ≥ Rθ(x,A) ≥ s0(x)ν0(A), x ∈ X, A ∈ B, a ∈ [−a, a],
where θ = a + log(λ). We may assume that ν0 is equivalent to the irreducibility
measure ψ .

It follows that for all a ∈ [−a, a] and all x,

(λ − λa)
−1f̌a(x) = Ĝaf̌a (x) ≥ s0(x)ν0(f̌a) > 0.

By continuity of f̌a we obtain the desired uniform bound. �

We now develop the consequences of the lattice condition. Our main conclusion
is contained in Theorem 4.13: The function F is almost-lattice if and only if the
spectral radius ξ̂iω attains its upper bound (i.e., ξ̂iω = 1) for some ω > 0.

Some of the spectral theory for complex α is most easily developed in a Hilbert
space setting. Define L2 := {f : X → C such that ‖f ‖2

2 = π(|f |2) < ∞} with the
natural associated inner product 〈h,g〉 = π(h∗g), h, g ∈ L2. We note that V ∈ L2
under our standing assumptions, Assumptions 1 and 2. For any n, the induced
operator norm of P̂ n

α :L2 → L2 may be expressed as

|||P̂ n
α |||2 = sup

‖P̂ n
α g‖2

‖g‖2

= sup
{∣∣Eπ

[
h∗(�(0)

)
exp(αSn)g

(
�(n)

)]∣∣ :‖h‖2 ≤ 1, ‖g‖2 ≤ 1
}
.

We let γ̂α denote the L2-spectral radius,

γ̂α := lim
n→∞|||P̂ n

α |||1/n
2 .
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When α = iω, the linear operators {P̂ n
iω} are contractions on L2, so that

γ̂iω ≤ 1.
Theorem 4.13 provides several characterizations of the almost-lattice condition.

It is analogous to the variance characterization given in Proposition 2.4.

THEOREM 4.13 (Characterization of the lattice condition). The following are
equivalent under Assumptions 1 and 2 for any given ω > 0, −a ≤ a ≤ a:

(i) ξ̂iω = 1;
(ii) γ̂iω = 1;

(iii) ξ̂a+iω = ξ̂a ;
(iv) there exists a bounded function � : X → [0,2π) and d0 > 0 such that for

a.e. x ∈ X [ψ],

exp
(
iω

∫
[0,t)

(
F
(
�(s)

)− d0
)
ds

)
= exp

(
i�
(
�(t)

)− i�
(
�(0)

))
a.s. [Px];

(65)

(v) F is an almost-lattice function whose span is an integer multiple of 2π/ω.

PROOF. We first note that by Proposition 2.4 the existence of �,ω and d0
satisfying (iv) is equivalent to the almost-lattice condition (v). To prove the
proposition it remains to show that (i)–(iv) are equivalent.

The implications (iv) ⇒ (i), (ii), (iii) are obvious since, under (iv), we have for
all n ≥ 1,

P̂ n
a+iω(x, · ) = exp(ind0)Ii�P̂ n

a (x, · )I−1
i� for a.e. x ∈ X [ψ].

We now establish implication (i) ⇒ (ii). We first note that if ξ̂iω = 1 then, from
the fact that the V -norm is submultiplicative (as it is an operator norm), we must
have |||P̂ n

iω|||V ≥ 1 for all n. Note also that for any g ∈ LV∞,

|P̂ n+m
iω g (x)| = ∣∣Ex

[
exp(αSn)E�(n)

[
exp(αSm)g

(
�(m)

)]]∣∣
≤ Ex

[∣∣E�(n)

[
exp(αSm)g

(
�(m)

)]∣∣]
≤
∫ ∣∣Ey

[
exp(αSm)g

(
�(m)

)]∣∣π(dy)

+ O
(
V (x) exp(−b0n)

)
, n,m ≥ 1, x ∈ X,

where b0 > 0 exists by V -uniformity of P . This implies the bound

1 = ξ̂

≤ lim inf
m→∞

(
sup
{∣∣Eπ

[
h∗(�(0)

)
exp(αSm)g

(
�(m)

)]∣∣ :‖h‖∞ ≤ 1,‖g‖V ≤ 1
})

.
(66)

We have already remarked that P̂α is a contraction on L2. It follows that either
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|||P̂ n
α |||2 → 0 geometrically fast or |||P̂ n

α |||2 = 1 for all n. We may conclude the latter
using (66), and this establishes the implication (i) ⇒ (ii).

We now show that (ii) implies (iv). The supremum in the definition of |||P̂ n
iω|||2

is attained since γ̂iω = 1. To see this, construct for any N ≥ 1 functions hN and gN

with L2-norm equal to 1 with

1 ≥ ‖hN‖2‖P̂ n
iωgN‖2 ≥ 〈hN, P̂ n

iωgN 〉 ≥ |||P̂ n
α |||2 − 1/N = 1 − 1/N.

Part of the construction ensures that the inner product above is real-valued. These
bounds imply that ‖hN − P̂ n

iωgN‖2 → 0, N → ∞, which is equivalently expressed
as

Eπ

[∣∣(hN (�(0)
))∗ exp(iωSn)g

N (�(n)
)− 1

∣∣]→ 0, N → ∞.

It then follows that exp(iωSn) ∈ σ(�(0),�(n)) and that there exist hn, gn ∈ L2
such that

h∗
n

(
�(0)

)
exp(iωSn)gn

(
�(n)

)= 1 a.s. [Pπ ].(67)

We may assume without loss of generality that |gn(x)| = |hn(x)| = 1 for all x

since | exp(iωSn)| = 1.
Note that (67) is almost the desired conclusion (iv). In particular, on dividing

the expressions for n and (n + 1) we obtain the suggestive identity

exp
(
iωF

(
�(n)

))= (hn+1(�(0))

hn(�(0))

)(
gn(�(n))

gn+1(�(n + 1))

)
, n ≥ 0.(68)

To establish (iv) we show that {gn,hn} may be chosen as follows: {gn} is
independent of n, with common value g ∈ L∞, and we may construct θ0 ∈ R such
that hn = eiθ0ng for all n. The required function � in (iii) can then be taken as a
version of − log(g).

Applying (67) and appealing to stationarity, we conclude that for any n,m ≥ 1,

h∗
n+m

(
�(0)

)
exp(iωSn+m)gn+m

(
�(n + m)

)= 1 a.s. [Pπ ]
and

h∗
m(�(n)) exp

{(
iω

n+m−1∑
k=n

F
(
�(k)

))
gm

(
�(n + m)

)}

= ϑn[h∗
m

(
�(0)

)
exp(iωSm)gm

(
�(m)

)]
= 1 a.s. [Pπ ],

where ϑn denotes the n-fold shift operator on the sample space.
Combining (67) with these two identities then gives

h∗
n+m

(
�(0)

)
hn

(
�(0)

)
g∗

n

(
�(n)

)
hm

(
�(n)

)
g∗

m

(
�(n + m)

)
gn+m

(
�(n + m)

)= 1.



340 I. KONTOYIANNIS AND S. P. MEYN

On taking conditional expectations with respect to �(0) = x we see that for a.e.
x ∈ X [ψ],
h∗

n+m(x)hn(x)

= Eπ

[
gn

(
�(n)

)
h∗

m

(
�(n)

)
gm

(
�(n + m)

)
g∗

n+m

(
�(n + m)

)]
+ O

(
V (x) exp(−b0n)

)
= π(gnh

∗
m)π(gmg∗

n+m) + O
(
V (x) exp(−b0n) + exp(−b0m)

)
, n,m ≥ 1.

Since |gn(x)| = |hn(x)| = 1 for all x we conclude from Jensen’s inequality that for
all n, k ≥ 1,

g∗
n(x)hn+k(x) = π(g∗

nhn+k) + ε1(x),

h∗
n+k(x)hn(x) = π(h∗

n+khn) + ε2(x),

where |ε1(x)| + |ε2(x)| = O(V (x) exp(−b0n)). This, combined with (68), shows
that the desired expression can be obtained as an approximation: For any ε > 0 we
can find a function � [of the form − log(gn) for large n] and θ0 ∈ R such that for
a.e. �(0) = x ∈ X,∣∣exp

(
iωF (�(0))

)− exp
(
i
(
θ0 + �(�(1)) − �(�(0))

))∣∣≤ εV (x) a.s. [Px ].
This easily gives (iv).

Finally we show that (iii) implies (iv). Observe first that we have already
established the equivalence of (i) and (iv). Moreover, (iii) is equivalent to
the statement (i) for the transition kernel P̌a , from which we deduce the
implication (iii) ⇒ property (iv) for the Markov chain with transition law P̌a . This
is equivalent to (iv) for the original Markov chain. �

4.2. Continuous time. We now translate the definitions and results of the
previous section to the continuous-time case. Suppose that {P̂ t : t ∈ R+} is a
semigroup of operators on LV∞ with generator Â and with finite spectral radius
given by

ξ̂ := lim
t→∞|||P̂ t |||1/t

V .

[Note that the definition of the generator of a positive semigroup given in (32)
immediately generalizes to general (not necessarily positive) semigroups.]

Consider the eigenvector equation Âh = �h. The functions h we consider will
always be of the form h = R̂θh0, usually with h0 ≥ 0, where R̂θ is defined as
in (18). When all the integrals are well defined we have the resolvent equation (33),
so that

Âh = θ(R̂θ − I )h0.
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This identity allows us to lift all of the previous results to the continuous-time
setting. In particular, under (V4), Fatou’s lemma implies that the resolvent R = R1
satisfies

RV ≤ (1 − δ1)V + b1Rs

with δ1 = δ(1 + δ)−1 and b1 = b(1 + δ)−1. It then follows as in the discrete time
case that

|||[I − R + s ⊗ ν]−1|||V ≤ 2b1/δ1.

Recall the definition of the semigroup {P̂ t
α : t ∈ R+} from (31), where we now

allow α to be possibly complex. The next lemma offers an expression for the
generator of this semigroup, analogous to the classical Feynman–Kac formula for
diffusions. The result is easy to check via the martingale representation (22).

LEMMA 4.14 (Feynman–Kac formula). The generator Âα of the semigroup
{P̂ t

α : t ∈ R+} satisfies

Âα = A + αF,(69)

where A is the generator of {P t}.

Although none of the generators we consider is a linear operator on LV∞, we
may still define the spectrum of Â, S(Â) ⊂ C, as the set of z ∈ C such that the
inverse [Iz− Â]−1 does not exist as a bounded linear operator. However, we relax
the definition by restricting the function space on which the inverse is defined: We
say z ∈ S(Â) if and only if [Iz − Â]−1 does not exist as a bounded linear operator
on the range of the resolvent {Rg :g ∈ LV∞}. We have the generalized resolvent
equation

z[Iz − Â]−1 = R̂z =
∫
[0,∞)

ze−zt P̂ t dt, z ∈ C,

where the integral converges in norm for z /∈ S(Â) such that |ez| ≥ ξ̂ . The
generator Â is called V -uniform if it admits a spectral gap and there is a unique
pole �◦ ∈ S(Â) of multiplicity 1, satisfying |λ◦| = exp(�◦) = ξ̂ .

PROPOSITION 4.15. If {P̂ t : t ∈ R+} has finite spectral radius ξ̂ , then:

(i) The following statements are equivalent:

(a) The generator Â has eigenvalue �◦ ∈ C and associated eigenfunction
f̌ ∈ LV∞.

(b) For θ > ξ̂ , the resolvent R̂θ has eigenvalue λθ = θ−1�◦ − 1 and
eigenfunction f̌ .

(ii) The following statements are equivalent:
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(a) Â is V -uniform.
(b) R̂θ is V -uniform.

The proof of Proposition 4.15 is obvious from (34).
Using these identities, the following results may be proved as in Theorems 4.1

and 4.2. The definition of a is given in (49).

THEOREM 4.16 (Multiplicative mean ergodic theorem). Suppose that the
Markov process � = {�(t) : t ∈ R+} and the functional F satisfy Assumptions 1
and 2, and write a = ( e−1

2b−δ
) as before. Then there exists ω > 0 and δ0 > 0 such

that for any α = a + iω ∈ C with |a| ≤ a and |ω| ≤ ω, there exists �(α) ∈ Sα

which is maximal and isolated:

Re
(
�(α)

)= max{Re (�) :� ∈ Sα} and

Sα ∩ {z : Re (z) ≤ Re
(
�(α)

)− δ0
}= �(α).

Moreover, for any such α, there exist f̌α ∈ LV∞ and µ̌α ∈ MV
1 , satisfying (48),

and the following statements hold:

(i) For all x ∈ X, A ∈ B and t ∈ R+,

P̂ t
αf̌α(x) = λt

αf̌α(x),

µ̌αP̂ t
α(A) = λt

αµ̌α(A).

The function f̌α is also an eigenfunction for Âα :

Âαf̌α = �(α)f̌α.

(ii) There exist b0 > 0 and B0 < ∞ such that for all x ∈ X, t > 0,∣∣Ex

[
exp
(
αSt − t�(α)

)
g
(
�(t)

)]−Q̂αg(x)
∣∣≤ B0‖g‖V e−b0tV (x),∣∣Ex

[
exp
(
αSt − t�(α)

)]− f̌α(x)
∣∣≤ B0|α|e−b0tV (x).

THEOREM 4.17 (Bounds around the iω axis). Assume that the Markov
process � = {�(t) : t ∈ R+} and the functional F satisfy Assumptions 1 and 2.

(NL) Suppose that F is strongly nonlattice. For any 0 < ω0 < ω1 < ∞, there
exist b0 > 0 and B0 < ∞ ( possibly different than above) such that∣∣Ex

[
exp
(
αSt − t�(a)

)]∣∣≤ B0V (x) exp(−b0t), x ∈ X, t > 0,(70)

for all α = a + iω with |a| ≤ a and ω0 ≤ |ω| ≤ ω1.

(L) Suppose that F is almost-lattice with span h > 0. For any ε > 0, there
exist b0 > 0 and B0 < ∞ ( possibly different than above) such that (70) holds for
all α = a + iω with |a| ≤ a and ε ≤ |ω| ≤ 2π/h − ε.
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5. Edgeworth expansions for the CLT. Here we show how the multiplicative
mean ergodic theorems of the previous section can be used to obtain Edgeworth
expansions for the central limit theorem (CLT) satisfied by the partial sums of a
geometrically ergodic Markov chain; see, for example, [37], Chapter 17, for the
standard CLT.

Throughout this section we consider a discrete-time Markov chain � and a
bounded functional F : X → R. Recall our standing assumptions, Assumptions 1
and 2, about � and F . To avoid repetitions later on, we collect below a number of
properties that will be used repeatedly in the proofs of the results in this and the
following section. They are proved in the Appendix.

Properties. Assume that the discrete-time Markov chain � and the function
F : X → R satisfy Assumptions 1 and 2 and let Sn denote the partial sums as before.
Choose and fix an arbitrary x ∈ X and let

mn(α) := Ex[exp(αSn)], n ≥ 1, α ∈ C.(71)

P1. There is a sequence {εn} such that

mn(α) = exp
(
n�(α)

)[f̌α(x) + |α|εn], n ≥ 1,

and |εn| → 0 exponentially fast as n → ∞, uniformly over all α ∈ � (with �

as in Theorem 4.1).
P2. If F is strongly nonlattice, then for any 0 < ω0 < ω1 < ∞ there is a sequence

{ε′
n} such that

mn(α) = exp
(
n�(a)

)
ε′
n, n ≥ 1,

and |ε′
n| → 0 exponentially fast as n → ∞, uniformly over all α = a + iω

with |a| ≤ a and ω0 ≤ |ω| ≤ ω1 (with a as in Theorem 4.1).
P3. If F is lattice (or almost-lattice) with span h > 0, then for any ε > 0, as

n → ∞,

sup
ε≤|ω|≤2π/h−ε

|mn(iω)| → 0 exponentially fast.

P4. The function �(·) is analytic in � with �(0) = �′(0) = 0 and �′′(0) =
σ 2 > 0. Moreover, σ 2

a := �′′(a) is strictly positive for all real a ∈ [−a, a].
P5. The third derivative ρ3 := �′′′(0) can be expressed as

ρ3 = Eπ

[
F 3(�(0)

)]+ 3
∞∑

i=−∞
i =0

Eπ

[
F 2(�(0)

)
F
(
�(i)

)]

+ 6
∞∑

i,j=1

Eπ

[
F
(
�(0)

)
F
(
�(i)

)
F
(
�(i + j)

)]
.
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P6. Let F̂ be the solution of the Poisson equation given by (27) and write

�n := Ex[Sn] − F̂ (x).

Then |�n| → 0 exponentially fast as n → ∞.
P7. The eigenfunction f̌α is analytic in α ∈ �, it satisfies f̌α

∣∣
α=0 ≡ 1 and it is

strictly positive for real α. Moreover, there is some ω0 ∈ (0,ω] (depending
on x) such that

δ(iω) := | log f̌iω(x) − iωF̂ (x)| ≤ (Const)ω2,

for all |ω| ≤ ω0, where F̂ is as in P6.

The following two results generalize those in [41, 30, 8].

THEOREM 5.1 (Edgeworth expansion for nonlattice functionals). Suppose
that � and the strongly nonlattice functional F satisfy Assumptions 1 and 2 and let
Gn(y) denote the distribution function of the normalized partial sums Sn/σ

√
n:

Gn(y) := Px

{
Sn

σ
√

n
≤ y

}
, y ∈ R.

Then, for all x ∈ X,

Gn(y) = G(y) + γ (y)

σ
√

n

[
ρ3

6σ 2
(1 − y2) − F̂ (x)

]
+ o(n−1/2), n → ∞,(72)

uniformly in y ∈ R, where γ (y) denotes the standard Normal density and G(y) is
the corresponding distribution function.

It is perhaps worth noting the way in which the convergence in (72) depends on
the initial state x of the Markov chain: This dependence is only manifested via the
solution F̂ (x) to the Poisson equation. Also observe that, since (72) holds for all
y ∈ R, the restriction on F being |F | ≤ 1 can clearly be relaxed to ‖F‖∞ < ∞.

For the proof of the theorem—given in the Appendix—it is convenient to
consider the zero-mean version of the normalized partial sums,

Sn

σ
√

n
:= Sn − Ex{Sn}

σ
√

n
.

Let Gn(y) denote the corresponding distribution function. In the proof we show
instead that

Gn(y) = G(y) + ρ3

6σ 3
√

n
(1 − y2)γ (y) + o(n−1/2), n → ∞,(73)

uniformly in y ∈ R. From this it is a straightforward calculation to deduce (72) via
a Taylor series expansion and using property P6.

Before stating our next result we recall the following notation. If G is the
distribution function of a lattice random variable with values on the lattice
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{d + kh, k ∈ Z}, the polygonal approximation G# to G is the piecewise-linear
distribution function G#(y) that agrees with G(y) at the midpoints of the lattice,
y = d + (k + 1/2)h, k ∈ Z, and is linearly interpolated between these points. The
function G# is precisely the convolution of G with the uniform distribution on
[−h/2, h/2].

THEOREM 5.2 (Edgeworth expansion for lattice functionals). Suppose that
F is a lattice functional with span h > 0, and assume that F and � satisfy
Assumptions 1 and 2. With Gn(y) as in Theorem 5.1, let G#

n(y) denote its
polygonal approximation. Then, for all x ∈ X,

G#
n(y) = G(y) + γ (y)

σ
√

n

[
ρ3

6σ 2
(1 − y2) − F̂ (x)

]
+ o(n−1/2), n → ∞,(74)

uniformly in y ∈ R. In particular, writing hn = h/σ
√

n, (74) holds with Gn(y)

in place of G#
n(y) at the points {y = (k + 1/2)hn, k ∈ Z} and with [Gn(y) +

Gn(y−)]/2 in place of G#
n(y) at the points {y = khn, k ∈ Z}.

The proof is given in the Appendix. As with Theorem 5.1, it is more convenient
to prove a version of (74) in terms of G

#
n(y) rather than G#

n(y), where G
#
n is the

polygonal approximation to Gn. In the proof we show that

G
#
n(y) = G(y) + ρ3

6σ 3
√

n
(1 − y2)γ (y) + o(n−1/2), n → ∞,(75)

uniformly in y ∈ R. Then (74) follows from (75) in the same way that (72) follows
from (73).

Before moving on to large deviations we note that, although we shall not
pursue these directions further in this paper, using the multiplicative mean ergodic
theorems of Section 4 it is possible to prove higher order Edgeworth expansions,
as well as precise local limit theorems for the density (or the pseudo-density,
when a density does not exist) of Sn. The Edgeworth expansion proofs follow the
same outline as those in the case of independent random variables; compare [17],
page 541. For the local limit theorems, one can apply directly the general results
of [7], Section 2.

6. Moderate and large deviations. In this section we use the multiplicative
mean ergodic theorems of Theorems 4.1 and 4.2 to prove moderate and large
deviations results for the partial sums of a Markov chain. As in Section 5, we
consider the partial sums {Sn} of a bounded functional F of the discrete-time,
geometrically ergodic Markov chain �.

First we note that the multiplicative mean ergodic theorem together with the
analyticity of �(α) in a neighborhood of the origin (see properties P1 and P4 in
the previous section) immediately imply that the partial sums Sn satisfy a moderate
deviations principle. We state this MDP, without proof, in Proposition 6.1. Its proof
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is based on an application of the Gärtner–Ellis theorem, exactly as in the proof of
Theorem 3.7.1 in [13].

PROPOSITION 6.1 (Moderate deviations) [10,11]. Suppose the Markov chain
� and the functional F satisfy Assumptions 1 and 2, and let {bn} be a sequence of
constants such that

bn√
n

→ ∞ and
bn

n
→ 0, n → ∞.

Then, for all x ∈ X and any measurable B ⊂ R,

− inf
y∈B◦

(
y2

2σ 2

)
≤ lim inf

n→∞
1

b2
n/n

log Px

{
Sn

bn

∈ B

}

≤ lim sup
n→∞

1

b2
n/n

log Px

{
Sn

bn

∈ B

}
≤ − inf

y∈B

(
y2

2σ 2

)
,

where B◦ denotes the interior of B and B denotes its closure.

Note that the same result holds for the centered random variables [Sn −
Ex{Sn}]/bn in place of Sn/bn.

6.1. Large deviations for Doeblin chains. Suppose that � is a Doeblin
recurrent chain, that is, suppose that for some m ≥ 1, ε′ > 0 and a probability
measure ν′, we have that P m ≥ ε′ν′. Equivalently, the Doeblin condition can be
stated as

R ≥ εν for some ε > 0 and a probability measure ν(76)

and this, in turn, can be seen to be equivalent to geometric ergodicity with a
bounded Lyapunov function V in (V4); see [37], Theorem 16.0.2. Then the state
space X is small and the results of [43] can be applied to get large deviations
results for the partial sums Sn. For example, for a Doeblin chain with a countable
state space X and with ψ = counting measure, the partial sums Sn satisfy a large
deviations principle under the distributions Px for any x ∈ X.

However, the situation is more complicated when � is stationary, that is, when
�(0) ∼ π . In the following proposition we consider the LDP for the partial
sums Sn under the stationary distribution Pπ .

PROPOSITION 6.2 (Large deviations). Suppose the Doeblin chain � and the
functional F satisfy Assumptions 1 and 2, and let a = ( e−1

2−ε
)ε, where ε is as

in (76).
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(i) The partial sums Sn satisfy an LDP in a neighborhood of the origin: For
any c ∈ (0,�′(a)) and any c′ ∈ (�′(−a),0), we have

lim
n→∞

1

n
log Pπ {Sn ≥ nc} = −�∗(c),

lim
n→∞

1

n
log Pπ {Sn ≤ nc′} = −�∗(c′),

where

�∗(c) := sup
−a<a<a

[ac − �(a)].

(ii) Part (i) cannot in general be extended to a full LDP on the whole real line.

PROOF. Integrating the multiplicative mean ergodic theorem in (50) with
respect to π and noting that π(f̌a) ∈ (0,∞) for all |a| ≤ a, we get that

1

n
log Eπ [exp(aSn)] → �(a), n → ∞,

for all real a ∈ [−a, a]. Since �(a) is analytic, (i) follows from the Gärtner–Ellis
theorem ([13], Theorem 2.3.6). To see that in the Doeblin case a = ( e−1

2−ε
)ε, note

that in (V4) we can set V ≡ 1 and s ≡ ε, take 0 < δ < 1 to be arbitrary and define
b = δ/ε. We then have a version of (V4),

PV = V = (1 − δ)V + bs.

Using the definition of a given in Theorem 4.1 then gives

a :=
(

e − 1

2b − δ

)
δ =

(
e − 1

2(δ/ε) − δ

)
δ =

(
e − 1

2 − ε

)
ε.

Part (ii) follows from the counterexample in Proposition 5 of [5]. �

6.2. Exact large deviations for geometrically ergodic chains. Next we con-
sider the more general case of geometrically ergodic Markov chains, satisfying
our standing assumptions, Assumptions 1 and 2. With a as in Theorem 4.1, let
(A′,A) denote the interval

(A′,A) := {�′(a) :−a < a < a}
and note that 0 = π(F ) = �′(0) ∈ (A′,A). Recall the definition of �∗(c) in
Proposition 6.2.

THEOREM 6.3 (Exact large deviations for nonlattice functionals). Suppose
that � and the strongly nonlattice functional F satisfy Assumptions 1 and 2, and
let c ∈ (0,A). Then, for all x ∈ X,

Px{Sn ≥ nc} ∼ f̌a(x)

a
√

2πnσ 2
a

e−n�∗(c), n → ∞,
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where a is chosen so that �′(a) = c and σa :=�′′(a). A corresponding result holds
for the lower tail.

It is perhaps worth pointing out that the way in which the large deviations
probabilities Px{Sn ≥ nc} depend on the initial state x of the Markov chain is via
the solution f̌a(x) to the multiplicative Poisson equation.

Although the proof (given next) relies on an application of a general result
from [7], the main idea is similar to the proof of the corresponding result for
independent random variables [1]: First, as in the case of finite state space [39],
we perform a change of measure that maps the transition kernel P to the twisted
kernel P̌a . Since � is geometrically ergodic, by Proposition 4.12, P̂a is V -uniform.
Therefore P̌a is Va-uniform by Proposition 4.9 and hence it is geometrically
ergodic by Corollary 4.7. Therefore we can apply the Edgeworth expansions of
Section 5 and complete the proof along the lines of the corresponding argument in
the case of independent random variables; see, for example, [13], Theorem 3.7.4.

PROOF. Choose and fix an arbitrary x ∈ X. The result of the theorem will
follow by an application of [7], Theorem 3.3. We consider the moment-generating
functions mn(α) of Sn, defined in (71) for α in the interior of the compact set �

in Theorem 4.1. [Note that, although our � is different from the open disc used
in [7], a close examination of the proof of [7], Theorem 3.3, shows that the result
continues to hold when the open disc of radius a is replaced with the interior
{α = a + iω : |a| < a, |ω| < ω} of the strip �, as long as ω > 0.]

We will make repeated use of properties P1–P7 stated in Section 5. From the
definition of mn(α) it is easily seen that it is an analytic function of α, and from P1
and P4 it follows that mn(α) is nonzero on � for all n large enough (uniformly
in α).

Let �n(α) be the normalized log-moment generating function

�n(α) := 1

n
log mn(α), α ∈ �,

and

�∗
n(c) := sup

−a<a<a

[ac − �n(a)], c ∈ R.

The main step in the proof is the verification of the assumptions of [7],
Theorem 3.3. Most of them, plus some other technical properties, are established
in the following lemma (proved in the Appendix).

LEMMA 6.4. Under the assumptions of the theorem:

(i) For n large enough there is a unique an ∈ (0, a) such that �′
n(an) = c and

�∗
n(c) = anc − �n(an).
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(ii) Similarly, there is a unique a ∈ (0, a) such that �′(a) = c and �∗(c) =
ac − �(a).

(iii) an → a as n → ∞ and, in fact, an − a = O( 1
n
).

(iv) �′′
n(an) → σ 2

a as n → ∞.
(v) �∗

n(c) → �∗(c) as n → ∞ and, in fact,

�∗
n(c) = �∗(c) − 1

n
log f̌a(x) + o

(
1

n

)
.

The theorem follows from [7], Theorem 3.3, upon verifying condition (c) of [7],
page 1685. For that, it suffices to show that for all 0 < ω0 < ω1 < ∞,

sup
ω0≤|ω|≤ω1

∣∣∣∣mn(a
′ + iω)

mn(a
′)

∣∣∣∣= o(n−1/2)

uniformly in a′ in a neighborhood of a. However, the above convergence actually
takes place exponentially fast, as can be easily verified using properties P1 and P2
from Section 5. �

THEOREM 6.5 (Exact large deviations for lattice functionals). Suppose that �
and the lattice functional F satisfy Assumptions 1 and 2, and assume that F has
span h > 0. Let {cn} be a sequence of real numbers in (ε,A − ε) for some ε > 0
and assume (without loss of generality) that, for each n, cn is in the support of Sn.
Then, for all x ∈ X,

Px{Sn ≥ ncn}
∼ h

(1 − exp(−han))
√

2πn�′′
n(an)

exp
(−n�∗

n(cn)
)
, n → ∞,

(77)

where each an ∈ (0, a) is chosen so that �′
n(an) = cn. A corresponding result

holds for the lower tail.

Note that in the lattice case we have given a slightly more general version of the
result given in Theorem 6.3. If it turns out to be the case that the cn converge to
some c ∈ (ε,A − ε), so that the corresponding an converge to some a ∈ (0, a) at a
rate O(1/n). Then applying Lemma 6.4 as before, from (77) we obtain,

Px{Sn ≥ ncn} ∼ hf̌a(x)

(1 − exp(−ha))
√

2πnσ 2
a

exp
(−n�∗(c)

)
, n → ∞,

where σ 2
a = �′′(a).

PROOF OF THEOREM 6.5. Choose and fix an arbitrary x ∈ X. The proof
parallels that of Theorem 6.3, relying on an application of Theorem 3.5 from [7].
A close examination of its proof in [7] shows that, as in the case of Theorem 3.3
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above, Theorem 3.5 remains valid if we replace the open disc of radius a by the
interior of the strip �. Proceeding as in the proof of Theorem 6.3, we now need to
verify condition (c′) on page 1686 of [7]. For that, it suffices to show that for that
for all ω0 ∈ (0, π/h),

sup
ω0<|ω|≤π/h

∣∣∣∣mn(a
′ + iω)

mn(a
′)

∣∣∣∣= o(n−1/2)

uniformly in a′ ∈ (ε,A − ε). Using properties P1 and P3 from Section 5, it is easy
to see that the above convergence actually takes place exponentially fast, and this
completes the proof. �

7. Examples.

7.1. Countable state space models. Let � be a discrete-time Markov chain
with a countable set X of states and let ψ be counting measure. Suppose � is
irreducible in the usual sense that R(x, y) > 0 for all x, y ∈ X. Then Iθ is a small
function for any θ ∈ X, with associated small measure ν = P (θ, ·). Using this
small function and measure in Lemma 3.2(i) leads to the characterization of �(a)

for real a,

�(a) = inf

{
� : Eθ

[
exp

(
τθ−1∑
k=0

[aF (�k) − �]
)]

≤ 1

}
;(78)

see [2] for details. When the infimum is attained and we may justify differentiation
with respect to a, then

1 = Eθ

[
exp

(
τθ−1∑
k=0

[aF (�k) − �(a)]
)]

�⇒ 0 = Eθ

[
τθ−1∑
k=0

[F(�k) − �′(0)]
]
.

This gives a more transparent proof of the identity �′(0) = π(F ).

The simple queue. For our purposes, the simplest interesting example of a
countable state space chain is the M/M/1 queue. This is the reflected random
walk � on X = {0,1,2, . . .}, with

P (x, x + 1) = p, P (x, (x − 1)+) = q, x ∈ X,

where p + q = 1. We assume that ρ = p/q < 1 so that the chain is positive
recurrent. As we show next:

1. � is geometrically ergodic.
2. It is not Doeblin recurrent.
3. With F = I0c − π(0c), the multiplicative mean ergodic theorem (50) does not

hold for all real α.
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It is also not hard to show that � does not satisfy (mV3) for any f with finite
sublevel sets, so that, in view of the discussion in Section 2.2, the Donsker–
Varadhan conditions do not apply. More importantly, as Wu [56] recently showed,
not just the conditions but also the large deviations conclusions of the Donsker–
Varadhan theory fail in this case. Therefore, this example does not fall under any
of the standard conditions known to imply large deviations results.

Below we also show that our central technical result, the multiplicative mean
ergodic theorem (50), cannot in general be extended to hold on the entire real line.

First note that one can compute directly the expectations

Ex[rτ0]
{

< ∞, 0 ≤ r ≤ β,

= ∞, r > β,
(79)

where β = (4qp)−1/2 > 1. To construct a Lyapunov function, consider V (x) = rx
0

for r0 > 1:

PV (x) =
{

(pr0 + qr−1
0 )V (x), x ≥ 1,

(pr0 + q)V (0), x = 0.
(80)

Choosing a minimal value for (1 − δ) := (pr0 + qr−1
0 ) gives r0 = ρ−1/2 and a

solution to (V4):

PV (x) =√ 4pqV (x) = β
−1

V (x), x ≥ 1.

It easily follows that with r = β , Ex[rτ0] = V (x) = ρ−x/2, x ≥ 1. This gives the
finite bound in (79) and shows that � is geometrically ergodic with Lyapunov
function V .

The easiest way to see that � is not Doeblin recurrent is to notice that, in k time
steps, � cannot visit more than its 2k neighboring states, which implies that the
state space is not small; see [37], Theorem 16.0.2.

Now let F = I0c − π(0c). Using the characterization (78) with θ = 0, we find
that �(a) is the unique solution to the fixed-point equation

E0
[
exp
{(

π0a − �(a)
)
τ0
}]= ea,

where π0 := π(0). It follows from (79) that exp{π0a − �(a)} ≤ β for all a ∈ R.
Also, from the fixed-point equation it follows that if a∗ := log E0[βτ0], then
�(a∗) = π0a

∗ − log β. However, since exp{π0a
∗ − �(a∗)} = β and (π0a −

�(a)) is nondecreasing in a, from (79) we conclude that �(a) = a − log β

for all a ≥ a∗ and hence �′′(a) = 0 for a ≥ a∗. [To see that (π0a − �(a))

is nonincreasing, simply recall from Proposition 4.9 that �′(a) = π(a) so that
�′(a) ≤ supx F (x) = π0.] However, as we saw in property P4, the multiplicative
mean ergodic theorem (50) implies that �′′(a) > 0 for all a for which it is valid;
therefore it cannot be valid for real a ≥ a∗.

A plot of �(a) for F = I0c − π(0c) is shown in Figure 1.
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FIG. 1. The solid curve shows the log-moment generating function �(a), a ∈ R, for the M/M/1
queue with F = I0c − π(0c). It is strictly convex for a < a∗ and it is linear for a ≥ a∗ .

7.2. Diffusions. Consider an elliptic diffusion on a manifold X. We assume
that � is nonexplosive, so that the sample paths are continuous on [0,∞) with
probability 1. It is then strong Feller and ψ-irreducible, where ψ is Lebesgue
measure on X (see, e.g., [47]) and compact subsets of X are small.

Consider the special case where X = Rn and the diffusion term is constant,

A = h · ∇x + 1
2σ 2�,

where � denotes the Laplacian. If f̌a ∈ C2 solves the multiplicative Poisson
equation for some a ∈ R, we may consider the twisted process �a , that is, the
Markov process with transition semigroup defined as before,

P̌ t
a(x, dy) = λ−t

a f̌ −1
a (x)P̂ t

a(x, dy)f̌a(y), t > 0.

If (69) holds, then the generator Ǎa of �a is given by

Ǎa = (h + ∇xσ
2F̌α) · ∇x + 1

2σ 2�2

= A + σ 2∇xF̌α · ∇x,
(81)

where F̌α = log(f̌a). Note that the twisted process has the same diffusion term as
the original—only the drift is affected by the twisting.

Reflected Brownian motion. Diffusions with reflection are currently a popular
model in the operations research area. Consider for example a two-dimensional
reflected Brownian motion (RBM) � on X = R2+ with normal reflection on each
boundary. We show below that (when the drift is negative) � is geometrically
ergodic, but it is not Doeblin recurrent and it does not satisfy (mV3) for any f

with compact sublevel sets (for the same reasons as in the reflected random walk
example above).

Within the interior of X, the sample paths are identical to those of the affine
stochastic differential equation model,

d�i = −δi dt + dWi, i = 1,2,

where W = (W1,W2) is a standard Brownian motion on R2 and the drift term δi

is positive for each i. A characterization of the generator can be found in [55].
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Suppose that V : R2 → R+ is smooth and suppose that the boundary conditions

∂

∂x1
V ≤ ∂

∂x2
V, x1 = 0,

(82)
∂

∂x1
V ≥ ∂

∂x2
V, x2 = 0,

are satisfied. Then, with L = −δ · ∇ + 1
2�, the process

m(t) = V
(
�(t)

)− ∫
[0,t)

LV
(
�(s)

)
ds

is a supermartingale.
A candidate Lyapunov function is the quadratic V0(x) = ‖x‖2, since LV0 =

−2δ · x + 1 is negative for large x and the boundary conditions (82) are satisfied.
The supermartingale property implies that

Ex

[
V0
(
�(t)

)]≤ −δ0

∫
[0,t)

E[�1(s) + �2(s)]ds + t,

where δ0 = 2 min(δ1, δ2). This may be seen as a generalization of (V3), with f (x)

equal to a norm on R2. To obtain a version of (V4), first consider V1 = √
V0. We

have, for some δ1 > 0 and some B < ∞,

Ex

[
V1
(
�(t)

)]≤ −δ1t, 0 ≤ t ≤ 1, ‖x‖ ≥ B.

Finally, setting V (x) = exp(βV1(x)), we can find β > 0 sufficiently small such
that

Ex

[
V
(
�(t)

)]≤ exp(−βt)V (x), 0 ≤ t ≤ 1, ‖x‖ ≥ B.

We conclude that the RBM is geometrically ergodic, provided the reflection is
normal and the drift is negative. Therefore, for any bounded functional F , from
Theorems 6.3 and 6.5 we get precise large deviations bounds for the time averages
{St}, at least in some interval around the mean π(F ) of F . Moreover, in view
of recent results in [6] [where a detailed study of large deviations properties of
RBM (in one dimension) is performed], we should not expect the limit theorems,
Theorems 6.3 and 6.5, to hold on the whole real line.

In general, geometric ergodicity depends upon the interaction of the drift vector
and the reflection vectors along the boundaries. In multidimensional models it
is not always obvious how to choose an appropriate Lyapunov function, but one
can devise numerical methods to search for a quadratic V0 satisfying the required
constraints; see [34, 49].
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APPENDIX

PROOF OF P1–P7. P1, P2, P3 and the analyticity of �(α) follow from the
multiplicative mean ergodic theorems in Theorems 4.1 and 4.2.

To establish P4, first note that �(0) = 0 follows from the uniform convergence
in Theorem 4.1. Similarly it follows that �′(0) = π(F ) = 0 and that �′′(0) =
limn(1/n)Varx(Sn) = σ 2 > 0 by Assumptions 1 and 2 and Proposition 2.4.

On considering the kernel P̌a for real a ∈ �, since �′′(0) > 0, �′′(a) ≥ 0 for all
such a and πa(F ) = �′(a) by Proposition 4.9, it follows that �′(a) = π̌a(F ) > 0
for all nonzero a ∈ �. Now, if �′′(a) = σ 2

a is zero, then by (30) in Proposition 2.4
it follows that π(F − π̌a(F )) = 0. This is impossible since π̌a(F ) > 0.

The exponential convergence in P6 is given in Theorem 2.5. The analyticity of
f̌α is stated in Theorem 4.12 and f̌α|α=0 ≡ 1 by P1. Proposition 4.9 combined
with Proposition 4.12 gives P7.

Property P5 requires more work. For a neighborhood O of zero the function f̌α

given below is a constant times the normalized eigenfunction given in (61):

f̌α = H−1
α 1, Hα = Iλα − P̂α + 1 ⊗ π, α ∈ O.

It is the unique solution in LV∞ satisfying π(f̌α) = 1. Hence, for all k,

π

(
dk

dαk
f̌α

)
= 0, α ∈ O.

We have a form of the quotient rule,

f̌ ′
α = −H−1

α H ′
αH−1

α 1,

and after repeated differentiation we obtain

d3

dα3
f̌α = −6H−1

α H ′
αH−1

α H ′
αH−1

α H ′
αH−1

α 1

+ 3H−1
α H ′

αH−1
α H ′′

αH−1
α 1

+ 3H−1
α H ′′

α H−1
α H ′

αH−1
α 1

− H−1
α H ′′′

α H−1
α 1.

Evaluating at α = 0, we have H−1
0 = Z = [I − P + �]−1 and dk

dαk Hα|α=0 =
[Iλ

(k)
0 − (IF )kP ], k ≥ 1. Using �Z = � and Z1 = P 1 = 1 then gives

0 = π

(
d3

dα3 f̌α

)
= 6�IF PZIFPZF

+ 3�IFPZ(F 2 − σ 2)

+ 3�(I 2
F − σ 2)PZIF

+ �(F 3 − λ′′′
0 ).
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The proof is then complete on interpreting these formulae, since �′′′(0) = λ′′′
0 and

PZG(x) = π(G) +
∞∑

k=1

Ex

[
G
(
�(k)

)− π(G)
]

for any function G ∈ LV∞. �

PROOF OF THEOREM 5.1. We follow closely Feller’s argument in the proof
of Theorem 1 in [17], page 539, leading to the statement (73). Choose and fix x ∈ X
arbitrary. For n ≥ 1, define

Mn(α) := Ex[exp(αSn)] = mn(α) exp(−αEx{Sn}), α ∈ C,(83)

and the distribution functions

�n(y) := G(y) − ρ3

6σ 3
√

n
(y2 − 1)γ (y), y ∈ R,(84)

with corresponding characteristic functions

φn(ω) := exp
(−ω2

2

)(
1 + ρ3(iω)3

6σ 3
√

n

)
, ω ∈ R.(85)

Let ε > 0 be arbitrary. Choose A large enough so that A > 24(επ)−1|� ′
n(y)| for

all y ∈ R, n ≥ 1. From Esseen’s smoothing lemma given in [17], page 538, with
T = A

√
n we get that

|Gn(y) − �n(y)| ≤ 1

π

∫ A
√

n

−A
√

n

∣∣∣∣Mn

(
iω

σ
√

n

)
− φn(ω)

∣∣∣∣dω

|ω| + ε√
n
, y ∈ R.(86)

To prove (73) it suffices to show that this integral is o(n−1/2).
We first consider the integral in the range B

√
n ≤ |ω| ≤ A

√
n, with 0 < B <

min{σω0,A} to be chosen later (where ω0 is as in P7). Applying the change of
variables t = ω/(σ

√
n), this integral is bounded above by

σ

Bπ

∫
B/σ≤|t|≤A/σ

|mn(it)|dt + σ

Bπ

∫
B/σ≤|t|≤A/σ

|φn(σ
√

nt)|dt.

The second integrand converges to zero exponentially fast, uniformly over t in that
range, and the first integrand converges to zero exponentially fast by P2. Therefore,
the above expression is certainly no larger than o(n−1/2).

Next we consider the integral in (86) in the range |ω| ≤ B
√

n. From the
definition of Mn and by properties P1 and P6, after the change of variables
t = ω/(σ

√
n) this equals

1

π

∫
|t|≤B/σ

∣∣∣ exp
(−it�n − itF̂ (x)

)
exp
(
n�(it)

)[f̌it (x) + itεn] − φn(tσ
√

n)
∣∣∣dt

|t| .
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Expanding �(it) in a Taylor series around zero yields

1

π

∫ B/σ

−B/σ
exp
(
−1

2
nt2σ 2

)

×
∣∣∣∣ exp

{
−it�n + n

6
(it)3�′′′(it) + log(f̌it + itεn) − itF̂

}

− 1 − nρ3

6
(it)3

∣∣∣∣dt

|t|
for some real s = s(t) with |s| < B/σ . Noting that

log(f̌it (x) + itεn) − itF̂ = δ(it) + log
(

1 + itεn

f̌it

)
,

where δ(·) is as in P7, the second exponent in the above integrand can be written
as

n

6
(it)3�′′′(it) − it�n + δ(it) + itε′′

n(it),

where ε′′
n(it) := [log(1 + (itεn/f̌it ))]/(it) and

|ε′′
n(it)| → 0 exponentially fast, n → ∞,(87)

uniformly in |t| ≤ B/σ (by P1). Therefore, the integral we wish to bound is

1

π

∫ B/σ

−B/σ
exp
(
−1

2
nt2σ 2

)
(88)

×
∣∣∣∣ exp

{
n

6
(it)3�′′′(is) − it�n + itε′′

n(it) + δ(it)

}
− 1 − nρ3

6
(it)3

∣∣∣∣dt

|t| .

To show that this is o(n−1/2) we will apply the simple inequality from [17],
page 534,

|eα − 1 − β| ≤ (|α − β| + 1
2 |β|2)eγ ,(89)

where γ ≥ max{|α|, |β|}. First we choose B small enough so that the following
four bounds hold for all |t| < B/σ :

(a) |�′′′(it) − ρ3| < 6ε,
(b) B

6σ 3 |�′′′(it)| ≤ 1
4 ,

(c) |δ(it)| ≤ ε
2 ,

(d) Bρ3
6σ 3 ≤ 1

4 ,

where (a) and (b) are possible by the analyticity of �(·) and the definition of ρ3
in P5, and (c) is possible because of P7. Then, writing

α := n

6
(it)3�′′′(is) − it�n + itε′′

n(it) + δ(it)

and
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β := nρ3

6
(it)3

using (b), (c) and (87), we can bound

|α| ≤ nt2σ 2 B

6σ 3 sup
|t|<B/σ

|�′′′(it)| + |t|[|�n| + |ε′′
n(it)|] + |δ(it)|

≤ 1

4
nt2σ 2 + |t|

n
+ ε

2

≤ 1

4
nt2σ 2 + ε,

where the last two inequalities are valid after taking n large enough. Similarly,
using (a), (b), (87) and P7,

|α − β| ≤ n

6
|t|3|�′′′(is) − ρ3| + |t|

n
+ (Const)t2

≤ εn|t|3 + |t|
n

+ (Const)t2

for n large enough and, using (d),

|β| ≤ 1
4nt2σ 2.

Applying inequality (89) with γ := 1
4nt2σ 2 and in conjuction with the last three

bounds, the integral in (88) is bounded above by

1

π

∫ B/σ

−B/σ
exp
(
−1

4
nt2σ 2 + ε

)[
εn|t|3 + (Const)t2 + |t|

n
+ 1

2

(
nρ3|t|3

6

)]
dt

|t|
and changing variables back to ω = t (σ

√
n),

eε

π

∫ B
√

n

−B
√

n
e−ω2/4

[
ε

(
ω2

√
nσ 3

)
+ (Const)

|ω|
nσ 2 + 1

n3/2σ
+ ρ3|ω|5

72nσ 2

]
dω

≤ ε√
n

(
eε

π

∫ ∞
−∞

ω2e−ω2/4 dω

)
+ O

(
1

n

)
.

Since ε was arbitrary, this shows that the integral in (88) is o(n−1/2) and the proof
is complete. �

PROOF OF THEOREM 5.2. We follow closely Feller’s argument in the
proof of Theorem 2 in [17], page 540. Choose and fix an arbitrary x ∈ X. Let
ε > 0 arbitrary and let �n be the distribution function (84). Recall that G#

n =
Gn ∗ U [−hn/2, hn/2] and G

#
n = Gn ∗ U [−hn/2, hn/2]. Proceeding as in [17],
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page 540, along equations (4.9) and (4.10) (with �n in place of G and �#
n :=

�n ∗U [−hn/2, hn/2] in place of G#), we obtain, after taking A > 0 large enough,

∣∣G#
n(y) − �n(y)

∣∣≤ 1

π

∫ A
√

n

−A
√

n

∣∣∣∣Mn

(
iω

σ
√

n

)
− φn(ω)

∣∣∣∣ |sn(ω)|
|ω| dω

(90)

+ ε√
n

+ O

(
1

n

)
, y ∈ R,

where Mn and φn are defined in (83) and (85), and

sn(ω) := sin(1
2hnω)

1
2hnω

, ω ∈ R.

To prove (75) it suffices to show that the integral in (90) is o(n−1/2). We separately
consider the integral over |ω| ≤ B

√
n and over B

√
n ≤ |ω| ≤ A

√
n for some

conveniently chosen B < min{σω,A}, where ω is as in P7. Noting that |sn(ω)| ≤ 1
for all ω, the integral in the former range can be shown to be o(n−1/2) as in the
nonlattice case.

Therefore, it remains to show that∫
B

√
n≤|ω|≤A

√
n

∣∣∣∣Mn

(
iω

σ
√

n

)
− φn(ω)

∣∣∣∣ |sn(ω)|
|ω| dω

≤
∫
B

√
n≤|ω|≤A

√
n

∣∣∣∣mn

(
iω

σ
√

n

)∣∣∣∣ |sn(ω)|
|ω| dω +

∫
B

√
n≤|ω|≤A

√
n

|φn(ω)|
|ω| dω(91)

= o(n−1/2).

The last integral above is easily seen to decay exponentially in n (as in the proof
of Theorem 5.1) and hence we concentrate on the former integral, which, after the
change of variables t = ω/(σ

√
n), becomes

2

h

∫
B/σ≤|t|≤A/σ

|mn(it)|
∣∣∣∣sin

(
1

2
ht

)∣∣∣∣ dt

t2
.

Notice that | sin(1
2ht)| and mn(it) are periodic functions of t with period 2π/h.

Consider, without loss of generality, the range of t ∈ [B/σ,A/σ ] (the case of
negative t is similar). Let (k − 1) denote the number of full periods of length
2π/h in that interval. Then, since | sin(y)/y| ≤ 1 for all real y,

2

h

∫
B/σ≤t≤A/σ

|mn(it)|
∣∣∣∣sin
(

1

2
ht

)∣∣∣∣ dt

t2

≤ kσ

B

∫ 2π/h−B/σ

B/σ
|mn(it)|dt + kσ 2

B2

∫ B/σ

−B/σ
|mn(it)| |t|dt,
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where the first integral converges to zero exponentially fast by P3. Using P1 to
bound mn(it) and expanding �(it) in a Taylor series, the second integral is

C

∫ B/σ

−B/σ
|t| | exp{n�(it)}|dt ≤ C′

∫ ∞
−∞

|t|
∣∣∣∣exp

{
−1

2
nt2σ 2

}∣∣∣∣dt = C′′

n
,

for some constants C, C′ and C′′. This establishes (91) and completes the
proof. �

PROOF OF LEMMA 6.4. Part (ii) is immediate by the choice of c and
property P4. For part (i) note that by the uniform convergence of �n(a) to �(a)

(property P1), we also have convergence of their derivatives, so for n large enough
we can pick an as claimed, and since �′′

n(a) eventually will be strictly positive for
all a ∈ (−a, a), this an is unique.

For part (iii) recall that �′
n(an) = c = �′(a), so the fact that an → a as n → ∞

follows by the uniform convergence of the functions �′
n. Moreover, expanding

�′
n(a) around a = an and using P1,

0 = �′(a) − �′
n(an)

= [�′
n(a) − �′

n(an)] − [�′(a) − �′
n(a)]

= [(a − an)�
′′
n(an) + O(a − an)

2]+ d

da

[
1

n
log
(
f̌a(x) + aεn exp{−n�(a)})]

= [(a − an)�
′′
n(an) + O(a − an)

2]+ O

(
1

n

)
+ O(εn),

where in the last step we used P7. Taking n large enough so that {�′′
n(an)}

is a bounded sequence, bounded away from zero from below, this implies that
(an − a) = O(1/n).

Part (iv) is an immediate consequence of P4 and of the uniform convergence
in P1. Finally for (v) we have from (i), (ii) and P1,

�∗
n(c) = anc − �(an) − 1

n
log[f̌a(x) + aεn]

= �∗(c) + (an − a)c + (�(a) − �(an)
)− 1

n
log f̌an

− 1

n
log
(

1 + anεn

f̌an

)
and, using (iii) and P7,

�∗
n(c) = �∗(c) + O

(
1

n2

)
− 1

n
log f̌a + O

(
1

n2

)
+ O(εn)

as required. �
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