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A SELF-ORGANIZING CLUSTER PROCESS

By Robert M. Burton1 and William G. Faris2

Oregon State University and University of Arizona

The state of the self-organizing cluster process is a finite subset of
points in a bounded region. This subset represents an evolving discrete
approximation to a continuous probability distribution in the region. The
dynamics of the process is determined by an independent sequence of ran-
dom points in the region chosen according to the distribution. At each time
step the random point attracts the nearest point in the finite set. In this
way the subset learns to approximate its environment. It is shown that
initial states approach each other exponentially fast for all time with prob-
ability one. Thus all memory of the initial state is lost; the environment
alone determines future history.

1. Introduction. The subject is a Markov chain whose state is a finite
subset of a bounded region in Euclidean space. The time evolution of the
chain is determined by a random environment consisting of an independent
and identically distributed sequence of points in the bounded region. At each
time step the nearest point in the finite subset is moved toward the random
point. This chain is the simplest case of a family of models introduced by
Kohonen [8] in which the state is an embedding of a graph in the bounded
region. These models are Markov chains in which the state evolves to give a
discrete graphical approximation to the probability distribution of the random
points.

These models have several possible interpretations. Abstractly one can
think of the graph as a geometrical approximation to the probability distri-
bution. A one- or two-dimensional graph embedded in a Euclidean space of
higher dimension would evolve to an approximation to a space-filling curve
or surface that attempts to parameterize the regions of high probability.

Other interpretations are closer to neurobiology [12]. One can think of each
point of the graph as a neuron. The dimensions of the higher dimensional
Euclidean space correspond to different fibers carrying input stimuli. An em-
bedding of the graph in this space assigns to each neuron a connection weight
for each fiber. An overall stimulus is a point in this Euclidean space. The neu-
ron that responds is that neuron whose input fiber weights best correspond
to the stimulus. This neuron and its neighbors in the graph then adjust their
weights according to the stimulus. In this way the neuronal weights evolve to
make the neuronal responses into a kind of map of the incoming stimuli.
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The particular case treated here corresponds to the situation when the
graph has vertices but no edges. Even for this case there are new mathematical
challenges when the dimension of the Euclidean space is greater than 1. We
give conditions that guarantee that two initial states approach each other
exponentially fast for all time with probability 1. Thus the initial state does
not matter; the environment determines future history. There is a sense in
which the system is guaranteed to learn from experience.

Processes of this type fall into a general scheme for constructing Markov
chains. In this scheme there is a state space and a sequence F1; : : : ;Fn; : : : of
independent random functions from the state space to itself. Take an initial
point, X0. The random orbit defined by the iterations Xn = Fn · · ·F1X0 is
the Markov chain.

The self-organizing cluster process under consideration is constructed in
this way. Consider a bounded region in Rν (We shall always take this to be
a rectangular product of intervals). Fix a number l. The state space is the
collection of finite subsets of the region, each with l elements. Fix a probability
measure µ on the region and a shrinking parameter α with 0 < α < 1.

For mathematical investigations it is convenient to take µ to be the uni-
form measure on a rectangular product of intervals. We shall always make
this choice. Furthermore, we shall always assume that we are working in di-
mension ν ≥ 2. (The problems in the case of dimension ν = 1 are simpler, but
the geometry requires special consideration.)

Definition 1. The self-organizing cluster process is defined as follows. For
each n choose an independent point ωn in the bounded region from the proba-
bility distribution µ. Then choose the point x in the finite subset X that min-
imizes the Euclidean distance �x−ωn�. Then FnX is the new subset where x
is replaced by αωn + �1 − α�x and the other points are unchanged. For each
initial subset X0 the process is defined by Xn = FnXn−1.

We consider the stability question, formulated as follows. Take two initial
states X and Y, and look at their orbits under the same random sequence
of functions. The basic question is whether they will eventually get close and
stay close for all future time.

If X and Y are close, then each point of X is paired with a point of Y.
It is possible that the random ω may respect the pairing, in the sense that
the x that is closest to ω may be paired with the y that is closest to ω. In
that case, x− y is replaced by �1− α��x− y�. Thus the two points have been
shrunk together. On the other hand, if the pairing is violated by ω, then the
close particles split apart, and this shrinking process may be destroyed. So
the question is whether an overall shrinking effect can persist, in spite of the
risk of such a split.

This question was suggested by work on the Kohonen process of topological
self-organization ([7], [8]) where the state is a function from a graph into a
bounded region in Rν. Its ergodic behavior was studied rigorously in a fun-
damental paper by Cottrell and Fort [3]. However they only treat the one-
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dimensional case ν = 1. Bouton and Pagés [1, 2] have made further progress
in this case.

Topological self-organization in higher dimensions has been studied by var-
ious authors. Ritter, Martinetz and Schulten [12] present an overview. Tolat
[13] and Lo and Bavarian [10] provide useful insights. Erwin, Obermayer and
Schulten [6] and Li, Gasteiger and Zupan [9] give references to other work
in this area. There are still aspects of the problem that have eluded rigorous
analysis.

Our objective is to develop tools that may be used to study topological self-
organization in higher dimensions. The model that we study here does not
have topological features, but it is interesting in its own right as a model of
how a finite set of points can evolve to mimic a probability distribution. The
strategy of the analysis is to compare two trajectories; the general result of
Theorem 1 then gives ergodicity. The simplest properties of the model are pre-
sented in Lemmas 1, 2 and 3. Lemmas 4 and 5 show that there is a nonzero
probability of getting into a good starting configuration and then having the
two trajectories approach each other exponentially; this situation is summa-
rized in Lemma 6. Lemma 7 shows that if something goes wrong with this
convergence, then it is likely to be rather soon. There are repeated chances
for the convergence to take place. Thus Lemma 6 and Lemma 7 combine to
show that the exponential convergence takes place after a random lag; this is
Theorem 2, the main result of the paper.

2. Markov chains as dynamical systems. This section formulates the
notion of stability for a Markov chain with continuous state space in a more
abstract and precise form. This form of stability turns out to be considerably
stronger than the condition of uniqueness of the invariant probability mea-
sure.

Suppose that �ϒ;d� is a bounded separable metric space. Assume without
loss of generality that the diameter of ϒ is 1. In this context we shall let ν
denote a probability measure defined on Borel subsets of ϒ. One way to define
Markov chains on ϒ is as a random dynamical system. Suppose thatF1;F2; : : :
is an i.i.d sequence of random transformations from ϒ to itself. A Markov chain
�Xn�may be defined by settingX0 to have an initial distribution ν and setting
Xn = Fn ◦Fn−1 ◦ · · · ◦F1�X0�, where ◦ denotes composition.

All Markov chains may be expressed this way (we do not assume that the
transformations are continuous). Often this is the natural way to define the
chain. This is the case for the self-organizing feature maps; indeed they were
defined in exactly this way.

Definition 2. A Markov chain given as a dynamical system with random
transformation distribution F is superstable if (i) there is a constant γ > 0 so
that for every pair of initial values x and y there is a random variable W <∞
with integer values 0;1;2;3; : : : ; so that

d�Fn ◦Fn−1 ◦ · · · ◦F1�x�;Fn ◦Fn−1 ◦ · · · ◦F1�y� ≤ e−γ�n−W�(1)
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and (ii) there is an invariant probability measure for the chain. We say the
chain is superstable with exponential rate if in addition (iii) there are con-
stants k > 0 and 0 < β < 1 independent of x and y so that P�W = n� ≤ kβn:

Note that this definition is in some sense dual to the property of being a
chaotic attractor in which all the randomness is in the initial conditions. Here
the initial conditions are irrelevant in the long term; the environment alone
gives the behavior.

Condition (i) says that two trajectories approach each other exponentially
fast. Condition (ii) guarantees at least one invariant measure ν̄. Together this
is a very strong stability condition, giving a unique invariant probability mea-
sure that attracts all other measures ν. If we also have (iii), then this conver-
gence is exponentially fast, in a precise sense to be explained below.

The content of the following remark is that if we replace the fixed initial
values x and y with initial random variables X0 and Y0, then we get an
equivalent formulation of superstability.

Remark 1. A Markov chain given as a dynamical system with random
transformation distribution F is superstable if and only if (i) there is a con-
stant γ > 0 so that for every pair of initial random variables X0 and Y0
with �X0;Y0� independent of the Fi there is a random variable W <∞ with
integer values 0;1;2;3; : : : ; so that

d�Fn ◦Fn−1 ◦ · · · ◦F1�X0�;Fn ◦Fn−1 ◦ · · · ◦F1�Y0�� ≤ e−γ�n−W�(2)

and (ii) there is an invariant probability measure for the chain. The chain
is superstable with exponential rate if and only if in addition (iii) there are
constants k > 0 and 0 < β < 1 independent of X0 and Y0 so that P�W = n� ≤
kβn:

Let M be the set of Borel probability measures on ϒ and let C be the set
of bounded continuous real-valued functions on ϒ. Define T x M → M by
T�ν� = dist�F�X�� where ν = dist�X� and F is distributed as F1;F2; : : : :

We may also put a metric on M , the Wasserstein metric, which we define
by ρ�ν1; ν2� = inf�E�d�X1;X2�� � dist�Xi� = νi; i = 1;2�: The Kantorovich–
Rubinstein theorem together with the assumption that the metric d is bounded
implies ρ is a metric which characterizes convergence in distribution. That is,
ρ�νn; ν� → 0 iff νn → ν (dist) ([4], page 329). This is a complete metric if ϒ is
Polish.

Theorem 1. Suppose that a Markov chain �Xn� defined as a dynamical
system on ϒ with random transformation distributed as F is superstable with
ν̄ an invariant probability. Then ν̄ is the unique invariant measure; indeed
the distribution of Xn converges weakly to ν̄ with respect to the function class
C . If the chain is superstable with exponential rate, then this convergence is
exponentially fast with respect to the Wasserstein metric.
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Proof. Fix f ∈ C and ν ∈M . LetY be a random variable with distribution
ν̄ and letX have distribution ν so thatTnν is the distribution ofFn◦· · ·◦F1�X�
and Tnν̄ = ν̄ is the distribution of Fn ◦ · · · ◦F1�Y�. Then

∫
fdTnν −

∫
fdν̄ = E�f�Fn ◦ · · · ◦F1�X�� − f�Fn ◦ · · · ◦F1�Y���:(3)

From the remark on the definition of superstability, the distance between
Fn ◦ · · · ◦ F1�X� and Fn ◦ · · · ◦ F1�Y� goes to zero as n → ∞ almost surely.
Since f is continuous, it follows that the distance between f�Fn ◦ · · · ◦F1�X��
and f�Fn ◦ · · · ◦ F1�Y�� also goes to zero as n → ∞ almost surely. Thus the
bounded convergence theorem implies that the expectation goes to zero as
n→∞.

To see convergence in the Wasserstein metric with exponential rate, write

ρ�Tn�ν�; ν̄� = ρ�Tnν;Tn�ν̄��
≤ E�d�Fn ◦ · · · ◦F1�X�;Fn ◦ · · · ◦F1�Y���
≤ E�min�1; e−�n−W�γ��
= P�W > n� +E�e−�n−W�γ1�W≤n��

≤ kβn+1/�1− β� + ke−nγ
n∑

w=1

ewγβw

≤ k1�max�β; e−γ��n;

(4)

where k1 is another constant. 2

3. Hitting and splitting. The self-organizing cluster process fits into the
general scheme of the previous section. The metric space ϒ consists of all l
element subsets of the bounded region in Rν. (Henceforth we revert to the
notation where ν denotes the dimension of the Euclidean space.) The metric δ
should be defined such that two subsets are close if there is some matching of
points in the two subsets that makes the points in each of the matched pairs
close.

Let X and Y be l-element finite subsets of the bounded region in Rν. (We
shall often think of X as representing a collection of l particles and of Y as
representing another collection of l shadow particles.) Consider functions π
making a correspondence from X onto Y. The distance between X and Y is
defined by

δ�X;Y� = min
π

max
x∈X
�x− πx�;(5)

where the norm is the Euclidean distance in Rν.
Let X be an l-element finite subset of the region. We shall be concerned

about the minimum distance between particles in this one subset. This is the
separation defined by

d�X� = min
x6=x′
�x− x′�:(6)
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In the starting lemma (Lemma 4) and gluing lemma (Lemma 5), we shall need
to bound the initial separation from below by a suitable d0 > 0.

Recall that the evolution of the chain with state X at some particular time
is determined by moving the particle closest to the random point ω part way
toward ω. We say that a particle x is hit at this time if x is the element of X
closest to ωk.

Assume that π provides the correspondence between X and Y that defines
δ�X;Y�. We say that X and Y split if the random ω is closest to x in X and
to y in Y with y 6= πx. We wish to show that the states evolving from X
and Y eventually cease to split. Notice that if X and Y do not split, then the
uniform distance from X to Y cannot increase.

The following simple shrinking lemma is fundamental.

Lemma 1. If initially δ�X;Y� ≤ ε, and after a certain number of steps, all
l points are hit and there is no split, then the final X and Y satisfy δ�X;Y� ≤
ε�1− α�.

The fundamental problem is to control the probability of a split. In dimen-
sion greater than 1 there can be a serious danger of a split when the separation
is small; the following no-split lemma gives a bound on the probability of a
split in terms of the separation.

Lemma 2. For each ε > 0 and d > 0, if the initial X and Y satisfy
δ�X;Y� ≤ ε and if the separation d�X� ≥ d > 0, then the probability that
X and Y split in the next step is bounded by C0ε/d.

Proof. Let y = πx and y′ = πx′ be the shadow particles corresponding
to x and x′. We have �x− y� ≤ ε and �x′ − y′� ≤ ε, while �x− x′� ≥ d. Consider
the event that x and y′ are hit. For this event to happen, the random point
ω must satisfy �ω − x� < �ω − x′� and �ω − y� > �ω − y′�. This says that
�x−x′� · �ω−�x+x′�/2� > 0 and �y−y′� · �ω−�y+y′�/2� < 0. So ω must lie on
one side of one half-plane and on the other side of the other half-plane. In order
for this condition to define a small region, the half-planes must be nearly the
same. The two planes contain the two points �x+ x′�/2 and �y+ y′�/2, which
are both in the region and which are within distance ε of each other. So if the
planes were parallel, the region would have volume proportional to ε. However,
in general the size of the region will also have a contribution from a multiple of
the sine of the angle between the two planes. The sine of the angle is bounded
by the distance between the unit vectors �x−x′�/�x−x′� and �y−y′�/�y−y′��
that are normal to the planes. This distance can itself be bounded in two
steps. The distance between �x − x′�/�x − x′� and �y − y′�/�x − x′� is clearly
bounded by 2ε/d. On the other hand, the distance between �y−y′�/�x−x′� and
�y−y′�/�y−y′� is bounded by ��y−y′�−�x−x′��/�x−x′�, which is also bounded
by 2ε/d. So the sine is bounded by 4ε/d. We conclude that the volume of the
region of ω that satisfies both inequalities is bounded by a multiple of ε/d. 2
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The problem in dimension greater than 1 when the separation is small
requires an estimate that shows that this is unlikely. This is the following
repelling lemma.

Lemma 3. There is a constant k0 such that if the separation betweenX par-
ticles is d > 0, then the probability that the two particles achieve a separation
smaller than d on the next step is bounded by k0d.

Proof. If two particles are separated by a distance, then the closest that
they can come after one step is half that distance. So we only need to worry
about particles that are within 2d of each other.

For x to approach x′ we need that �αω + �1 − α�x − x′� < �x − x′�. This
says that ω must fall within a ball of radius �x−x′�/α. The probability of this
happening is proportional to �x− x′�ν which in turn is bounded by a multiple
of dν. Since d itself is bounded above by the size of the region, this is bounded
by a multiple of d. 2

4. The starting lemma. The starting lemma of this section states that
there is a nonzero (although perhaps very small) probability that a desirable
configuration is reached, whatever the initial configuration. The reason for
the validity of the lemma is that practically anything can happen with some
nonzero probability. However we must make sure that a bad initial state does
not make this probability arbitrarily small.

The method of proof is to describe a sequence of events that can bring the
state into the desired configuration. The probability of this sequence must
be bounded below independent of the initial configuration. For simplicity we
describe only the case when the dimension ν = 2 and the region is the unit
square �0;1�2.

Observation 1. Suppose a curve C has endpoints u and v. Fix ε̄ > 0.
Suppose C is sufficiently direct that there are disjoint open balls B1; : : : ;Bn
of radius ε̄ with the property that u ∈ B1, v ∈ Bn, C ⊂ ⋃n

i=1 B̄i, and for
1 ≤ i ≤ n − 1, B̄i ∩ B̄i+1 is a single point. Suppose there is an X particle in
B1. Then there exists N̄ > 0, δ̄ > 0 depending only on ε̄ and the shrinking
parameter α so that, after N̄ additional moves of the Markov chain, with
probability greater than δ̄, there is an X particle in Bn that was originally
within 4ε̄ of C. (Thus if the X particle in B1 is the only X particle within
4ε̄ of C, it will have moved to within 2ε̄ of v after N̄ moves, with probability
greater than δ̄.)

Proof. Let D1; : : : ;Dn−1 be open balls of radius ε̄ with the center of Di

in B̄i ∩ B̄i+1. Let B′i and D′i be open balls of radius ε̄/2 and with the same
centers as the corresponding Bi and Di. If in the evolution of the Markov
chain the noise process ω occurs sufficiently often in D′1, an X particle that
was originally within 4ε̄ of C will come to be in D1. Repeat this with B′2,
D′2, B′3, D′3 and so on until there is an X particle in Bn. We have to pull the
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particle into each of 2n balls in order and each time takes k moves, where k
is chosen so �1 − α�k2

√
2 < ε̄. The number of hits needed is therefore 2nk.

Since the balls are disjoint, the number of balls n times the area πε̄2/4 of a
ball is bounded by 1. So n is less than the reciprocal of this number. We may
thus take the upper bound on the number of hits to be N̄ = 8k/�πε̄2�. Then
the corresponding probability is bounded below by δ̄ = �πε̄2/4�N̄. 2

Observation 2. Let A and B be disjoint subsets of the unit square �0;1�2.
Let g1 = sup��u − v� � u ∈ A; v ∈ B� and g2 = inf��u − v� � u ∈ A; v ∈ B�.
Suppose

αdiam�A� + �1− α�g1 < g2:(7)

Suppose there are X particles in B and no other X particles within g1 of A.
If the noise ω occurs repeatedly in A, then exactly one X particle from B will
be affected. Note that the condition diam�A� + diam�B� < αg2 is sufficient to
ensure condition (7) above.

Proof. We need to show that a noise occurrence in A will bring an X
particle from B to a location closer to any point in A than any other X particle
in B. That is, we must show

sup��αz+ �1− α�x− z1� � z; z1 ∈ A; x ∈ B� < g2:(8)

But using the inequality (7) above we have �αz+ �1− α�x− z1� = �α�z− z1� +
�1− α��x− z1�� ≤ α�z− z1� + �1− α��x− z1� ≤ α diam�A� + �1− α�g1 < g2.

Now suppose diam�A� + diam�B� < αg2. The triangle inequality gives
g1 ≤ diam�A� + diam�B� + g2, so αdiam�A� + �1 − α�g1 ≤ αdiam�A� + �1 −
α�diam�A� + �1− α�diam�B� + �1− α�g2 ≤ diam�A� + diam�B� + �1− α�g2 <
αg2 + �1− α�g2 = g2. 2

These observations are essential for the proof of the starting lemma.

Lemma 4. There exists an initial separation d0 > 0 such that for all ε0 >
0 there exist N and δ > 0 such that for all initial states X0 and Y0 the
probability that the separation d�Xn� > d0 and the distance δ�Xn;Yn� ≤ ε0
exceeds δ.

Proof. The proof proceeds in several steps.
Step 1. There is a event that gets all the X particles close to the origin at

the lower left corner of the square.
Define the triangular region F�ε� = ��x;y� � 0 ≤ x; 0 ≤ y; x+y ≤ ε�. Then

diam�F�ε�� =
√

2ε. Pick a small ε1 > 0. Let the noise occur often enough in
F�ε1/2� that there is at least one X particle in F�ε1�. If all the X particles
are in F�ε1�, then stop. Otherwise we want to get an additional X particle in
F�2ε1�. If there is already such a particle, stop. Otherwise draw a straight line
segment between an X particle outside F�ε1� to the point � 3

2ε1;
3
2ε1�. Using

Observation 1 with ε̄ = ε1/6 and this segment for a curve, move an X particle
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into F�2ε1� \F�ε1�. At this point we have at least two X particles in F�2ε1�.
Continue this process with successive bands until all the X particles are in
F�lε1�.

Step 2. There is an event that gets all X and Y particles close to the origin.
We already have all the X particles in F�ε2� where ε2 = lε1. If all the Y

particles are in F��4/α�ε2�, then we are done. Otherwise we want to place
at least one Y particle in F��4/α�ε2� while keeping all the X particles in
F��4/α�ε2�. If there is already a Y particle in F��4/α�ε2�, stop. Otherwise
for ε̄ = ε2/12 let the noise occur in an ε̄/2 neighborhood of one of the Y
particles. By Observation 2 a unique X particle will be brought from F�ε2� to
an ε̄ neighborhood of this Y particle. Now draw a straight line segment from
this Y particle to the point ��3/α�ε2; �3/α�ε2� and use Observation 1 with this
ε̄ to bring the X particle back into F��4/α�ε2�. Also at least one Y particle is
in F��4/α�ε2�. At this point we have all X particles in F��4/α�ε2� and at least
one Y particle in F��4/α�ε2�. Proceeding in this fashion, we will eventually
have all X and Y particles in F�ε3� where ε3 = �4/α�lε2.

Step 3. There is an event that puts pairs of X, Y particles together.
Assume ε1 was chosen small enough so that ε3 <

1
10 min�1/l;1/8� and

8ε3��1/α� + 1� < 1. Let A be an open ball of radius ε3/2 and center � 1
4 ;

1
4� and

B = F�ε3�. By Observation 2, if the noise occurs repeatedly in A it will attract
a unique �X;Y� pair to within ε3 of � 1

4 ;
1
4�. Now use Observation 1 to place

this pair in an ε3 neighborhood of ��1/2l�;7/8�. Continue this until we have
�X;Y� pairs in ε3 neighborhoods of ��2i− 1/2l�;7/8� for i = 1;2; : : : ; l.

Step 4. There is an event that gets the paired particles close.
Take d0 = 2/l. Assume ε0 < 4/l. By having the noise occur repeatedly in

neighborhoods of radius ε0/4 of the points ��2i−1/2l�;7/8�, i = 1;2; : : : ; l, we
may get with positive probability corresponding X;Y particles within ε0 of
each other. Thus δ�XN;YN� ≤ ε0 where N is the large but bounded number
of steps used in this algorithm.

This completes the proof. 2

The starting lemma refers to particles and their shadow particles. The fol-
lowing corollary of the starting lemma refers only to the particles. We may
refer to this as the hitting lemma.

Corollary 1. There exists N and a strictly positive γ > 0 such that for all
initial states X0 the probability that all X particles are hit during N steps
exceeds γ.

5. Possible exponential attraction. In the following proofs we shall
need to construct certain dominating random variables with specified proba-
bilities. A typical situation is that we have a given Bernoulli random variable
K with P�K = 1� = p and we are given p′ with p ≤ p′. We want to construct
a Bernoulli random variable K′ with P�K′ = 1� = p′ and such that K = 1
implies K′ = 1.
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The solution is to enlarge the probability space by introducing a new in-
dependent random variable U with uniform distribution in the unit interval.
Then we define K′ = 1 if K = 1. We also define K′ = 1 if K = 0 and
U ≤ �p′ − p�/�1− p�. Otherwise we define K′ = 0.

The main lemma in this section is the following gluing lemma.

Lemma 5. There exists ε0 > 0, d0 > 0, β > 0 and ρ > 0 such that for all
X0 and Y0 with δ�X0;Y0� < ε0 and d�X0� ≥ d0, the probability that for all
n we have the estimate δ�Xn;Yn� ≤ ε0e

−βn exceeds ρ.

Proof. Since we are concerned about close approaches, we say that there
is a record value at n if d�Xn� < min�d�Xm� �m < n�. Now we want to divide
the time index set into blocks of size N. The ith block goes from �i− 1�N+ 1
to iN. We say that the block i has a record event if there is at least one record
value for the X in block i.

We say that the block i has an all-hit event if each X particle is moved
sometime in block i.

Let Si be the event of a split somewhere in the first i blocks. We take S0
to be impossible. The Si are increasing with i, and our ultimate objective is
to bound the probability that Si occurs for some i.

The main problem is to show that there are sufficiently few record events
and sufficiently many all-hit events. For this purpose we define Bernoulli ran-
dom variables J0

i and K0
i that score a record event in block i and an all-hit

event in block i. Let j0�i� =∑i
i′=1J

0
i′ and k0�i� =∑i

i′=1K
0
i′ be the accumulated

number of record events and all-hit events.
We need several probability estimates. Let Gi be the σ-algebra defined by

the history of the process in the first i blocks.

(i) There is always some probability of an all-hit event:

P�K0
i = 1 � Gi−1� ≥ γ > 0:(9)

(ii) The probability of a record value is less than k0d�X�. Furthermore,
each record event shortens d�X� by at most 2−N. Thus the conditional proba-
bility of a record event given the past history is bounded above by Nk0d02−Nj,
where j is the number of previous record events. That is:

P�J0
i = 1 � Gi−1� ≤Nk0d02−Nj

0�i−1�:(10)

(iii) The conditional probability of a first split in i given the past is bounded
by NC0ε0�1− α�k/�d02−N�j+1��. Thus:

P�Si � Gi−1� ≤NC0
ε0

d0
2N�1− α�k0�i−1�2Nj

0�i−1�(11)

on Sci−1.
These estimates are awkward to use because there is no reason to believe

that the J0
i and K0

i variables are independent. The idea of the proof is to
construct independent Bernoulli random variables Ji and Ki for i ≥ 1 that



1242 R. M. BURTON AND W. G. FARIS

under certain conditions give upper bounds and lower bounds, respectively,
on the occurrence of record events and all-hit events. Let j�i� = ∑i

i′=1Ji′

and k�i� = ∑i
i′=1Ki′ be counters corresponding to accumulated record event

bounds and accumulated all-hit event bounds.
The construction of the random variables is by induction. We let Fi−1 be

the σ-algebra generated by Si−1;J1; : : : ; Ji−1;K1; : : : ;Ki−1. Thus F0 is the
trivial σ-algebra. Similarly, we let F +

i−1 be the σ-algebra generated by Fi−1
together with Si and Ji.

We will construct Ji to have a conditional probability on each atom of Fi−1
that only depends on j�i−1�. Similarly, we will constructKi to have a constant
conditional probability on each atom of F +

i−1. This construction automatically
makes the J family and K families of random variables independent and
independent of each other.

Recall that the shrinking parameter α satisfies 0 < α < 1. Fix c0 > 0 such
that

ρ =
(

2N

1− α

)c0

�1− α� < 1:(12)

Let Ei be the event that j�i′� ≤ c0k�i′� for all i′ ≤ i. Thus Ei is the event that
the number of record event bounds is not excessive compared to the number
of all-hit event bounds. We take E0 as the sure event.

The sets corresponding to given values of j�i′� and k�i′� for i′ < i belong to
the σ-algebra Fi−1. In particular Ei−1 is in the σ-algebra Fi−1.

The actual requirements on the bounding random variables are the follow-
ing.

(i) If there has been no split, so Si−1 does not occur, and if there has been
no crossing, so Ei−1 occurs, then the occurrence of a record event J0

i = 1
implies that Ji = 1. Thus

J0
i ≤ Ji on Sci−1 ∩Ei−1:(13)

(ii) If there is currently still no split, so Si does not occur, and if there
has been no crossing, so Ei−1 occurs, and if Ji = 0, then Ki = 1 implies the
occurrence of a all-hit event K0

i = 1. Thus

Ki ≤K0
i on Sci ∩Ei−1 ∩ �Ji = 0�:(14)

We want the conditional probabilities to be prescribed; we shall show that
we can take them to be

P�Ji = 1 � Fi−1� =Nk0d02−Nj�i−1�(15)

and

P�Ki = 1 � F +
i−1� =

γ

2
:(16)
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We then also obtain an estimate on the conditional probability of a first
split when there has been no close approach:

P�Si � Fi−1� ≤NC0
ε0

d0
2Nρk�i−1�(17)

on Si−1 ∩ Ei−1, where ρ < 1 is as given above. This is a consequence of the
fact that j0�i− 1� ≤ j�i− 1� and k�i− 1� − j�i− 1� ≤ k0�i− 1� on Si ∩Ei−1
and that we have the estimate of j�i− 1� in terms of k�i− 1� on Ei−1.

The construction follows. On each atom of Fi−1 contained in Sci−1 ∩ Ei−1,
the conditional probability of a record event J0

i = 1 in block i is bounded by
k0Nd02−Nj�i−1�. We define Ji in such a way that if there is a record event
J0
i = 1 in i, then Ji = 1 and such that the conditional probability that Ji = 1

is exactly k0Nd02−Nj�i−1�.
On the atoms of Fi−1 contained in Si−1∪Ec

i−1;we defineJi in some arbitrary
way to have the same conditional probability that Ji = 1.

Now we turn to the definition of Ki. On each atom of Fi−1 contained in
Sci−1∩Ei−1, the conditional probability of a split Si is bounded byNC02Nε0/d0.
Furthermore, the conditional probability that Ji = 1 is bounded by k0Nd0. We
choose d0 sufficiently small and then ε0 sufficiently small that

γ −NC02N
ε0

d0
−Nk0d0 >

γ

2
:(18)

Thus the conditional probability of an all-hit event K0
i = 1 and no split and

Ji = 0 exceeds γ/2. In particular, the conditional probability of an all-hit event
K0
i = 1 given Sci ∩Ei−1 ∩ �Ji = 0� exceeds γ/2.
We conclude that the conditional probability of an all-hit event K0

i = 1
exceeds γ/2 on each atom of F +

i−1 that is contained in Sci ∩ Ei−1 ∩ �Ji = 0�.
Thus we defineKi on these atoms so that the conditional probability is exactly
equal to γ/2 and such that Ki = 1 implies an all-hit event K0

i = 1.
On the atoms of F +

i−1 contained in Si ∪ Ec
i−1 ∪ �Ji = 1�, we define Ki

arbitrarily with the same conditional probability.
Now that we have completed the construction, we may complete the proof.

Let E = ⋂∞i=0Ei be the event that j�i� ≤ c0k�i� for all i. We now show that
P�E� > 0.

By the strong law of large numbers k�i�/i→ γ/2 as i→∞ almost surely.
By a similar argument for the Markov chain j�i� we see that j�i�/i → 0
as i → ∞ almost surely. These two processes are independent. Therefore
j�i�/k�i� → 0 as i→∞ almost surely.

This implies that there is a random variable I <∞ such that for i ≥ I we
have j�i�/k�i� ≤ c0 and k�i�/i ≤ 1/2. It is clear that there exists i0 such that
P�I = i0� > 0. On this set where I = i0 there is a subset of strictly positive
probability on which all the i ≤ i0 with Ki = 1 precede the i ≤ i0 with Ji = 1.
This subset is contained in E, so P�E� > 0.

Let S = ⋃∞i=0Si be the event that there is a split. We estimate P�S∩E� as
follows. The probability that E occurs and we have a split for the first time in
block i is bounded by the probability that Ei−1 occurs and we have a split for
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the first time in block i. This is estimated by

NC02N
ε0

d0
E�ρk�i−1�� =NC02N

ε0

d0

(
1− γ

2
�1− ρ�

)i−1

:(19)

If we sum from i = 1 to infinity we obtain a finite bound for P�S ∩E� propor-
tional to ε0.

We conclude by noting that P�Sc ∩E� = P�E� − P�S ∩E�. Since P�E� > 0
and is independent of ε0 and P�S∩E� is proportional to ε0, there is an ε0 that
makes this strictly positive.

It follows that with strictly positive probability there are no splits and in-
finitely many all-hit events occurring at a linear rate. Each all-hit event with
no split shrinks the distance between Xn and Yn by a factor of 1 − α. This
produces the exponential gluing. 2

We continue with the notation of the proof of Lemma 5. Begin the process
in an arbitrary state. We want to define the occurrence of a catastrophe at
some multiple of N steps. First we wait a time N to see if we get in a good
starting configuration. If we do not, then we already have a catastrophe at
the first unit. Otherwise we begin counting in multiples of N until the first i
when we have an event Ec

i ∪Si of a close approach or a split. In this case we
have a catastrophe at i units after the first unit.

The event of never having a catastrophe is the event of getting into a good
starting configuration followed by the event E ∪ Sc of never having a close
approach or a split.

Lemma 6. There is a ρ′ > 0 so that for arbitrary initial states the probability
of never having a catastrophe exceeds ρ′. There are also constants α and β < 1
so that for arbitrary initial states

P�∀ n; δ�Xn;Yn� ≤ αe−βn� ≥ ρ′:(20)

Proof. According to Lemma 4, the probability of getting into a good start-
ing configuration in N units is δ > 0. By Lemma 5, the conditional probabil-
ity of then getting glued is at least ρ. So the probability of both is at least
ρ′ = δρ. 2

Lemma 7. There are constants a and b < 1 such that for all initial states
the probability of a catastrophe occurring at time index i is bounded by abi.

Proof. We are only interested in large i, so we start the counting after
the first unit. The event of having a catastrophe at i is

�Ei−1 ∩Sci−1� ∩ �Ec
i ∪Si� ⊂ �Ei−1 ∩Ec

i� ∪ �Ei−1 ∩Sci−1 ∩Si�:(21)

In a previous argument we found a bound of the required form for the proba-
bility of the event of a split when there has been no close approach, which is
the event Ei−1 ∩Sci−1 ∩Si.
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It remains to get a bound on the probability of a first close encounter, that
is, of Ei−1 ∩ Ec

i . This event implies that c0k�i� < j�i�. We are interested in
large i.

We use a large deviation bound for Bernoulli random variables [11]. The
bound says that for i.i.d. random variables Y1; : : : ;Yn that take the values
one and zero and have mean p, we have the inequality

P
[
Y1 + · · · +Yn

n
≥ p+ η

]
≤ exp�−2η2n�:(22)

The same result holds for the probability of a deviation in the other direction,
that is, of a proportion greater than or equal to p− η.

We can apply this to k�i� = K1 + · · · +Ki with p = γ/2 and η = γ/4. We
conclude that P�k�i�/i ≤ γ/4� ≤ exp�−γ2i/8�.

The application to j�i� = J1+· · ·+Ji is a bit more complicated. In this case
the conditional probability for Ji+1 = 1 is Nk0d0/2Nj�i�. We want to estimate
the probability that j�i�/i ≥ ξ. If this is so, then there is an r such that for
i > r we have Nk0d0/2Nj�i� ≤ ξ/4. Also there is an s such that for i > s we
have j�r�/i ≤ ξ/2. So for i larger than s we must have �j�i� − j�r��/i ≥ ξ/2.
We can dominate the Ji for i > r by independent random variables with
probability ξ/4 of giving a 1. We conclude that for sufficiently large i the
probability of j�i�/i ≥ ξ is bounded by exp�−ξ2i/8�.

We can put the two estimates together by taking ξ = c0γ/4. If c0k�i� < j�i�
then either k�i�/i ≤ γ/4 or j�i�/i ≥ ξ. The probabilities of these events become
exponentially small as i tends to infinity. 2

6. Eventual exponential attraction. The main result of the paper is
the following theorem. Some of its consequences will be discussed in a later
section.

Theorem 2. The self-organizing cluster process for a bounded region in
two or more dimensions is superstable with exponential rate. Thus there is a
constant β > 0 such that for every two initial states X0 and Y0 there is a
random variable W with exponential tail such that

δ�Xn;Yn� ≤ e−β�n−W�(23)

as n→∞.

Proof. Break the time axis into intervals of length N, where N is the
number in the starting lemma. Let W be the waiting time in units of N for a
catastrophe. A catastrophe is defined as either not getting to a good starting
configuration in the first interval of length N or of subsequently having a
event Ec

i ∪Si of a close approach or a split.
According to Lemma 6 the probability that W = ∞ is strictly positive,

greater than ρ′ > 0. According to Lemma 7 the probability that i ≤W <∞ is
bounded by abi where b < 1.
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Now consider the independent waiting times W1;W2;W3; : : : for sub-
sequent catastrophes. Since these are independent, eventually there will
be a first waiting time Wi with Wi = ∞. Thus we have waiting times
W1;W2; : : : ;WL <∞ with WL+1 = ∞. The random variable in the statement
of the theorem is W =W1 + · · · +WL.

Conditioned on L = i the waiting time random variables W1; : : : ;Wi are
stochastically dominated by independent random variables with lagged ge-
ometric distribution. The random variable L is stochastically dominated by
a random variable with a geometric distribution; in fact, the probability that
L ≥ k is bounded below by �1−ρ′�k. A geometric number of i.i.d. summands of
geometric random variables is geometric. Therefore W is stochastically dom-
inated by a sum of a geometric random variable with a multiple of L. Even
though these need not be independent, their sum must have a distribution
with exponential tail. 2

7. Ergodic properties.

Theorem 3. The self-organizing cluster process for a bounded region in
dimension two or more has an invariant probability measure.

Proof. The construction in the starting lemma shows that there is a stan-
dard configuration of particles (in small open sets) that the process has a
nonzero probability of hitting. This implies that the process is a Harris chain
[5]. A recurrent Harris chain always has an invariant measure, and if the
expected recurrence time is finite, it is a probability measure. The proof is
completed by noting that the mechanism in the proof of the gluing lemma
produces the configurations in the starting lemma at a steady rate, so the
expected recurrence time is indeed finite. 2

Corollary 2. The invariant probability measure for the self-organizing
cluster process for a bounded region in dimension two or more is unique. The
convergence of the probability to the invariant measure is exponentially fast in
the Wasserstein metric.

Proof. Theorems 2 and 3 show that the process is superstable with ex-
ponential rate. The result follows from the general theory of superstable pro-
cesses summarized in Theorem 1. 2
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