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COORDINATE SELECTION RULES FOR GIBBS SAMPLING1

By George S. Fishman

University of North Carolina

This paper studies several different plans for selecting coordinates for
updating via Gibbs sampling. It exploits the inherent features of the Gibbs
sampling formulation, most notably its neighborhood structure, to charac-
terize and compare the plans with regard to convergence to equilibrium
and variance of the sample mean. Some of the plans rely completely or al-
most completely on random coordinate selection. Others use completely or
almost completely deterministic coordinate selection rules. We show that
neighborhood structure induces idempotency for the individual coordinate
transition matrices and commutativity among subsets of these matrices.
These properties lead to bounds on eigenvalues for the Gibbs sampling
transition matrices corresponding to several of the plans. For a frequently
encountered neighborhood structure, we give necessary and sufficient con-
ditions for a commonly employed deterministic coordinate selection plan
to induce faster convergence to equilibrium than the random coordinate
selection plans. When these conditions hold, we also show that this deter-
ministic selection rule achieves the same worst-case bound on the variance
of the sample mean as that arising from the random selection rules when
the number of coordinates grows without bound. This last result encour-
ages the belief that faster convergence for the deterministic selection rule
may also imply a variance of the sample mean no larger than that arising
for random selection rules.

Introduction. Given its relatively simple algorithmic formulation, the
appeal of Gibbs sampling is understandable as a method for generating sam-
ple paths in Monte Carlo experiments. Recent interest in the method has gen-
erated a considerable literature on its convergence properties [e.g., Amit and
Grenander (1989), Barone and Frigessi (1990), Frigessi, Hwang, Sheu and
di Stefano (1993), Liu, Wong and Kong (1994, 1995), Roberts and Polson
(1991), Roberts and Smith (1992) and Schervish and Carlin (1993)]. While this
literature exploits the positivity properties of the Gibbs sampler, a comparable
exploitation of its intrinsic neighborhood properties has been less common. A
notable exception is Amit (1991). The present paper describes five plans for
performing Gibbs sampling and uses neighborhood properties to characterize
and compare them with regard to convergence to equilibrium and variance
of the sample mean. Although the term Gibbs sampling usually connotes the
iterative updating of coordinates one at a time in a prescribed deterministic
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order, the present paper includes random coordinate selection as part of Gibbs
sampling.

Plan 1 allows random coordinate selection on each step. Plan 2 restricts
Plan 1 so that no coordinate can be repeatedly updated on successive steps.
Plan 3 describes a strictly deterministic coordinate selection plan often sug-
gested to ensure reversibility. Plan 4 describes an alternative deterministic
selection strategy that, before updating begins, randomly decides whether to
update coordinates in the order l1; : : : ; lm or lm; : : : ; l1. Plan 5 is a special
case of Plan 4 that demonstrates the benefit of batching coordinates into two
groups based on specified neighborhood properties. Before updating begins, it
randomly chooses the order in which the groups are to be updated on each
pass through the coordinates.

Section 1 formulates the problem as one of sampling from a Markov ran-
dom field on an m-dimensional countably finite product space. For random
coordinate selection rules, Section 2 uses the reversibility, idempotency and
reducibility of the Gibbs sampler induced transition matrices P1; : : : ;Pm for
the m coordinates to derive lower and upper bounds on the eigenvalues of
the one-step expected transition matrix for Plan 1. For alternative sampling
plans, Section 3 introduces criteria for comparing convergence rates and for
comparing variances of sample means. It illustrates these criteria when com-
paring Plan 1 based on randomly selecting coordinates with equal probability
on each step and Plan 2 based on barring the coordinate selected on step j−1
from being selected on step j.

Section 4 begins the discussion of deterministic coordinate selection rules.
It shows that one can expect Plan 4 to induce convergence to equilibrium at
least as fast as Plan 3 does. This property encourages deeper study in Section 5
of strategies of the general form of Plan 4.

When the neighborhood condition assumes a special but commonly encoun-
tered form, Section 5 shows how to partition the coordinates into two subsets
that facilitate analysis. In particular, transition matrices corresponding to co-
ordinates within a subset commute with each other but not with transition
matrices in the other subset. Section 5 exploits this property in Plan 5 and
derives necessary and sufficient conditions for the plan to induce faster con-
vergence than Plans 1 and 2.

Section 6 concentrates on variances. In particular, its analysis encourages
the conjecture that Plan 5 induces a smaller variance for the sample mean
than Plans 1 and 2 whenever Plan 5 induces faster convergence.

In what follows, we repeatedly make use of the inequalities rank�A +B� ≤
rank�A� + rank�B� and rank�AB� = min�rank�A�; rank�B�� for any two ma-
trices A and B, and on a theorem of Weyl:

Theorem 0. Let λ0�C� ≥ λ1�C� ≥ · · · ≥ λv−1�C� denote the ordered eigenval-
ues of the v× v symmetric matrix C. If A and B are v× v symmetric matrices,
then for all 0 ≤ l ≤ v− 1;

max�λl�A� + λv−1�B�; λv−1�A� + λl�B��
≤ λl�A +B� ≤ min�λl�A� + λ0�B�; λ0�A� + λl�B��:
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See, for example, Horn and Johnson [(1985), Theorem 4.3.1, page 181] or
Marcus and Minc (1964).

1. Basic notation. Let �Sj = �S1j; : : : ; Smj�; j ≥ 0� denote a stochastic
process taking values in the countably finite state space S = S1×· · ·×Sm of
size v = �S � and let p = �π�x�; x = �x1; : : : ; xm� ∈ S � denote a probability
mass function such that for each x ∈ S and all j ≥ 0,

pr�Sj = x� = π�x�:
For each x ∈ Si and 1 ≤ i ≤m,

pr�Sij = x�Slj = xl; ∀ l 6= i� = πi�x�xl; ∀ l 6= i� x=
π�xi�x��∑

y∈Si
π�xi�y��

;

where

xi�y� x= �x1; : : : ; xi−1; y; xi+1; : : : ; xm�:
Let M = �1; : : : ;m� denote the collection of all sites or coordinates in the

state vector and let G1; : : : ;Gm denote subsets of M which for each i and each
l ∈M have the properties i 6∈ Gi; l 6∈ Gl and i ∈ Gl ⇔ l ∈ Gi: Assume that for
each x ∈ S ,

π�x� > 0 (positivity condition)

and

πi�x�xl; ∀ l 6= i� = πi�x�xl; l ∈ Gi� ∀ x ∈ Si; 1 ≤ i ≤m
�neighborhood condition�:

The function p is called a Markov random field with neighborhood system
�G1; : : : ;Gm�, where Gi denotes the neighborhood of coordinate i.

Let �u�x�; x ∈ S � denote a one-to-one mapping of the states x in S onto
the integers V = �0;1; : : : ; v − 1� and let πu�x� x= π�x�, for each x ∈ S . For
each coordinate l = 1; : : : ;m; let Pl x= �pijl �v−1

i; j=0 denote a v × v Markov
transition matrix with

pu�x�u�xl�y��l x= πl�y�xi; i ∈ Gl� ∀ y ∈ Sl and ∀ x ∈ S :

Since

πl�y�xi; i ∈ Gl� π�x� = πl�y�xi; i ∈ Gl� πl�xl�xi; i ∈ Gl�π�x−l�;
where

x−l x= �x1; : : : ; xl−1; xl+1; : : : ; xm�
and since

π�x�y�� = πl�y�xi; i ∈ Gl�π�x−l�;
then

πl�y�xi; i ∈ Gl�π�x� = πl�xl�xi; i ∈ Gl�π�xl�y��;
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so that Pl is reversible w.r.t. p. That is, DPl = PT
l D for D x= diag�π0; π1; : : : ;

πv−1�:

2. Random coordinate selection. One method of generating a sample
path �Sj� randomly selects a coordinate on each step and updates it. Let
wi > 0; 1 ≤ i ≤m and w1 + · · · +wm = 1. Plan 1 describes the approach:

Plan 1.
Randomly generate S0 from an initializing p.m.f. p0 on S .
Randomly generate I from M with p.m.f. �wl; 1 ≤ l ≤m�.
Randomly generate SIj from SI using row u�Sj−1� of PI.

�∗� Slj← Sl;j−1; ∀ l 6= I:
j← j+ 1.

Step �∗� is included for completeness here and in subsequent plans. In practice,
most implementations are able to avoid it, thereby reducing cost.

On each step, Plan 1 has the one-step expected transition matrix

L�w� = w1P1 + · · · +wmPm

and k-step transition matrix

Q1k�w� = Lk�w�:
These relatively meager specifications for Pl suffice to characterize several
properties of L�w�:

Proposition 1. For each l ∈M ; let vl x= �Sl�. Then Pl has v/vl unit eigen-
values and v− v/vl zero eigenvalues.

Proof. Since l 6∈ Gl; Pl has v/vl linearly independent rows and, therefore,
has v − v/vl zero eigenvalues and v/vl nonzero eigenvalues. Also, P2

l = Pl

reveals Pl and Dl x= D1/2PlD−1/2 to be idempotent matrices. The reversibility
of Pl implies that Dl is symmetric and that Pl and Dl have the same spectrum.
Since a symmetric idempotent matrix has all its eigenvalues in �0;1� [e.g.,
Horn and Johnson (1985), page 37], Pl has exactly v/vl unit eigenvalues. 2

Proposition 2. The matrix L�w� is aperiodic and irreducible.

Proof. Since the neighborhood condition implies that for each x−l ∈ S \Sl

and for all x;y ∈ Sl, pu�xl�y��u�xl�x��l = pu�xl�x��u�xl�x��l, there must be some state
i such that piil > 0. Therefore, L�w� is aperiodic. For each l x= �l1; : : : ; lm� ∈
Mm, let Q�l� x= Pl1

×Pl2
× · · · ×Plm

, so that

Lm�w� =m−m
∑

l∈Mm

( m∏
i=1

wli

)
Q�l�:

Since there exists at least one Q�l� > 0; Lm�w� > 0 and, therefore, L�w� is
irreducible. 2
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A like result appears in Liu, Wong and Kong (1995).
With regard to eigenvalues, the positive semidefiniteness of each Pl implies

that L�w� is positive semidefinite. Also, the reversibility of each Pl implies the
reversibility of L�w�. Therefore, L�w� has all real nonnegative eigenvalues.
Let λ0�A� ≥ λ1�A� ≥ · · · ≥ λv−1�A� denote the eigenvalues of a symmetric v×v
matrix A. Since λi�L�w�� = λi�

∑m
l=1wl1l�, L�w� has the spectrum λ0�L�w�� =

1 > λ1�L�w�� ≥ · · · ≥ λv−1�L�w�� ≥ 0:

Theorem 3. For the matrix L�w�;
λ1�L�w�� ≥ max�w1; : : : ;wmy1−w1; : : : ;1−wm�:

Proof. From Theorem 0, λ1�L�w�� ≥ λ1�
∑m
l=2wlPl� + λv−1�w1P1�: Since

λv−1�w1P1� = 0 by Proposition 1, λ1�L�w�� ≥ λ1�
∑m
l=2wlPl�. From Theorem 0,

λ1�
∑m
l=2wlPl� ≥ λ1�

∑m
l=3wlPl� + λv−1�w2P2�. Since λv−1�w2P2� = 0, it follows

that λ1�L�w�� ≥ λ1�
∑m
l=3wlPl�. Iteratively applying Theorem 0 m − 3 more

times leads to λ1�L�w�� ≥ λ1�wmPm�+λv−1�wm−1Pm−1� = λ1�wmPm�: Because
λ1�Pl� = 1 for all l ∈M ; λ�L�w�� ≥ wm. Since a like result must hold for each
permutation l of the coordinates 1; : : : ;m; λ1�L�w�� ≥ max�w1; : : : ;wm�.

Because
∑m
l=2wlPl/

∑m
l=2wl is a reducible stochastic matrix with v/v1 closed

sets, λ1�
∑m
l=2wlPl/

∑m
l=2wl� = 1. Therefore,

m∑
l=2

wl = 1−w1 ≤ λ1

( m∑
l=2

wlPl

)
+ λv−1�w1P1� ≤ λ1�L�w��:

Again, a like inequality holds for each coordinate, so that

λ1�L�w�� ≥ max�1−w1; : : : ;1−wm�;
which completes the proof. 2

As an immediate consequence of Theorem 3, the distribution w1 = · · · =
wm = 1/m leads to the smallest lower bound λ1�L�w�� ≥ 1− 1/m.

To derive a lower bound for each eigenvalue of L�w�, Theorem 4 relies on
Theorem 0 and knowledge of the number of closed sets in a convex linear
combination of the Pl. To derive upper bounds, Theorem 5 relies on the same
theorem and knowledge of upper bounds on the ranks of these convex com-
binations. As a consequence, Corollary 6 reveals that the smallest lower and
upper bounds obtain for w1 = · · · = wm = 1/m.

Theorem 4. Let L denote the set of all permutations of the integers

1; : : : ;m and for each l ∈ L ; let s0�l� x= 0 and sj�l� x=
∑j
i=1wli for 1 ≤ j ≤m.

Assume v1 ≤ v2 ≤ · · · ≤ vm and let u0 x= 1 and uj x= uj−1vj for 1 ≤ j ≤ m:
Then

λl�L�w�� ≥ max
l∈L
�1− sj�l��; 1 ≤ l ≤ uj − 1; 1 ≤ j ≤m:(1)

The Appendix contains the proof.
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Theorem 5. Assume v1 ≤ v2 ≤ · · · ≤ vm. Then

λl�L�w�� ≤





max
l∈L
�1− sj−1�l��; l ≥ v

m∑
i=m−j+2

�1/vi�; 2 ≤ j ≤m;

1; l ≥ 0:
(2)

The Appendix contains the proof. Note that λl�L�w�� x= 0 for l ≥ v.

Corollary 6. The assignment wi = 1/m; 1 ≤ i ≤ m; minimizes
maxl∈L �1− sj�l�� for each 1 ≤ j ≤m.

The proof is immediate.
While the assignment of Corollary 6 does not imply minimization of each

λl�L�w��, it does suggest a reasonable choice when no additional information
is available. Accordingly, we hereafter adopt it exclusively and write L x=
m−1 ∑m

l=1 Pl and βl x= λl�L� for 0 ≤ l ≤ v− 1. This case offers the additional
advantage of the tighter lower bounds λl�L� ≥ 1 − j/m for l ≤ ∏m

i=m−j+1 vi
and 1 ≤ j ≤m.

3. Figures of merit. The relative desirabilities of alternative sampling
plans depend on how well they perform with regard to convergence from an
arbitrarily selected initial state to the steady state and with regard to the
variation they induce. For each Plan i and all x;y ∈ V , let

q
�k�
ixy x= probability of moving from state x to state y in k steps(3)

and let Qik x= �q
�k�
ixy �v−1

x;y=0, which we call the k-step transition matrix for
Plan i. If Plans i and j each have irreducible and aperiodic transition matrices,
then limk→∞ q

�k�
ixy = πy; limk→∞ q

�k�
jxy = πy; ∀ x;y ∈ V , and

W
�k�
ijxy x=

∣∣∣∣∣
q
�k�
ixy − πy
q
�k�
jxy − πy

∣∣∣∣∣(4)

measures their relative speeds of convergence. If for all x;y ∈ V ; W
�k�
ijxy con-

verges to zero as k → ∞, then Plan i has greater appeal than Plan j has
according to this criterion. If for all x;y ∈ V ; W

�k�
ijxy diverges as k→∞, then

Plan j has the greater appeal.
With regard to variation, let �gi; 0 ≤ i ≤ v−1� denote a bounded function,

let

µ x=
v−1∑
i=0

giπi
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and assume µ is unknown and to be estimated. Let S0;S1; : : : ;Sn denote n+1
successive states generated by Plan i and let Xj x= gu�Sj�. Consider

µin =
1
n

n∑
j=1

Xj

as an estimator of µ. For irreducible, aperiodic transition matrices,

lim
n→∞
�E�µin�S0 = x� − µ� = 0

and

lim
n→∞

n var�µin�S0 = x� = Ti x= lim
n→∞

n varµin;

where varµin denotes the variance that obtains when starting in the steady
state. Comparing Ti and Tj for Plans i and j, respectively, provides a basis
for determining which induces a smaller asymptotic variance. In particular,
Ti < Tj favors Plan i.

Let fl x= �f0l; f1l; : : : ; fv−1;l�T denote the left eigenvector of L corresponding
to βl with fTl fl = 1 and fTj fl = 0; j 6= l. Then

q
�k�
1xy = πy +

√
πy/πx

v−1∑
l=1

fxlfylβ
k
l ; k ≥ 0;(5)

and for cl x=
∑v−1
x=0 gx

√
πx fxl; 1 ≤ l ≤ v− 1 [e.g., Kemeny and Snell (1960)],

T1 =
v−1∑
l=1

c2
l �1+ βl�/�1− βl�;(6)

where varXj =
∑v−1
l=1 c

2
l . In terms of matrices, T1 = gTD�I + L − 2S��I −

L + S�−1g, where g x= �g0; g1; : : : ; gv−1�T and S denotes a v× v matrix with
�π0; π1; : : : ; πv−1� in each row. Hereafter, we assume varXj = 1. In what fol-
lows, expressions (5) and (6) establish the baselines against which we compare
the merits of other sampling plans.

As a consequence of Theorems 4 and 5 and Corollary 6, for m > 2,

m∑
j=1

( uj−1∑
l=uj−1

c2
l

)(
2m− j
j

)

≤ T1 ≤
1+ β1

1− β1

tm−tm−1−1∑
l=1

c2
l +

m−1∑
j=2

( tm−tm−j−1∑
l=tm−tm−j+1

c2
l

)(
2m− j
j

)
+m

v−1∑
l=tm−t1

c2
l ;

where t1; : : : ; tm are defined in the Appendix and cl x= 0 for all l ≥ v. Two
examples illustrate the significance of these bounds. If cl = 0 for all v1 ≤ l ≤
v− 1, then

2m− 1 ≤ T1 ≤ �1+ β1�/�1− β1�:
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Recall that β1 ≥ 1− 1/m. Alternatively, if v1 = · · · = vm and c2
1 = · · · = c2

v−1 =
1/�v− 1�, then

uj−1∑
l=uj−1

c2
l =

v
j−1
1 �v1 − 1�
vm1 − 1

and

tm−tm−i−1∑
l=tm−tm−j+1

c2
l ≤
�j− i�vm−1

1

�vm1 − 1� ; 1 ≤ i ≤ j ≤m;

where equality holds if and only if m ≤ v1. More importantly,

2m
(

1− 1
v1

)
≤ 2m�v1 − 1�

1− v−m1

m∑
j=1

1

jv
m−j+1
1

≤ T1 ≤
1

v1�1− v−m1 �

[
1+ β1

1− β1
+O�m lnm�

]
:

Note that both examples have lower bounds that grow linearly with the num-
ber of coordinates m. However, the second example leads to an upper bound
that grows, at least, as m lnm.

Since Pi is idempotent, repeatedly selecting i, as may occur in Plan 1,
contributes nothing to convergence. To reduce this limitation, consider the
strategy in Plan 2 which, after updating coordinate I, randomly selects the
next coordinate uniformly from M \ �I� [e.g., Amit and Grenander (1989)].

Plan 2.
Randomly generate S0 from an initializing p.m.f. p0 on S .
Randomly generate I from M with probability 1/m.
Randomly generate SI1 from SI using row u�S0� of PI.
Si1 ← Si0; ∀ i 6= I.
j← 1 and J← I.
On each step j ≥ 2:

Randomly generate I from M \ �J� with probability 1/�m− 1�.
Randomly generate SIj from SI using row u�Sj−1� of PI.
Sij← Si;j−1; ∀ i 6= I.
J← I.
j← j+ 1.

Proposition 7 gives an immediate consequence of this plan.

Proposition 7. Plan 2 has the k-step expected transition matrix

Q2k = L
(
mL− I
m− 1

)k−1

; k ≥ 1:(7)
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Proof. Let I1; : : : ; Ik denote the randomly selected coordinates for sam-
pling on steps 1 through k, let Vk x= PI1

× · · · × PIk
and observe that Q2k =

EI1;:::;Ik
Vk = EI1

EI2;:::;Ik�I1
Vk. Then

Q2k = EI1
EI2;:::;Ik�I1

Vk

= EI1
EI2;:::;Ik−1�I1

Vk−1EIk�Ik−1
PIk

= EI1
EI2;:::;Ik−1�I1

Vk−1

(
mL−PIk−1

m− 1

)

= EI1
EI2;:::;Ik−2�I1

Vk−2

(
mL−PIk−2

m− 1

)(
mL− I
m− 1

)

:::

= EI1
PI1

(
mL− I
m− 1

)k−1

= L
(
mL− I
m− 1

)k−1

: 2

Theorem 8 compares the performances of Plans 1 and 2.

Theorem 8. For m > 2; W�k�12xy → ∞ as k → ∞. For m = 2; a necessary
and sufficient condition for Plan 2 to converge more rapidly is 1−β1 < 2βmin,
where βmin denotes the smallest positive eigenvalue of L. Also,

T2 = gTD
[
I+ L− 2S− 2

m
�L− S�

]
�I− L+ S�−1g

=
v−1∑
l=1

c2
l

(
1+ βl − 2βl/m

1− βl

)

and

1− 1
m
≤ T2

T1
= 1− 2

m

∑v−1
i=1 c

2
i �βi/�1− βi��∑v−1

i=1 c
2
i �1+ βi/�1− βi��

≤ 1:

Proof. From (5) and Proposition 7,

q
�k�
2xy = πy +

√
πy

πx

v−1∑
l=1

fxlfylβl

(
mβl − 1
m− 1

)k−1

; k ≥ 1;

so that

W
�k�
12xy =

∣∣∣∣
∑v−1
l=1 fxlfylβ

k
l∑v−1

l=1 fxlfylβl��mβl − 1�/�m− 1��k−1

∣∣∣∣; k ≥ 1:
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Therefore, a necessary and sufficient condition for W�k�12xy → ∞ as k → ∞ is
that for all positive βl,

1− �m− 1�β1

m
< βl <

1+ �m− 1�β1

m
:

Since βl ≤ β1, β1 ≥ �m−1�/m and �1−�m−1�β1�/m ≤ −�m2−3m+1�/m2 < 0
for all m > 2, W�k�12xy →∞ as k→∞ for all m > 2. Moreover, �1− β1�/2 < βl
is necessary and sufficient for m = 2.

The quantity µ̄2n has asymptotic variance

T2 = lim
n→∞

n varµ2n = gT
[
I− 6+ 2

∞∑
k=1

�Q2k − S�
]
g

and since

Q2k − S = �L− S�
(
mL− I−mS

m− 1

)k−1

for k ≥ 1;

then

T2 = gTD
[
I+ L− 2S− 2

m
�L− S�

]
�I− L+ S�−1 g:

The lower bound follows from the observation that

1− 2
m

∑v−1
i=1 c

2
i �βi/�1− βi��∑v−1

i=1 2c2
i �βi/�1− βi��

≤ T2

T1
: 2

The result for m = 2 calls for a bit more study. Let h�β;k;m� x=
β�1−mβ�k−1 for 0 ≤ β ≤ 1/m and k;m ≥ 2. It is easily seen that

h�β;k;m� ≤ 1
�k− 1�m

(
1− 1

k

)k
≤ 1
�k− 1�me

:(8)

This property is reassuring for Plan 2 with m = 2. If 2βmin − 1 < −β1, then
βmin�2βmin− 1�k−1 controls the convergence rate for q�k�2xy. However, (8) implies

βk1 < βmin�2βmin − 1�k−1 ≤ 1
2e�k− 1� ≤

0:1840
k− 1

so that, while Plan 1 offers faster convergence, the convergence rate for Plan 2
is also rapid. 2

4. Deterministic coordinate selection. Let l = �l1; : : : ; lm� denote a
permutation of the integers �1; : : : ;m�. Then iteratively updating coordinates
in the order l1; : : : ; lm induces the km-step transition matrix Qk�l�, where
Q�l� is not reversible. At least two options exist for recovering reversibility.
Plan 3 describes the first [e.g., Johnson (1989)]. On each iteration it updates
coordinates in the order l1; : : : ; lm−1; lm; lm−1; : : : ; l1.
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Plan 3.
Given: l = �l1; : : : ; lm�.
i← 1, j← 1 and t← 1.
While i < m: lm+i← lm−i and i← i+ 1.
Randomly select S0 from the initializing p.m.f. p0 on S .
On each step j ≥ 1:

Sample Sj from row u�Sj−1� of Plt
.

Sij← Si;j−1 ∀ i 6= lt.
t← t �mod 2m− 1� + 1.

The idempotency of Pm implies that Pl1
×· · ·×Plm−1

×Plm
×Plm−1

×· · ·×Pl1
=

R�l�, where R�l� x= Q�l1; : : : ; lm�Q�lm; : : : ; l1�. The corresponding k�2m− 1�-
step transition matrix is Q3; k�2m−1��l� = Rk�l�. Since DR�l� = RT�l�D, R�l�
is reversible and since �D1/2Q�l1; : : : ; lm�D−1/2�T = D1/2Q�lm; : : : ; l1�D−1/2,
D1/2R�l�D−1/2 is symmetric positive semidefinite. Therefore, Q3; k�2m−1��l� has
spectrum

λi�Q3; k�2m−1��l�� = λki �R�l�� = λki �D1/2R�l�D−1/2� ∈ �0;1�;
0 ≤ i ≤ v− 1:

(9)

Plan 4 describes a second option for inducing reversibility. At the beginning
of the sampling experiment, one randomly chooses the coordinate permutation
�l1; : : : ; lm� or the reverse permutation �lm; : : : ; l1� with equal probabilities.
Thereafter, on each iteration it updates all coordinates in that order.

Plan 4.
Given: l = �l1; : : : ; lm�.
j← 1 and t← 1.
Sample J from �0;1� with probabilities �1/2;1/2�.
If J = 0: while t ≤m, i← lt and t← t+ 1.
Otherwise: while t ≤m, it← lm−t+1 and t← t+ 1.
Randomly select S0 from the initializing p.m.f. p0 on S .
t← 1.
For each step j ≥ 1:

Sample Sj from row u�Sj−1� of Pit
.

Sij← Si;j−1 ∀ i 6= it.
t← t �modm� + 1.

Plan 4 has km-step transition matrix Q4; km�l� = Nk�l�, where Nk�l� x=
1
2 �Qk�l1; : : : ; lm� + Qk�lm; : : : ; l1�� is clearly reversible. Moreover, Theorem 9
gives a motivation for preferring Plan 4 over Plan 3.

Theorem 9. For Plans 3 and 4 and k ≥ 1;

�λi�N2k�l��� ≤ λki �R�l��; 0 ≤ i ≤ v− 1:(10)
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Proof. For a v × v real matrix A, it is known that [Fan and Hoffman
(1955), Marshall and Olkin (1979), Theorem 9.F.4]

λ2
i ��A +AT�/2� ≤ λi�AAT�; 0 ≤ i ≤ v− 1;

and that for all integers l ≥ 1 [Fan (1949), Marshall and Olkin (1979), Theo-
rem 9.E.4],

�λi�Al�AT�l�� ≤ λli�AAT�:

Therefore,

λ2
i ��Al + �AT�l�/2� ≤ λi�Al�Al�T�

= λi�Al�AT�l�
≤ λli�AAT�:

The theorem is proved for A x= D1/2Q�l�D−1/2 and l = 2k. 2

Theorem 9 reveals that for 2k iterations each of m updates, Plan 4 induces
convergence at a rate at least as fast as k iterations of 2m − 1 updates each
of Plan 3. Plan 3 induces at least one additional property that deserves at-
tention. Since P2

l1
= Pl1

, updating coordinate l1 at the end of iteration j − 1
contributes no benefit to convergence. Accordingly, one may choose to update
2m− 2 coordinates in the order l1; : : : ; lm−1; lm; lm−1; : : : ; l2 on each of �k− 1�
iterations and update coordinates l1; : : : ; lm−1; lm; lm−1; : : : ; l1 on the last it-
eration for a total of k�2m − 2� updates. This compares to 2km coordinate
updates under Plan 3. Since k iterations with Plan 3 have convergence rate
λk1�R�l��, whereas 2km steps with Plan 1 have convergence rate β2km

1 , it is
clear that Plan 3 converges more rapidly if and only if βm1 > λ

1/2
1 �R�l��.

5. Partitioning the coordinates. Although Section 4 demonstrates the
advantage of Plan 4 for convergence, it tells us nothing about how a particular
coordinate permutation l affects convergence. To address this issue, we focus
on a special representation that occurs frequently in practice and that exploits
the neighborhood concept introduced in Section 1. Let M1 and M2 denote
mutually exclusive and exhaustive subsets of M and assume they satisfy M1 =⋃
i∈M2

Gi and M2 =
⋃
i∈M1

Gi. Suppose that for all x ∈ S ,

πi�xi�xl; i 6= l� =
{
πi�xi�xl; l ∈ Gi ⊆M2�; i ∈M1;
πi�xi�xl; l ∈ Gi ⊆M1�; i ∈M2:

That is, given Sj−1, the random variables �Sij; i ∈ M1� are independent of
�Si;j−1; i ∈ M1�, and �Sij; i ∈ M2� are independent of �Si;j−1; i ∈ M2�.
As an immediate consequence, �Pi; i ∈ M1� forms a commuting family of
idempotent matrices, and �Pi; i ∈ M2� does likewise. As an illustration, as-
sume m is even and let m1 = m2 = m/2; M1 x= �1;3; : : : ;m− 3;m− 1� and
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Fig. 1.

M2 x= �2;4; : : : ;m− 2;m�. Conceptually, one can think of the sites as m con-
secutively numbered points on a circle (Figure 1), where for a nearest-neighbor
specification point i has the neighborhood

Gi =




�2;m�; if i = 1;
�i− 1; i+ 1�; if i = 2; : : : ;m− 1;
�1;m− 1�; if i =m:

This odd/even representation also fits a commonly encountered two-
dimensional site model. Consider a square d × d lattice as in Figure 2
with sites labeled t = �t1; t2�; t1; t2 ∈ �0;1; : : : ; d − 1�. Let site t have the
nearest-neighbor neighborhood

Gt = ��t1 − 1; t2�; �t1 + 1; t2�; �t1; t2 − 1�; �t1; t2 + 1��;

where each coordinate argument is taken modulo d. Then M denotes the set
of all m = d2 sites and there exist two disjoint and exhaustive subsets M1 and
M2 of M such that for every site t ∈ M1, Gt ⊆ M2, and for every site t ∈ M2,
Gt ⊆M1. In the case of Figure 2, these subsets are

M1 = ��0;0�; �0;2�; �1;1�; �1;3�; �2;0�; �2;2�; �3;1�; �3;3��
and

M2 = ��0;1�; �0;3�; �1;0�; �1;2�; �2;1�; �2;3�; �3;0�; �3;2��:
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Fig. 2.

For an example of a partition with one coordinate in M1 and m− 1 in M2, see
the Gamma posterior distribution illustration in Gelfand and Smith (1990).

Let m1 = �M1� and m2 = �M2�: Plan 5 offers a special, but important,
case of Plan 4, where the coordinate permutation l = �l1; : : : ; lm� ∈ L is
chosen so that M1 = �l1; : : : ; lm1

� and M2 = �lm1+1; : : : ; lm�: If J = 0, the
plan first updates all coordinates in M1 in the order l1; : : : ; lm1

and then all
coordinates in M2 in the order lm1+1; : : : ; lm on each iteration. If J = 1, it
first updates all coordinates in M2 in the order lm1+1; : : : ; lm and then all
coordinates in M1 in the order l1; : : : ; lm. Here �l1; : : : ; lm1

� can be any one of
the m1! permutations of the elements of M1 and �lm1+1; : : : ; lm� can be any one
of the m2! permutations of M2. Note that a commonly encountered version of
the Ising model relies on a nearest-neighbor concept that fits this formulation.

Plan 5.
Randomly select S0 from the initializing p.m.f. p0 on S .
Randomly select J from �0;1� with probabilities �1/2;1/2�.
j← 1 and k← 1.
On each iteration k ≥ 1 x

For t = 1 to m:
l← l�Jm1+t−1��modm�+1:
Randomly generate Slj from Sl using row u�Sj−1� of Pl.
Sij← Si;j−1 ∀ i 6= l.
j← j+ 1:

k← k+ 1:
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Theorem 10. The matrix Mi x= 5l∈Mi
Pl is idempotent and reversible with

v/5l∈Mi
vl unit eigenvalues and v − v/5l∈Mi

vl zero eigenvalues. Also M x=
1
2�M1 +M2� is reversible, nonnegative definite, irreducible and aperiodic.

Proof. Since the matrices �Pl; l ∈ Mi� commute, there exists a non-
singular orthogonal matrix Gi that simultaneously diagonalizes them. Then
Pl = Gi llG

T
i , where ll is a v × v diagonal matrix of the eigenvalues of Pl.

Therefore, Mi = Gi5l∈Mi
llG

T
i . Since each ll has only zero and unit entries on

its main diagonal, M2
i =Mi so that Mi is idempotent.

Since M1 = 5
m1
i=1Pli

; DM1 = DPl1
5
m1
i=2Pl = PT

l1
D5m1

i=2Pli
= �PT

l1
× · · · ×

PT
lm1
�D = MT

1 D so that M1 is reversible. An analogous result holds for M2.
Since Mi has v/5l∈Mi

vl closed sets and is idempotent, it has v/5l∈Mi
vl units

and v− v/5l∈Mi
vl eigenvalues. 2

Theorem 10 reveals that M1 and M2 in Plan 5 have analogous properties to
those of P1; : : : ;Pm in Plans 1 and 2. In particular, idempotency implies that
repeatedly updating coordinates in M1 before updating the coordinates in M2
contributes nothing to convergence. Theorems 11 and 12 develop additional
properties of Plan 5 and Theorem 13 shows that its expected k-iteration tran-
sition matrix Q5; km has a form analogous to the expected k-step transition
matrix Q2k in (7) for Plan 2.

Theorem 11. Let M = 1
2�M1 +M2�. Then M is a reversible, nonnegative

definite, irreducible aperiodic matrix.

Proof. Nonnegative definiteness for M follows from the property that the
sum of two nonnegative definite matrices is nonnegative definite. Since M1
and M2 are reversible, M is clearly reversible. Since M1M2 > 0; M2 > 0 so
that M is irreducible. Since the diagonal elements of M1 and M2 are positive,
M is aperiodic. 2

Theorem 12. Plan 5 has expected km-step transition matrix

Q5; km = 1
2 ��M1M2�k + �M2M1�k�

=M�2M − I�2k−1; k ≥ l:
(11)

Proof. If J = 0 in Plan 5, then the km-step transition matrix is �M1M2�k.
If J = 1, it is �M2M1�k. Therefore, Q5; km = 1

2 ��M1M2�k+�M2M1�k�: By idempo-
tency 4M2 =M1M2+M1M2+M1+M2 so that 1

2�M1M2+M2M1� =M�2M−I�:
By induction on k �≥ 2� it is easily seen that

�M1M2�k + �M2M1�k = ��M1M2�k−1 + �M2M1�k−1��2M − I�2

so that Q5; km =M�2M − I�2k−1 for k ≥ 1: 2
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As an immediate consequence of Theorems 11 and 12, Q5; km has spectrum
�γi�2γi−1�2k−1; 1 ≤ i ≤ v−1�. Therefore it is of interest to learn more about
�γi; 1 ≤ i ≤ v− 1�:

Theorem 13. Let ri x= 5l∈Mi
vl for i = 1 and 2; v∗ x= min�r1; r2� and

v∗ = max�r1; r2�: Then

γ0 = 1;
1
2 ≤ γl < 1; 1 ≤ l ≤ v∗ − 1;

γl = 1
2 ; v∗ ≤ l ≤ v∗ − 1;

0 ≤ γl ≤ 1
2 ; v∗ ≤ l ≤ v− 1;

(12)

and at least v− 2v∗ of the γl’s take values in �0;1/2�.

Proof. Since Mi is idempotent, it has rank�Mi� = ri unit eigenvalues and
v− ri zero eigenvalues. Therefore,

1
2 max�λl�M1� + λv−1�M2�; λv−1�M1� + λl�M2�� =

{
1
2 ; 0 ≤ l ≤ v∗ − 1;

0; v∗ ≤ l ≤ v− 1;

and

1
2 min�λl�M1� + λ0�M2�; λ0�M1� + λl�M2�� =

{
1; 0 ≤ l ≤ v∗ − 1;
1
2 ; v∗ ≤ l ≤ v− 1;

which, together with Theorem 0, establish (12).
Whereas rank�M� ≤ rank�M1� + rank�M2� = r1 + r2, rank� 1

2�M1M2 +
M2M1�� ≤ rank�M1M2� + rank�M2M1� ≤ 2 min�rank�M1�; rank�M2�� = 2v∗.
Since 1

2�M1M2 +M2M1� =M�2M − I� has the spectrum �γl�2γl − 1�; 0 ≤ l ≤
v− 1� and is of rank no greater than 2v∗, it has at least v− 2v∗ of the γl’s in
�0; 1

2�. 2

Since Theorem 13 implies that no more than 2v∗ − 1 of the γl’s are in
�0; 1

2� ∪ � 1
2 ;1�, this result becomes significant for small v∗. For example, if

m1 = 1 and r1 = 2, then no more than three γl’s lie in �0; 1
2� ∪ � 1

2 ;1�.
By analogy with the development for Plan 1, M is the expected one-cycle

transition matrix corresponding to a plan that on each cycle randomly selects
a subset Mi and updates all of its coordinates. Then 2k cycles have the ex-
pected transition matrix M2k and km expected coordinate updates. In a man-
ner analogous to the relationship between Plans 1 and 2, Plan 5 induces faster
convergence than this alternative plan if and only if γ1+2γmin > 1, where γmin
denotes the smallest positive eigenvalue of M. Since γ1 ≥ 1

2 ; γmin >
1
4 is suf-

ficient for this faster convergence. Since this alternative plan allows repeated
updating of the same coordinate subset, we focus on Plan 5, which guarantees
exhaustive updating before repetition.
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We now compare convergence rates to the equilibrium distribution p for
Plan 5, an essentially deterministic coordinate selection plan, with Plan 2, an
essentially random coordinate selection plan.

Theorem 14. Letm ≥ 1: If γ1+γmin ≥ 1; then for all x;y ∈ S ; W
�km�
25xy →∞

as k→∞ if and only if

γ1 <
1
2

[
1+

(
mβ1 − 1
m− 1

)m/2]
:(13)

If γ1 + γmin < 1; then for all x;y ∈ S ; W
�km�
25xy →∞ as k→∞ if and only if

γmin >
1
2

[
1−

(
mβ1 − 1
m− 1

)m/2]
:(14)

Proof. The expected km-step transition matrix Q2; km has elements

q
�km�
2xy = πy +

√
πy

πx

v−1∑
l=1

fxlfylβl

(
mβl − 1
m− 1

)km−1

;

whereas the expected k-iteration transition matrix Q5; km has elements

q
�km�
5xy = πy +

√
πy

πx

v−1∑
l=1

f′xlf
′
ylγl�2γl − 1�2k−1;(15)

where �f′xl� are elements of the left eigenvector of D1/2MD−1/2 corresponding

to γl. Then W�km�25xy →∞ as k→∞ if and only if

max
[(
mβ1 − 1
m− 1

)m
;

∣∣∣∣
mβmin − 1
m− 1

∣∣∣∣
m]

> max��2γ1 − 1�2; �2γmin − 1�2�:

Since β1 ≥ 1−1/m; mβ1−1 ≥ �mβmin−1� for all m ≥ 3. If γ1+γmin ≥ 1, then
(
mβ1 − 1
m− 1

)m
> �2γ1 − 1�2(16)

is necessary and sufficient for convergence. However, this is equivalent to (13).
If γ1 + γmin ≤ 1; then

(
mβ1 − 1
m− 1

)m/2
> 1− 2γmin(17)

is necessary and sufficient and this is equivalent to (14). 2

It is of special interest to assess convergence as the number of coordinates
m grows. Again the bound β1 ≥ 1 − 1/m provides insight. If γ1 + γmin > 1;
then a sufficient condition for Plan 5 to converge faster is

γ1 <
1+ e−1/2

2
= 0:803265 : : : as m→∞:
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If γ1 + γmin ≤ 1, then a sufficient condition is

γmin >
1− e−1/2

2
= 0:196735 : : : as m→∞:

Since Theorem 8 already has shown that Plan 2 converges faster than
Plan 1 for m > 2, Plan 5 also converges faster than Plan 1 whenever the
conditions in Theorem 13 are met.

It is easily seen that the following corollary holds.

Corollary 15. If either

γ1 >
1
2

[
1+

(
mβ1 − 1
m− 1

)m/2]
or γmin <

1
2

[
1−

(
mβ1 − 1
m− 1

)m/2]
;

then W
�km�
25xy → 0 as k→∞ so that Plan 2 converges more rapidly than Plan 5.

These conditions become γ1 > 0:803265 : : : and γmin < 0:196735 : : : as
m→∞.

6. Variance considerations. For m1 = M2 = 1; Plan 5 reduces
to Plan 2. For m1 = m2 = m/2 for even m, an expression for T5 x=
limn→∞ n var µ̄5n is derived in Fishman (1994). However, the expression for
T5 does not lend itself to meaningful comparison with T1 so that it is not
possible to state conditions under which T5 < T1 and T5 > T1. However, de-
terministic coordinate selection in Gibbs sampling often takes one observation
Xlm on each iteration l for l = 1; : : : ; k and uses

µ̃5k =
1
k

k∑
l=1

Xlm(18)

to estimate µ. For (18), Theorem 16 gives a limiting result for variance that
provides some insight into the benefit of deterministic versus random coordi-
nate selection.

Theorem 16. Let V∗ x= �l ∈ V : γl 6∈ �0; 1
2��. Then

T̃5 x= lim
k→∞

k var µ̃5k = 1+
∑
l∈V∗

d2
l �2γl − 1�
2�1− γl�

=
∑
l∈V∗

d2
l

2�1− γl�
+

∑
l∈V \V∗

d2
l ;

(19)

where d2
l > 0 for all l ∈ V∗ and

∑v−1
l=1 d

2
l = 1.
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Proof. As before, we have varXim = 1: Based on (15),

cov�Xim;Xjm� =
v−1∑
x=0

v−1∑
y=0

gxgyπx�q
��i−j�m�
5xy − πy�

=
v−1∑
l=1

( v−1∑
x=0

√
πx gxf

′
xl

)2

γl�2γl − 1�2�i−j�−1

=
v−1∑
l=1

d2
lγl�2γl − 1�2�i−j�−1;

(20)

where dl x=
∑v−1
x=0 gx

√
πx f

′
xl. Recall that �f′xl; 0 ≤ x ≤ v − 1� is the left

eigenvector of D1/2MD−1/2 corresponding to eigenvalue γl. Since

v−1∑
l=1

f′xlf
′
yl =

{−√πxπy; if x 6= y;
1− πx; if x = y;

∑v−1
l=1 d

2
l = 1. Then

T̃5 = 1+ 2
∞∑
j=1

cov�X0;Xjm�

= 1+ 2
∞∑
j=1

v−1∑
l=1

d2
lγl�2γl − 1�2j−1

= 1+
∑
l∈V∗

d2
l �2γl − 1�
2�1− γl�

: 2

Observe that T̃5 ≤ 1
2�1 − γ1�, whereas (6) implies T1 ≤ �1 + β1�/�1 − β1�.

Moreover, the nonnegativity of the eigenvalues implies var µ̄1n ≤ T1/n ≤
�1 + β1�/�1 − β1�n. If Plan 5 induces faster convergence than Plan 1 does,
then γ1 ≤ 1

2 �1+ ��mβ1 − 1�/m− 1�m/2� ≤ 1
2�1+β

m/2
1 �; by Theorem 14, so that

T̃5 ≤ 1
2�1− γ1� ≤ 1

2�1− β
m/2
1 �: As a consequence, for large k and n x= km,

var µ̃5k ≤
1

�1− βm/21 �k
= m

�1− βm/21 �n
:(21)

If there exists an ε > 0 such that β1 ≥ 1− 1/m1+ε, then

lim
m→∞

m

�1− βm/21 �
· 1− β1

1+ β1
= 1:

Expression (21) implies that for large m the uppermost bound m/��1 −
β
m/2
1 �n� for var µ̃5k for k observations under Plan 5 is close to the uppermost

bound for var µ̄1n for n observations under Plan 1 and, therefore, close to the
uppermost bound for var µ̄2n for n observations under Plan 2. While not a
substitute for an exact comparison of variances, this result does suggest that
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little may be lost in statistical efficiency by using µ̃5k under Plan 5 in place
of µ̄2n under Plan 2. Moreover, since it is known that var µ̄5n ≤ var µ̃5k [e.g.,
MacEachern and Berliner (1994)], this analysis encourages the conjecture that
var µ̄5n ≤ var µ̄2n for large n when Plan 5 induces faster convergence than
Plan 2 does and β1 ≥ 1− 1/m1+ε.

APPENDIX

Proof of Theorem 4. Let

Aj�l� x=
1

sj�l�
j∑
i=1

wliPli

and

Bm−j�l� x=
1

1− sj�l�
m∑

i=j+1

wliPli

so that L�w� = sj�l�Aj�l� + �1 − sj�l��Bm−j�l�. From Theorem 0, for each
l = 1; : : : ; v− 1,

λl�L�w�� ≥ max�sj�l�λl�Aj�l�� + �1− sj�l��λv−1�Bm−j�l��;
sj�l�λv−1�Aj�l�� + �1− sj�l��λl�Bm−j�l���:

Let u0�l� x= 1 and uj�l� = uj−1�l�vlj for 1 ≤ j ≤m. Each Aj�l� and Bm−j�l� is
positive semidefinite. Also, Aj�l� and Bm−j�l� have exactly v/uj�l� and uj�l�
closed sets, respectively. Since the number of unit eigenvalues corresponds to
the number of closed sets in a stochastic matrix,

λl�L�w�� ≥ sj�l�; 1 ≤ l ≤ v/uj�l� − 1;

and

λl�L�w�� ≥ 1− sj�l�; 1 ≤ l ≤ uj�l� − 1; 1 ≤ j ≤m:
For each l ∈ L there exists another permutation l′ ∈ L with the coordinate
sequence reversed so that sj�l� = 1 − sm−j+1�l′�; sm−j+1�l� = 1 − sj�l′� and
v/um−j+1�l� = uj�l′� ≥ uj. Therefore, for each l ∈ L ; λl�L�w�� ≥ 1−sj�l�; 1 ≤
l ≤ uj − 1; 1 ≤ j ≤m, which establishes (1). 2

Proof of Theorem 5. From Theorem 0,

λl�L�w�� ≤ min�sj�l�λl�Aj�l�� + �1− sj�l��λ0�Bm−j�l��;
sj�l�λ0�Aj�l�� + �1− sj�l��λl�Bm−j�l���;

where λ0�Aj�l�� = λ0�Bm−j�l�� = 1. Let t0 x= 0; tj x= tj−1 + v/vj; t0�l� x= 0
and tj�l� x= tj−1�l� + v/vlj for 1 ≤ j ≤m and observe that

rank�Aj�l�� ≤
j∑
i=1

rank�Pli
� = tj�l�
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and

rank�Bm−j�l�� ≤
m∑

i=j+1

rank�Pli
� = tm�l� − tj�l�:

Therefore, Aj�l� and Bm−j�l�, respectively, have no more than tj�l� and tm�l�−
tj�l� positive eigenvalues, implying

λl�L�w�� ≤ sj�l�; l ≥ tm�l� − tj�l�;
and

λl�L�w�� ≤ 1− sj−1�l�; l ≥ tj−1�l�:(22)

For all l ∈ L and 1 ≤ j ≤ m, observe that tm − tm−j ≤ tj�l� ≤ tj. Also, for
each l ∈ L there exists an l′ such that tj�l� = tm�l′�−tj�l′�, sj�l� = 1−sm−j�l′�
and sm−j�l� = 1− sj�l′�. Therefore,

λl�L�w�� ≤ max
l∈L
�1− sj−1�l��; l ≥ tm − tm−j+1; 1 ≤ j ≤m;

which establishes (22). 2
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