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CENTRAL LIMIT THEOREM FOR NONLINEAR FILTERING
AND INTERACTING PARTICLE SYSTEMS1

By P. Del Moral and A. Guionnet

LSP-CNRS Toulouse and LMSS-CNRS Orsay

Several random particle systems approaches were recently suggested
to solve nonlinear filtering problems numerically. The present analysis is
concerned with genetic-type interacting particle systems. Our aim is to
study the fluctuations on path space of such particle-approximating models.

1. Introduction.

1.1. Background and motivations. The nonlinear filtering problem con-
sists in recursively computing the conditional distributions of a nonlinear sig-
nal given its noisy observations. This problem has been extensively studied in
the literature and, with the notable exception of the linear-Gaussian situation
or wider classes of models (Bènes filters [2]), optimal filters have no finitely
recursive solution [7].

Although Kalman filtering [27, 30] is a popular tool in handling estimation
problems, its optimality depends heavily on linearity. When used for nonlinear
filtering (extended Kalman filter), its performance relies on and is limited by
the linearization performed on the model concerned.

It has recently been emphasized that a more efficient way is to use ran-
dom particle systems to solve the filtering problem numerically. That particle
algorithms are gaining popularity is attested to by the list of referenced pa-
pers (see for instance [8, 12, 14, 15, 36] and references therein). Instead of
hand-crafting algorithms, often on the basis of ad hoc criteria, particle sys-
tems approaches provide powerful tools for solving a large class of nonlinear
filtering problems.

Several practical problems which have been solved using these methods are
given in [5, 6, 18, 19] including radar/sonar signal processing and Global Po-
sitioning System/Inertial Navigation System (GPS/INS) integrations. Other
comparisons and examples where the extended Kalman filter fails can be
found in [4].

The present paper is concerned with the genetic-type interacting particle
systems introduced in [13]. We have shown in our earlier papers [13, 14] that,
under rather general assumptions, the particle density profiles converge to the
desired conditional distributions of the signal when the number of particles
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is growing. The study of the convergence or the empirical measure on path
space and large deviation principles is presented in [17]. In the current work
we study the fluctuations on path space of such particle approximations.

1.2. Description of the model and statement of some results. The basic
model for the general nonlinear filtering problem consists of a time inho-
mogeneous Markov process �Xny n ≥ 0� taking its values in a Polish space
�E;B�E�� and, a nonlinear observation process �Yny n ≥ 0� taking values in
Rd for some d ≥ 1.

To describe our model precisely, let us introduce some notations. We de-
note by M1�E� the space of all probability measures on E furnished with the
weak topology. We recall that the weak topology is generated by the bounded
continuous functions. We will denote by Cb�E� the space of these functions.

The classical filtering problem can be summarized to find the conditional
distributions

ηn�f� =def E�f�Xn�/Y1; : : : ;Yn� ∀ f ∈ Cb�E�; n ≥ 0:(1)

It was proved in a rather general setting by Kunita [28] and Stettner [32]
that, given a series of observations Y = y, the distributions �ηny n ≥ 0� are
the solution of a discrete-time measure-valued dynamical system of the form

ηn = φ�n;ηn−1� ∀ n ≥ 1; η0 = η;(2)

where η is the law of the initial value of the signal and φ�n; ·� an application
on M1�E� which depends on the series of observations �yny n ≥ 1� and on the
laws of the random perturbations �Vny n ≥ 1� (see Lemma 2.1 for its complete
description).

The random particle system ��;Fn; �ξn�n≥0;P� associated to (2) will be a
Markov process with product state space EN, where N ≥ 1 is the size of the
system. The N-tuple of elements of E, that is, the points of the set EN, are
called particle systems and will be mostly denoted by the letters x; z.

Our dynamical system is then described by

P�ξ0 ∈ dx� =
N∏
p=1

η0�dxp�;

P�ξn ∈ dx/ ξn−1 = z� =
N∏
p=1

φ

(
n;

1
N

N∑
q=1

δzq

)
�dxp�:

We use dx=def dx
1 × · · · × dxN to denote an infinitesimal neighborhood of

x = �x1; : : : ; xN� ∈ EN.
In [17] we develop large deviations principles for the law of the empirical

distributions

ηN�ξ�0;T�� =
1
N

N∑
i=1

δ�ξi0;:::;ξin�; T > 0
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on the path space �6T;B�6T�� with 6T = ET+1 and we prove that it converges
exponentially fast to a Dirac measure on the product measure

η�0;T� =def η0 ⊗ · · · ⊗ ηT
as the number of particles is growing. Our goal is now to investigate the
fluctuations of such particle approximations; that is, to show that

WN
T =
√
N
(
ηN�ξ�0;T�� − η�0;T�

)

converges in law as N→∞ to a centered Gaussian field.
One obvious consequence of such a result is that the so-called nonlinear

filtering equation (2) can be regarded as a limiting measure-valued dynam-
ical system associated to a system of particles undergoing adaptation in a
time-varying and random environment. This environment is represented by
the observation data and the form of the noise source. Several convergence
theorems ensuring the convergence of the particle scheme toward the desired
distribution were obtained in [13, 14, 16] and [17]. The results presented in
this paper make it possible to estimate the deviations up to order

√
N between

ηN�ξ�0;T�� and η�0;T�.
The paper has the following structure: in Section 2 we recall the classical

formulation of the filtering problem and the interacting particle systems model
under study. The main result of this paper is presented in Section 3. In Sec-
tion 3.1 we present the assumptions needed in the foregoing development. To
motivate our work we also compare our interacting particles model with the
pure jump-type process studied by Shiga and Tanaka in [33]. In Section 3.2
we prove a central limit theorem for the empirical measures associated to
our particle scheme. Our basic tools are the Dynkin–Mandelbaum theorem on
symmetric statistics and multiple Wiener integrals as in [33]. Several exam-
ples of nonlinear filtering problems that can be handled in our framework are
worked out in Section 4.

2. Interacting particle systems for nonlinear filtering. Several ran-
dom particle systems approaches were recently suggested to solve nonlinear
filtering problems numerically (see [14] and [8] for theoretical details and ref-
erences). These approaches develop new methods for dealing with measure-
valued dynamical system of the form (1). In Section 2.1 we present the so-
called nonlinear filtering equations, then we present the genetic-type inter-
acting particle approximation under study.

2.1. Formulation of the nonlinear filtering problem. Let X = ��1 = EN;
�F̃1

n�n≥0; �Xn�n≥0;P
0
X� be a time-inhomogeneous discrete-time Markov process

taking values inE with Feller probability transitionsKn, n ≥ 1 and the initial
distribution η0.

Let Y = ��2 = �Rd�N; �F̃2
n�n≥0; �Yn�n≥0;P

0
Y� be a sequence of indepen-

dent random variables with measurable positive density gn with respect to
Lebesgue measure. Here Y is independent of X.
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On the canonical space ��0 = �1 × �2; �Fn�n≥0 = �F̃1
n × F̃2

n�n≥0;P
0 =

P0
X ⊗P0

Y� the signal process X and the observation process Y are P0-
independent. Let us set

Ln =
n∏
k=1

gk�Yk − hk�Xk−1��
gk�Yk�

;(3)

where hnx E→ Rd, n ≥ 1; are bounded measurable functions. Note that L is
a �P0; �F̃n�n≥0�-martingale. Then we can define a new probability measure P
on ��0; �F̃n�n≥0� such that the restrictions P0

n and Pn to F̃n satisfy

Pn = Ln P0
n; n ≥ 0:(4)

One can prove that, under P, X is a time-inhomogeneous Markov process with
transition operators Kn, n ≥ 1 and initial distribution ν.

In addition, Vn = Yn−hn�Xn−1�, n ≥ 1, are independent of X and indepen-
dent random variables with continuous and positive density gn with respect
to Lebesgue measure. The classical filtering problem can be summarized to
estimate the distribution of Xn conditionally to the observations up to time
n. Namely,

ηn�f� = E�f�Xn�/Y1; : : : ;Yn� ∀ f ∈ Cb�E�:

The following result is a slight modification of Kunita [28] and Stettner re-
sults [32] (see also [14] for details).

If, for any Markov transition K on E and any µ ∈ M1�E� we denote µM
the probability so that for any f ∈ Cb�E�,

µMf =
∫
µ�dx��Mf��x� with Mf�x� =

∫
f�z�M�x;dz�;

the dynamical structure of the conditional distribution �ηny n ≥ 0� is given by
the following lemma.

Lemma 2.1. Given a fixed observation record Y = y, �ηn�n≥0 is the solution
of the M1�E�-valued dynamical system

ηn = φn�yn; ηn−1�; n ≥ 1; η0 = ν;(5)

where yn ∈ Rd is the current observation and φn is the continuous function
given by

φn�yn; η� = ψn�yn; η�Kn;

ψn�yn; η�f =
∫
f�x� gn�yn − hn�x�� η�dx�∫
gn�yn − hn�z�� η�dz�

for all f ∈ Cb�E�, η ∈M1�E� and yn ∈ Rd.
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2.2. Interacting particle systems approximations. We have shown in our
earlier papers [13, 14, 16, 17] that the nonlinear filtering equation can be
regarded as the limiting measure-valued dynamical system associated to a
natural interacting particle system scheme. Namely, the N-particle system
associated to (5) is defined by

Py�ξ0 ∈ dx� =
N∏
j=1

η0�dxj�;

Py�ξn ∈ dx � ξn−1 = z� =
N∏
j=1

φn

(
yn;

1
N

N∑
i=1

δzi

)
�dxj�:

(6)

Let us remark that

φn

(
yn;

1
N

N∑
i=1

δzi

)
=
( N∑
i=1

gn�yn − hn�zi��∑N
j=1 gn�yn − hn�zi��

δzi

)
Kn(7)

and therefore

Py�ξn ∈ dx/ ξn−1 = z� =
N∏
j=1

N∑
i=1

gn�yn − hn�zi��∑N
j=1 gn�yn − hn�zi��

Kn�zi; dxj�:

Using the above observations, we see that the particles evolve according to two
separate mechanisms. They can be modelled as follows. The initial particle
system is

Py�ξ0 ∈ dx� =
N∏
p=1

η0�dxp�:

Selection/updating.

Py
(
ξ̂n−1 ∈ dx � ξn−1 = z

)
=

N∏
p=1

N∑
i=1

gn�yn − hn�zi��∑N
j=1 gn�yn − hn�zj��

δzi�dxp�:

Mutation/prediction.

Py
(
ξn ∈ dz � ξ̂n−1 = x

)
=

N∏
p=1

Kn�xp; dzp�:(8)

Thus, we see that the particles move according the following rules.

1. Updating. When the observation Yn = yn is received, each particle exam-
ines the system of particles ξn−1 = �ξ1

n−1; : : : ; ξ
N
n−1� and chooses randomly

a site ξin−1 with probability

gn�yn − hn�ξin−1��∑N
j=1 gn�yn − hn�ξ

j
n−1��

:
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2. Prediction. After the updating mechanism, each particle evolves according
to the transition probability kernel of the signal process.

We see that this particle approximation of the nonlinear filtering equation
belongs to the class of algorithms called genetic algorithms. These algorithms
are based on the genetic mechanisms which guide natural evolution: explo-
ration/mutation and updating/selection. They were introduced by Holland [26]
in 1975 to handle global optimization problems on a finite set.

3. Central limit theorem for the empirical measures on path space.

3.1. Hypotheses and general notations. In this section we study the fluctu-
ations of the empirical distributions on path space. We will always assume that
the signal transition kernels �Kny n ≥ 1� and the functions �gn; hny n ≥ 0�
satisfy the following conditions.

(H0) For any time n ≥ 0, hn is bounded continuous and gn is a positive
continuous function.

(H1) Kn is Feller and such that for any time n ≥ 1 there exists a reference
probability measure λn ∈M1�E� and a B�E�-measurable function ϕn so
that

δxKn ∼ λn:
Moreover, there exists a nonnegative function ϕn such that, for any p≥1,

∣∣∣∣log
dδxKn

dλn
�z�
∣∣∣∣ ≤ ϕn�z� and

∫
exp�p ϕn�dλn <∞:(9)

We now give some comments on hypotheses (H0) and (H1). First, we note that
very similar assumptions were introduced in [17] to study large deviations
principles for the empirical measures on path space. As we will see in Sec-
tion 4, the conditions (H0) and (H1) cover many typical examples of nonlinear
filtering problems.

On the other hand, we note that if (H0) is satisfied, then it is easily seen
that there exists a family of positive functions �αny n ≥ 0� such that

αn�y�−1 ≤ gn�y− hn�x��
gn�y�

≤ αn�y� ∀ �y;x� ∈ Rd ×E ∀ n ≥ 0:(10)

In such a context, it is not difficult to see that, for any given finite time T,
if we denote by PNT the law of �ξn�0≤n≤T on path space, then PNT is absolutely
continuous with respect to η⊗N�0;T� and

dPNT

dη⊗N�0;T�
�x� = expHN

T �x�(11)

with

HN
T �x� =N

T∑
n=1

∫
log

dφ�n;mN�xn−1��
dηn

dmN�xn�(12)
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if

mN�xn� =
1
N

N∑
i=1

δxin; 0 ≤ n ≤ T:

Therefore, the density of PNT only depends on the empirical measure mN and
we find ourselves exactly in the setting of mean field interacting particles with
regular Laplace density.

The study of the fluctuations for mean field interacting particle systems
via the precise Laplace method is now extensively developed (see for instance
[29, 35, 3, 1, 21] and references therein).

Various methods are based on the fact that the law of mean field interacting
processes can be viewed as a mean field Gibbs measure on path space [see
(11)]. In such a setting, the precise Laplace’s method can be developed (see
[1, 29, 21]). In [21], the study of the fluctuations for mean field Gibbs measures
was extended to analytic potentials, which probably includes our setting.

However, the present analysis is more closely related to Shiga and Tanaka’s
paper [33]. In this article, the authors restrict themselves to dynamics with in-
dependent initial data so that the partition function of the corresponding Gibbs
measure is constant and equal to 1. This simplifies the analysis considerably.
In fact, the proof then mainly relies on a simple formula on multiple Wiener
integrals and the Dynkin–Mandelbaum theorem [20] on symmetric statistics.
Also, the pure jump McKean–Vlasov process studied in [33] is rather close to
our model.

To motivate our work and illustrate the connections of our model with [33],
we recall that the discrete time version of the interacting N-particle system
studied in [33] is an EN-valued Markov chain �ζn�n≥0 with transitions

P�ζn ∈ dz � ζn−1 = x� =
N∏
p=1

1
N

N∑
j=1

Q�xi; xj; dzp�;(13)

where Q�x; x′; dz� is a suitable measure kernel satisfying the following con-
dition:

�Q� There exists constants c1; c2 > 0 such that

c1 Q�x; x′; dz� ≤ Q�x; x′′; dz� ≤ c2 Q�x; x′; dz� ∀ x; x′; x′′ ∈ E:
Our setting is therefore rather similar since, following (6), we have the same
type of transitions,

Py�ξn ∈ dx � ξn−1 = z� =
N∏
p=1

N∑
i=1

gn�yn − hn�zi��∑N
j=1 gn�yn − hn�zj��

Kn�zi; dxp�

except that the interaction does not appear linearly as in (13), which simplifies
the analysis in [33].

It is also interesting to note that in the case of McKean’s model of Boltz-
mann’s equations (see [33]) or more generally if the kernel Q�x; x′; dz� does
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not depend on the parameter x′, the measure kernel Q has the form

Q�x; x′; dz� =K�x;dz�;
where K is a Markov transition on E. This also corresponds to our setting
when hn ≡ 0 since in this case the observation process is independent of the
signal process. In this situation an equivalent condition of (Q) is given by:

�Q ′� There exists of a reference probability measure λ ∈M1�E� and a constant
c > 0 such that

∀ µ ∈M1�E�; ∀�x; z� ∈ E2; δxK ∼ λ and c−1 ≤ dδxK
dλ
�z� ≤ c:

A clear disadvantage of condition �Q ′� is that it is in general not satisfied
when E is not compact and in particular in many nonlinear filtering prob-
lems. Our purpose here is to extend the technic of [33] to handle the particle
approximation introduced in Section 2.2 and to replace the assumption �Q ′�
by the exponential moment condition (H1).

3.2. Main result. Now we introduce some additional notations and the
Hilbert–Schmidt integral operator, which governs the fluctuations of the em-
pirical measures of our particle algorithm. From now on we fix a time T > 0
and a series of observations �yny 1 ≤ n ≤ T�.

Under (H1) for any n ≥ 1 there exists a reference probability measure
λn ∈M1�E� such that δxKn ∼ λn. In this case we shall use the notation

∀�x; z� ∈ E2; kn�x; z� =def
dδxKn

dλn
�z�:

For any x = �x0; : : : ; xT� and z = �z0; : : : ; zT� ∈ 6T set

q�0;T�; y�x; z� =
T∑
n=1

qn;y�x; z�

with

qn;y�x; z� =
gn�yn − hn�zn−1�� kn�zn−1; xn�∫

E gn�yn − hn�u�� kn�u;xn�ηn−1�du�
;

aT;y�x; z� = q�0;T�; y�x; z� −
∫
6T

q�0;T�; y�x′; z� η�0;T��dx′�:

Now we remark that from the exponential moment condition (H1) we have
that q�0;T�; y ∈ L2�η ⊗ η�. It follows that aT;y ∈ L2�η ⊗ η� and therefore the
integral operator AT;y given by

AT;yϕ�x� =
∫
aT;y�z; x� ϕ�z� η�0;T��dz� ∀ϕ ∈ L2�6T; η�0;T��

is a Hilbert–Schmidt operator on L2�6T; η�0;T��. We can now formulate our
main result.
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Theorem 3.1. Assume that conditions (H0) and (H1) are satisfied. For any
observation record Y = y and T > 0, the integral operator I−AT;y is invert-
ible and the random field �WN

T �ϕ�y ϕ ∈ L2�η�0;T��� converges as N→∞ to a
centered Gaussian field �WT�ϕ�y ϕ ∈ L2�η�0;T��� satisfying

Ey

(
WT�ϕ1�WT�ϕ2�

)

=
(
�I−AT;y�−1�ϕ1 − η�ϕ1��; �I−AT;y�−1�ϕ2 − η�ϕ2��

)
L2�η�0;T��

for any ϕ1; ϕ2 ∈ L2�η�0;T��, in the sense of convergence of finite-dimensional
distributions.

We begin with the main line of the proof and present some basic facts on
symmetric statistics and multiple Wiener integrals which are needed in the
sequel.

To clarify the presentation, we simplify the notations suppressing the time
parameter T > 0 and the observations parameter y in our notations. For
instance, we will write a instead of aT;y, q�x; z� instead of q�0;T�; y�x; z� and
η instead of η�0;T�. In addition we will write φ�n; ·� instead of φn�yn; ·� and
gn�·� instead of gn�yn − hn�·��.

Let us first recall how one can see that I −A is invertible. This is in fact
classical now (see [1] and [33] for instance). First one notices that, under our
assumptions, An, n ≥ 2 and A A∗ are trace class operators with

TraceAn =
∫
: : :
∫
a�x1; x2� · · ·a�xn; x1� η�dx1� · · ·η�dxn�;

TraceAA∗ =
∫
62
T

a�x; z�2 η�dx� η�dz� = �a�2L2�η×η�:

Furthermore, by definition of a and the fact that η is a product measure, it is
easily checked that

∀ n ≥ 2; TraceAn = 0:

Standard spectral theory (see [31] for instance) then shows that det2�I−A�
is equal to 1 and therefore that I−A is invertible.

Let us now sketch the proof of Theorem 3.1. First, let us denote by PN the
distribution induced by �ξn�0≤n≤T on the path space �6NT ;B�6T�N� where

6NT = 6T × · · · × 6T and B�6T�N = B�6T� × · · · ×B�6T�:
As we noticed in the introduction [see (11)], PN is absolutely continuous with
respect to η⊗N and

dPN

dη⊗N
�x� = expHN�x� for x = �x1; : : : ; xN� ∈ 6NT

with

HN�x� =
T∑
n=1

N∑
i=1

log
dφ�n;mN�xn−1��

dηn
�xin�

=N
T∑
n=1

∫
log

dφ�n;mN�xn−1��
dηn

dmN�xn�:
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In what follows we use Eη⊗N�·� �resp. EPN�·�� to denote expectations with
respect to the measure η⊗N �resp.PN� on 6NT and, unless otherwise stated, the
sequence �xiy i ≥ 1� is regarded as a sequence of 6T-valued and independent
random variables with common law η.

To prove Theorem 3.1, it is enough to study the limit of
{
EPN

(
exp�iWN

T �ϕ��
)
y N ≥ 1

}

for functions ϕ ∈ L2�η�.
Writing

EPN
(
exp�iWN

T �ϕ��
)
= Eη⊗N

(
exp�iWN

T �ϕ� +HN�x��
)
;

one finds that the convergence of �EPN�exp�iWN
T �ϕ���y N ≥ 1� follows from

the convergence in law and the uniform integrability of exp�iWN
T �ϕ�+HN�x��

under the product lawEη⊗N . The last point is clearly equivalent to the uniform
integrability of expHN�x� under Eη⊗N .

The proof of the uniform integrability of expHN�x� then relies on a classical
result (see, for instance, Theorem 5, page 189 in [34] or Scheffé’s Lemma 5.10,
page 55 in [39]) which says that, if a sequence of nonnegative random variables
�XNy N ≥ 1� converges almost surely towards some random variable X as
N→∞, then we have

lim
N→∞

E�XN� = E�X� <∞ ⇐⇒ �XNy N ≥ 1� is uniformly integrable:

The equivalence still holds if XN only converges in distribution by Skorohod’s
theorem (see, for instance, Theorem 1, page 355 in [34]).

Since Eη⊗N�expHN�x�� = 1 it is clear that the uniform integrability of
�expHN�x�y N ≥ 1� follows from the convergence in distribution of HN�x�
towards a random variable H such that E�expH� = 1.

Thus, it suffices to study the convergence in distribution of �iWN
T �ϕ� +

HN�x�y N ≥ 1� for L2�η� functions ϕ to conclude.
To state such a result, we first introduce Wiener integrals: let �I1�ϕ�y ϕ ∈

L2�η�� be a centered Gaussian field satisfying

E
(
I1�ϕ1�I1�ϕ2�

)
=
(
ϕ1; ϕ2

)
L2�η�:

If we set, for each ϕ ∈ L2�η� and m ≥ 1,

h
ϕ
0 = 1; hϕm�z1; : : : ; zm� = ϕ�z1� : : : ϕ�zm�;

the multiple Wiener integrals �Im�hϕm�y ϕ ∈ L2�η�� with m ≥ 1, are defined
by the relation

∑
m≥0

tm

m!
Im�hϕm� = exp

(
tI1�ϕ� −

t2

2
�ϕ�L2�η�

)
:

The multiple Wiener integral Im�φ� for φ ∈ L2
sym�η⊗m� is then defined by a

completion argument.
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We are going to prove that, if =law denotes the equality in law, we have the
following lemma.

Lemma 3.2.

lim
N→∞

HN�x� =law
1
2I2�f� − 1

2 TraceAA∗;(14)

where f is given by

f�y; z� = a�y; z� + a�z; y� −
∫
6T

a�u;y� a�u; z� η�du�:(15)

In addition, for any ϕ ∈ L2�η�,
lim
N→∞
�HN�x� + iWN

T �ϕ�� =law
1
2I2�f� + iI1�ϕ� − 1

2 TraceAA∗:

Following the above observations, we get for any ϕ ∈ L2�η�,
lim
N→∞

EPN
(
exp iWN

T �ϕ�
)
= lim

N→∞
Eη⊗N

(
exp

(
iWN

T �ϕ� +HN�x�
))

= E
(
exp

(
iI1�ϕ� + 1

2I2�f� − 1
2 TraceAA∗

))
:

Moreover, Shiga–Tanaka’s formula of Lemma 1.3 in [33] shows that for any
ϕ ∈ L2

sym�η�,

E
(
exp

(
iI1�ϕ� + 1

2I2�f� − 1
2 TraceAA∗

))
= exp

(
− 1

2��I−A�−1ϕ�2L2�η�
)

(16)

The proof of Theorem 3.1 is thus complete. 2

Proof of Lemma 3.2. Since ηn = φ�n;ηn−1� and

ηn�du� =
ηn−1�gn�·�kn�·; u��

ηn−1�gn�
λn�du�;(17)

we deduce that for any µ ∈M1�E� and u ∈ E,

dφ�n;µ�
dηn

�u� = dφ�n;µ�
dλn

�u� dλn
dφ�n;ηn−1�

�u�

= µ�gn�·�kn�·; u��
ηn−1�gn�·�kn�·; u��

/
µ�gn�
ηn−1�gn�

:

Therefore the function HN can be written in the form

HN�x� =HN
1 �x� +H

N

1 �x�
with

HN
1 �x� =

T∑
n=1

N∑
i=1

log
(

1
N

N∑
j=1

qn�xi; xj�
)
;

H
N

1 �x� = −N
T∑
n=1

log
(

1
N

N∑
j=1

qn�xj�
)
;
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where

qn�xj� =
gn�xjn−1�
ηn−1�gn�

:

Following (17), we also have

qn�z� =
∫
6T

qn�y; z� η�dy�:

By the representation

log z = �z− 1� − �z− 1�2
2

+ �z− 1�3
3�εz+ �1− ε��3 ;

which is valid for all z > 0 with ε = ε�z� such that ε�z� ∈ �0;1� we obtain the
decomposition

HN�x� = 1
N

N∑
i=1

N∑
j=1

a�xi; xj� − 1
2

T∑
n=1

N∑
i=1

(
1
N

N∑
j=1

qn�xi; xj� − 1
)2

+ N
2

T∑
n=1

(
1
N

N∑
j=1

qn�xj� − 1
)2

+RN

= JN1 +JN2 +JN3 +RN;

(18)

where the remainder term satisfies RN = RN
1 +RN

2 with

�RN
1 � ≤

1
3

T∑
n=1

N∑
i=1

∣∣∣∣
1
N

N∑
j=1

qn�xi; xj� − 1
∣∣∣∣
3

θin�x�(19)

with

θin�x�−1 = min
(

1
N

N∑
j=1

qn�xi; xj�;1
)3

;(20)

�RN
2 � ≤

NCT
3

T∑
n=1

∣∣∣∣
1
N

N∑
j=1

qn�xj� − 1
∣∣∣∣
3

for some finite constant CT <∞.
In the last inequality we have used the fact that, by (H1), the positive

functions qn are bounded from above and from below [see (10)].
Our aim is now to discuss a limit of a functional HN�x1; : : : ; xN�. To

this end, we shall rely on L2 technics and, more precisely, the Dynkin–
Mandelbaum construction of multiple Wiener integrals as a limit of symmetric
statistics. For completeness we present this result.

Let �ζiy i ≥ 1� be a sequence of independent and identically distributed
random variables with values in an arbitrary measurable space �X ;B�. To
every symmetric function h�z1; : : : ; zm� there corresponds a statistic,

σNm �h� =
∑

1≤i1<···<im≤N
h�ζi1; : : : ; ζim�
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with the convention σNm = 0 for m > N. Every integrable symmetric statistic
S�ζ1; : : : ; ζN� has a unique representation of the form

S�ζ1; : : : ; ζN� =
∑
m≥0

σNm �hm�;(21)

where hm�z1; : : : ; zm� are symmetric functions subject to the condition
∫
hm�z1; : : : ; zm−1; u� µ�du� = 0;(22)

where µ is the probability distribution of ζ1.
We call such functions �hmy m ≥ 0� canonical. Finally we denote by H

the set of all sequences h = �h0; h1�z1�; : : : ; hm�z1; : : : ; zm�; : : :� where hm are
canonical and

∑
m≥0

1
m!
E�h2

m�ζ1; : : : ; ζm�� <∞:

As in [33] we will use the following theorem repeatedly.

Theorem 3.3 (Dynkin–Mandelbaum [20]). For h ∈ H the sequence of ran-
dom variablesZN�h� =

∑
m≥0�1/Nm/2�σNm �hm� converges in law, asN→∞, to

W�h� =
∑
m≥0

Im�hm�
m!

:

Since HN�x� can be regarded as a symmetric statistic of x = �x1; : : : ; xN�,
which is a sequence of 6T-valued and independent random variables with com-
mon law η, the above theorem is applicable. The technical trick to identify the
limit of this functional is to decompose the symmetric statisticHN�x1; : : : ; xN�
as in (21). In view of (18) it clearly suffices to prove that the remainder terms
�RN

i �i=1;2 cancel as N → ∞ and to apply Theorem 3.3 to each symmetric
statistic JN1 , JN2 , JN3 separately.

Let us now decompose the functions �JNi �1≤i≤3. First we note that

JN1 =
1
N

N∑
i=1

a�xi; xi� + 1
N

∑
i<j

�a+ a∗��xi; xj�;

where we recall that a ∈ L2�η⊗ η� and satisfies
∫
6T

a�z; z� η�dz� =
∫
6T

a�x; z� η�dz� =
∫
6T

a�z; x� η�dz� = 0 ∀ x ∈ 6T:

Therefore, a clear application of Theorem 3.3 yields

lim
N→∞

JN1 =law
1
2I2�a+ a∗�:(23)
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For a second time, we discuss the limit of JN2 : we introduce the decomposition

JN2 = −
1

2N2

N∑
i=1

T∑
n=1

�qn�xi; xi� − 1�2

− 1
N2

∑

�i; j�6=

T∑
n=1

�qn�xi; xi� − 1��qn�xi; xj� − 1�

− 1
2N2

∑

�i;j�6=

T∑
n=1

�qn�xi; xj� − 1�2

− 1
2N2

∑

�i; j; k�6=

T∑
n=1

�qn�xi; xj� − 1��qn�xi; xk� − 1�

= JN2;1 +JN2;2 +JN2;3 +JN2;4:

As is easily seen, JN2;1 is of order �1/N� since qn belongs to L2�η⊗ η�.
Also, by the law of large numbers under η⊗N, we have almost surely

lim
N→∞

JN2;2 =
∫ T∑
n=1

�qn�x; x� − 1��qn�x;y� − 1�η�dx�η�dy� = 0:

Similarly, η⊗N-almost surely,

lim
N→∞

JN2;3 = − 1
2

∫ T∑
n=1

�qn�x; x� − 1�2 η�dx�:(24)

Finally, let us decompose JN2;4:

JN2;4 = −
1

2N2

∑

�i; j; k�6=
b�xi; xj; xk�

with

b�x;y; z� =
T∑
n=1

�qn�x;y� − 1��qn�x; z� − 1�:

After some manipulations, one gets the decomposition

JN2;4 = −
1

2N2

∑
i<j<k

b∼�xi; xj; xk� − N− 2
2N2

∑

�j; k�6=
b�xj; xk�

= − 1
2N2

∑
i<j<k

b∼�xi; xj; xk� − N− 2
N2

∑
i<j

b�xi; xj�
(25)
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with

b�x;y� =
∫
b�u;x;y� η�du�

=
∫ T∑
n=1

�qn�u;x� − 1��qn�u;y� − 1� η�du�

and where b∼ ∈ L3
sym�η⊗3�,

∫
b∼�x;y; z� η�dz� = 0 and

∫
b�x;y�η�dy� = 0.

Theorem 3.3 shows that the first term in the r.h.s. of (25) is of order N−1/2

and therefore vanishes. Furthermore, Theorem 3.3 also applies to the first
term and leads to

lim
N→∞

JN2;4 = − 1
2I2�b�:(26)

Combining (24) and (26), one gets

lim
N→∞

JN2 = − 1
2

∫ T∑
n=1

�qn�x; x� − 1�2 η�dx� − 1
2I2�b�:(27)

Rewriting JN3 in the following way

JN3 =
1
N

∑
i<j

c�xi; xj� + 1
2N

N∑
i=1

c�xi; xi�

with c�x;y� =∑T
n=1 �qn�x� − 1��qn�y� − 1� and noting that

c ∈ L2
sym�η⊗ η� and

∫
c�x; z� η�dz� = 0;

a clear application of Theorem 3.3 yields

lim
N→∞

JN3 =law
1
2I2�c� + 1

2

∫ T∑
n=1

�qn�x� − 1�2η�dx�:(28)

By virtue of Theorem 3.3, we deduce from (23), (27) and (28) that the limit of
the sum of symmetric statistics JN1 +JN2 +JN3 is given by

lim
N→∞

JN1 +JN2 +JN3 =law
1
2�I2�a+ a∗� − I2�b� + I2�c��

+ 1
2

∫ T∑
n=1

(
�qn�x� − 1�2 − �qn�x; x� − 1�2

)
dη�x�:

(29)

It is now easily seen that

b�x;y� − c�x;y� =
T∑
n=1

∫
�qn�u;x� − qn�x���qn�u;y� − qn�y�� ηn�du�

=
∫
a�u;x� a�u;y� η�du�
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and
T∑
n=1

∫
��qn�x;y� − 1�2 − �qn�x� − 1�2�η�dy�η�dx�

=
T∑
n=1

∫
�qn�x;y� − qn�y��2η�dy�η�dx�

=
∫
a�x;y�2η�dx�η�dy� = TraceAA∗:

Therefore we obtain from (29) that

lim
N→∞
�JN1 +JN2 +JN3 � =law

1
2I2�f� − 1

2 TraceAA∗

with

f�x; z� = a�x; z� + a�z; x� −
∫
6T

a�u;x� a�u; z� η�du�:

To complete the proof of the theorem, the only point is to check that the
remainder terms RN

1 and RN
2 cancel as N→∞.

We begin by noting that the law of the iterated logarithm clearly implies
that RN

2 vanishes as N is going to infinity.
On the other hand, in accordance with (18) and (20) we have

�RN
1 � ≤

2
3
�JN2 �

T∑
n=1

max
1≤i≤N

∣∣∣∣
1
N

N∑
j=1

qn�xi; xj� − 1
∣∣∣∣ max

1≤i≤N
θin�x�3:

To take the final step, we notice that for any n ≥ 1 and u ∈ E,

Eη⊗Nn−1

((
1
N

N∑
j=1

qn�u;xj� − 1
)6)
≤ C

N3

∫
E
�qn�u; v� − 1�6 ηn−1�dv�

for some finite constant C <∞. Therefore for any ε > 0 and n ≥ 1,

η⊗N
(

max
1≤i≤N

∣∣∣∣
1
N

N∑
j=1

qn�xi; xj� − 1
∣∣∣∣ > ε

)

≤
N∑
i=1

η⊗N
(∣∣∣∣

1
N

N∑
j=1

qn�xi; xj� − 1
∣∣∣∣ > ε

)

≤ C

ε6 N2

∫
E
�qn�u; v� − 1�6 ηn�du�ηn−1�dv�:

(30)

Under the exponential moment condition (H1), the last term in the right-hand
side of (30) is bounded so that the Borel–Cantelli lemma gives

lim
N→∞

max
1≤i≤N

∣∣∣∣
1
N

N∑
j=1

qn�xi; xj� − 1
∣∣∣∣ = 0 a.e.
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From the above it is also not difficult to check that

lim
N→∞

max
1≤i≤N

θin�x� = 1 a.e.

It follows from the above limits that limN→∞R
N
1 = 0. This ends the proof of

the first point of Lemma 3.2. 2

The proof of the second point follows directly from Theorem 3.3 since it
shows that WN

T �ϕ� converges in law toward I1�ϕ�.

4. Applications. At first sight, the hypothesis (H0) and (H1) may seem
very restrictive since we assume the existence of a reference probability mea-
sure under which the transition probabilities of the signal are absolutely con-
tinuous together with an additional exponential moment condition. The aim
of this section is to show that these conditions cover many typical examples
of nonlinear filtering problems.

We now turn to some examples of nonlinear filtering problems where con-
ditions (H0) and (H1) hold. We begin with some examples of observation noise
sources satisfying (H0).

Example 1. As a typical example of a nonlinear filtering problem, assume
the functions hnx E → Rd, n ≥ 1, are bounded continuous and the densities
gn given by

gn�v� =
1

��2π�d�Rn��1/2
exp

(
−1

2
v′ R−1

n v

)
;

where Rn is a d× d symmetric positive matrix. This corresponds to the situ-
ation where the observations are given by

Yn = hn�Xn−1� +Vn ∀ n ≥ 1;(31)

where �Vn�n≥1 is a sequence of Rd-valued and independent random variables
with Gaussian densities.

After some easy manipulations, one gets the bounds (10) with

log αn�y� = 1
2 �R−1

n � �hn�2 + �R−1
n � �hn� �y�;

where �hn� = supx∈E �hn�x�� and �R−1
n � is the spectral radius of R−1

n .

Example 2. Suppose that d = 1 and gn is a Cauchy density

gn�v� =
θn

π�v2 + θ2
n�
; θn > 0:

In this situation we have that

gn�y− hn�x��
gn�y�

= y2 + θ2
n

�y− hn�x��2 + θ2
n

∀�y;x� ∈ R×E:
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Notice that

y2 + θ2
n

y2 + θ2
n + �hn�2 + 2�y� �hn�

≤ gn�y− hn�x��
gn�yn�

≤ 1+
(
y

θn

)2

:

It follows that (10) holds with

αn�y� = 1+
((

y

θn

)2

∨ ��y� + �hn��
2

y2 + θ2
n

)
:

Example 3. Suppose d = 1 and gn is a bilateral exponential density

gn�v� = 1
2 αn exp�−αn�v��; αn > 0:

In this case,

gn�y− hn�x��
gn�yn�

= exp�αn��y� − �y− hn�x����:

Observe that

−�hn� ≤ �y� − �y− hn�x�� ≤ �hn� ∀�y;x� ∈ R×E:
One concludes that (10) is satisfied with αn�y� = exp�αn�hn��.

Let us now investigate condition (H1) through some examples of signals
that can be handled in our framework.

Example 4. Suppose that E = Rm, m ≥ 1 and Kn, n ≥ 1 are given by

Kn�x;dz� =
1

��2π�m�Qn��1/2
exp

(
−1

2
�z− bn�x��′ Q−1

n �z− bn�x��
)
;

where Q is a m × m symmetric nonnegative matrix and bnx Rm → Rm is
a bounded continuous function. This corresponds to the situation where the
signal process is given by

Xn = bn�Xn� +Wn ∀ n ≥ 1;(32)

where �Wn�n≥1 is a sequence of Rm-valued and independent random variables
with Gaussian densities.

It is not difficult to check that (H1) is satisfied with

λn�dz� =
1

��2π�m�Qn��1/2
exp

(
−1

2
z′ Q−1

n z

)
dz:

Indeed, we then find out that

log
dδxKn

dλn
= const.− bn�x�′Q−1

n z;

which insures the exponential moment condition (H1) with

ϕn�z� = 1
2�bn�2�Q−1

n � + �Q−1
n � �bn� �z� ∀ z ∈ R:
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Example 5. Suppose E = R and Kn, n ≥ 1, are given by

Kn�x;dz� = 1
2 α exp�−α�z− b�x���dz; α > 0; b ∈ Cb�R�:

This corresponds to the situation where the signal process X is given by

Xn = b�Xn−1� +Wn; n ≥ 1;

where �Wn�n≥1 is a sequence of Rm-valued and independent random variables
with bilateral exponential densities. Note that Kn may be written as

Kn�x;dz� = 1
2 α exp�α��z� − �z− b�x����λn�dz�

with

λn�dz� = 1
2 α exp�−α�z��dz:

It follows that (H1) holds since log�δxKn/dλn��z� ≤ α�b�.

Finally, for completeness we examine a situation where (H1) is not satisfied.

Example 6. Let us suppose that E = R and

Kn�x;dz� =
√
εn�x�

2π
exp

(
−1

2
εn�x� z2

)
dz;

where εnx R→ R is a continuous function such that

∀ x ∈ R εn�x� > 0 and lim
�x�→∞

εn�x� = 0:

Let us assume that Kn satisfies (H1) for some function ϕn. Since δxKn is
absolutely continuous with respect to Lebesgue measure for any x ∈ E, the
probability measure λn described in (H1) is absolutely continuous with respect
to Lebesgue measure. Therefore, there exists a probability density pn such
that

∀ x; z∈R exp�−ϕn�z��pn�z�≤
√
εn�x� exp

(
− 1

2εn�x� z2)≤ exp�ϕn�z��pn�z�:

Letting �x� → ∞ one gets exp�−ϕn�z��pn�z� = 0 for any z ∈ R, which is absurd
since we also assumed

∫
exp�ϕn�z��pn�z�dz <∞:

The interacting particle system model (3) is not only designed to solve the
nonlinear filtering equation. It can also model systems which arise in biology
and physics. This class of particle scheme is also used to solve numerical
function optimization problems, image processing and others (see, for instance,
[22, 23, 24, 37, 38] and references therein). The settings are the same as before
except that the functions �gn�yn−hn�·��y n ≥ 1� are replaced by a sequence of
deterministic and bounded positive functions still denoted by �gn�·�y n ≥ 1�.

In this framework, the limiting measure-valued system (2) is used to predict
the evolution in time of the finite population model (3). In contrast to the
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nonlinear filtering settings, a crucial practical advantage of this situation is
that the state space E is finite so that the analysis of the limiting process
is much simpler. In view of the preceding development, the conclusions of
Theorem 3.1 remain valid if we replace the hypothesis (H0) by the condition
(H′0) given by

(H’0) For any time n ≥ 1 there exists some αn > 0 such that

α−1
n ≤ gn�x� ≤ αn ∀ x ∈ E:

To our knowledge, the central limit theorem 3.1 is the first result of this
kind in the theory of genetic-type algorithms. These models, inspired by nat-
ural evolution, usually encode a potential solution to a specific problem on
simple chromosome-like information. In this description of the genetic algo-
rithm each chromosome is modelled by a binary string of fixed length. The
resulting genetic algorithm is a Markov chain with state space EN where N
is the size of the system and the state space of each particle is E = �0;1�.
In this situation the mutation transition at time n ≥ 1 is obtained by flip-
ping each particle of each chromosome of the population with the probability
pn > 0 so that the transition probability kernels Kn have the form

Kn�x; z� = pn δx+1�z� + �1− pn� δx�z�:

To see that (H1) is satisfied, it suffices to note that

0 < εn ≤Kn�x; z� ≤ 1 ∀�x; z� ∈ E×E

with

εn =def min�pn;1− pn�:

Concluding remarks. In the current work we have presented an approx-
imation of the two-step transitions of the system (2),

ηn−1
Updating→ η̂n−1 =def ψn�Yn; ηn−1�

Prediction→ηn = η̂n−1Kn;

by a two-steps Markov chain taking values in the set of empirical distributions.
Namely,

ηNn−1 =
1
N

N∑
i=1

δξin−1

Selection→ η̂Nn−1 =
1
N

N∑
i=1

δξ̂in−1

Mutation→ηn =
1
N

N∑
i=1

δξin :

In nonlinear filtering settings, ηn is usually called the one-step predictor and
η̂n is the optimal filter. In [14, 16] we prove that the particle density profiles
�η̂Nn y N ≥ 1� weakly converge to the optimal filter η̂n as N → ∞. One open
question is to study the central limit theorem for the empirical distributions

1
N

N∑
i=1

δ�ξi0; ξ̂i0;:::;ξiT; ξ̂iT�:
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In contrast to the situation examined before, the main difficulty here comes
from because the distribution of the particle systems

{
ξin; ξ̂

i
ny 0 ≤ n ≤ T

}

is usually not absolutely continuous with respect to some product measure.
Several variants of the genetic-type particle scheme studied in this paper

have been recently suggested in [11, 10, 9, 8]. In these variants the size of
the system is not fixed but random. It is obvious that the situation becomes
considerably more involved when the size of the particle systems is random
and the study of the fluctuations of such schemes requires a more delicate
analysis.

All the results presented in this study and the referenced papers on the
subject provide some information about the speed of convergence of a class
of particle algorithms until a finite given time. The study of their long-time
behavior is a rather different subject, which we will investigate in another
paper.
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