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AND SUPERREPLICATION VIA COUPLING
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Consider the performance of an options writer who misspecifies the
dynamics of the price process of the underlying asset by overestimating
asset price volatility. When does he overprice the option? If he follows the
hedging strategy suggested by his model, when does the terminal value of
his strategy dominate the option payout?

We show that both these events happen if the option payoff is a convex
function of the price of the underlying at maturity. The proofs involve the
simple, powerful and intuitive techniques of coupling.

1. Robust hedging and superreplication. The standard approach in
mathematical finance, and particularly in the pricing of derivative securities,
is to begin by writing down a stochastic model, which is assumed, without
comment, to correctly and precisely specify the dynamics of the underlying
asset. Arbitrage theory, backed by change of measure techniques and martin-
gale representation theorems, then allows options to be priced and hedged.
The fairness of the price and the success of the hedge depend crucially on the
truth of the underlying model.

The purpose of this article is to consider the implications of a misspecifi-
cation of the dynamics of the asset price process. In particular, if the options
writer uses an incorrect model, when does he overcharge for the option? Fur-
ther, if he attempts to hedge using this incorrect model, can he still replicate
(or rather superreplicate) the option payoff? (A superreplicating strategy is a
dynamic hedging strategy which generates a terminal wealth which stochas-
tically dominates the option payout.)

It is well known that the price of a call option in the Black–Scholes model
is an increasing function of the volatility parameter and that this monotonic-
ity property extends to all European options with convex payoff profiles. We
generalize this result to prove a price comparison theorem for pairs of models
with stochastic volatilities. We have in mind the scenario where one model is
used by the options writer to price and hedge options, and the second model
represents the (unknown) truth.

The substantive results of this paper are not new and can be found in [7].
Theorem 3.1 can be traced back to [4]; see also [19]. Instead, the aim of this
paper is to give proofs of the main results which are shorter and which in
the opinion of the author, are both more natural and more intuitive. This
improved clarity leads to an extension of the main results to nondiffusion
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processes (see Remark 2.3) and to an understanding of the counterexamples in
[7] (see Remark 2.4). A second justification for this paper is that the results are
extensions of those proved in [4] and [7] in the sense that they require weaker
conditions. For example the bounded derivative condition (see Remark 3.3) is
not needed for the proof of the convexity theorem, Theorem 3.1, and the price
process need only be an H1 martingale rather than L2. See Section 3.

The key tool we use here is that of the coupling of stochastic processes; those
unaware of the joys of coupling are referred to [17]. This contrasts with the
use of stochastic flows in [7] or the analysis of the partial differential pricing
equation in [4]. As a first example of coupling (taken from the introduction
to [17]) let X be a continuous Markov process and h an increasing function.
Let a superscript denote the initial value. Given independent realizations Xx

and Xy with x < y, define τ = infu�Xy
t ≤Xx

t �. Define a new process X̃x
s via

X̃x
s ≡

{
Xx
s ; 0 ≤ s ≤ T ∧ τ;

X
y
s ; T ∧ τ ≤ s ≤ T:

Then X̃x has the same law as Xx and moreover, for all s,

X̃x
s ≤Xy

s(1.1)

by construction. Hence ��h�Xx
T�� ≡ ��h�X̃x

T�� ≤ ��h�Xy
T��. See Remark 3.2

for a financial interpretation of this simple monotonicity result.
Throughout this article we will consider a continuous-time model for the

economy with a finite horizon T. Markets are frictionless with no transaction
costs or taxes, assets are infinitely divisible and their prices are semimartin-
gales, and the prices of options are given by the (discounted) expected payoff
of the option under a risk-neutral probability measure. This will be true if the
market is complete, which in turn will follow, given our other assumptions if
the filtration is generated by the asset price process. The fundamental prob-
lem is to price a derivative security which at time T has nonnegative payoff
profile h.

For the sections on European options we will further assume that interest
rates are zero. This has the advantage of minimizing the amount of notation
required and thus facilitates maximum insight. All the results extend easily
to the case of deterministic interest rates. Indeed, provided that the interest
rates are adapted to the filtration generated by the asset price process and
the market is complete, nondeterministic interest rates can also be accom-
modated. In the consideration of American options, one of the motivations
for early exercise is to capture profits which might otherwise depreciate over
time. Hence it would be restrictive to limit attention to the case of zero in-
terest rates; however, for economy of notation we assume a constant rate of
interest. Again the extension to deterministic interest rates is easy.

There are two main results in this article which we call option price mono-
tonicity and the superreplication property. Suppose that there are two candi-
date models for the behavior of the underlying asset; P0 is given and either
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the price process solves

dPs = Psσ̂�Ps; s�dBs(1.2)

or

dPs = Psσ̃�Ps; s�dBs:(1.3)

(For the purposes of this introduction we implicitly assume that the price
process is a diffusion, and that the market is complete; we comment later on
when these assumptions can be weakened.)

Option price monotonicity. For options with a convex payoff profile h�PT�,
if for all p and s we have σ̂�p; s� ≥ σ̃�p; s�, then the option price is greater
under the model (1.2) than under the model (1.3).

Superreplication property. Suppose h is convex and as before σ̂�p; s� ≥
σ̃�p; s�. Then if an options writer uses the model (1.2) to price and hedge
options, but in reality the price process solves (1.3), then the sum of the initial
option price and the gains from the (incorrect) hedging strategy dominate the
option payout.

The superreplication property implies option price monotonicity.
The superreplication property is of great importance since it means that

the option writer’s hedging strategy is robust to model misspecification of the
dynamics of the underlying asset. The acknowledgement of the issue of model
risk has led to several new modelling developments and strategies. Dupire [5,
6] has argued that by considering calls as liquid trading instruments it is
possible to price exotic options in a model-free fashion. See also [13] for a
related approach to robust hedging. The special case where the model risk is
restricted to a misspecification of volatility has also been the subject of much
attention. Stochastic volatility models fall into this area; see [24] for a recent
review. Frey and Stremme [11] show how a nonconstant volatility can arise in
a model in which hedging demand affects the price dynamics of the underlying
asset. Avellaneda, Levy and Parás [2] and Lyons [18] consider the situation
where volatility is unconstrained except to lie in an interval. Lyons gives an
example of a barrier option which illustrates that if the option is nonconvex
then the option price may not increase monotonically with volatility. Frey
and Sin [10] find bounds on European option prices in an incomplete market
with stochastic volatility. All the papers cited in this paragraph are predicated
upon a superreplication philosophy; for an alternative utility based approach
to pricing and hedging with misspecified volatility, see [1].

This paper is organized as follows. In Section 2 we provide a direct proof of
the monotonicity of option prices with respect to volatility using a coupling ar-
gument. (This direct proof is original and shows that option price monotonicity
does not require a diffusion assumption.) In Section 3 we prove the superrepli-
cation property and hence derive a second proof of option price monotonicity.
The key step is to prove that for a diffusion model the option value at interme-
diate times is a convex function of the asset price. Again, the proof is based on
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a coupling story. Finally, Section 4 contains an extension of the main results
to American options; yet again there is a natural intuitive proof involving a
coupling-style argument.

2. Option price monotonicity via coupling. Suppose that the price of
an asset is a diffusion process and is given by the solution to the stochastic
differential equation

dPs = Psσs dBs(2.1)

for a fixed initial value P0 > 0, and for an adapted volatility process σs.
Suppose that there are two candidate models for σ , namely σ = σ̂ or σ = σ̃
and suppose that there is an ordering on these candidate volatilities in the
sense that σ̂�x; s� ≥ σ̃�x; s� for all asset values x and times s.

Theorem 2.1. In a complete market the (non-pathdependent) option with
convex payoff h is more expensive under the model with volatility σ̂ than under
the model with volatility σ̃ .

Notation and assumptions. When we define quantities τ, A and P with
respect to σ , this should be taken as implicitly defining pairs of quantities,
the elements of which are denoted in a natural fashion with the accents ˆ
and ˜ . As a first example, for a Brownian motion W with W0 = P0, define τ
to be the solution of the ordinary differential equation

dτt
dt
= 1

W2
tσ�Wt; τt�2

:(2.2)

Assume that, almost surely, this ordinary differential equation has a unique
strictly increasing solution which explodes when W first reaches zero.

Proof. The main idea is that in each model Pt is a continuous local mar-
tingale so we can hope to write P as a time-change of Brownian motion. By
constructing both models from the same Brownian motion, we can hope to
deduce comparison theorems for option prices from comparison theorems for
the time changes.

Begin with a Brownian motion W started at P0. (Note that since W is
not defined with respect to σ we are thinking of a single Brownian motion
rather than a pair.) Use this Brownian motion to define a (pair of) increasing
functional(s) τ. Denote the inverse to τ by At. Now define a process P via
Pt ≡W�At�; then P is a local martingale with quadratic variation

dAt

dt
≡W�At�2σ�W�At�; τ�At��2 ≡ P2

tσ�Pt; t�2:

In particular, we can represent P as a (weak) solution of the SDE dPt =
Ptσ�Pt; t�dBt.

If P̂t = P̃t then dÂt ≥ dÃt and this is certainly true at t = 0. Moreover
if Ât = Ãt then by construction P̂t ≡ P̃t (since both processes have been



SUPERREPLICATION VIA COUPLING 197

constructed as a time change of the Brownian motion W) and hence Ât ≥ Ãt

for all t.
Finally, h�P̂T� ≡ h�W�ÂT�� ≡ h�W�ÃT� + �W�ÂT� −W�ÃT��, so that the

claimed option price monotonicity follows by a conditional version of Jensen’s
inequality. 2

Remark 2.1. This argument proves price monotonicity, but it does not
seem possible to extend this coupling argument to show that the options
trader using the wrong model will superreplicate. This is the subject of Sec-
tion 3. However the above provides a general philosophy for showing the price
monotonicity property: construct solutions P̂t =W�Ât� and P̃t =W�Ãt� with
respect to the same Brownian motion W, in such a way that ÂT ≥ ÃT almost
surely, and then apply Jensen’s inequality. Thus, for example, if both σ̂ and σ̃
are functions of time alone then a simple sufficient condition for option price
monotonicity is that

∫ T
0
σ̂�t�2 dt ≥

∫ T
0
σ̃�t�2 dt:(2.3)

Remark 2.2. Completeness of the market is used to justify the assumption
that the option price is the expected payoff of the option under the risk-neutral
probability measure �. More generally under any measure � for which B,
and by construction W, are Brownian motions, the expected option payout
is larger for the model with volatility σ̂ than the model with volatility σ̃ .
Thus, provided that a suitable pricing measure has been fixed, option price
monotonicity follows. This situation may arise in an incomplete market, for
example with the selection of a minimal martingale measure (in the sense
of [8]) from a family of equivalent martingale measures, and in this sense
option price monotonicity is sometimes found in incomplete markets. However,
the natural setting for the arguments of this article is a diffusion model which
is complete, at least if the volatility is correctly specified.

Remark 2.3. In fact, it is not necessary to restrict to diffusion models so
that σ̂ , σ̃ can be functions of the whole price history provided that τ and its
inverse can be defined and that for all p and for all pairs of paths �p̂u�0≤u≤s,
�p̃u�0≤u≤s with p̂s ≡ p ≡ p̃s we have that σ̂��p̂u�0≤u≤s; s� ≥ σ̃��p̃u�0≤u≤s; s�.

Remark 2.4. An example in [7] (due in part to Marc Yor) at first sight
appears to contradict the claim in Remark 2.3. In the example, two volatility
processes are given for which there is an ordering of the volatilities but such
that the prices of call options decrease with apparently increasing volatility.
The point to note is that the Yor construction defines the price in each model
as the strong solution of the SDE (2.1) with respect to the same Brownian
motion B. Upon time change, this means that the processes must be defined
relative to different Brownian motions W and the coupling argument cannot
be applied. For financial modelling and derivative pricing, it is the law of
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the price process that is important and not the relationship with a particular
driving Brownian motion. Hence option price monotonicity does hold in the
sense of Remark 2.3. If volatility is path dependent, then the “correct” notion
of a volatility comparison condition is that given in Remark 2.3.

3. Superreplication of European contingent claims. The purpose of
this section is to provide a further proof that for European options with con-
vex payoffs the option price is increasing in the volatility. Moreover, an options
trader who prices and hedges according to the model with the higher volatil-
ity will superreplicate the option payout if the true underlying model is the
alternative regime.

The key result in this section, which is of independent interest, is that, for
diffusion models of the price of the underlying asset, the prices of options with
convex payoffs are a convex function of the underlying. This is Theorem 3.1
below, and again there is a simple and intuitive coupling proof of this result.
The superreplication result (Theorem 3.2) then follows.

Theorem 3.1. For a (complete) diffusion model of the asset price, and a
European option with convex payoff h, the option value at intermediate times
is convex in the price of the underlying.

Assumptions. Suppose the model is dPs = Psσ�Ps; s�dBs; then in a com-
plete market the option price is given by v�Pt; t� = ��h�PT��Pt�, at least
under the assumption that ���h�PT��� <∞. We assume that σ has sufficient
continuity properties to ensure that the solution to the SDE is unique in law
(for example, a Lipschitz condition on pσ�p; s�; see [23], Remark V.16.4), and
that P is a true martingale. A simple sufficient condition for this second prop-
erty is that σ�p; s� is bounded; more generally, the problem translates into
one of verifying that the Doléans exponential is a true martingale; see [22],
Section 3.5.

Proof. The set-up. Suppose 0 < z < y < x and for independent Brownian
motions α;β; γ define X;Y;Z via

dXs =Xsσ�Xs; s�dαs; X0 = x;

dYs = Ysσ�Ys; s�dβs; Y0 = y;

dZs = Zsσ�Zs; s�dγs; Z0 = z:
The “coupling.” Let Hx ≡ infu�Xu = Yu�, and similarly Hz ≡ infu�Yu =

Zu�. Now define τ =Hx ∧Hz ∧T. Then, by symmetry, on τ =Hx,

�XT −ZT�h�YT�
D= �YT −ZT�h�XT�

so that

���XT −ZT�h�YT�y τ =Hx� = ���YT −ZT�h�XT�y τ =Hx�
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Also ���XT −YT�h�ZT�y τ =Hx� = 0: Similarly

���XT −ZT�h�YT�y τ =Hz� = ���XT −YT�h�ZT�y τ =Hz�

+ ���YT −ZT�h�XT�y τ =Hz�:
Finally, on τ = T, we have that ZT < YT < XT, and by convexity of h,

�XT −ZT�h�YT� ≤ �XT −YT�h�ZT� + �YT −ZT�h�XT�:
Taking expectations and adding gives

���XT −ZT�h�YT�� ≤ ���XT −YT�h�ZT�� + ���YT −ZT�h�XT��;
so that by the independence of X, Y and Z,

�x− z���h�YT�� ≤ �x− y���h�ZT�� + �y− z���h�XT��: 2

Remark 3.1. It is clear that this proof cannot be extended to nondiffusion
models because then there can be no identity in law between, for example, XT

and YT on τ =Hx.

Remark 3.2. The argument given in the introduction shows that, if h is
increasing, then the option price function v must also be increasing. This
simple result, Theorem 1 in [4], was described as “the intuitive link between a
diffusion process and properties of options prices.” As the referee observed, the
stochastic comparison Xx

s ≤X
y
s , for all s [see (1.1)], and hence monotonicity of

the option price function, holds more generally than just for diffusion models
(see, e.g., [21], Theorem 54, page 268).

Remark 3.3. If h has bounded derivative on �0;∞�, and bound C say, then
it is clear that h�0�−CPt ≤ v�Pt; t� ≤ h�0�+CPt. Given also that v is convex,
and hence that the space derivative is increasing, it must follow that

�v′�Pt; t�� ≤ C:(3.1)

One of the motivations for this paper was to provide a simple, direct and
general proof of Theorem 3.1 using probabilistic methods. The result in The-
orem 3.1 has appeared elsewhere (see [4], [7] and [9]), though the proofs in
these papers use different methods and require more restrictive technical con-
ditions. The authors in [4] and [9] differentiate the partial differential equation
for the option price v, with respect to space, to deduce a partial differential
equation for v′. This requires the diffusion coefficient p2σ�p; s�2 to be differ-
entiable. In order to use a method of stochastic flows, [7] again requires con-
tinuous differentiability. Both methods require the payoff function h to have
a bounded derivative. In each case, the proof uses the Feynman–Kac formula
to deduce a representation for the derivative of the option payoff in the form
v′�Pt; t� = �∗�h�PT��Pt�. Here the superscript ∗ denotes the fact that P solves
a different SDE from (2.1) in this representation.
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Theorem 3.1 was used by [7] as a key step in the proof of the main result
of this paper, namely that an options trader who uses a model which sys-
tematically overestimates volatility is following a robust pricing and hedging
strategy. Here we reproduce the essence of their argument.

Suppose that the options trader uses a diffusion model

dPs = Psσ�Ps; s�dBs
under which options prices are given by

v�Ps; s� = ��h�PT��Ps�; v�PT;T� = h�PT�:

Suppose further that the true volatility is given by σ̃�p; s� and that the model
volatility dominates the true volatility in the sense that σ�p; s� ≥ σ̃�p; s� for
all asset values p and intermediate times s.

Theorem 3.2. If the model volatility dominates the true volatility, and if
the option payoff function h is convex, then the options trader who prices and
hedges according to the model will superreplicate the option payout.

Assumptions. We need to apply Itô’s formula to the option price function
v�Ps; s� in the proof below. Sufficient conditions for v ∈ C2;1��0;∞� × �0;T��
are that σ is positive and Hölder continuous. For further details see [7], Hy-
pothesis 6.1, [16] Section 5.7 or [12].

Proof. Under the option writer’s model, since the market is complete, the
payout can be decomposed into the initial price and the gains from trade:

h�PT� = v�P0;0� +
∫ T

0
v′�Pt; t�dPt:

Moreover, since v�Pt; t� is a martingale, we must have that v solves the partial
differential equation

1
2p

2σ2�p; s�v′′ + v̇ = 0:(3.2)

Consider the effect of following the strategy specified by θs = θs�p; s� =
v′�p; s� in the real (or tilded) world. Start with initial fortune v�P0;0�. By
time T this has increased to

v�P0;0� +
∫ T

0
θs dP̃s = v�P0;0� +

∫ T
0
v′�P̃s; s�dP̃s;(3.3)

and by assumption this stochastic integral is well defined. For suitable paths
α, we have v�αT;T� − v�α0;0� =

∫ T
0 dv�αs; s� so that if α0 = P0 = P̃0 and

αs = P̃s, then

h�P̃T� = v�P̃0;0� +
∫ T

0
dv�P̃s; s�:(3.4)
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Substituting v�P0;0� for v�P̃0;0�, and combining (3.3) and (3.4) we obtain

v�P0;0� +
∫ T

0
θs dP̃s = h�P̃T� +

∫ T
0
v′�P̃s; s�dP̃s −

∫ T
0
dv�P̃s; s�:

Moreover, by Itô’s formula, and then using (3.2),

dv�P̃s; s� = v′�P̃s; s�dP̃s + 1
2v
′′�P̃s; s��dP̃s�2 + v̇�P̃s; s�ds

= v′�P̃s; s�dP̃s +
[ 1

2P̃
2
sv
′′�P̃s; s�σ̃�P̃s; s�2 + v̇�P̃s; s�

]
ds

= v′�P̃s; s�dP̃s +
[ 1

2P̃
2
sv
′′�P̃s; s��σ̃�P̃s; s�2 − σ�P̃s; s�2�

]
ds:

Thus

v�P0;0� +
∫ T

0
θs dP̃s

= h�P̃T� +
∫ T

0

1
2P̃

2
sv
′′�P̃s; s��σ�P̃s; s�2 − σ̃�P̃s; s�2�ds

(3.5)

and under our volatility comparison assumption

v�P0;0� +
∫ T

0
θs dP̃s ≥ h�P̃T�: 2(3.6)

The quantity et =
∫ t

0
1
2P̃

2
sv
′′�P̃s; s��σ�P̃s; s�2− σ̃�P̃s; s�2�ds was labelled the

tracking error [7]. Superreplication is equivalent to eT ≥ 0, almost surely.

Corollary 3.3. The model option price is greater than the fair price in the
true world.

Assumptions. We need that the local martingale
∫ t

0 θs dP̃s is a true mar-
tingale. If h has bounded derivative then by Remark 3.3 we may restrict at-
tention to the case of bounded integrands. Assume that

�

[(∫ T
0
P̃2
s σ̃�P̃s; s�2 ds

)1/2]
<∞;

so that P̃ is an element of the Hardy space H1 of martingales, then by the
Burkholder–Davis–Gundy inequalities ([23], Theorem IV.42.1), the stochastic
integral is a true martingale. Exercise 4.22 in [22] shows that at this level of
generality we cannot hope to do better.

The proof follows on taking expectations in (3.6).

Remark 3.4. Clearly the proof can be applied in reverse in the sense that
if the option has been bought for a price based on a model with volatility σ
which is dominated by the true volatility, then by using the model hedge, the
option purchaser can guarantee that his income (the option payoff), dominates
his obligations (the sum of the initial premium and the losses from his model
hedging strategy).
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Remark 3.5. Although it is crucial that the option writer’s model be a
diffusion process so that we can apply the convexity result, there is no re-
quirement that the true process is a diffusion, merely that at all times s, and
for all price histories �pu�0≤u≤s we have that σ�ps; s� ≥ σ̃��pu�0≤u≤s; s�.

Remark 3.6. In Remark 2.1 we gave a simple condition (2.3) for option
price monotonicity. Note that even the the stronger condition

∫ s
0
σ�t�2 dt ≥

∫ s
0
σ̃�t�2 dt ∀s ∈ �0;T�

is not sufficient to guarantee the superreplication property.

4. American options via coupling. We next turn our attention to Amer-
ican contingent claims. We assume that the claim is an entitlement to receive
h�Pt� at time t for some time-independent payoff profile hwhere the (stopping)
time t is at the discretion of the option holder.

With American contingent claims, since the timing of payments can vary,
it is not possible to completely remove discount factors from the analysis by a
change of numeraire. For notational simplicity, we assume a fixed and constant
rate of interest r ≥ 0, though the extension to deterministic interest rates is
easy.

Suppose that the market is complete and that (under the risk-neutral mea-
sure) the price process solves the SDE dPs = PsσP�Ps; s�dBs + rPs ds. Let
Qs denote the discounted price process Qs = e−rsPs; then Q solves the SDE

dQs = Qsσ�Qs; s�dBs;(4.1)

where σ�Qs; s� ≡ σP�ersQs; s�. Discounted into time 0 prices, the payoff of the
option, if exercised at time t, is e−rth�Pt� ≡ e−rth�ertQt�.

Theorem 4.1. For a (complete) diffusion model of the asset price and an
American option with convex payoff h, the option value at intermediate times
is convex in the price of the underlying.

Assumptions. We assume that σP has sufficient continuity properties to
ensure that the solution to the SDE for the price process [or equivalently (4.1)]
is unique in law, that Q is a true martingale, and that for all stopping times ρ,
���h�Pρ��� < ∞. By analogy with the assumptions of Theorem 3.1, sufficient
conditions are that σP is bounded, pσP�p; s� is Lipschitz and h has bounded
derivative.

Proof. Bensoussan [3], Karatzas [14, 15] and Myneni [20] have shown
that the price v of an American option is given by a Snell envelope:

v�q; s� = ess sup
ρ∈0�s�

e−rρ��h�erρQρ��Qs = q�;

where 0�s� is the set of all stopping times which take values in the interval
�s;T�. The optimal stopping time or exercise time is E = inf�ux v�Qs; s� =
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e−rsh�ersQs��. In general v�Qs; s� is a supermartingale; it is a martingale on
the continuation region v�q; s� > e−rsh�ersq�.

The set-up. As in the proof of Theorem 3.1, let 0 < z < y < x and for
independent Brownian motions α;β; γ define discounted price processes X,
Y, Z via

dXs =Xsσ�Xs; s�dαs; X0 = x;

dYs = Ysσ�Ys; s�dβs; Y0 = y;

dZs = Zsσ�Zs; s�dγs; Z0 = z:

The “coupling.” Let E ≡ E�y� be the optimal exercise time for the process
started at y. Define τ = Hx ∧Hz ∧E where as before Hx ≡ infu�Xu = Yu�
and Hz ≡ infu�Yu = Zu�.

On τ = E, we have that e−rτh�erτYτ� ≡ v�Yτ; τ� and, by convexity,

�Xτ −Zτ�v�Yτ; τ� ≤ �Yτ −Zτ�e−rτh�erτXτ� + �Xτ −Yτ�e−rτh�erτZτ�

≤ �Yτ −Zτ�v�Xτ; τ� + �Xτ −Yτ�v�Zτ; τ�:

By symmetry, on τ =Hx,

�Xτ −Zτ�v�Yτ; τ� = �Yτ −Zτ�v�Xτ; τ�

and 0 = �Xτ −Yτ�v�Zτ; τ�. By playing a similar trick on the set τ = Hz, we
get that always

�Xτ −Zτ�v�Yτ; τ� ≤ �Yτ −Zτ�v�Xτ; τ� + �Xτ −Yτ�v�Zτ; τ�:

Now taking expectations, and using independence,

�x− z���v�Yτ; τ�� ≤ �y− z���v�Xτ; τ�� + �x− y���v�Zτ; τ��:

But v�Yt; t� is a martingale on t ≤ τ, so ��v�Yτ; τ�� = v�y;0� and v�Xt; t� and
v�Zt; t� are supermartingales so that, for example, ��v�Xτ; τ�� ≤ v�x;0�. The
convexity property for v�·;0� now follows. 2

Corollary 4.2. Option price monotonicity and the superreplication prop-
erty hold for American options.

Proof. Subject to minor modifications, the proof follows Theorem 3.2. The
main change involves considering the gains from trade-up to an intermediate
time t. We have that

e−rth�Pt� ≤ v�Qt; t� = v�Q0;0� +
∫ t

0
v′�Qs; s�dQs:
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Moreover, assuming that Itô’s formula applies, we have by the supermartin-
gale property that 1

2q
2σ2v′′ + v̇ ≤ 0. In conclusion,

v�Q0;0� +
∫ t

0
θs dQ̃s ≥ v�Q̃t; t� + 1

2

∫ t
0
Q̃2
sv
′′�Q̃s; s��σ�Q̃s; s�2 − σ̃�Q̃s; s�2�ds

≥ e−rth�P̃t�;
provided that σ�q; s� ≥ σ̃�q; s� everywhere. In order to deduce option
price monotonicity we need that

∫ t
0 θs dQ̃s is a true martingale; again if

h has bounded derivative, then θ is bounded and a sufficient condition is
���
∫ T

0 Q̃
2
s σ̃�Q̃s; s�2�1/2� <∞. 2
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