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We consider an optimal investment problem proposed by Bielecki and
Pliska. The goal of the investment problem is to optimize the long-term
growth of expected utility of wealth. We consider HARA utility functions
with exponent −∞ < γ < 1. The problem can be reformulated as an
infinite time horizon risk-sensitive control problem. Some useful ideas and
results from the theory of risk-sensitive control can be used in the analysis.
Especially, we analyze the associated dynamical programming equation.
Then an optimal (or approximately optimal) Markovian investment policy
can be derived.

1. Introduction. It is known that some optimal investment models can be
reformulated as risk-sensitive stochastic control problems. The idea was explored
in Fleming (1955). Using this approach, in Fleming and Sheu (1999), we gave a
detailed analysis of an investment model in which only one risky and one riskless
asset are considered and transaction costs are ignored. In this paper, we consider
a more general model proposed by Bielecki and Pliska (1999). In the model,
N securities and m economic factors are considered and the transaction costs
are ignored: The goal is to maximize the long-term exponential growth rate of
expected utility of wealth. A special feature of the model is that the stochastic
economic factors explicitly affect the mean returns of the securities. Bielecki and
Pliska (1999) develop a mathematical theory for model that the securities and
economic factors have independent noise. Here, we remove this condition and give
a detailed analysis for the investment problem without constraints on the portfolio
chosen.

Similar models are also considered in Bielecki and Pliska (2000) and Kuroda
and Nagai (2000). To compare ours with Bielecki and Pliska, we can show by
a suitable transformation that the assumptions made in Bielecki and Pliska are
equivalent to ours. Moreover, they consider only the cases with negative γ such
that |γ | is small. See Section 2 for the role γ plays in the study.

Kuroda and Nagai (2000) allow the diffusion coefficient matrix of the factor
process to be degenerate. They assume that the factor process is ergodic under
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equivalent minimal martingale measure. The role of equivalent minimal martingale
measure playing in the investment problem is still not clear. However, this
observation seems interesting. In their analysis, they need to assume that the
interest rate of the banking account is constant. In our study, we assume that
the diffusion coefficient matrix for the factor process is nondegenerate. This is
crucial in our analysis, since we need to consider the investment problem with
constraints. There is also a difference in the results obtained. In their paper, they
give a condition [see condition (2.30) in Kuroda and Nagai (2000)] such that the
portfolio derived from the solution of the Bellman equation (or Ricatti equation
in the present situation) is optimal for the investment problem for all γ . As a
consequence, the verification theorem can be proved for all γ . However, they do
not discuss if the verification theorem still holds when (2.30) in Kuroda and Nagai
(2000) is not assumed. In fact, the portfolio mentioned above may not be optimal
any more for general γ . See some discussion later in this section.

The theory of risk-sensitive control has received much attention in recent
years because it provides a link between stochastic and deterministic approaches
to disturbances in control systems. See Whittle (1990) for a comprehensive
introduction. For the mathematical developments, see Fleming and McEneaney
(1995), (hereafter FM (1995)), McEneaney (1993) and Nagai (1996). The dynamic
programming equation (DPE for short) plays an important role in the development
of mathematical theory for risk-sensitive control. Our analysis here is also based
on the study of the DPE for the risk-sensitive control problem associated to
the optimal investment problem. One fundamental difference between the risk-
sensitive control problem studied here and the usual one is that the running cost
here does not have definite sign. This makes the analysis more difficult.

The paper is organized as follows. In Section 2 we give the framework of the
problem studied here. We reformulate the problem as an infinite time horizon risk-
sensitive stochastic control problem of the kind considered in FM (1995). We
consider a HARA utility function of wealth, with exponent −∞ < γ < 1. The
case γ = 0 corresponds to the log utility function.

In Section 3, we consider the case that γ < 0. We show that the DPE has a
unique solution (�(γ ),W(γ )) such that �(γ ) is the optimal exponential growth
rate of the investment problem using bounded investment policies, where W(γ ) is
quadratic and nonpositive definite. We also consider the investment problem with
constraint set Ur = {u; |u| ≤ r}, r > 0, which has optimal exponential rate �

(γ )
r .

We show �(γ ) = infr>0 �
(γ )
r = limr→∞ �

(γ )
r . Equation (2.14) with U = Ur has

unique solution �(γ )
r ,W

(γ )
r such that W(γ )

r (0)= 0 and |∇W
(γ )
r (x)| ≤Mr for some

constant Mr . We also show that W(γ )
r converges to W(γ ) and ∇W

(γ )
r converges to

∇W(γ ) uniformly on compact sets as r → ∞. Let u(γ )(x) be the argmin in (3.1)
with U = RN , � = �(γ ), W = W(γ ). We define u

(γ )
r (x) similarly with U = Ur ,

� = �
(γ )
r , W = W

(γ )
r . We know u

(γ )
r (·) is a Markovian optimal investment

policy for the investment problem with constraint set Ur . We can show that u(γ )r
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converges to u(γ ) uniformly on compact set as r → ∞. Therefore, u(γ )r , r > 0, give
approximately optimal policies for the investment problem without constraints. In
general, when using u(γ ) as the investment policy, the wealth can become infinite
in finite time. In such cases, it cannot attain the optimal exponential growth rate.
However, when |γ | is small, u(γ ) attains optimal exponential growth rate. Some
more interesting results can be found in Kuroda and Nagai (2000).

In Section 4, we consider the case that 0 < γ < 1 and use bounded investment
policies. In such cases the optimal long-term growth rate �(γ ) is not necessarily
finite. However, we show that if �(γ ) is finite, then the DPE has a solution
(�(γ ),W(γ )) such that W(γ ) is convex. We do not know if such W(γ ) satisfying
W(γ )(0) = 0 is unique. The idea is to study the same problem with investment
constraint set Ur and let r → ∞. Although we supect that W(γ ) is quadratic,
we cannot prove it. However, when γ is small, W(γ ) is shown to be quadratic.
The Ricatti equation (2.21) has a solution K ≥ 0 which satisfies the property
that D(γ ) + E(γ )K is semistable. This result has an interesting consequence if
we assume �(γ ) is finite for all 0 < γ < 1. Following from this, we show that �(γ )

is infinite for some γ if the economic factors and the securities have independent
noise. Let denote u(γ )(·) the argmax in (4.1) with U = RN , �=�(γ ), W =W(γ ).
We do not know if using u(γ )(·) as the investment policy can attain the optimal
exponential growth rate. We show that this is true if |γ | is small.

We would like to mention that the results presented here have been reported in
Fleming and Sheu (2000). In this paper we provide the details of their proofs.

2. Problem formulation. We consider an infinite time horizon optimal
investment model, with N risky and one riskless asset. Let V (t) be the investor’s
wealth at time t ≥ 0, and ui(t) be the fraction of wealth in the ith risky asset.
Then ui(t)V (t) is the amount in the ith risky asset and (1 −∑N

i=1 ui(t))V (t) the
amount in the riskless asset. Let U ⊂ RN be the constraint set for the investor.
Then u(t) = (u1(t), . . . , uN(t)) ∈ U for all t . We denote by Si(t) the price per
share for the ith risky asset at time t and r(t) the riskless interest rate. Assume that
there is no transaction fee and the borrowing rate and interest rate are the same.
Then V (t) satisfies

dV (t) = V (t)

[
r(t)

(
1 −∑

i

ui(t)

)
dt +∑

i

ui(t)
dSi(t)

Si(t)

]
,(2.1)

with initial wealth given by V (0) > 0. We wish to maximize the long-term
exponential growth rate of the expectation of γ−1V (T )γ as T → ∞ over all
investment policies for −∞ < γ < 1. The case γ = 0 is to maximize the
expectation of the average per unit time of logV (T ).

The following are some of the interesting choices for U . The U = RN

corresponds to no investment control constraints. The U = {(u1, . . . , uN); ui ≥ 0,
i = 1, . . . ,N} corresponds to no shortselling constraint. We may also choose
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U = {(u1, . . . , uN); mi ≤ ui ≤ Mi , i = 1, . . . ,N} for some real mi , Mi, i =
1, . . . ,N . In this paper, we shall focus on the case U =RN .

We now describe the dynamics for Si(t), i = 1, . . . ,N , which is suggested by
a work of Bielecki and Pliska (1999). We assume that there are m economic
factors, x1(t), . . . , xm(t), which determine the performance of the market and
evolve according to the following dynamics:

dx(t)= b
(
x(t)

)
dt + dB(t),(2.2)

where B(t) is the standard m-dim Brownian motion. We assume

b(x)=Dx, x ∈Rm,(2.3)

such that D is a stable matrix. That is,∑
Dijuiuj ≤ −c0|u|2(2.4)

for all u= (u1, . . . , um) ∈Rm for some c0 > 0. Here | · | is the Euclidean norm.
The dynamics for r(t), Si(t), i = 1, . . . ,N , are given by

dSi(t)

Si(t)
=µi

(
x(t)

)
dt + σ

(i)
D · dB(t)+ σ

(i)
I · dB̄(t),(2.5)

B̄(t) is a m̄-dim Brownian motion and is independent of B(·); σ (i)
D , σ

(i)
I are m-dim,

m̄-dim constant vectors. We assume

r(t) =µ0
(
x(t)

)
and

µi(x)=A(i) · x + ai, i = 0,1,2, . . . ,N,(2.6)

where A(i) is an m-dim vector and ai ∈ R is a constant.
We may consider a more general model, for example, to allow the noise intensity

to depend on the factors or to allow the coefficients to be nonlinearly dependent
on the factors. Such generalization may be necessary when discussing a practical
problem. However, the mathematics for such general model will be much more
involved and it will not be discussed here.

From (2.1) and (2.5),

dV (t) = V (t)

[ (
µ0
(
x(t)

)+∑
i

ui(t)µ̄i

(
x(t)

))
dt

+∑
i

ui(t)σ
(i)
D · dB(t)+∑

i

ui(t)σ
(i)
I · dB̄(t)

]
,

where

µ̄i(x)=µi(x)−µ0(x) = Ā(i) · x + āi,

Ā(i) =A(i) −A(0), āi = ai − a0.
(2.7)
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By Itô’s rule,

d logV (t) =
(
µ0
(
x(t)

)+∑
i

µi(t)µ̄i

(
x(t)

)− 1
2

∣∣∣∣∣∑
i

ui(t)σ
(i)

∣∣∣∣∣
2)

dt

+∑
i

ui(t)σ
(i)
D · dB(t)+∑

i

ui(t)σ
(i)
I · dB̄(t),

where

σ (i) =
(
σ
(i)
D

σ
(i)
I

)
∈Rm+m̄.(2.8)

Therefore,

E[V (T )γ ]
= V (0)γ E

[
exp

(∫ T

0
γ
∑
i

ui(t)σ
(i)
D · dB(t)+ γ

∑
i

ui(t)σ
(i)
I · dB̄(t)

+
∫ T

0
γ

(
µ0
(
x(t)

)+∑
i

ui(t)µ̄i

(
x(t)

)− 1
2

∣∣∣∣∣∑
i

ui(t)σ
(i)

∣∣∣∣∣
2)

dt

)]

= V (0)γ E
[
exp

(∫ T

0
γ $(γ )

(
xu(t), u(t)

)
dt

)]
,

(2.9)

where

$(γ )(x, u)= −1
2 (1 − γ )

∣∣∣∣∣∑
i

uiσ
(i)

∣∣∣∣∣
2

+∑
i

uiµ̄i(x)+µ0(x)(2.10)

and

dxu(t)= bu
(
t, xu(t)

)
dt + dB(t),

bu(t, x) = b(x)+ γ
∑
i

ui(t)σ
(i)
D .

(2.11)

The last step in (2.9) follows from the Girsanov theorem by changing probability
measures. This is valid under some conditions, for example, if u(t) is bounded or
if u(t) = u(t, xu(t)) when u(t, x) is Lipschitz. However, this formal calculation
suggests studying the stochastic control problem with exponential cost given by
the right side of (2.9) (we may take V (0)= 1 which we assume in the following).
The state dynamics is given by (2.11). For 0 < γ < 1, we maximize the cost and
for −∞ < γ < 0, we minimize the cost. The control process u(t) is assumed to
be U valued, Ft progressive measurable for a filtration {Ft} such that B(t) is a
Brownian motion with respect to {Ft}. See Fleming and Soner (1992).
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To continue, we fix γ with 0 < γ < 1. For each finite T , we consider the
problem of choosing u(t) on 0 ≤ t ≤ T to maximize the right-hand side of (2.9).
Let

W(T,x) = log sup
u
Ex

[
exp

(
γ

∫ T

0
$(γ )

(
xu(t), u(t)

)
dt

)]
,(2.12)

where xu(t) satisfies (2.11) with xu(0) = x. We anticipate that, under suitable
conditions, T −1W(T,x) tends to a limit � as T → ∞. See FM (1995). Then
� can be interpreted as the optimal long-term growth rate of expected utility of
wealth.

As in FM (1995), we use the heuristic

W(T,x) ∼�T +W(x), T → ∞.

Then � and W(x) satisfy the following DPE:

�= 1
2%W(x)+ 1

2 |∇W(x)|2 + b(x) · ∇W(x)

+max
u∈U

[
γ
∑
i

uiσ
(i)
D · ∇W(x)+ γ $(γ )(x, u)

]
.

(2.13)

Similarly, for the HARA parameter γ, γ < 0, we consider W(T,x) defined as
in (2.12) but change sup to inf and use the heuristic W(T,x) ∼ �T + W(x) as
T → ∞. The dynamic programming equation is

�= 1
2%W(x)+ 1

2 |∇W(x)|2 + b(x) · ∇W(x)

+min
u∈U

[
γ
∑
i

uiσ
(i)
D · ∇W(x)+ γ $(γ )(x, u)

]
.

(2.14)

For γ = 0, we consider

W(T,x) = sup
u
Ex

[∫ T

0
$(0)

(
xu(t), u(t)

)
dt

]
and W(T,x)∼�T +W(x), T → ∞. The DPE is

�= 1
2%W(x)+ b(x) · ∇W(x)+ sup

u∈U
[
$(0)(x, u)

]
.(2.15)

For each case, if W(·) is known, a candidate for the optimal investment policy
u∗(x) can be obtained by taking argmax (or argmin) over U in the equation.
However, it is not always easy to see if u∗(x) gives an “admissible policy.”
Moreover, we need to prove a verification theorem which ensures that � is the
optimal long-term growth rate.

If U is a compact, convex set, then these questions can be settled by the
argument in [FM (1995), Section 7]. For this particular case, each equation has
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a unique solution in the viscosity sense (up to a constant) with bounded first-
order derivatives; u∗(x) gives an optimal policy. In the following, we shall mainly
consider U = RN . We shall give some answer to these questions under various
assumptions.

We define

ḡij = σ (i) · σ (j), ḡ = (ḡij );
x · y is the inner product. We assume that

ḡ is invertible.(2.16)

Denote by g,σ (D) and Ā the matrices,

σ
(D)
ij = (

σ
(i)
D

)
j , Āij = Ā

(i)
j , g is the square root of ḡ.(2.17)

For U =RN , (2.13) and (2.14) reduce to the following equation:

�= 1

2
%W(x)+ b(x) · ∇W(x)+ 1

2
|∇W(x)|2

+ 1

2

γ

1 − γ

∣∣g−1(µ̄(x)+ σ (D)∇W(x)
)∣∣2 + γµ0(x),

(2.18)

where µ̄(x)= (µ̄1(x), . . . , µ̄N(x)). The equation (2.15) reduces to

�= 1
2%W(x)+ b(x) · ∇W(x)+ 1

2

∣∣g−1µ̄(x)
∣∣2 +µ0(x).(2.19)

In (2.18), we seek a solution W(x) which is quadratic; that is,

W(x) = 1
2Kx · x + e · x(2.20)

with K an m×m symmetric matrix, then

D′K +KD +K2 + γ

1 − γ

(
Ā′ +Kσ(D)′)g−2(Ā+ σ (D)K

)= 0,(2.21)

which can be rewritten as

KD(γ ) +D(γ )′K +KE(γ )K +Q(γ ) = 0(2.22)

with

D(γ ) = D + γ

1 − γ
σ (D)′g−2Ā,

E(γ ) = I + γ

1 − γ
σ (D)′g−2σ (D),

Q(γ ) = γ

1 − γ
Ā′g−2Ā,

(2.23)

where D′ is the transpose of D, etc.,(
D(γ )′ +KE(γ ))e+ γ

1 − γ

(
Ā′ +Kσ(D)′)g−2ā + γA(0) = 0,

�= 1

2
trK + 1

2

γ

1 − γ

∣∣g−1(ā + σ (D)e)
∣∣2 + γ a0.

(2.24)
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LEMMA 2.1. We have ∥∥σ (D)′g−2σ (D)
∥∥≤ 1.

Here ‖M‖ = max{|Mx|; |x| = 1} for a matrix M , |x| is the length of a vector x.
In particular, E(γ ) is positive for all −∞< γ < 1.

Equation (2.22) is a Riccati equation which has appeared in linear control
theory. We recall an interesting theorem on the solutions of (2.22). For the details
see Willems (1971).

THEOREM 2.2. Equation (2.22) has a solution if and only if

H(s)=E(γ )−1 − (−si −D(γ )′)−1
Q(γ )

(
si −D(γ )

)−1 ≥ 0

for all real s. Here i = √−1.
If this condition holds, then there are unique solutions K−,K+ such that

the real part of the eigenvalues of D(γ ) + E(γ )K−(resp. D(γ ) + E(γ )K+)
are nonpositive (resp. nonnegative). Moreover, every solution satisfies K− ≤ K

≤K+.

PROOF OF LEMMA 2.1. Let x ∈RN. Consider

σ (D)′g−2σ (D)x · x = g−2σ (D)x · σ (D)x.

It is enough to prove

g−2σ (D)x · σ (D)x ≤ |x|2.(2.25)

Let

σ (D)x = y, g−2y = z.

Then

g−2σ (D)x · σ (D)x = z · g2z =∑
i,j

zizjσ
(i) · σ (j)

=
∣∣∣∣∣∑
i

ziσ
(i)

∣∣∣∣∣
2

.

(2.26)

On the other hand,

g−2σ (D)x · σ (D)x = z · σ (D)x

=∑
i

ziσ
(i)
D · x

=∑
i

ziσ
(i) · x̄.

(2.27)
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Here x̄ = (x,0) ∈ Rm+m̄. The above is equal to
∑

i ziσ
(i) · x̄ which has absolute

value smaller than ∣∣∣∣∣∑
i

ziσ
(i)

∣∣∣∣∣|x̄| =
∣∣∣∣∣∑
i

ziσ
(i)

∣∣∣∣∣|x|.

This and (2.26)–(2.27) imply (2.25). This completes the proof. �

3. Negative HARA parameters. In this section, we consider the cases of
negative HARA parameter γ . We shall study the solutions of the corresponding
DPE. In particular, for the case of no constraint (U = RN ), we show that the Ricatti
equation (2.22) has a unique K(γ ) such that K(γ ) is nonpositive definite. The
matrix D(γ )′ +K(γ )E(γ ) is stable. From this, a solution (W(γ ),�(γ )) of the DPE,
such that W(γ ) is quadratic, can be derived. We shall show �(γ ) is the optimal
growth rate in the sense that

�(γ ) = min
r>0

�(γ )
r ,

where �
(γ )
r is the optimal growth rate for the portfolio problem with constraint

U = {u ∈ RN ; |u| ≤ r}. A candidate for the Markovian optimal investment policy
is given by

u(γ )(x) = 1

1 − γ
g−2(µ̄(x)+ σ (D)∇W(γ )(x)

)
,

which is equal to the argmin in (2.14) with U =RN , �=�(γ ) and W =W(γ ). We
note that u(γ )(x) is linear. For −γ (> 0) small enough, it is not difficult to show
that this gives an optimal investment policy, u(γ )∗(t) = u(γ )(x(t)). However, it is
not known if this is still true in general. See the study in Fleming and Sheu (1999)
for how the difficulty may occur.

Our main interest is the case U = RN . We shall start with the cases U = Ur =
{u ∈RN ; |u| ≤ r}.

The dynamic programming equation associated to the investment problem is
given by [see (2.14)]

�= 1
2%W(x)+ 1

2 |∇W(x)|2 + b(x) · ∇W(x)

+ min
u∈U

[
γ
∑

uiσ
(i)
D · ∇W(x)+ γ $(γ )(x, u)

]
.

(3.1)

THEOREM 3.1. Let γ < 0, U = Ur , 0 < r < ∞. Then there is a unique
(�

(γ )
r ,W

(γ )
r ) such that (�,W) = (�

(γ )
r ,W

(γ )
r ) satisfies (3.1) in classical sense,

W
(γ )
r (0)= 0 and |∇W

(γ )
r (x)| is a bounded function. Moreover,

�(γ )
r = infJ (u),
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where inf is taken over all the process u which is progressive measurable w.r.t. a
filtration {Ft}, |u(t)| ≤ r for any t ≥ 0,

dxu(t) =
(
b
(
xu(t)

)+ γ
∑

ui(t)σ
(i)
D

)
dt + dB(t),

xu(·) is adapted to {Ft }, B(·) is an Ft -Brownian motion and

J (u)= lim inf
T→∞

1

T
logE

[
exp

(∫ T

0
γ $(γ )

(
xu(t), u(t)

)
dt

)]
.

PROOF. This follows from the arguments in FM (1995). Uniqueness of W(γ )
r

is proved in Fleming and James (1995). �

Let U =RN . Then (3.1) becomes

�= 1

2
%W(x)+ 1

2

∣∣∇W(x)
∣∣2 + b(x) · ∇W(x)

+ 1

2

γ

1 − γ

∣∣g−1(µ̄(x)+ σ (D)∇W(x)
)∣∣2 + γµ0(x).

(3.2)

LEMMA 3.2. Assume (�,W) is a solution of (3.2) such that W(·) is concave
and ∣∣∇W(x)

∣∣≤ c(1 + |x|) for all x ∈ Rm

for some c > 0. Let x∗(t) be the diffusion satisfying

dx∗(t) = b∗(x∗(t)
)
dt + dB(t),(3.3)

where

b∗(x)= b(x)+ γ

1 − γ
σ (D)′g−2µ̄(x)+E(γ )∇W(x)

[see (2.23) for notation]. Then x∗(t) is ergodic. Moreover, there are α > 0, c > 0
such that

Ex[|x∗(t)|2] ≤ c(|x|2e−αt + 1).(3.4)

PROOF. Using (3.2) and applying Itô’s rule to W(x∗(t)),

dW(x∗(t)) =
(
�+ 1

2
∇W

(
x∗(t)

) ·E(γ )∇W
(
x∗(t)

)
− 1

2

γ

1 − γ

∣∣g−1µ̄
(
x∗(t)

)∣∣2 − γµ0
(
x∗(t)

))
dt + ∇W

(
x∗(t)

) · dB(t).
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Let α > 0, to be determined later. We consider eαtW(x∗(t)). The above implies

Ex

[∫ T

0
eαt

(
αW

(
x∗(t)

)+�+ 1

2
∇W

(
x∗(t)

) ·E(γ )∇W
(
x∗(t)

)
−1

2

γ

1 − γ

∣∣g−1µ̄
(
x∗(t)

)∣∣2 − γµ0
(
x∗(t)

))
dt

]
=Ex

[
W
(
x∗(T )

)]
eαT −W(x).

(3.5)

On the other hand, we apply Itô’s rule to |x∗(t)|2:

d|x∗(t)|2 =
(

2b
(
x∗(t)

) · x∗(t)+ 2γ

1 − γ
g−1µ̄

(
x∗(t)

) · g−1σ (D)x∗(t)

+2E(γ )∇W
(
x∗(t)

) · x∗(t)+m

)
dt

+2x∗(t) · dB(t).
Then considering eαt |x∗(t)|2, we have

Ex[|x∗(T )|2]eαT − |x|2

=Ex

[∫ T

0
eαt

(
α|x∗(t)|2 +m+ 2b

(
x∗(t)

) · x∗(t)+ 2
γ

1 − γ
g−1µ̄

(
x∗(t)

)
×g−1σ (D)x∗(t)+ 2E(γ )∇W

(
x∗(t)

) · x∗(t)
)
dt

]

≤Ex

[∫ T

0
eαt

(
(−2c0 + α)|x∗(t)|2 + c2 + c0|x∗(t)|2

+ c1

(
�− 1

2

γ

1 − γ

∣∣g−1µ̄
(
x∗(t)

)∣∣2
+ 1

2
∇W

(
x∗(t)

) ·E(γ )∇W
(
x∗(t)

)− γµ0
(
x∗(t)

)))
dt

]

=Ex

[∫ T

0
eαt

(
(−c0 + α)|x∗(t)|2 − c1αW

(
x∗(t)

)+ c2

)
dt

]
+ c1

(
Ex

[
W
(
x∗(T )

)]
eαT −W(x)

)
.

(3.6)

Here

c2 =m+ c1|�| + c1γ |a0| + 3
c2

1γ
2

c0
|A(0)|2,

c1 = 6

c0

(
‖g−1σ (D)‖2 −γ

1 − γ
+ ‖E(γ )‖

)
,
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choose α such that α(1 + 1
2cc1) < c0, where c is the constant such that

|∇W(x)| ≤ c(1 + |x|).
(3.6) implies

eαT Ex

[|x∗(T )|2 − c1W
(
x∗(T )

)]≤ c3e
αT + c1|W(x)|(3.7)

≤ c4
(|x|2 + eαT

)
.

Concavity of W(·) implies that there is c̄ such that

W(x)≤ c̄(1 + |x|).
This and (3.7) imply (3.4). This also implies the ergodicity of x∗(·). See
Khasminskii (1980), Chapter IV, Section 4. �

We now consider a solution (�,W) of (3.2) such that W is quadratic. Let

W(x)= 1
2Kx · x + e · x,(3.8)

K is a symmetric m × m matrix and e ∈ Rm. Then �,K,e satisfy (2.22) and
(2.24).

The following result is a consequence of Wonham (1968). The uniqueness
follows from the same argument as in the proof of Lemma 3.2. For the convenience
of the reader, we still provide an argument for it.

LEMMA 3.3. Let γ < 0. Then (2.22) has a unique solution K such that K is
nonpositive definite. For such K ,

D(γ ) +E(γ )K

is a stable matrix.

PROOF. Assume that K is nonnegative definite and is a solution of (2.22). Let
φ be the solution of

dφ(t)

dt
=D∗φ(t),

D∗ =D(γ ) +E(γ )K,

with φ(0) arbitrary. Then

d

dt
Kφ(t) · φ(t) = 2Kφ(t) · (D(γ )φ(t)+E(γ )Kφ(t)

)
=Kφ(t) ·E(γ )Kφ(t)−Q(γ )φ(t) · φ(t).

(3.9)

Here we use (2.22).
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On the other hand, we have

d

dt
|φ(t)|2 = 2D∗φ(t) · φ(t)

= 2Dφ(t) · φ(t)+ 2
γ

1 − γ
g−1σ (D)φ(t) · g−1Āφ(t)

+E(γ )Kφ(t) · φ(t)
≤ −2c0|φ(t)|2 + c0|φ(t)|2

+ c
(−Q(γ )φ(t) · φ(t)+Kφ(t) ·E(γ )Kφ(t)

)
= −c0|φ(t)|2 + c

(−Q(γ )φ(t) · φ(t)+Kφ(t) ·E(γ )Kφ(t)
)
.

Here

c = 2

c0

(
‖E(γ )‖ + −γ

1 − γ
‖g−1Ā‖2

)
.

Let α > 0 and will be determined later. Considering eαt |φ(t)|2, using the above
relation and (3.9), we have

|φ(T )|2eαT − |φ(0)|2

≤
∫ T

0
eαT

(
(−c0 + α)|φ(t)|2

+ c
(−φ(t) ·Q(γ )φ(t)+ Kφ(t) ·E(γ )Kφ(t)

))
dt

=
∫ T

0
e−αT ((−c0 + α)|φ(t)|2 − cαφ(t) ·Kφ(t)

)
dt

+ c
(
φ(T ) ·Kφ(T )eαT −Kφ(0) · φ(0)).

Take α small such that α(1 + c‖K‖) < c0. By the above relation and the condition
that K is nonpositive definite,

|φ(T )|2eαT ≤ |φ(0)|2 − cKφ(0) · φ(0)
≤ (1 + c‖K‖)|φ(0)|2.

Since α > 0, this implies D∗ is a stable matrix.
Now we prove the uniqueness of K . Assume K̃ is another solution of (2.22)

which is nonpositive definite. We substract the relations (2.22) for K and K̃ to get

(K − K̃)D∗ +D∗′
(K − K̃)− (K − K̃)E(γ )(K − K̃)= 0,

D∗ =D(γ ) +E(γ )K.
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Let φ(t) be defined by

d

dt
φ(t) =D∗φ(t).

Then
d

dt
(K − K̃)φ(t) · φ(t) = 2(K − K̃)φ(t) ·D∗φ(t)

= (K − K̃)φ(t) ·E(γ )(K − K̃)φ(t) ≥ 0;
that is,

(K − K̃)φ(T ) · φ(T )≥ (K − K̃)φ(0) · φ(0)
for all T ≥ 0. Let T → ∞; the left side tends to 0 by the fact that D∗ is stable
proved earlier. Therefore,

(K − K̃)φ(0) · φ(0)≤ 0,

hence

(K − K̃)x · x ≤ 0 for all x,

since φ(0) is arbitrary.
Similarly, we have

(K̃ −K)x · x ≤ 0 for all x.

Therefore, K = K̃ , which completes the proof of the uniqueness of the solution.
The existence of a nonpositive definite solution for (2.22) follows from the

argument in the proof of Theorem 1, Section 2.3, Brockett (1970). This completes
the proof. �

REMARK 3.4. Brockett [(1970), Section 2.3] shows that Lemma 3.3. holds if
the controllability and observability of the system are assumed. In our case, the
controllability means[√

E(γ ),D(γ )
√
E(γ ), . . . , (D(γ ))m−1

√
E(γ )

]
is of full rank, and the observability means

g−1Ā

g−1ĀD(γ )

...

g−1Ā(D(γ ))m


.

Under such conditions, K is negative definite. Here, we have the controllability
condition. However, an observability condition may fail to hold. Under such
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a situation, the proof of Theorem 1, Section 2.3 in Brockett (1970) gives the
existence of K , but the stability of D(γ ) + E(γ )K does not follow immediately
from the results in Brockett (1970).

Lemma 3.3 follows from the results in Wonham (1968). It assumes the stability
and detectability of the system. In our case, the stability means the existence of K0
such that

D(γ ) −
√
E(γ )K0

is a stable matrix, and the detectability means the existence of K1 such that

D(γ )′ − −γ

1 − γ

1/2
Ā′g−1K1

is a stable matrix. Under such conditions, K is nonpositive definite, but may not
be negative definite.

We now summarize the results obtained above.

THEOREM 3.5. Equation (3.2) has a unique solution (�,W) satisfying the
following properties:

W(x) = 1
2Kx · x + e · x,(3.10)

K is nonpositive definite, e,� are given by (2.24). Moreover, D(γ ) + E(γ )K is
stable.

REMARK 3.6. If (�,W) is a solution with W given by (3.10), then b∗(x)
defined in Lemma 3.2 is linear

b∗(x) =D∗x + e∗,

where D∗ =D(γ ) +E(γ )K is stable.

Our aim in the rest is to prove that

�(γ ) = min
r>0

�(γ )
r

and the convergence of W(γ )
r to W(γ ) as r tends to infinity, where (�(γ )

r ,W
(γ )
r ) is

the unique solution of (3.1) such that ∇W
(γ )
r is bounded.

THEOREM 3.7. The solution (�,W) of (3.2) satisfying the following proper-
ties is unique: W(0)= 0, W(x) is concave and

|∇W(x)| ≤ c(1 + |x|) ∀ x ∈ Rm

for some c > 0.
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PROOF. Assume (�,W), (�̃, W̃ ) are solutions of (3.2) satisfying the above
properties. Subtract the equations for (�,W) and (�̃, W̃ ) to get

�̄ = 1
2%W̄(x)+ b∗(x) · ∇W̄ (x)+ 1

2∇W̄ (x) ·E(γ )∇W̄ (x),

W̄ (x) = W̃ (x)−W(x),

�̄ = �̃−�;
b∗(·) is given in Lemma 3.2, that is,

b∗(x)= b(x)+ γ

1 − γ
σ (D)′g−2µ̄(x)+E(γ )∇W(x).

Let x∗(t) be the diffusion process defined by

dx∗(t) = b∗(x∗(t)
)
dt + dB(t).

By Itô’s rule,

dW̄
(
x∗(t)

)= (
�̄− 1

2∇W̄
(
x∗(t)

) ·E(γ )∇W̄
(
x∗(t)

))
dt + ∇W̄

(
x∗(t)

) · dB(t).
Then

�̄T = Ex

[∫ T

0

1
2∇W̄

(
x∗(t)

) ·E(γ )∇W̄
(
x∗(t)

)
dt

]
+Ex

[
W̄
(
x∗(T )

)]− W̄ (x).

(3.11)

Dividing this relation by T and letting T → ∞, we get

�̄≥ 0.

Here we use the estimate in Lemma 3.2. Similarly we have �̄ ≤ 0. Therefore
�̄= 0.

Dividing (3.11) by T again and letting T → ∞, we now have∫
1
2∇W̄ (x) ·E(γ )∇W̄ (x)p∗(x) dx = 0;

p∗(x) is the invariant density for x∗(t). This implies ∇W̄ (x)= 0 a.e. with respect
to dx. Then W̃ (x)−W(x) is a constant which is equal to W̃ (0)−W(0)= 0. This
completes the proof. �

Here we shall mention some results given in Bensoussan and Frehse (1992)
and Nagai (1996) which relate to Theorem 3.7. These works discuss the similar
problem under a general framwork. In order to apply their result, we need to
assume the condition that

V (x)= − γ

2(1 − γ )

∣∣g−1µ̄(x)
∣∣2 − γµ0(x)

tends to ∞ as |x| tends to ∞. If this holds, then Lemma 3.2 in Nagai (1996),
or Theorem 4.1 in Bensoussan and Frehse (1992), implies the uniqueness of the
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solution satisfying the condition that −W(x) → ∞ as |x| → ∞. We see that
without suitable assumption these results cannot be directly applied to our case.

Let �(γ )
r be the minimal long-term growth rate for the investment problem with

constraint |u| ≤ r . By Theorem 3.1, there is a unique W(γ )
r such that W(γ )

r (0)= 0,
|∇W

(γ )
r (x)| is bounded and (�,W)= (�

(γ )
r ,W

(γ )
r ) is a classical solution of (3.1)

with U = Ur . Let (�(γ ),W(γ )) be the solution of (3.2) given in Theorem 3.5.
In the following, we shall show that (�(γ )

r ,W
(γ )
r ) converges to (�(γ ),W(γ )). We

need the following lemmas.

LEMMA 3.8. Let (�(γ )
r ,W

(γ )
r )(�(γ ),W(γ )) be defined as above. Then W̄ =

W
(γ )
r −W(γ ) is convex for any r > 0.

PROOF. Denote �̄ = �
(γ )
r − �(γ ), W̄ = W

(γ )
r −W(γ ). Then the equation of

(�
(γ )
r ,W

(γ )
r ) can be rewritten as follows:

�(γ )
r = 1

2
%
(
W̄ +W(γ )

)
(x)+ b(x) · ∇(W̄ +W(γ )

)
(x)+ 1

2

∣∣∇(W̄ +W(γ )
)
(x)

∣∣2
+ inf|u|≤r

{
γ
∑
i

uiσ
(i)
D · ∇(W̄ +W(γ )

)
(x)+ γ $(γ )(x, u)

}

= 1

2
%W̄(x)+ (

b(x)+ ∇W(γ ))(x) · ∇W̄ (x)+ 1

2

∣∣∇W̄ (x)
∣∣2

+�(γ ) − 1

2

γ

1 − γ

∣∣g−1(µ̄(x)+ σ (D)∇W(γ )(x)
)∣∣2 − γµ0(x)

+ inf|u|≤r

{
γ
∑
i

uiσ
(i)
D · ∇(W̄ +W(γ )

)
(x)+ γ $(γ )(x, u)

}
.

That is, (�̄, W̄ ) satisfies

�̄= 1
2%W̄(x)+ b(γ )(x) · ∇W̄ (x)+ 1

2∇W̄ (x) ·E(γ )∇W̄ (x)

+Hr

(
µ̄(x)+ σ (D)∇(W(γ ) + W̄

)
(x)

)
.

(3.12)

Here

b(γ )(x)= b(x)+ γ

1 − γ
σ (D)′g−2µ̄(x)+E(γ )∇W(γ )(x),

E(γ ) is given in (2.23) and

Hr(p) = −1

2

γ

1 − γ
|g−1p|2 + inf|u|≤r

[
γ u · p − 1

2
γ (1 − γ )|gu|2

]

= inf|u|≤r

[
−1

2

γ

1 − γ

∣∣g−1p − (1 − γ )gu
∣∣2].
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Then Hr(p) is convex. Denote Lr(v) the convex conjugate of Hr(p). Then

Lr(v)= sup
p

{v · p−Hr(p)}

= sup
p

sup
|u|≤r

{
v · p + 1

2

γ

1 − γ
|g−1p− (1 − γ )gu|2

}
= sup

|u|≤r

{
−1

2

1 − γ

γ
|g(v − γ u)|2 + 1

2
γ (1 − γ )|gu|2

}
= −1

2

1 − γ

γ
|gv|2 + (1 − γ ) sup

|u|≤r
gv · gu

= −1

2

1 − γ

γ
|gv|2 + (1 − γ )|gv|2 r

|v| .

(3.13)

The following relation holds:

Hr(p)= sup
v

{v · p −Lr(v)}.
Therefore,

Hr

(
µ̄(x)+ σ (D)

(∇W(γ )(x)+ ∇W̄ (x)
))

= sup
v

{
σ (D)′v · ∇W̄ (x)+Lr(x, v)

}
,

Lr(x, v)= v · (µ̄(x)+ σ (D)∇W(γ )(x)
)−Lr(v).

(3.14)

Write also

1
2q ·E(γ )q = sup

u

[
u · q − 1

2u ·E(γ )−1u
]
.(3.15)

From (3.12), (3.14) and (3.15), (3.12) is the dynamic programming equation for the
following stochastic control problem: Let (x̂(t), v(t), u(t)) be a process satisfying

dx̂(t)= (
b(γ )

(
x̂(t)

)+ σ (D)′v(t)+ u(t)
)
dt + dB(t),(3.16)

such that x̂(t), v(t), u(t) are progressively measurable w.r.t. a filtration {Ft } and
B(t) is a m-dim Ft -Brownian motion. Let

Ĵ (v, u)= sup lim
T→∞

1

T
E

[∫ T

0
L̂
(
x̂(t), v(t), u(t)

)
dt

]
,

L̂(x, v,u)= Lr(x, v)− 1
2u ·E(γ )−1u

= v · (µ̄(x)+ σ (D)∇W(γ )(x)
)−Lr(v)− 1

2u ·E(γ )−1u.

(3.17)

The goal is to maximize Ĵ (v, u) over all bounded processes (v,u). We shall prove
that �(γ )

r −�(γ ) = �̂ where

�̂= sup Ĵ (v, u).(3.18)
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Let apply Itô’s rule to W̄ (x̂(t)) for x̂(t) satisfying (3.16) and use (3.12), (3.14),

dW̄
(
x̂(t)

)=
(

1
2%W̄

(
x̂(t)

)+ (
b(γ )

(
x̂(t)

)+ σ (D)′v(t)+ u(t)
) · ∇W̄

(
x̂(t)

))
dt

+∇W̄
(
x̂(t)

) · dB(t)
≤
((
�(γ )
r −�(γ )

)− L̂
(
x̂(t), v(t), u(t)

))
dt + ∇W̄

(
x̂(t)

) · dB(t).
Then it is easily seen that

Ĵ (v, u)≤�(γ )
r −�(γ ),

that is,

�̂≤�(γ )
r −�(γ ).

Since Ĵ (0,0)= 0, we have

0 ≤ �̂≤�(γ )
r −�(γ ).

On the other hand, for each r̄ > 0, we consider the same control problem with
constraint |v̄(t)| ≤ r̄ . Then we can show the existence of (�̂r̄ , Ŵr̄ ) solving the
equation

�̂r̄ = 1
2%Ŵr̄(x)+ b(γ )(x) · ∇Ŵr̄ (x)

+ sup|v|≤r̄,u
{(
σ (D)′v + u

) · ∇Ŵr̄ (x)+ L̂(x, v,u)
}(3.19)

such that |∇Ŵr̄ | is bounded, Ŵr̄ (0) = 0. Moreover, Ŵr̄ is convex. This can be
proved by approximating the control problem using the associated discounted
control problem with discount factor ρ → 0. Here the properties that the running
cost L̄(x, v,u) is linear in x and the dynamics is linear in x, v,u are used to prove
the convexity of the value function Ŵ

(ρ)
r̄ (x) for the discounted control problem.

Then Ŵr̄ is the limit of Ŵ (ρ)
r̄ (x)− Ŵ

(ρ)
r̄ (0) as ρ → 0. See FM (1995) or Fleming

and Sheu (1999) for the details of this argument.
By (3.19) ,

�̂r̄ = 1
2%Ŵr̄(x)+ b(γ )(x) · ∇Ŵr̄ (x)+ 1

2∇Ŵr̄ (x) ·E(γ )∇Ŵr̄ (x)

+ sup
|v|≤r̄

[
σ (D)′v · ∇Ŵr̄ (x)+Lr̄(x, v)

]
≥ 1

2%Ŵr̄(x)+ b(γ )(x) · ∇Ŵr̄ (x)+ 1
2∇Ŵr̄ (x) ·E(γ )∇Ŵr̄ (x).

The convexity of Ŵr̄ (x) and

�̂r̄ ≤ �̂≤�(γ )
r −�(γ ) = �̄,(3.20)
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imply ∇Ŵr̄ (x), r̄ > 0, is bounded on bounded sets of x. Then we can take a
subsequent r̄ = r̄n → ∞ such that Ŵr̄n converges to Ŵ uniformly on compact set
and �̂r̄n converges to �̂ as n → ∞. Equation (3.12) holds for (�,W) = (�̂, Ŵ )

and Ŵ is convex. Since (�̄, W̄ ) = (�
(γ )
r −�(γ ), W̄ ) is also a solution for (3.12),

we expect W̄ = Ŵ which will be proved below.
Denote W̃ = Ŵ +W(γ ), �̃= �̂+�(γ ). Then

�̃ = 1
2%W̃(x)+ b(x) · ∇W̃ (x)+ 1

2

∣∣∇W̃ (x)
∣∣2 +Gr

(
x,∇W̃ (x)

)
,

Gr(x,p) = inf|u|≤r

[
γ
∑

uiσ
(i)
D · p + γ $(γ )(x, u)

]
.

Note that this is the same as (3.1) with U = Ur . Since (�
(γ )
r ,W

(γ )
r ) satisfies the

same equation, we substract these two relations. Then

�̃−�
(γ )
r = 1

2%
(
W̃ −W

(γ )
r

)
(x)+ b(x) · ∇(W̃ −W

(γ )
r )(x)

+∇W
(γ )
r (x) · ∇(W̃ −W

(γ )
r

)
(x)+ 1

2

∣∣∇(W̃ −W
(γ )
r

)
(x)

∣∣2
+Gr

(
x,∇W̃ (x)

)−Gr

(
x,∇W

(γ )
r (x)

)
.

(3.21)

Since Gr(x,p) is Lipschitz in p, there is a bounded vector field v(x),

v(x) · (∇W̃ (x)− ∇W(γ )
r (x)

)=Gr

(
x,∇W̃ (x)

)−Gr

(
x,∇W(γ )

r (x)
)
.

Define

b̃(x)= b(x)+ ∇W(γ )
r (x)+ v(x).

Let x̃(t) be the diffusion process satisfying

dx̃(t) = b̃
(
x̃(t)

)
dt + dB(t).

Apply Itô’s rule to W̃ (x̃(t))−W
(γ )
r (x̃(t)),

d
(
W̃ −W

(γ )
r

)(
x̃(t)

)= (
−1

2

∣∣∇(W̃ −W
(γ )
r

)(
x̃(t)

)∣∣2 + �̃−�
(γ )
r

)
dt

+∇(W̃ −W
(γ )
r

)(
x̃(t)

) · dB(t).(3.22)

Since ∇W
(γ )
r (x), v(x) are bounded functions, x̃(t) can be shown to satisfy

Ex

[|x̃(t)|2]≤ c(e−αt |x|2 + 1) for all x and t > 0.(3.23)

Here c,α are some positive constants. This implies x̃(t) is ergodic with invariant
density p̃(·). Integrating (3.22) over t ∈ [0, T ], taking expectation, dividing both
sides by T , then letting T → ∞ and by using an ergodic theorem, we get∫ (

−1
2

∣∣∇(W̃ −W(γ )
r

)∣∣2(x)+ �̃−�(γ )
r

)
p̃(x) dx = 0.(3.24)

Here we use (3.23) and |W̃ (x)| ≤ c(1 + |x|). By (3.20), we have �̃ − �
(γ )
r ≤ 0.

Then (3.24) implies �̃−�
(γ )
r = 0 and ∇(W̃ −W

(γ )
r ) = 0. Therefore, W̃ −W

(γ )
r
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is constant and is equal to W̃ (0)−W
(γ )
r (0) = 0, that is, W̃ = W

(γ )
r . This implies

(3.18) and W̄ = Ŵ , therefore, is convex. This completes the proof. �

LEMMA 3.9. Let (�(γ )
r ,W

(γ )
r ) be as in Theorem 3.1. Then W

(γ )
r is concave.

PROOF. Let fix γ < 0, r > 0. By the argument in FM (1995), Theorem 7.1,
and Fleming and James, Theorem 3.1, for each ρ > 0 there is a unique W(ρ) in
C2(Rm) such that

ρW(ρ)(x) = 1
2%W

(ρ)(x)+ 1
2

∣∣∇W(ρ)(x)
∣∣2 + b(x) · ∇W(ρ)(x)

+ min
u∈Ur

[
γ
∑

uiσ
(i)
D · ∇W(ρ)(x)+ γ $(γ )(x, u)

]
and |∇W(ρ)| is bounded. Moreover, ρW(ρ)(0) converges to �

(γ )
r and W(ρ)(x) −

W(ρ)(0) converges to W
(γ )
r (x) uniformly for x in compact sets as ρ tends to 0.

Therefore, it is enough to prove that W(ρ) is concave for each ρ. In the following,
we write W for W(ρ). Our strategy to prove the concavity of W is to express W
as the value function of a discounted stochastic control problem with a special
feature: the dynamics is linear, the running cost is concave in the state and control
variables. This implies the concavity of W by a standard argument.

We rewrite the above equation as follows:

ρW(x) = 1

2
%W(x)+ b(x) · ∇W(x)+ 1

2
∇W(x) ·E(γ )∇W(x)

+ γ

1 − γ
σ (D)′g−2µ̄(x) · ∇W(x)+ 1

2

γ

1 − γ

∣∣g−1µ̄(x)
∣∣2 + γµ0(x)

− 1

2

γ

1 − γ

∣∣g−1(µ̄(x)+ σ (D)∇W(x)
)∣∣2

+ inf|u|≤r

[
γ
(
µ̄(x)+ σ (D)∇W(x)

) · u− 1

2
γ (1 − γ )|gu|2

]
= 1

2
%W(x)+ b(γ )(x) · ∇W(x)+ 1

2
∇W(x) ·E(γ )∇W(x)

+ 1

2

γ

1 − γ

∣∣g−1µ̄(x)
∣∣2 + γµ0(x)+Hr

(
µ̄(x)+ σ (D)∇W(x)

)
,

b(γ )(x) = b(x)+ γ

1 − γ
σ (D)′g−2µ̄(x).

(3.25)

Here

Hr(p)= inf|u|≤r

{
−1

2

γ

1 − γ
|g−1p − (1 − γ )gu|2

}
.
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Define

Lr(v) = sup
p

{v · p−Hr(p)}

= −1

2

1 − γ

γ
|gv|2 + sup

|u|≤r
{(1 − γ )gv · gu}

= −1

2

1 − γ

γ
|gv|2 + L̄r(v).

See (3.13). L̄r (v)= sup|u|≤r{(1 −γ )gv ·gu} is convex. Then Hr(p)= sup{v ·p−
Lr(v); v},

1

2

γ

1 − γ
|g−1µ̄(x)|2 +Hr

(
µ̄(x)+ σ (D)∇W(x)

)
= 1

2

γ

1 − γ
|g−1µ̄(x)|2

+ sup
v

{(
µ̄(x)+ σ (D)∇W(x)

) · v + 1

2

1 − γ

γ
|gv|2 − L̄r (v)

}

= sup
v

{
σ (D)′v · ∇W(x)− L̄r (v)+ 1

2

γ

1 − γ

∣∣∣∣g−1µ̄(x)+ 1 − γ

γ
gv

∣∣∣∣2}.
From this, (3.25) becomes,

ρW(x)= 1

2
%W(x)+ b(γ )(x) · ∇W(x)+ 1

2
∇W(x) ·E(γ )∇W(x)+ γµ0(x)

+ sup
v

{
σ (D)′v · ∇W(x)− L̄r (v)+ γ

2(1 − γ )

∣∣∣∣g−1µ̄(x)+ 1 − γ

γ
gv

∣∣∣∣2
}

= 1

2
%W(x)+ b(x) · ∇W(x)+ 1

2
∇W(x) ·E(γ )∇W(x)+ γµ0(x)

+ sup
v

{
σ (D)′v · ∇W(x)− L̄r

(
v − γ

1 − γ
g−2µ̄(x)

)
+ 1 − γ

2γ
|gv|2

}
.

(3.26)

Denote L̄r (x, v) = L̄r (v − γ
1−γ

g−2µ̄(x)) − 1
2

1−γ
γ

|gv|2. Thus, (3.26) is the
dynamic programming equation for the following stochastic control problem: Let
(x̄(t), v(t), u(t)) be a process satisfying

dx̄(t) =
(
b
(
x̄(t)

)+ σ (D)′v(t)+ u(t)
)
dt + dB(t)(3.27)

such that x̄(t), v(t), u(t) are progressive measurable w.r.t. a filtration {Ft}, B(t) is
an m-dim Ft -Brownian motion. Define

J̄ (v, u)=E

[∫ ∞
0

e−ρt
(
γµ0

(
x̄(t)

)− L̄r

(
x̄(t), v(t)

)− 1
2u(t) ·E(γ )−1

u(t)
)
dt

]
.
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The goal is to maximize J̄ (v, u) over all processes (v,u) such that u and v are
bounded. Since ∇W is bounded and b(·) is stable, we can prove by a standard
argument that W is the value function of this control problem. Since the drift of
the dynamics is linear and the running cost is concave in (x̄, v, u), W is concave.
See Fleming and Rishel (1975), page 196. This completes the proof. �

Now we can state our main result of this section.

THEOREM 3.10. Let (�(γ )
r ,W

(γ )
r ), (�(γ ),W(γ )) be as in Lemma 3.8. Then

�
(γ )
r converges to �(γ ),W

(γ )
r converges to W(γ ) uniformly on compact sets as

r → ∞.

PROOF. By Lemma 3.8 and (3.12), ∇W
(γ )
r is bounded in r uniformly on

compact sets. Therefore, we may consider a limit of W(γ )
r through a sequence

r = rn → ∞, denoted as (�,W). By Lemma 3.9, W is concave and (�,W) is
a solution of (3.2). By Theorem 3.7, (�,W) = (�(γ ),W(γ )). This completes the
proof. �

REMARK 3.11. By the convexity of W(γ )
r − W(γ ) and the convergence of

W
(γ )
r −W(γ ) as r → ∞, it is not difficult to show that ∇W

(γ )
r −∇W(γ ) converges

to 0 uniformly on compact sets as r → ∞. Let denote u(γ )(x) the argmin in (3.1)
with U =RN , �=�(γ ), W =W(γ ). Similarly, u(γ )r (x) is the argmin in (3.1) with
U =Ur , �=�

(γ )
r , W =W

(γ )
r . Using the above result, we can also show that u(γ )r

converges to u(γ ) uniformly on compact sets as r → ∞.

THEOREM 3.12. If γ < 0 and −γ is small, then the Markovian investment
policy u(γ )(x) defined by

u(γ )(x) = 1

1 − γ
g−2(µ̄(x)+ σ (D)∇W(γ )(x)

)
attains the optimal exponential growth rate �(γ ).

PROOF. The following idea has been used in Fleming and Sheu (1999).
Denote x∗(t) = xu(t) defined by (2.11) with u(t) = u(γ )(x∗(t)). Since � =�(γ ),
W = W(γ ) satisfy (3.2) which is equivalent to (3.1) with U = RN , the equation
can be rewritten as

�(γ ) = 1
2%W

(γ )(x)+ 1
2

∣∣∇W(γ )(x)
∣∣2 + b(x) · ∇W(γ )(x)

+γ
∑

u
(γ )
i (x)σ

(i)
D · ∇W(γ )(x)+ γ $(γ )

(
x,u(γ )(x)

)
.
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By applying Ito’s differential rule to W(γ )(x∗(t)) and using the above equation,
we have ∫ T

0
γ $(γ )

(
x,u(γ )

(
x∗(t)

))
dt

=�(γ )T −W(γ )
(
x∗(T )

)+W(γ )
(
x∗(0)

)
+
∫ T

0
∇W(γ )

(
x∗(t)

) · dB(t)− 1
2

∫ T

0

∣∣∇W(γ )
(
x∗(t)

)∣∣2 dt.
(3.28)

Let V (t) be the investor’s wealth at time t using the investment policy u(γ )(·).
Then, by (2.9) and (3.28),

E[V (T )γ ] = exp
(
�(γ )T +W(γ )(x)

)
Ex

[
exp

(−W(γ )(x∗(T )
))

× exp
(∫ T

0
∇W(γ )

(
x∗(t)

) · dB(t)− 1
2

∫ T

0

∣∣∇W(γ )
(
x∗(t)

)∣∣2dt)].
Now change the probability measures from P to P̂ , where on FT ,

dP̂

dP
= exp

(∫ T

0
∇W(γ )(x∗(t)

) · dB(t)− 1
2

∫ T

0

∣∣∇W(γ )(x∗(t)
)∣∣2 dt).

Denote Ê[. . .] as the expectation under P̂ . Then

E[V (T )γ ] = exp
(
�(γ )T +W(γ )(x)

)
Êx

[
exp

(−W(γ )(x∗(T )
))]

.(3.29)

Under P̂ , x∗(t) satisfies the equation

dx∗(t) = b∗(x∗(t)
)
dt + dB̂(t),

where B̂(t) is a Brownian motion under P̂ . See Lemma 3.2 with W = W(γ ). We
shall prove later that

0 ≤ −K(γ ) ≤ c|γ |I(3.30)

for some c > 0 and small |γ |, where I is the identity matrix. Using this and the
argument in the proof of Lemma 3.2, we can show that there is c1 > 0, independent
of γ if |γ | is small, and for all α > 0 there is c2 > 0 such that we have

Êx

[
exp

(
c1|x∗(T )|2)]≤ c2 + exp(−αT ) exp(c1|x|2).

Using this and (3.30), we can deduce the following:

lim
T→∞

1

T
log Êx

[
exp

(−W(γ )
(
x∗(T )

))]= 0.

By (3.29), this shows that �(γ ) is the exponential growth rate using the policy
u(γ )(·). The proof is complete. �
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We now show (3.30). Recall that K = K(γ ) satisfies (2.22). We use the
following relation. For any C, a m×m matrix, we have

K(γ )E(γ )K(γ ) ≥ −C′(E(γ )
)−1

C +C′K(γ ) +K(γ )C.

Take

C = − γ

1 − γ
σ (D)g−2Ā.

Then (2.20) implies

KD +D′K −C′(E(γ ))−1
C +Q(γ ) ≤ 0.

Let φ(t) be the solution of

dφ(t)

dt
=Dφ(t), φ(0)= x.

Then
d

dt
〈Kφ(t),φ(t)〉 ≤ 〈(

C′(E(γ )
)−1

C −Q(γ )
)
φ(t), φ(t)

〉
.

That is,

〈Kφ(T ),φ(T )〉 − 〈Kx,x〉 ≤
∫ T

0

〈(
C′(E(γ )

)−1
C −Q(γ )

)
φ(t), φ(t)

〉
dt.

Let T → ∞, and use the property that |φ(T )| ≤ |x| exp(−c0T ) which is a
consequence of (2.4). Then

−〈Kx,x〉 ≤
∫ ∞

0

〈(
C′(E(γ )

)−1
C −Q(γ )

)
φ(t), φ(t)

〉
dt.

Since we have |C| ≤ c|γ |, |Q(γ )| ≤ c|γ | for some c > 0, then (3.30) follows
easily.

REMARK 3.13. In the proof of Theorem 3.12, the diffusion x∗(t) is Gaussian
and has the invariant measure which is Gaussian with covariance matrix V ,

V =
∫ ∞

0
exp

((
D(γ ) +E(γ )K(γ ))t) exp

((
D(γ ) +E(γ )K(γ ))′t) dt.

We note that V also satisfies the equation(
D(γ ) +E(γ )K(γ )

)
V + V

(
D(γ ) +E(γ )K(γ )

)′ = −I.

It is not difficult to show that

lim
T→∞

1

T
log Êx

[
exp

(−W(γ )
(
x∗(T )

))]= 0

if and only if

−K(γ ) ≤ V−1.

It is very interesting to see when this holds. See Kuroda and Nagai (2000) for some
interesting ideas relating to this.
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4. Positive HARA parameter. In this section, we consider γ , 0 < γ < 1. We
continue to study (2.18) for such γ and its relation to the optimal growth rate of the
corresponding long-term investment problem. Denote �(γ )

r the optimal growth rate
for long-term investment problem with constraint U = Ur . Then �

(γ )
r is finite for

each γ > 0 and there is a unique W(γ )
r such that (�,W)= (�

(γ )
r ,W

(γ )
r ) satisfies

�= 1
2%W(x)+ 1

2

∣∣∇W(x)
∣∣2 + b(x) · ∇W(x)

+ max|u|≤r

[
γ
∑

uiσ
(i)
D · ∇W(x)+ γ $(γ )(x, u)

]
,

(4.1)

and W
(γ )
r (0)= 0, |∇W

(γ )
r | is bounded. Here

$(γ )(x, u)= −1
2 (1 − γ )

∣∣∣∣∑uiσ
(i)

∣∣∣∣2 +∑
uiµ̄i(x)+µ0(x).

For the notation, see Section 2. We define

�(γ ) = sup
r>0

�(γ )
r ,

and call it the optimal growth rate of the long-term investment problem.

THEOREM 4.1. Assume �(γ ) is finite. Then (2.18) has a solution (�,W) such
that �=�(γ ) and W(x) is convex.

PROOF. As in Theorem 3.1, for each γ > 0 there is unique W
(γ )
r in C2(Rm)

such that (�,W) = (�
(γ )
r ,W

(γ )
r ) satisfies (4.1), the properties that W(γ )

r (0) = 0
and ∇W

(γ )
r is bounded. Equation (4.1) is the DPE for an average unit time control

problem with state dynamics

dx̄(t) =
(
b
(
x̄(t)

)+ γ
∑

ui(t)σ
(i)
D + v(t)

)
dt + dB(t),

and the cost criterion

J̄ (u, v)= lim sup
T→∞

1

T
E

[∫ T

0

(
γ $(γ )

(
x̄(t), u(t)

)− 1

2
|v(t)|2

)
dt

]
.

Since the dynamics is linear in x,u, v and the running cost is convex in x, by a
routine argument, we can show that W(γ )

r is convex.

By (4.1) and convexity of W
(γ )
r , we can prove that ∇W

(γ )
r is bounded on

compact sets uniformly in r . We can take a subsequence r = rn → ∞ such that
W

(γ )
rn converges uniformly on compact sets to W as n → ∞. Then (�,W),� =

�(γ ), satisfies (2.18) and W is convex. This completes the proof. �
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Let �(γ ) < ∞ and (�,W) be the solution of (2.18) in Theorem 4.1. We can
rewrite (2.18) as

�= 1

2
%W(x)+ b(γ )(x) · ∇W(x)+ 1

2
∇W(x) ·E(γ )∇W(x)

+ 1

2

γ

1 − γ

∣∣g−1µ̄(x)
∣∣2 + γµ0(x),

(4.2)

where

b(γ )(x)= b(x)+ γ

1 − γ
σ (D)′g−2µ̄(x)=D(γ )x + a(γ ),

with

D(γ ) = D + γ

1 − γ
σ (D)′g−2Ā,

a(γ ) = γ

1 − γ
σ (D)′g−2ā.

LEMMA 4.2. Let 0 < γ < 1. Assume �(γ ) <∞. Then D(γ ) is a stable matrix.

PROOF. Let z(t) be the diffusion process defined by

dz(t)= b(γ )
(
z(t)

)
dt + dB(t).

It is enough to prove that there are c,α > 0 such that

Ex

[|z(t)|2]≤ c
(|x|2e−αt + 1

)
(4.3)

for all x ∈Rm, t ≥ 0.
Let (�,W) be the solution of (4.2) given in Theorem 4.1. By Ito’s rule,

dW
(
z(t)

)=
(
�− 1

2

γ

1 − γ

∣∣g−1µ̄
∣∣2(z(t))− γµ0

(
z(t)

)
− 1

2
∇W

(
z(t)

) ·E(γ )∇W
(
z(t)

))
dt + ∇W

(
z(t)

) · dB(t).
Then considering W(z(t))eαt for α > 0 to be determined later, we have

Ex

[
W
(
z(T )

)]
eαT

=W(x)+Ex

[∫ T

0
eαt

(
�− 1

2

γ

1 − γ

∣∣g−1µ̄
(
z(t)

)∣∣2 − γµ0
(
z(t)

)
− 1

2
∇W

(
z(t)

) ·E(γ )∇W
(
z(t)

)+ αW
(
z(t)

))
dt

]
.

(4.4)
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Also

d|z(t)|2 =
(

2z(t) ·b(z(t))+2
γ

1 − γ
z(t) ·σ (D)′g−2µ̄

(
z(t)

)+m

)
dt+2z(t) ·dB(t),

Ex

[|z(T )|2]eαT
≤ |x|2 +Ex

[∫ T

0
eαt

(
(−2c0 + α)|z(t)|2 + c0|z(t)|2

+ 1

c0

(
γ

1 − γ

)2∥∥σ (D)′g−1∥∥2∣∣g−1µ̄
(
z(t)

)∣∣2 +m

)
dt

]
.

(4.5)

Here we use (2.4) and

2
γ

1 − γ

∣∣z(t) · σ (D)′g−2µ̄
(
z(t)

)∣∣
≤ c0|z(t)|2 + 1

c0

(
γ

1 − γ

)2∣∣σ (D)′g−2µ̄
(
z(t)

)∣∣2
≤ c0|z(t)|2 + 1

c0

(
γ

1 − γ

)2∥∥σ (D)′g−1∥∥2∣∣g−1µ̄
(
(t)
)∣∣2.

Taking α < 1
2c0, c = 2 1

c0

γ
1−γ

‖σ (D)′g−1‖2 and using (4.4) and (4.5),

Ex

[|z(T )|2 + cW
(
z(T )

)]
eαT

≤ (|x|2 + cW(x)
)+Ex

[∫ T

0
eαt

(−1
2c0|z(t)|2 − cγµ0

(
z(t)

)
+ cαW

(
z(t)

)+m+ c�
)
dt

]
≤ (|x|2 + cW(x)

)+ c̃eαT ,

(4.6)

if α is small enough. Here we use |W(x)| ≤ c1(1 + |x|2) by (4.2). The convexity
of W(x) implies

W(x) ≥ −c2(1 + |x|).
These properties and (4.6) imply (4.3). This completes the proof. �

In Section 2, we have seen that if W is quadratic,

W(x)= 1
2Kx · x + e · x,

then K satisfies (2.21), that is,

D′K +KD +K2 + γ

1 − γ

(
Ā′ +Kσ(D)′)g−2(Ā+ σ (D)K

)= 0(4.7)
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holds. Although, we expect W to be quadratic for the solution (�,W) of (4.2) in
Theorem 4.1, we could not prove this here. However, we shall prove that (4.7) has
a solution K which is nonnegative.

LEMMA 4.3. Assume 0 < γ < 1 and �(γ ) is finite. Then (4.7) has a unique
solution K(γ ) such that K(γ ) is nonnegative definite and D(γ ) + E(γ )K(γ ) is
semistable.

PROOF. Let (�,W) be the solution of (2.18) in Theorem 4.1. For λ > 0,
consider

W̄λ(x)= 1

λ2W(λx).

Since |∇W(x)| ≤ c(1 + |x|), then

|∇W̄λ(x)| ≤ c
1

λ
(1 + |λx|).

Therefore, W̄λ(·), λ ≥ 1, is a compact family of functions. We choose a sequence
λn → ∞ such that W̄λn converges uniformly on compact sets as n → ∞, and we
denote W̄ (·) for the limit. Then W̄ (·) has the following properties:

(i) W̄ is convex;

(ii) |∇W̄ (x)| ≤ c1|x|;
(iii) 0 ≤ W̄ (x)≤ c2|x|2.

(4.8)

Moreover, W̄ is a viscosity solution of the following equation:

D(γ )x · ∇W̄ (x)+ 1

2
∇W̄ (x) ·E(γ )∇W̄ (x)+ 1

2

γ

1 − γ

∣∣g−1Āx
∣∣2 = 0.(4.9)

That is, for any x ∈Rm, T > 0,

W̄ (x)= sup
v

{∫ T

0

(
1

2

γ

1 − γ

∣∣g−1Āφ(t)
∣∣2 − 1

2
v(t) ·E(γ )−1

v(t)

)
dt

+W̄
(
φ(T )

)}
,

(4.10)

where φ satisfies

dφ

dt
=D(γ )φ(t)+ v(t), φ(0)= x(4.11)

and ∫ T

0
|v(t)|2 dt <∞.
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See McEneaney (1995). Clearly, (4.10) implies a dissipation inequality which has
appeared in systems theory,∫ T

0

(
1

2

γ

1 − γ

∣∣g−1Āφ(t)
∣∣2 − 1

2
v(t) ·E(γ )−1

v(t)

)
dt ≤ W̄ (x)− W̄

(
φ(T )

)
for φ satisfying (4.11). Then results in Willems (1971) can be applied to assert the
existence of a quadratic solution W+(x) of (4.9),

W+(x)= 1
2K

(γ )x · x,(4.12)

K(γ ) ≥ 0 and

D(γ )∗ =D(γ ) +E(γ )K(γ )(4.13)

is a semistable matrix (i.e., the real part of the eigenvalues are nonpositive). See
Lemma 5 and Theorem 7 in Willems (1971). This completes the proof. �

REMARK 4.4. In Theorem 4.8, we show that W̄ is equal to W+ given in
(4.12). It is also important to know if D(γ )∗ in (4.13) is a stable matrix. We shall
prove these later if γ is small.

THEOREM 4.5. Let 0 < γ < 1. Assume (4.7) has a solution K(γ ) ≥ 0 such
that D(γ )∗ defined in (4.13) is a stable matrix. Define e(γ ),�(γ ) by (2.24) with
K =K(γ ) and

W(γ )(x)= 1
2K

(γ )x · x + e(γ ) · x.
Then the optimal growth rate for the investment problem is finite and is equal
to �(γ ). Moreover, (�(γ ),W(γ )) is the solution of (2.18) given in Theorem 4.1. In
particular, we have W(γ )

r converges to W(γ ) uniformly on compact sets as r → ∞.

PROOF. First, we show that �(γ )
r ≤ �(γ ) for each r > 0; therefore, � ≤�(γ )

with � being the optimal growth rate. Then by Theorem 4.1, there exists W , a
convex function, such that (�,W) satisfies (2.18) and

|∇W(x)| ≤ c(1 + |x|).
As mentioned in the beginning of this section, there is unique W

(γ )
r such that

(4.1) holds. Then by a standard argument [see FM (1995)] that

�(γ )
r = sup

u,v
J̄ (u, v),

where the sup is taken through stochastic processes u(·), v(·) such that they are
progressively measurable with respect to a filtration {Ft } and |u(t)| ≤ r , v(t) is
bounded, where
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J̄ (u, v) = lim sup
T→∞

1

T
E

[∫ T

0

(
γ $(γ )

(
x̄(t), u(t)

)− 1

2
|v(t)|2

)
dt

]
,

dx̄(t) =
(
b
(
x̄(t)

)+ γ
∑

ui(t)σ
(i)
D + v(t)

)
dt + dB(t),

x̄(·) is progressively measurable with respect to {Ft} and B(·) is a Brownian
motion with respect to {Ft }.

Since (�(γ ),W(γ )) also satisfies (2.18), we have

�(γ ) ≥ 1
2%W

(γ )(x)+ b(x) · ∇W(γ )(x)+ v · ∇W(γ )(x)− 1
2 |v|2

+γ
∑

uiσ
(i)
D · ∇W(γ )(x)+ γ $(γ )(x, u)

(4.14)

for all x,u and v. Let u(·), v(·) be progressively measurable with respect to {Ft}
such that |u(t)| ≤ r , v(t) is bounded and x̄(·) satisfy the above equation. Then by
Itô’s rule and the relation (4.14),

dW(γ )
(
x̄(t)

) ≤
(
�(γ ) − γ $(γ )

(
x̄(t), u(t)

)+ 1
2 |v(t)|2

)
dt

+∇W(γ )(x̄(t)) · dB(t).
Therefore,∫ T

0

(
γ $(γ )

(
x̄(t), u(t)

)− 1
2 |v(t)|2

)
dt ≤�(γ )T +

∫ T

0
∇W(γ )

(
x̄(t)

) · dB(t)
+W(γ )(x̄(0))−W(γ )(x̄(T )),

then

Ex

[∫ T

0

(
γ $(γ )

(
x̄(t), u(t)

)− 1
2 |v(t)|2

)
dt

]
≤�(γ )T +Ex

[−W(γ )(x̄(T ))]+W(γ )(x).

(4.15)

Since u, v are bounded, by using the condition (2.4), it is routine to prove that
there are α,β, c > 0, such that

Ex

[
exp

(
β|x̄(t)|2)]≤ e−αteβ|x|2 + c.

Together with (4.15) we can prove �(γ )
r ≤�(γ ), hence �≤�(γ ).

Now we prove � = �(γ ) and W = W(γ ). We substract the equations for
(�(γ ),W(γ )) and (�,W),

�(γ ) −�= 1
2%

(
W(γ ) −W

)+ (
b(γ ) +E(γ )∇W(γ )

) · ∇(W(γ ) −W
)

− 1
2∇(W(γ ) −W

) ·E(γ )∇(W(γ ) −W
)
.

(4.16)

Let x∗(t) be the diffusion defined by

dx∗(t) = (
b(γ ) +E(γ )∇W(γ )

)(
x∗(t)

)
dt + dB(t).
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By the condition that D(γ )∗ is stable, x∗(t) is ergodic and has unique invariant
probability density p∗(x). Then (4.16) implies

�(γ ) −�+
∫

1
2∇(W(γ ) −W

)
(y) ·E(γ )∇(W(γ ) −W

)
(y)p∗(y)= 0.

Therefore, �(γ ) −�= 0 and ∇(W(γ ) −W) = 0 a.e. Then W(γ ) −W is a constant
and is identical to W(γ )(0)−W(0)= 0. This completes the proof. �

THEOREM 4.6. If 0 < γ < 1 and γ is small enough, then (4.7) has a unique
solution K(γ ) satisfying

0 ≤K(γ ) ≤ cγ I

for some c > 0, where I is the identity matrix. Therefore,D(γ )∗ defined in (4.13) is
a stable matrix. �(γ ) defined by (2.24) with K = K(γ ) is the optimal growth rate
for the investment problem.

PROOF. By Theorem 4.5, it is enough to show the existence of K(γ ) satisfying
the required properties. We first show that there is c > 0 such that W0(x)= cγ |x|2
satisfies∫ T

0

(
1

2

γ

1 − γ

∣∣g−1Āφ(t)
∣∣2 − 1

2
v(t) ·E(γ )−1v(t)

)
dt ≤W0(x)−W0

(
φ(T )

)
(4.17)

if φ satisfies (4.11) and φ(0)= x. In fact, by (4.11),

d

dt
|φ(t)|2 = 2Dφ(t) · φ(t)+ 2

γ

1 − γ
σ (D)′g−2Āφ(t) · φ(t)+ 2φ(t) · v(t).

Then using Dx · x ≤ −c0|x|2, we have

d

dt
|φ(t)|2 ≤ −(c0 − c1γ )|φ(t)|2 + 1

c0
|v(t)|2

≤ −1

2
c0|φ(t)|2 + 1

c0
|v(t)|2

if c0 − c1γ ≥ 1
2c0; that is, c1γ ≤ 1

2c0. Therefore, for some c2 > 0,∫ T

0

1

2

γ

1 − γ

∣∣g−1Āφ(t)
∣∣2 dt ≤ c2γ

∫ T

0
|φ(t)|2 dt

≤ 2c2

c0
γ

(
1

c0

∫ T

0
|v(t)|2 dt + |φ(0)|2 − |φ(T )|2

)
,

∫ T

0

(
1

2

γ

1 − γ

∣∣g−1Āφ(t)
∣∣2 − 1

2
v(t) ·E(γ )−1v(t)

)
dt ≤W0(x)−W0

(
φ(T )

)
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if γ small enough and W0(x) = cγ |x|2 with c = 2c2
c0

. By Theorem 7 in Willems
(1971),

V+(x)= 1
2K

(γ )x · x,
for some K(γ ) ≥ 0 satisfying (4.7), where

V+(x) = sup
∫ ∞

0

(
1

2

γ

1 − γ

∣∣g−1Āφ(t)
∣∣2 − 1

2
v(t) ·E(γ )−1v(t)

)
dt,

where the sup is taken over φ(t) satisfying (4.11) such that φ(t) → 0 as t → ∞.
By (4.17), V+(x) ≤W0(x). Therefore,

0 ≤K(γ ) ≤ cγ I.

This completes the proof. �

Fix γ > 0 and assume that �(γ ) is finite. We recall K(γ ) a particular solution
of (4.7) defined in Lemma 4.3. For each r > 0, �(γ ),W

(γ )
r is the solution of (4.1)

mentioned before.

LEMMA 4.7. For each r > 0, W(γ )
r (x) − 1

2K
(γ )x · x is a concave function.

In particular, W(x) − 1
2K

(γ )x · x is a concave function, where W is given in
Theorem 4.1.

PROOF. The argument is similar to that used in the proof of Lemma 3.8. We
shall sketch it. Fix γ and r > 0 and denote W̄ (x)=W

(γ )
r (x)− 1

2K
(γ )x · x. Then

�(γ ) = 1
2W̄ (x)+ 1

2 trK(γ ) + b(x) · (∇W̄ (x)+K(γ )x
)+ 1

2

∣∣∇W̄ (x)+K(γ )x
∣∣2

+ sup
|x|≤r

{
γ σ (D)′u · (∇W̄ (x)+K(γ )x

)+ γ $(γ )(x, u)
}

= 1
2W̄ (x)+ 1

2 trK(γ ) + (
b(x)+K(γ )x

) · ∇W̄ (x)+ 1
2 |∇W̄ (x)|2

+ sup
|x|≤r

{
γ σ (D)′u · ∇W̄ (x)+ L̄(x,u)

}
,

where

L̄(x,u)= −1

2
γ (1 − γ )

∣∣∣∣gu− 1

1 − γ
g−1(Ā+ σ (D)K(γ ))x∣∣∣∣2 + γ ā · u+ γµ0(x).

In the derivation, we use (4.7) for K =K(γ ). Therefore, we can interpret the above
equation as the DPE for a control problem which the running cost L̄(x,u)− 1

2 |v|2
is concave in (x,u, v) and the dynamics is linear. Then a standard argument gives
the concavity of W̄ . The proof is complete. �
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THEOREM 4.8. Let W be the function given in Theorem 4.1. Then W(λx)/λ2

converges to 1
2K

(γ )x · x uniformly on compact sets as λ → ∞. Also, ∇W(λx)/λ

converges to K(γ )x uniformly on compact sets as λ→ ∞.

PROOF. As in the proof of Lemma 4.3, denote W̄ a limit of W(λx)/λ2 along
a sequence λ= λn and λn → ∞. Then (4.10) holds. It implies 1

2K
(γ )x · x ≤ W̄ (x)

since

1

2
K(γ )x · x = sup

v

{∫ ∞
0

(
γ

2(1 − γ )

∣∣g−1Āφ(t)
∣∣2 − 1

2
v(t) ·E(γ )v(t)

)
dt

}
,

where φ(t) satisfies (4.11). The sup is taken over all v(·) such that φ(t) → 0 as
t → ∞.

On the other hand, Lemma 4.7 implies W̄ (x)≤ 1
2K

(γ )x · x for all x. Therefore,
W̄ (x) = 1

2K
(γ )x · x for all x. Thus, we have proved that 1

2K
(γ )x · x is the unique

limit of W(λx)/λ2, λ→ ∞. This implies that W(λx)/λ2 converges to 1
2K

(γ )x · x
as λ → ∞. The convergence of ∇W(λx)/λ to K(γ )x follows from this and
the concavity of W(λx)/λ − 1

2K
(γ )x · x. See Remark 3.11. This completes the

proof. �

In the rest, for 0 < γ < 1, the optimal growth rate is denoted by �(γ ) if it is
finite.

THEOREM 4.9. Assume �(γ ) < ∞ for all 0 < γ < 1. Then there is a
nonnegative definite matrix K(1) such that

Ā= −σ (D)K(1),

D′K(1) +K(1)D + (K(1))2 ≤ 0.
(4.18)

PROOF. For 0 < γ < 1, by Lemma 4.3, (4.7) has a solution K(γ ) such that
K(γ ) ≥ 0 and D(γ )∗ defined by (4.13) is semistable. See also Theorem 2.2.
From (4.7),

D′K(γ ) +K(γ )D + (K(γ ))2 ≤ 0.(4.19)

This implies ∥∥K(γ )
∥∥≤ 2‖D‖.

We can take a sequence γn → 1 such that K(γn) →K(1) as n→ ∞.
Again, from (4.7),

(
Ā′ +K(γ )σ (D)′)g−2(Ā+ σ (D)K(γ )

)= −1 − γ

γ

(
D′K(γ ) +K(γ )D + (

K(γ )
)2)

.
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The quantity on the right-hand side tends to 0 as γ → 1 by the boundedness
of K(γ ). In particular, taking γ = γn and letting n→ ∞, we get

Ā+ σ (D)K(1) = 0.

Also, in (4.19), letting γ = γn and n→ ∞, we have

D′K(1) +K(1)D + (
K(1))2 ≤ 0

The proof is complete. �

REMARK 4.10. Assume (4.7) has a solution K(γ ) ≥ 0 such that (4.13) is a
stable matrix for each 0 < γ < 1. Define �(γ ),W(γ ) as in Theorem 4.5. Assume
�(γ ) is bounded in 0 < γ < 1. Then by (2.18),

µ̄(x)+ σ (D)(K(γ )x + e(γ )
)→ 0 as γ → 1(4.20)

and K(γ )x + e(γ ) is bounded in γ for x in bounded sets. ‘Therefore, we may take
γ = γn → 1 as n→ ∞ such that

K(γn) →K(1), e(γn) → e(1) as n→ ∞.

Then (4.20) implies

µ̄(x)+ σ (D)(K(1)x + e(1)
)= 0,

that is,

Ā = −σ (D)K(1),

ā = −σ (D)e(1).

Conversely, under additional conditions we can show the boundedness of �(γ ) as
given in the following theorem.

THEOREM 4.11. Assume that there are K , a positive definite matrix, and e, a
vector, such that

σ (D)K + Ā= 0,

σ (D)e+ ā = 0
(4.21)

and

−Q=D′K +KD +K2

is negative definite. Then �(γ ) is finite for each 0 < γ < 1. Moreover, �(γ ),
0 < γ < 1 is bounded.
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PROOF. Let xu(t) be a process satisfying (2.11) with |u(t)| bounded by r .
Denote

W(x)= 1
2Kx · x + e · x.

By Itô’s rule,

dW(xu(t)) =
(

1
2%W

(
xu(t)

)+ b
(
xu(t)

) · ∇W
(
xu(t)

)
+γ

∑
ui(t)σ

(i)
D · ∇W

(
xu(t)

))
dt + ∇W

(
xu(t)

) · dB(t)
=
(

1
2 trK +Dxu(t) · (Kxu(t)+ e

)+ γ σ (D)′u(t) · (Kxu(t)+ e
))
dt

+∇W
(
xu(t)

) · dB(t)
=
(

1
2 trK − 1

2 |Kxu(t)|2 − 1
2Qxu(t) · xu(t)+Dxu(t) · e

−γ u(t) · µ̄(xu(t)))dt + ∇W
(
xu(t)

) · dB(t).
Here we use (4.21) in the last step. Then

γ

∫ T

0
u(t) · µ̄(xu(t)) dt

= 1
2 trKT +

∫ T

0

(−1
2Qxu(t) · xu(t)+Kxu(t) · e+ 1

2 |e|2 +Dxu(t) · e)dt
+
∫ T

0
∇W

(
xu(t)

) · dB(t)
− 1

2

∫ T

0

∣∣∇W
(
xu(t)

)∣∣2 dt −W
(
xu(T )

)+W
(
xu(0)

)
.

We have

Ex

[
exp

(∫ T

0
γ $(γ )

(
xu(t), u(t)

)
dt

)]
= exp

(1
2 (trK + |e|2)T +W(x)

)
× Ēx

[
exp

(
−W

(
xu(T )

)+ ∫ T

0

(
−1

2γ (1 − γ )|gu(t)|2

− 1
2Qxu(t) · xu(t)+ (

Dxu(t)+Kxu(t)
) · e)dt)].

(4.22)
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Here Ēx[· · ·] is the expectation with respect to the probability measure P̄ ,

dP̄

dP
|FT

= exp
(∫ T

0
∇W

(
xu(t)

)(
xu(t)

) · dB(t)− 1

2

∫ T

0

∣∣∇W
(
xu(t)

)(
xu(t)

)∣∣2 dt).
Under P̄ ,

dxu(t) =
(
b
(
xu(t)

)+ ∇W
(
xu(t)

)+ γ
∑

ui(t)σ
(i)
D

)
dt + dB̄(t),

B̄(t) is a Brownian motion. Since K is positive definite, there is c > 0 such that
−W(y) ≤ c for all y, and

−1
2γ (1 − γ )|gu|2 − 1

2Qy · y + (Dy +Ky) · e ≤ c.

From (4.22), we have

Ex

[
exp

(∫ T

0
γ $(γ )

(
xu(t), u(t)

)
dt

)]
≤ exp

(
c+W(x)

)
exp

((
c+ 1

2 (trK+|e|2))T ).
This implies

�(γ )
r ≤ c+ 1

2(trK + |e|2)
for all r > 0. Therefore,

�(γ ) ≤ c+ 1
2(trK + |e|2)

for all γ . This completes the proof. �
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