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SCALING OF POISSON SPHERES AND COMPACT LIE GROUPS∗

ALBERT JEU-LIANG SHEU†

Abstract. For n ≥ 2, we show that on the standard Poisson homogeneous space S2n−1 (in-
cluding SU (2) ≈ S3), there exists a Poisson scaling φλ at any scale λ > 0 that is smooth on each
symplectic leaf and continuous globally. A generalization to the case of the standard Bruhat-Poisson
compact simple Lie groups endowed with a stronger topology is also valid.
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Introduction. In connection with the modular automorphism groups [W3], We-
instein showed [W2] that there is no nontrivial smooth scaling (φ, λ), called dilation,
of the standard Bruhat-Poisson structure π on SU (2) (or the reduced Poisson struc-
ture on its homogeneous space S2), i.e. a diffeomorphism φ of SU (2) and a scalar
λ 6= 0 such that φ∗π = λ−1π, other than (φ, λ) = (ι,−1) where ι (u) := u−1 is the
inverse map on SU (2). This result is then generalized to all compact groups with
Bruhat-Poisson structure by J.-H. Lu [W2].

However a very important geometric structure of a Poisson manifold is its de-
composition into (maximal) symplectic leaves [W1] of various dimensions in general,
which form some kind of “singular” foliation. Even though such a symplectic foli-
ation has a nice local Poisson product structure [W1], it is not a standard regular
foliation with a clean smooth structure everywhere. Instead, the closure of a sym-
plectic leaf may meet many symplectic leaves of lower dimensions, and there further
degeneracies of the Poisson structure occur, rendering a weaker sense of smoothness.
From this viewpoint, the global smoothness of a scaling or dilation seems too strong
a requirement in general. In this paper, we show that if a scaling φλ ≡ (φ, λ) is
required to be only continuous on the whole manifold but smooth on each symplectic
leaf of a Poisson manifold, then it exists for all λ > 0 on the Poisson homogeneous
space S2n−1 of the Bruhat-Poisson SU (n). A Liouville vector field generating φλ is
explicitly computed for SU (2). Furthermore, if a standard Bruhat-Poisson compact
simple Lie group K is endowed with some stronger topology that is still compatible
with the original differential structure on each symplectic leaf of K, then a leafwise
smooth and globally continuous scaling φλ exists on K for all λ > 0.

In [Sh1], it is shown that the standard Bruhat-Poisson SU (2) can be quantized
by Weyl calculus along all of its symplectic leaves to construct a C*-algebraic defor-

mation quantization of the Poisson structure and yield the C*-algebra C
(

SU (2)q

)

of quantum SU (2). The construction essentially composes a standard Weyl quanti-
zation of C with φ∗λ for a family of continuous scalings φλ of the Poisson SU (2). This
method of quantization is intrinsically of “leaf-preserving” type as opposed to the
“group-preserving” type, and there is a no-go theorem saying that these two types
of quantization are disjoint [Sh2, Sh3]. For general Bruhat-Poisson compact sim-
ple Lie groups K, faithful leaf-preserving deformation quantizations have not been
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constructed, while group-preserving ones have been found [N] for SU (n). Whether
composing a standard Weyl quantization of Cn with φ∗λ for a family of continuous
scalings φλ of the Poisson SU (n) results in a deformation quantization that produces
the algebra of quantum SU (n) remains to be studied.

The author would like to thank the National Center for Theoretical Sciences and
the National Taiwan University for their warm hospitality and the excellent research
environment provided during his visit in Fall 2010.

1. Scaling of Poisson SU (2). In this section, we study how the standard
Bruhat-Poisson structure on SU (2) can be scaled smoothly leafwise and continuously
globally.

We call a family of homeomorphisms φt : M → M , t > 0, on a Poisson manifold
(M,π) a scaling of the Poisson structure of M if φt is a diffeomorphism from each
symplectic leaf of M onto itself with

((φt)∗ π) (x) := (Dφt)φ−t(x)
(π (φ−t (x))) = tπ (x)

and φ1 (x) = x for each x ∈ M . A basic example is the scaling of the standard
symplectic structure ∂

∂x
∧ ∂

∂y
on C given by the family of diffeomorphisms µt of C

defined by

µt (w) :=
√
tw

for t > 0 and w ∈ C.
Recall that a smooth vector field X (assumed to be complete in this paper for

simplicity) is called a Liouville vector field if [X, π] = −π, which if exists, generates a
smooth scaling φt := α−X (ln t) of π, where α−X (s) with s ∈ R denotes the integral
flow generated by the vector field −X . For example, the smooth vector field

X : w 7→ −1

2
w

whose opposite −X generates φt ≡ α−X (ln t) = µt is a Liouville vector field on the
standard symplectic manifold C. Generalizing this notion to fit our consideration
of non-smooth scalings, we call a continuous vector field X on the Poisson manifold
(M,π) a Liouville vector field if X |L ∈ Γ (TL) is a smooth (tangential) vector field
on L and [X |L, π|L] = −π|L is valid for each symplectic leaf L of M .

By embedding SU (2) into M2×2 (C) ∼= C
4 in the canonical way, we can con-

cretely identify the tangent space TuSU (2) of SU (2) at any u ∈ SU (2) with the left
(multiplicative) translation

Lusu (2) ≡ usu (2) ⊂M2×2 (C)

of the Lie algebra su (2) ≡ TeSU (2) ⊂M2×2 (C) by the matrix u, where e ≡ I2 is the
unit element of SU (2).

Recall that the standard multiplicative Bruhat-Poisson structure on SU (2) [D1,
LW1, VSo1] is generated by

r =

(

0 1
−1 0

)

∧
(

0 i
i 0

)

∈ ∧2TeSU (2) ≡ ∧2su (2) .

More precisely, the Poisson 2-tensor π of the Bruhat-Poisson SU (2) at

u =

(

a b
c d

)

∈ SU (2) ,
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with a, b, c, d ∈ C such that ā = d, b = −c̄, and |a|2 + |c|2 = 1, is given by

πu = Lu (r)− Ru (r) =

(

a b
c d

)(

0 1
−1 0

)

∧
(

a b
c d

)(

0 i
i 0

)

−
(

0 1
−1 0

)(

a b
c d

)

∧
(

0 i
i 0

)(

a b
c d

)

=

(

−b a
−d c

)

∧
(

ib ia
id ic

)

−
(

c d
−a −b

)

∧
(

ic id
ia ib

)

.

In the following, we denote by

L0 =

{(

a −c
c ā

)

∈ SU (2) : c =

√

1− |a|2 and |a| < 1

}

the basic symplectic leaf that plays a crucially important role in the study of Bruhat-
Poisson SU (2) [VSo1]. We also use the notation

P = Pn : u ∈ SU (n) 7→ u (e1) ∈ S
2n−1

for the fibration projection map, which is a diffeomorphism when n = 2, where {ei}ni=1

is the standard basis of Cn.

Proposition. There exists a (continuous and leafwise smooth) scaling φt, t > 0,
of the standard Bruhat-Poisson structure of SU (2), which is generated leafwise as
α−X (ln t) by the opposite −X of the (continuous and leafwise smooth) Liouville vector
field

X : u ≡
(

reiθ −
√
1− r2e−iη√

1− r2eiη re−iθ

)

∈ SU (2)

7→





(1−r2) ln(1−r2)
2r eiθ

√
1−r2 ln(1−r2)

2 e−iη

−
√
1−r2 ln(1−r2)

2 eiη
(1−r2) ln(1−r2)

2r e−iθ



 ∈ TuSU (2) ⊂M2×2 (C) .

on (SU (2) , π).

Proof. For u ∈ L0 ⊂ SU (2) with a = x+ iy (and c ≥ 0), we have

P∗ (πu) =

(

c
−ā

)

∧
(

−ic
iā

)

−
(

c
−a

)

∧
(

ic
ia

)

= −2

(

c
−x

)

∧
(

ic
−y

)

= −2

(

c
−Re (a)

)

∧
(

ic
− Im (a)

)

.

It is easy to see that P∗ (πu) = 0 (and hence πu = 0) at u = diag
(

eiθ, e−iθ
)

∈ U (1) ⊂
SU (2), and hence the subgroup U (1) consists of 0-dimensional symplectic leaves of
SU (2). So the canonical (left) U (1)-action on SU (2) keeps the Poisson structure
invariant [LW1, VSo1].

Under the diffeomorphism P , the element diag
(

eiθ, e−iθ
)

∈ U (1) acts on S3 ≈
SU (2) as (a, c) 7→

(

eiθa, e−iθc
)

. So we get, for

u =

(

a −c̄
c ā

)

∈ SU (2)
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in general,

P∗ (πu) = −2

(

c̄

−Re
(

ac
|c|

)

c
|c|

)

∧
(

ic̄

− Im
(

ac
|c|

)

c
|c|

)

which vanishes at u ∈ U (1) (where we formally take c/ |c| := 1 if c = 0).
First we perform a change of variables by the diffeomorphism

ψ : u ∈ L0 7→ z =
a

c
=

a
√

1− |a|2
∈ C,

and get

ψ∗ (πu) =
−2

|c|2
(1 ∧ i) = −2

(

1 + |z|2
)

(1 ∧ i) ∈ ∧2TzC.

Under another change of variables by the diffeomorphism

τ : z = reiθ ∈ C 7→ w =
√

2−1 ln (1 + r2)e−iθ ∈ C,

we get the standard symplectic 2-tensor ∂
∂x

∧ ∂
∂y

on C, i.e.

τ∗ (ψ∗ (πu)) = τ∗

(

−2
(

1 + r2
)

(

∂

∂x
∧ ∂

∂y

)

z

)

= −2τ∗

(

(

1 + r2
)

(

1

r

∂

∂r
∧ ∂

∂θ

)

z

)

= −2

(

1 + r2

r

)

(

1

2

r

(1 + r2)
√

2−1 ln (1 + r2)

∂

∂r
∧
(

− ∂

∂θ

)

)

w

=

(

1
√

2−1 ln (1 + r2)

∂

∂r
∧ ∂

∂θ

)

w

=

(

∂

∂x
∧ ∂

∂y

)

w

∈ ∧2TwC.

Under the transformation τ , the canonical smooth scaling µt : w 7→
√
tw, t > 0,

of the standard symplectic structure ∂
∂x

∧ ∂
∂y

on C is equivalent to a scaling

z = reiθ ∈ C 7→
√

(1 + r2)
t − 1eiθ ∈ C

of the Poisson structure ψ∗π on C, which in turn, gives rise to a scaling of π on L0

defined by

φt :

(

reiθ −
√
1− r2√

1− r2 re−iθ

)

∈ L0 7→





√

1− (1− r2)teiθ −
√

(1− r2)t
√

(1− r2)t
√

1− (1− r2)te−iθ



 ∈ L0.

Note that this formula for φt can also be continuously applied to u ∈ U (1) = ∂ (L0)
with r = 1 and yield φt (u) = u for u ∈ U (1). Also note that by our construction,
the map

a = reiθ ∈ D 7→ at =

√

1− (1− r2)
t
eiθ ∈ D

is smooth on the open unit disk D and continuous on D.
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The smooth Liouville vector field w 7→ −1
2 w on C pulls back via the diffeomor-

phism

τ ◦ ψ :

(

reiθ −
√
1− r2√

1− r2 re−iθ

)

∈ L0 7→
√

−1

2
ln (1− r2)e−iθ ∈ C,

to the smooth Liouville vector field

X0 : u ≡
(

reiθ −
√
1− r2√

1− r2 re−iθ

)

∈ L0

7→





(1−r2) ln(1−r2)
2r eiθ

√
1−r2 ln(1−r2)

2
−
√
1−r2 ln(1−r2)

2

(1−r2) ln(1−r2)
2r e−iθ



 ∈ TuSU (2)

on L0, by differentiating the curve

t 7→ (τ ◦ ψ)−1

(

e
−1

2
t

√

−1

2
ln (1− r2)e−iθ

)

= (τ ◦ ψ)−1

(

√

−1

2
e−t ln (1− r2)e−iθ

)

= (τ ◦ ψ)−1

(

√

−1

2
ln
[

(1− r2)e
−t
]

e−iθ
)

=





√

1− (1− r2)
e−t

eiθ −
√

(1− r2)
e−t

√

(1− r2)
e−t

√

1− (1− r2)
e−t

e−iθ





at t = 0.
Using the U (1)-action on L0 that preserves the Poisson structure, we can get

smooth scalings on other symplectic leaves of SU (2). Actually since the above scaling
φt on u ∈ L0 identified with reiθ ∈ D is along the radial direction, the scalings obtained
in this way on all symplectic leaves can be described by one formula

φt : u =

(

a −c̄
c ā

)

=

(

reiθ −se−iη
seiη re−iθ

)

∈ SU (2) 7→ φt (u)

=

(

ft (r) e
iθ −gt (s) e−iη

gt (s) e
iη ft (r) e

−iθ

)

=





√

1− (1− r2)teiθ −ste−iη

steiη
√

1− (1− r2)
t
e−iθ



 ∈ SU (2)

for t > 0 with s =
√
1− r2, where

ft (r) =

√

1− (1− r2)
t

and

gt (s) = st
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are continuous functions of r, s ∈ [0, 1] that vanish at r, s = 0. By our construction,
φt is smooth on each symplectic leaf of SU (2), and it is clearly continuous globally
on SU (2). So we get a scaling φt, t > 0, of the standard Bruhat-Poisson structure of
SU (2).

Similarly, using the U (1)-action on L0, we get the smooth Liouville vector field
X0 on L0 extended to a (continuous) Liouville vector field

X : u =

(

reiθ −
√
1− r2e−iη√

1− r2eiη re−iθ

)

∈ SU (2)

7→





(1−r2) ln(1−r2)
2r eiθ

√
1−r2 ln(1−r2)

2 e−iη

−
√
1−r2 ln(1−r2)

2 eiη
(1−r2) ln(1−r2)

2r e−iθ



 ∈ TuSU (2)

on (SU (2) , π), which is smooth on SU (2) \U (1) and vanishes on U (1), where we
adopt the convention

(

1− r2
)β (

ln
(

1− r2
))

∣

∣

∣

r=1
:= lim

r→1−

(

1− r2
)β (

ln
(

1− r2
))

= 0

for any β > 0.

2. SU (n)-homogeneous Poisson S2n−1. In this section, we find explicitly a
scaling of the SU (n)-covariant [LW2] or SU (n)-homogeneous [D2, VSo2] space S2n−1

for all n ≥ 2. We use In to denote the n× n identity matrix.
By Soibelman’s result [So], the symplectic leaves of the Bruhat-Poisson SU (n)

are exactly products of t ∈ Tn−1 ⊂ SU (n) with the leaves L0 in the n− 1 canonically
embedded basic SU (2)’s arranged in various orders. More precisely, let ιk : SU (2) →
SU (n) be the canonical Poisson embedding defined by

ιk (u) := Ik−1 ⊕ u⊕ In−k−1

a block diagonal matrix for u ∈ SU (2), and fix the reduced expression

σ1σ2σ1σ3σ2σ1...σn−1σn−2...σ2σ1

of the maximal element in the Weyl group Wn of SU (n) with respect to the Bruhat
ordering [H, Sh4], where {σk}nk=1 are the reflections associated with the fundamental
roots determined by the embeddings {ιk}nk=1.

Soibelman’s classification of symplectic leaves of Bruhat-Poisson compact simple
Lie groups [So] (cf. the next section for more details) implies that there is a one-to-one
correspondence

(δ,K) ↔ δLK = διK ((L0)
m
)

between symplectic leaves δLK of the Bruhat-Poisson SU (n) and pairs (δ,K) of a
point δ ∈ Tn−1 ⊂ SU (n) and an “admissible” sequence K = (k1, k2, ..., km), i.e. a
concatenation J1J2...Jn of sequences Ji which are either empty or equal to (i, i −
1, ..., i− ki) for some 0 ≤ ki < i, where

ιK : (u1, ..., um) ∈ (L0)
m 7→ ιk1 (u1) ...ιkm (um) ∈ SU (n)

and LK := ιK ((L0)
m
) which is set to be {In} if K is an empty sequence.
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Note that the multiplication map

ι = ι(n−1,...,1) : (u1, u2, .., un−1) ∈ SU (2)n−1

7→ ιn−1 (u1) ιn−2 (u2) · · · ι1 (un−1) ∈ SU (n) ,

is Poisson on each product of symplectic leaves, and the map

Pn : u ∈ SU (n) → u (e1) ∈ S
2n−1

viewed as the SU (n)-action on S2n−1 restricted to SU (n)×{e1} is Poisson since {e1}
is a 0-dimensional leaf of S2n−1.

By induction, it is easy to verify that

(Pn ◦ ι) (u1, u2, .., un−1) = Pn (ιn−1 (u1) ιn−2 (u2) · · · ι1 (un−1))

= an−1e1 +

n−1
∑

k=2

(an−kcn−k+1 · · · cn−1) ek + (c1c2 · · · cn−1) en ∈ S
2n−1

for

uk =

(

ak −ck
ck ak

)

=

(

rke
iθk −ske−iηk

ske
iηk rke

−iθk

)

∈ δηkL0 ⊂ SU (2)

where

δη := diag
(

e−iη, eiη
)

∈ U (1) = T.

By taking a0 := 1 and an−kcn−k+1 · · · cn−1 := an−1 when k = 1, we can write
more compactly

Pn ◦ ι : (u1, u2, .., un−1) ∈ SU (2)
n−1 7→ z =

n
∑

k=1

(an−kcn−k+1 · · · cn−1) ek ∈ S
2n−1

from which it is not hard to check that Pn ◦ ι is surjective. Actually the following
lemma provides some more specific details.

Lemma. The function Pn ◦ ι restricted to

Lm,η1,...,ηn−1
:=
{(

δη1 , ..., δηn−1−m

)}

×
(

δηn−m
L0

)

× ...×
(

δηn−1
L0

)

,

with
(

δη1 , ..., δηn−1

)

∈ Tn−1 and 1 ≤ m ≤ n − 1, is a (Poisson) diffeomorphism onto
S2mη , where

η := −ηn−1−m + ηn−m + · · ·+ ηn−1

and

S
2m
η := S

2n−1 ∩
(

C
m × eiηR> × {0}n−1−m

)

.

In particular, Pn ◦ ι maps SU (2)
n−1

onto S
2n−1 which is the disjoint union of S2mη

with 0 ≤ m < n and η ∈ [0, 2π).

Proof. Since ι
(

Lm,η1,...,ηn−1

)

is a symplectic leaf of SU (n) and Pn is a Poisson
map, it suffices to show that Pn ◦ ι restricted to Lm,η1,...,ηn−1

is a diffeomorphism onto
S2mη for η := −ηn−1−m + ηn−m + · · ·+ ηn−1.
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Note that the general condition |aj |2 + |cj |2 = 1 for all j implies for any M < n,

M
∑

k=1

|an−k (cn−k+1 · · · cn−1)|2

= 1− |cn−1|2 +
M
∑

k=2

(

1− |cn−k|2
)

|cn−k+1|2 · · · |cn−1|2

= 1− |cn−1|2 +
M
∑

k=2

[

|cn−k+1|2 · · · |cn−1|2 − |cn−k|2 · · · |cn−1|2
]

= 1− |cn−M |2 · · · |cn−1|2 .

For z ∈ S2n−1 ⊂ Cn and (u1, u2, .., un−1) ∈ SU (2)
n−1

,

(u1, u2, .., un−1) ∈ Lm,η1,...,ηn−1
∩ (Pn ◦ ι)−1 (z)

if and only if the conditions (i)

cj = eiηj
√

1− |aj |2 6= 0

for all j ≥ n−m, (ii) aj = e−iηj for all j < n−m, and (iii) for all 1 ≤ k ≤ n− 1,

an−k (cn−k+1 · · · cn−1) = zk

(including an−1 = z1 when k = 1) are satisfied.
Note that conditions (i)-(iii) imply that

zm+1 = an−m−1 (cn−m · · · cn−1) ∈ e−ηn−m−1+ηn−m+···+ηn−1R>

where R> := {x ∈ R : x > 0}, and zk = 0 for all k > m + 1 since cn−m−1 = 0, or
equivalently, z ∈ S2mη . So Pn ◦ ι maps Lm,η1,...,ηn−1

into S2mη .
Also note that the condition (iii) implies

1−
M
∑

k=1

|zk|2 = 1−
M
∑

k=1

|an−k (cn−k+1 · · · cn−1)|2 = |cn−M |2 · · · |cn−1|2 .

For z ∈ S
2m
η , we have |zk| < 1 for all k ≤ m and zk = 0 for all k > m + 1, and

1 −∑M
k=1 |zk|

2
= 0 if and only if M ≥ m + 1. So under the condition (iii), we get

cn−k 6= 0 (and hence un−k ∈ TL0) for all k < m + 1 and cn−m−1 = 0 (and hence
|an−m−1| = 1), which then imply that for all k ≤ m+ 1,

an−k = zk (cn−k+1 · · · cn−1)
−1

is uniquely well-defined, and furthermore

|an−m−1| =
∣

∣zm+1 (cn−m · · · cn−1)
−1

∣

∣ =

√

|zm+1|2

|cn−m|2 · · · |cn−1|2
=

√

|zm+1|2

1−∑m

k=1
|zk|2

= 1

which combined with condition (ii) gives an−m−1 := e−iηn−m−1 . For all k > m + 1,
we see that with zk = 0 and cn−k+1 · · · cn−1 = 0, an−k = e−iηn−k is the unique
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solution for both conditions (ii) and (iii). Thus for any z ∈ S2mη , there is a unique
(u1, u2, .., un−1) ∈ Lm,η1,...,ηn−1

such that (Pn ◦ ι) (u1, u2, .., un−1) = z.
So Pn ◦ ι is a bijective smooth map from Lm,η1,...,ηn−1

to S2mη , whose inverse is
also a smooth map z 7→ (u1, u2, .., un−1) given by the formulas

an−k :=

{

zk (cn−k+1 · · · cn−1)
−1
, if k ≤ m+ 1

e−iηn−k , if k > m+ 1

and

cj = eiηj
√

1− |aj |2

for all j.

Theorem. There exists a (continuous and leafwise smooth) scaling ψt, t > 0, of
the standard Bruhat-Poisson structure of S2n−1 for all n ≥ 2.

Proof. Let φt be the scaling of SU (2) obtained in the previous proposition. The

scaling (φt)
n−1

of the product Poisson manifold SU (2)
n−1

restricted to the symplectic
leaf Lm,η1,...,ηn−1

induces, under the diffeomorphism Pn ◦ ι, a corresponding smooth

scaling of S2mη with η := −ηn−1−m + ηn−m + · · ·+ ηn−1, given by

(

ψm,η1,...,ηn−1

)

t
:
(

rn−1e
iθn−1

)

e1 +

m+1
∑

k=2

(

rn−ksn−k+1 · · · sn−1e
i(θn−k+ηn−k+1+···+ηn−1)

)

ek

7→
[

ft (rn−1) e
iθn−1

]

e1 +

m+1
∑

k=2

[

ft (rn−k) gt (sn−k+1) · · · gt (sn−1) e
i(θn−k+ηn−k+1+···+ηn−1)

]

ek

for m ≤ n− 1 with rn−1−m = 1 and θn−1−m = −ηn−1−m, where sj =
√

1− r2j for all

j, and as before, we take r0 = a0 := 1 when m = n− 1.
Since the scaling

(

ψm,η1,...,ηn−1

)

t
of S2mη keeps the angle (argument) of each com-

plex coefficient invariant, it depends only on η and can be written as

(ψη)t : z =
(

rn−1e
iβ1
)

e1 +

m+1
∑

k=2

(

rn−ksn−k+1 · · · sn−1e
iβk
)

ek ∈ S
2m
η 7→

(

ft (rn−1) e
iβ1
)

e1 +

m+1
∑

k=2

(

ft (rn−k) gt (sn−k+1) ...gt (sn−1) e
iβk
)

ek ∈ S
2m
η

with rn−1−m = 1 and θn−1−m = −ηn−1−m.
Since S2n−1 is a disjoint union of S2mη with 0 ≤ m < n and η ∈ [0, 2π), we get

a well-defined function ψt : S
2n−1 → S2n−1 whose restriction to each symplectic leaf

S2mη is the smooth scaling (ψη)t. Now it remains to show that ψt is a homeomorphism
of S2n−1.

Note that if |an−j | = 1 for some j, i.e. un−j ∈ U (1) = T is a diagonal 2 × 2
matrix, then

(Pn ◦ ι) (u1, .., un−1) = ιn−1 (u1) · · · ι1 (un−1) (e1)

= ιj (un−j) · · · ι1 (un−1) (e1) ∈ C
j × {0} ⊂ C

n.

So (Pn ◦ ι) (u1, ..., un−1) ∈ S2mη if and only if |an−m−1| = 1 > |ak| for all k ≥ n−m,
which implies that

(*) (Pn ◦ ι) (u1, ..., un−1) = (Pn ◦ ι) (I2, ..., I2, un−m−1, ..., un−1)
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with uk ∈ TL0 for all k ≥ n−m.
Now SU (2)

n−1
is a disjoint union of symplectic leaves F =

∏n−1
k=1 Ak with Ak

either a singleton in T ⊂ SU (2) or a disk eiηkL0 ⊂ SU (2) for some ηk. If m is the

largest index with An−m−1 a singleton, then
∏n−1
k=1 {I2}×

∏n−1
k=n−m−1Ak equals some

Lm,η1,...,ηn−1
and by (*),

(Pn ◦ ι) (F ) = (Pn ◦ ι)
(

Lm,η1,...,ηn−1

)

= S
2m
η .

It is not hard to see that the equality

ψt ◦ (Pn ◦ ι) = (Pn ◦ ι) ◦ (φt)n−1 ,

clearly valid on Lm,η1,...,ηn−1
, is also valid on (Pn ◦ ι) (F ) because of (*), for each

symplectic leaf F of SU (2)
n−1

.
Thus we have the commuting diagram

SU (2)n−1 (φt)
n−1

→ SU (2)n−1

↓Pn◦ι � ↓Pn◦ι

S2n−1 ψt→ S2n−1

where S2n−1 with its standard topology can be viewed as a quotient topological space
of the compact Hausdorff space SU (2)n−1 with Pn ◦ ι as the quotient map, and ψt
can be viewed as a well-defined map on S

2n−1 induced by the continuous map (φt)
n−1

on SU (2)
n−1

. It is easy to see that the map ψt on S2n−1 is continuous.
So we have a well-defined continuous and leafwise smooth scaling ψt, t > 0, on

S2n−1.

We remark that ψt can be described by the formula

ψt : z =
[

rn−1e
iβ1

]

e1 +

n−1
∑

k=2

[

rn−ksn−k+1...sn−1e
iβk

]

ek +
[

s1s2...sn−1e
iβn

]

en ∈ S
2n−1 7→

ψt (z) =
[

ft (rn−1) e
iβ1

]

e1 +

n−1
∑

k=2

[

ft (rn−k) gt (sn−k+1) ...gt (sn−1) e
iβk

]

ek

+
[

gt (s1) gt (s2) ...gt (sn−1) e
iβn

]

en ∈ S
2n−1

with sj =
√

1− r2j for all j.

3. Bruhat-Poisson compact simple Lie groups. In this section, we use the
scaling φt of Bruhat-Poisson SU (2) to construct a scaling for the standard Bruhat-
Poisson compact simple Lie groups K with a topology stronger than the standard one
but still compatible with the original differential structure on each symplectic leaf.

For a simple complex Lie group G, we fix a root system Λ with (positive) simple
roots {αi}ri=1 for its Lie algebra g and a corresponding Cartan-Weyl basis {Xα}α∈Λ∪
{Hi}ri=1 with Hi = [Xαi

, X−αi
] for each i. The real form (i.e. the +1-eigenspace) for

the antilinear involution ω : g → g defined by ω (Xα) = −X−α and ω (Hi) = −Hi for
all α ∈ Λ and 1 ≤ i ≤ r is the Lie algebra g of a maximal compact subgroup K of G.
We consider only K endowed with the standard Bruhat-Poisson structure generated
by the tensor

r =
i

2

∑

α∈Λ+

(X−α ⊗Xα −Xα ⊗X−α) ∈ k ∧ k.
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There is a well-known canonical Poisson embedding ιi∗ : SU(2) → K for each basic
triple {Xαi

, X−αi
, Hi}, 1 ≤ i ≤ r.

Recall that the Weyl group W of K is a Coxeter group [H] generated by {σi}ri=1

with (σiσj)
mij = 1 for mii = 1 and some mij ∈ {2, 3, 4, 6} if i 6= j, where σi = σαi

is
the reflection on the dual h∗ of the Lie subalgebra h := Span {Hi}ri=1 determined by
the root αi. If w = σi1σi2 ...σim is the shortest expansion of w in σi’s, then σi1σi2 ...σim
is called a reduced expression for w and ℓ (w) := m is the length of w. The Bruhat
ordering on W is the partial ordering generated by the relations w1 < w2 satisfying
σαw1 = w2 and ℓ (w1)+1 = ℓ (w2) for some simple root α. It is known that there is a
unique maximal element w̃ = σl1σl2 ...σlM in W with respect to the Bruhat ordering
[H] and every element of W has a reduced expression embedded in the expression
σl1σl2 ...σlM [BB] (i.e. obtainable by removing some σlj ’s from w̃).

It is an interesting discovery [So] that the symplectic leaves L of K are in one-to-
one correspondence with elements (δ, w) of Tr ×W and hence with the irreducible *-
representations πL of the algebra C(Kq)

∞ of regular functions of a quantum groupKq.
More explicitly, for each (δ, w) ∈ Tr ×W , we fix a reduced expression σi1σi2 ...σim for
w ∈W such that σi1σi2 ...σim is embedded in σl1σl2 ...σlM , and then the set δLw ⊂ K
is the corresponding symplectic leaf, where Lw := ιw ((L0)

m
) and

ιw : (u1, ..., um) ∈
(

L0

)m 7→ ιi1 (u1) ...ιim (um) ∈ K.

With w = σi1σi2 ...σim embedded in σl1σl2 ...σlM , we have ik = ljk for k ≤ m where

1 ≤ j1 < j2 < ... < jm ≤M.

We define

Lw := T
r ×

{

u ∈
(

L0

)M | ujk ∈ L0 for k ≤ ℓ (w) and uj = I2 for other j’s
}

.

Let L ⊂ Tr×
(

L0

)M
be the union of these disjoint subsets Lw with w ∈W . Then

the continuous map

idTr ×ιw̃ : (δ, u1, ..., uM ) ∈ T
r ×

(

L0

)M 7→ διl1 (u1) ...ιlM (uM ) ∈ K

sends L onto K. By viewing K as a quotient space of L, we get a quotient topology T
on K from L via the map (idTr ×ιw̃)|L. By definition, T consists of sets A ⊂ K with

(idTr ×ιw̃)−1 (A) open in L, and is stronger than (i.e. contains) the original topology
on K and hence still Hausdorff. Furthermore, idTr ×ιw̃ is homeomorphic on each Lw
and hence the topology T is compatible with the original differential structure on
each symplectic leaf of K.

Theorem. There exists a (continuous and leafwise smooth) scaling Φt, t > 0, of
the standard Bruhat-Poisson structure of a compact simple Lie group K when K is
endowed with the topology T .

Proof. Since the Bruhat-Poisson structure on K is multiplicative and Tr con-
sists of 0-dimensional leaves {δ} whose action by multiplication preserves the Bruhat-
Poisson structure, the diffeomorphic map

ιδ,w : (u1, u2, .., um) ∈ (L0)
m 7→ διw (u1, u2, .., um) ∈ δLw

for δ ∈ Tr and w = σi1σi2 ...σim is symplectic. So the smooth scaling

(φt)
m
(u1, u2, .., um) = (φt (u1) , φt (u2) , .., φt (um))
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of the symplectic product space (L0)
m

induces, via ιδ,w, a smooth scaling (Φδ,w)t of
the symplectic leaf δLw.

Since K is the disjoint union of its symplectic leaves δLw [W1], we get a family
of well-defined functions Φt : K → K which is the diffeomorphism (Φδ,w)t on each
symplectic leaf δLw. It remains to show that Φt is continuous on K with respect to
the topology T .

By restricting to L, we get a continuous map

(

idTn−1 × (φt)
M
)∣

∣

∣

L
: L ⊂ T

r ×
(

L0

)M → L ⊂ T
r ×

(

L0

)M

on L. It is easy to see that (idTr ×ιw̃) (Lw) = TrLw for all w ∈W , and

Φt ◦ (idTr ×ιw̃) |L = (idTr ×ιw̃) |L ◦
(

idTn−1 × (φt)
M
∣

∣

∣

L

)

.

So when K is endowed with the quotient topology T via (idTr ×ιw̃) |L, the continuity

of
(

idTn−1 × (φt)
M
)∣

∣

∣

L
on L implies the continuity of Φt on K.
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