
ASIAN J. MATH. c© 2012 International Press
Vol. 16, No. 3, pp. 387–408, September 2012 002

ESSENTIALLY LARGE DIVISORS AND THEIR ARITHMETIC AND

FUNCTION-THEORETIC INEQUALITIES∗

GORDON HEIER† AND MIN RU†

Abstract. Motivated by the classical Theorems of Picard and Siegel and their generalizations,
we define the notion of an essentially large effective divisor and derive some of its arithmetic and
function-theoretic consequences. We then investigate necessary and sufficient criteria for divisors
to be essentially large. In essence, we prove that on a nonsingular irreducible projective variety X

with Pic(X) = Z, every effective divisor with dimX + 2 or more components in general position is
essentially large.
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1. Introduction. In [CZ02], Corvaja-Zannier found an innovative way of using
Schmidt’s Subspace Theorem to give a new proof of the classical Theorem of Siegel on
integral points on affine curves. They subsequently expanded their approach to obtain
certain results on integral points in higher dimensions ([CZ03], [CZ04a], [CZ04b],
[CZ06a],[CZ06b]). The approach was translated to Nevanlinna theory in [Ru04].

Ferretti and Evertse-Ferretti ([Fer00], [EF02], [EF08]) used similar (yet more
general) arguments to obtain diophantine inequalities on projective varieties. Their
approach is largely based on Mumford’s degree of contact. In Nevanlinna theory, this
approach was used by Ru [Ru09] to establish a Second Main Theorem for holomorphic
curves into projective varieties intersecting hypersurfaces.

As stated in [Lev09, p. 609], the article [CZ02] motivated Levin to introduce the
notions of large divisors and very large divisors as described in Definition 1.1. Their
significance is due to the hyperbolicity-type and Mordell-type properties enjoyed by
the complements of large divisors. Before we give the definition, a statement about
the ground fields used seems in order. In this section, we let K denote any field of
characteristic zero. In Section 2, we will first assume K = C while dealing with the
function-theoretic properties. Subsequently, we will take K to be either a number
field or the function field of a nonsingular projective variety over an algebraically
closed field of characteristic 0. In Sections 3 and 4, we again take K to be any field
of characteristic zero. The term variety is taken to mean irreducible variety in this
paper.

Definition 1.1 ([Lev09, Definition 8.1]). Let D be an effective divisor on a
nonsingular projective variety X defined over K. Then D is said to be very large
(over K) if for every P ∈ D(K̄), there exists a basis B of the finite-dimensional vector
space

L(D) = {f rational function on X | div(f) ≥ −D}
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such that ordE
∏

f∈B f > 0 for every irreducible component E of D with P ∈ E(K̄).
Moreover, an effective divisor is said to be large if it has the same support as some
very large divisor.

Recall that for an effective divisorD on a nonsingular projective varietyX defined
over K, the finite-dimensional vector spaces L(D) and H0(X,OX(D)) are isomorphic
via

(1) H0(X,OX(D)) → L(D), s 7→
s

sD
,

where sD is a section of OX(D) with div(sD) = D.
For a divisor D =

∑r
i=1Di with Di effective (but not necessarily irreducible),

Levin’s main sufficient criterion for very largeness is the following.

Lemma 1.2 ([Lev09, Lemma 9.1]). Let D =
∑r

i=1Di be a divisor with each Di

effective (but not necessarily irreducible) on a nonsingular projective variety X, all
defined over K. For P ∈ D(K̄), let DP =

∑

{i |P∈Di}Di. Also, for integers m,n, let

fP (m,n) = h0(X,OX(nD −mDP ))− h0(X,OX(nD − (m+ 1)DP )).

If there exists n > 0 such that
∑∞

m=0(m − n)fP (m,n) > 0 for all P ∈ D(K̄), then
nD is very large.

The short proof provided in [Lev09] is based on the filtration argument introduced
in [CZ02]. The main idea is to define a filtration

Vj = H0(X,OX(nD − jDP )) (j = 0, 1, 2, 3, . . .)

of H0(X,OX(nD)) and to choose a basis f1, . . . , fh0(X,OX(nD)) of L(nD) according
to this filtration, beginning with the last nonzero subspace. Since dimVj/Vj+1 =
fP (j, n), we get

ordE

h0(X,OX (nD))
∏

i=1

fi ≥ (ordE D)

∞
∑

m=0

(m− n)fP (m,n) > 0.

The main result on large divisors in [Lev09] is the following.

Theorem 1.3 ([Lev09]). Let X be a q-dimensional nonsingular projective vari-
ety, defined over K. Let D =

∑r
i=1Di be a divisor, also defined over K, with each

Di effective (but not necessarily irreducible) and big and nef. Moreover, assume that
every irreducible component of D is nonsingular and that the intersection of any m+1
distinct Di is empty over K̄. If r > 2mq, then D is large.

In the proof of this theorem given in [Lev09], the difference h0(X,OX(nD −
mDP )) − h0(X,OX(nD − (m + 1)DP )) is bounded from above based on the H0-
part of the corresponding long exact cohomology sequence. As remarked by Levin,
using the double filtration argument from [CZ04b, Lemma 3.2], the factor of 2 in the
lower bound on r can be removed if the Di, 1 ≤ i ≤ r, do not have any irreducible
components in common. See also [Aut09] and [CLZ09] for some more ideas in this
direction.

It would of course be interesting to substantially decrease the lower bound on
r in Theorem 1.3. In light of the classical Theorems of Picard and Siegel and their
generalizations, and some of the standard conjectures in hyperbolicity theory, one
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might suspect that when m = q, the lower bound of 2mq = 2q2 can be replaced by
q + 1 (cf. Conjecture 1.10). However, it is quite clear that the sufficient criteria in
[Lev09] cannot be used to prove this. To be precise, we make the following remark.

Remark 1.4. In the situation of Lemma 1.2, let X = Pq. Let D be the sum of r
hypersurfaces in general position, i.e., the intersection of any q + 1 of them is empty
over K̄. Let all hypersurfaces have the same degree. Then, the statement that, for
all P ∈ D(K̄),

∞
∑

m=0

(m− n)fP (m,n) > 0 (n sufficiently large)

is equivalent to r > q2 + q.

We leave the proof of Remark 1.4, which is purely an exercise in handling binomial
coefficients, to the reader. Note that since Pic(Pq) is generated by OPq (1) and since
h0(Pq,OPq(ℓ)) =

(

q+ℓ
ℓ

)

, the dimensions of all the H0’s involved are given explicitly.
We now turn to the new results presented in this note. The starting point is our

definition of essentially (very) large divisors as follows.

Definition 1.5. Let D be an effective divisor on a nonsingular projective variety
X , all defined over K. Then we define D to be essentially very large if there exists
a linear subspace V of L(D) such that for every P ∈ D(K̄), there exists a basis
B of V such that ordE

∏

f∈B f > 0 for every irreducible component E of D with

P ∈ E(K̄). Moreover, we define an effective divisor to be essentially large if it has
the same support as some essentially very large divisor.

This is obviously a weakening of the notion of large divisors, which requires V =
L(D). However, our definition seems technically easier to handle, while it retains the
important arithmetic and function-theoretic consequences of the original definition of
large divisors derived in [Lev09]. In fact, in Section 2, we prove new inequalities of
Second Main Theorem-type and Schmidt Subspace Theorem-type for essentially large
divisors that are actually stronger than the consequences for large divisors found in
[Lev09]. Since the statements of our theorems require some (standard) definitions,
we simply refer the reader to Theorem 2.2 and Theorem 2.10 at this point of the
Introduction.

As a matter of convention, we will always assume that the constant function 1
is an element of the basis B, although it does not contribute to the vanishing of the
product.

Remark 1.6. The reader might wonder how essential very largeness fits in with
the standard notions of “size” for a divisor in algebraic geometry. We only make the
two following simple remarks in this respect.

First, it is clear from the definition that an irreducible divisor is never essentially
large, regardless of how positive it is. In particular, even if it is very ample, it cannot
be essentially large. Basically, essential largeness requires that the divisor be positive
and have a sufficient number of irreducible components in general position. It is a
simple exercise to see that on a smooth compact Riemann surface, an effective divisor
is essentially large if and only if its support consists of three or more points.

Second, we remark that a basis for V as in Definition 1.5 yields a nonconstant
rational map to projective space whose locus of indeterminacy, i.e., the base locus of
V understood as a subspace of H0(X,OX(D)), is contained in the support of D.
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In a second line of inquiry, beginning in Section 3, it is clearly interesting to ask
for (sharp) sufficient criteria for a divisor to be essentially large. In this direction,
we first discovered that the filtration method from [CZ04a] (see also [Ru04]) yields
the expected sharp bound (even for the original version of largeness) in the case of
X = Pq as stated in the following theorem. (Cf. our comments in Remark 1.4.)

Theorem 1.7. Let q ≥ 1 and r ≥ q + 2 be integers. On Pq, let D =
∑r

i=1Di be
a divisor defined over K, where each Di is a hypersurface (not necessarily irreducible
or reduced). Assume that the Di are in general position, i.e., the intersection of any
q + 1 of them is empty over K̄. Then D is large.

In the case of arbitrary nonsingular projective varieties our result is the following.

Theorem 1.8. Let q ≥ 1 and r ≥ q+2 be integers. Let X ⊆ Pℓ be a nonsingular
projective variety of dimension q defined over K. Let D =

∑r
i=1Di be a divisor on

X such that each Di is defined by the restriction to X of a homogeneous polynomial
of degree di in K[X0, . . . , Xℓ]. Finally, assume that the Di are in general position on
X, i.e., the intersection of X with any q + 1 of them is empty over K̄. Then D is
essentially large.

We remark that the assumptions in Theorem 1.8 correspond exactly to the current
state-of-the-art for generalized geometric versions of the Second Main Theorem (see
[Ru09]).

It seemed to be an interesting problem to find a broad class of projective varieties
to which Theorem 1.8 can actually be applied. This is treated in Section 4, where we
obtain the following theorem, which is repeated as Corollary 4.1.

Theorem 1.9. Let q ≥ 1 and r ≥ q+2 be integers. Let X ⊆ Pℓ be a nonsingular
projective variety of dimension q, defined over K. Assume that Pic(X) = Z. Let
D =

∑r
i=1Di be an effective divisor on X defined over K such that the Di are in

general position. Then D is essentially large.

In closing this Introduction, we conjecture that the bound on the number of
components in Theorem 1.9 is generally the correct one. Note that in this case,
a positivity assumption clearly needs to be added; we suspect that bigness should
suffice.

Conjecture 1.10. Let q ≥ 1 and r ≥ q + 2 be integers. Let X ⊆ Pℓ be a
nonsingular projective variety of dimension q, defined over K. Let D =

∑r
i=1Di be

an effective divisor, defined over K, on X such that the Di are big and in general
position. Then D is essentially large.

Acknowledgement. We thank the anonymous referees for their careful reading
of our manuscript and their helpful suggestions, in particular concerning the case of
function fields.

2. The arithmetic and function-theoretic properties of essentially large

divisors.

2.1. The function-theoretic case. We first derive an inequality of Second
Main Theorem-type for essentially very large divisors, where we use the definition
of the essential (very) largeness with K = C. We begin by recalling some standard
definitions from Nevanlinna Theory.

Let g : C → Pm be a holomorphic map. Let g = [g0, . . . , gm] be a reduced
representative of g, where g0, . . . , gm are entire functions on C and have no common
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zeros. The Nevanlinna-Cartan characteristic function (or the height function) Tg(r)
is defined by

Tg(r) =
1

2π

∫ 2π

0

log max
j=0,...,m

|gj(re
√
−1θ)|dθ.

The above definition is independent, up to an additive constant, of the choice of the
reduced representation of g.

For a divisor D on a projective variety X , represented by a local defining function
ρ, and a holomorphic map g : C → X , the counting function is defined as

Ng(r,D) =

∫ r

0

ng(t,D)− ng(0, D)

t
dt+ ng(0, D) log r,

where ng(t,D) is the number of zeros of ρ◦g inside {|z| < t} (counting multiplicities),
and ng(0, D) = limt→0+ ng(t,D).

By the Jensen formula, we also have

Ng(r,D) =
∑

a∈Dr\{0}
orda(ρ ◦ g) log

∣

∣

∣

r

a

∣

∣

∣+ ord0(ρ ◦ g) log r.

The following generalized version of Cartan’s Second Main Theorem (see [Ru97],
[Voj97]) will be the basis of the proof of Theorem 2.2. Note that by ‖ ‖ we mean the
(coefficient-wise) maximum norm in this subsection.

Theorem 2.1. Let f = [f0 : . . . : fm] : C → Pm be a holomorphic map whose
image is not contained in a proper linear subspace. Let H1, . . . , Hq be arbitrary hy-
perplanes in Pm. Let Lj, 1 ≤ j ≤ q, be linear forms defining H1, . . . , Hq. Then, for
every ε > 0,

∫ 2π

0

max
K

log
∏

j∈K

‖f(re
√
−1θ)‖‖Lj‖

|Lj(f(re
√
−1θ)|

dθ

2π
. ≤ .(m+ 1 + ε)Tf (r),

where “. ≤ .” means that the inequality holds for all r outside of a set Γ with finite
Lebesgue measure, and the maximum is taken over all subsets K of {1, . . . , q} such
that the linear forms Lj, j ∈ K, are linearly independent.

To prove our result, we need a general formula for the height function Tg(r)
when g = [g0 : . . . : gm], where g0, . . . , gm are meromorphic functions (i.e., it is not
necessarily the reduced representation of g). According to [Lan87, p. 202], such a
formula reads

Tg(r) =

∫ 2π

0

log max
j=0,...,m

|gj(re
√
−1θ)|

dθ

2π
− logmax

j∈A
|cgj |

+
∑

a∈Dr\0
max

j=0,...,m
(− orda(gj)) log

∣

∣

∣

r

a

∣

∣

∣+ max
j=0,...,m

(− ord0(gj)) log |r|,(2)

where logmaxj∈A |cgj | is a correction term that makes the definition independent of
multiplication by a nowhere zero holomorphic function (see [Lan87] for full details).

Our main result in this subsection is the following inequality of Second Main
Theorem-type. According to the subsequent Corollary 2.3, it can be understood
from the geometric point of view as a quantitative version of the results about the
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degeneracy of holomorphic mappings omitting essentially large divisors (see Corollary
2.3).

Theorem 2.2. Let D be an essentially very large divisor on a nonsingular com-
plex projective variety X. Let V be a linear subspace of L(D) as in Definition 1.5.
Let φ0, . . . φm be an arbitrary basis for V . Let f : C → X be an algebraically nonde-
generate holomorphic map. Let Φ be the rational map [φ0 : . . . : φm] : X → Pm, and
write

F = Φ ◦ f : C → Pm.

When E1, . . . , Eℓ denote the irreducible components of D, let

M = max{− ordEi
(φj) | i = 1, . . . , ℓ, j = 0, . . . ,m}.

Then, for every ε > 0,

TF (r). ≤ .(M(m+ 1) + 1 + ε)Nf(r,D),

where “. ≤ .” means that the inequality holds for all r outside of a set Γ with finite
Lebesgue measure.

Note that since Φ is nonconstant and f is algebraically nondegenerate, the map
F also is nonconstant.

Corollary 2.3. Let D be an essentially large divisor on a nonsingular complex
projective variety X. Then every holomorphic map f : C → X\D must be algebraically
degenerate, i.e., the image of f must be contained in a proper subvariety of X.

Proof of Corollary 2.3. Since the statement of the corollary only refers to the
support of D, we can assume that D is essentially very large. Assume that f : C →
X \D is algebraically nondegenerate. Since f omits D, Nf (r,D) = 0. So the above
inequality implies that TF (r) is bounded outside of a set of finite Lebesgue measure.
However, since F is nonconstant, this is false and gives a contradiction.

Proof of Theorem 2.2. It is easy to see ([Lev09, Remark 8.2]) that there exists a
finite set J of elements in V such that for every P ∈ D there exists a subset I ⊂ J
that is a basis of V with ordE

∏

f∈I f > 0 when E is a component of D with P ∈ E.
Let J ′ be the set of linear forms L in m+ 1 variables such that L ◦ Φ ∈ J .

According to Theorem 2.1,

∫ 2π

0

max
I

log
∏

L∈I

‖F (re
√
−1θ)‖‖L‖

|L(F (re
√
−1θ))|

dθ

2π
. ≤ .(m+ 1 + ε)TF (r),

where the maximum is taken over subsets I ⊂ J ′ such that I consists of exactly m+1
independent linear forms.

Since the left-hand side is independent of the choice of the representation of F ,
we can rewrite the above inequality as

∫ 2π

0

max
I

log
∏

L∈I

max0≤j≤m |φj(f(re
√
−1θ))|

|L(F (re
√
−1θ))|

dθ

2π
. ≤ .(m+ 1 + ε)TF (r) +O(1),

where O(1) is introduced by dropping the factor ‖L‖ after assuming that a fixed choice
of coefficients has been made.
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Next, we observe that since D is essentially very large, outside of the support of
the divisor D, we have

(3) max
j

|φj(f(re
√
−1θ))|

1
M min

I

∏

L∈I

|L(F (re
√
−1θ))| ≤ C,

where C is some constant. The reason is that we can cover X by a finite num-
ber of open sets on each of which |φj minI(

∏

L∈I |L ◦ Φ|)M | is bounded for each
j = 0, . . . ,m. Namely, for P ∈ X , define UP as follows. If P 6∈ D, take a small
neighborhood UP of P such that its closure is disjoint from the support of D. Since
the φj have no poles outside of the support of D, the boundedness on UP is obvi-
ous. If P ∈ D, take UP to be a small neighborhood of P with the property that
Q ∈ E ∩UP implies P ∈ E for all components E of D. Consequently, by the essential
very largeness, there exists I0 such that ordE(

∏

L∈I0
L ◦ Φ) is a positive integer and

ordE
(

φj minI(
∏

L∈I |L ◦ Φ|)M
)

≥ 0 for all j = 0, . . . ,m. Perhaps after shrinking UP ,
this implies that |φj minI(

∏

L∈I |L ◦ Φ|)M | is bounded on UP for every j = 0, . . . ,m.
Finally, since X is compact, we can cover it with a finite number of open sets of the
form UP .

Applying log to both sides of (3) yields

logmax
j

|φj(f(re
√
−1θ))|

1
M + logmin

I

∏

L∈I

|L(F (re
√
−1θ))| ≤ logC.

Therefore,

logmax
j

|φj(f(re
√
−1θ))|m+1+ 1

M ≤ max
I

log
∏

L∈I

maxj |φj(f(re
√
−1θ))|

|L(F (re
√
−1θ))|

+ logC.

Thus
∫ 2π

0

logmax
j

|φj(f(re
√
−1θ))|dθ

=
M

M(m+ 1) + 1

∫ 2π

0

logmax
j

|φj(f(re
√
−1θ))|m+1+ 1

M dθ

≤
M

M(m+ 1) + 1

(

∫ 2π

0

max
I

log
∏

L∈I

maxj |φj(f(re
√
−1θ))|

|L(F (re
√
−1θ))|

dθ + logC

)

. ≤ .
M(m+ 1 + ε)

M(m+ 1) + 1
TF (r) +O(1).

On the other hand, from (2),

TF (r) =

∫ 2π

0

logmax
j

|φj(f)(re
√
−1θ)|

dθ

2π
− logmax

j∈K
|cφj(f)|

+
∑

a∈Dr\0
max

j
(− orda(φj(f))) log

∣

∣

∣

r

a

∣

∣

∣

+max
j

(− ord0(φj(f))) log |r|.

Thus,

TF (r). ≤ .
M(m+ 1 + ε)

M(m+ 1) + 1
TF (r) +

∑

a∈Dr\0
max

j
(− orda(φj(f))) log

∣

∣

∣

r

a

∣

∣

∣

+max
j

(− ord0(φj(f))) log |r|+O(1).
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Recall that due to the isomorphism (1), there are sections s0, . . . , sm ∈ H0(X,OX(D))
such that φj =

sj
sD

. Therefore, for all a ∈ Dr,

max
j

(− orda(φj ◦ f)) = max
j

(

− orda

(

sj
sD

◦ f

))

= orda(sD ◦ f)−min
j

orda(sj ◦ f) ≤ orda(sD ◦ f).

Consequently, we obtain

1− ε

M(m+ 1) + 1
TF (r). ≤ .

∑

a∈Dr\{0}
orda(sD ◦ f) log

∣

∣

∣

r

a

∣

∣

∣

+ ord0(sD ◦ f) log r +O(1)

=Nf(r,D) +O(1).

Note that since TF (r) → ∞ for r → ∞, we have, after perhaps enlarging Γ,
Nf (r,D) + O(1). ≤ .Nf (r,D) + δTF (r), where δ is any positive number. We can
now subtract δTF (r) from both sides of the inequality and then divide both sides by

1−ε
M(m+1)+1−δ. Choosing small enough ε and δ (depending on ε) concludes the proof.

2.2. The arithmetic case. We now derive an inequality of Schmidt Subspace
Theorem-type for essentially large divisors. In this subsection, we work in the setting
where K is either a number field k, i.e., a finite extension of the field of rational
numbers, or a function field L of a nonsingular projective variety over an algebraically
closed field of characteristic 0. We write K when referring to both cases at the same
time. We remark that both types of fields are examples of global fields of characteristic
zero with a proper set of absolute values MK such that the crucial product formula
holds (see [Lan83, Chapters 1, 2]).

We begin with the case of a number field k of degree d. We denote by Mk the set
of places (i.e., equivalence classes of absolute values) of k and write M∞

k for the set
of archimedean places of k. In an archimedean class υ, we choose the absolute value
| |υ such that | |υ = | | on Q (the standard absolute value). For a nonarchimedean
class υ ∈ Mk \ M∞

k , we let |p|υ = p−1 if υ lies above the rational prime p. Let

‖ ‖υ = | |
dυ/d
υ , where kυ is the completion of k with respect to υ and dυ = [kυ : Qυ]

is the local degree. Then the following product formula holds for every x ∈ k∗:
∏

υ∈Mk

‖x‖υ = 1.

When L is the function field of V , where V ⊂ PM0 is a nonsingular projective
variety over an algebraically closed field of characteristic 0, we let ML be the set of
prime divisors of V (irreducible subvarieties of codimension one). Let P ∈ML be such
a prime divisor. As V is nonsingular, the local ring OP at P is a discrete valuation
ring. For each x ∈ L∗, its order ordP x at P is well defined. We can associate to x its
divisor

(x) =
∑

P∈ML

ordP(x)P = (x)0 − (x)∞,

where (x)0 is the zero divisor of x and (x)∞ is the polar divisor of x respectively. Let
degP denote the projective degree of P in PM0 . For x ∈ L∗ and P ∈ML, we define

‖x‖P = e− ordP(x) degP .
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Then the product formula
∏

P∈ML

‖x‖P = 1

holds for all x ∈ L∗.
For Q = [x0, . . . , xm] ∈ Pm(K), let ‖Q‖υ = max0≤i≤m ‖xi‖υ. Moreover, define

the logarithmic height of Q by

h(Q) =
∑

υ∈MK

log ‖Q‖υ.

By the product formula, its definition is independent of the choice of the representa-
tions.

According to [Lan83, Proposition 2.2], for K and υ ∈ MK as described above,
there is a unique extension of v to K̄υ, where Kυ is the completion of K with respect
to the absolute value υ ∈MK and K̄υ is the algebraic closure of Kυ.

Next, define an MK-constant to be a collection of real numbers (cυ)υ∈MK
such

that cυ = 0 for all but finitely many υ. A collection of functions (γυ : X → R)υ∈MK

is said to be OMK
(1) (or MK-bounded) if there exists an MK-constant (cυ)υ∈MK

such
that |γυ(x)| ≤ cυ for all x ∈ X and υ ∈MK .

Before we define the notion of a global Weil function in Definition 2.5, we first
prove the following lemma.

Lemma 2.4. Let X be a projective nonsingular variety and D be an effective
divisor on X, both defined over K. Let OX(D) be the line bundle associated with D,
and write OX(D) = M1 ⊗M−1

2 , where M1,M2 are very ample line bundles. Choose
generating sections l1, . . . , lt1 of M1 and m1, . . . ,mt2 ofM2. Let s1, . . . , st be arbitrary
sections of OX(D), and sD a section of OX(D) such that div(sD) = D. Then, for
every υ ∈MK and P 6∈ Supp(D),

max
µ=1,...,t

log
∥

∥

sµ
sD

(P )
∥

∥

υ
≤ max

1≤α≤t1
min

1≤β≤t2
log
∥

∥

lα
mβsD

(P )
∥

∥

υ
+ cυ,

where (cυ)υ∈MK
is an MK-constant. Note that we use the notation mβsD for mβ⊗sD

and that lα
mβsD

is a well-defined rational function on X.

Proof. For each 1 ≤ µ ≤ t, P 6∈ Supp(D), and each 1 ≤ α0 ≤ t1 with lα0(P ) 6= 0,
we take 1 ≤ β0 ≤ t2 such that

log
∥

∥

lα0

mβ0sD
(P )
∥

∥

υ
= min

1≤β≤t2
log
∥

∥

lα0

mβsD
(P )
∥

∥

υ
.

Note that since l1, . . . , lt1 , as well m1, . . . ,mt2 , do not have common zeros, such α0

and β0 exist with the above minimum being finite. Hence

log
∥

∥

sµ
sD

(P )
∥

∥

υ

= log
∥

∥

lα0

mβ0sD
(P )
∥

∥

υ
+ log

∥

∥

mβ0sµ
lα0

(P )
∥

∥

υ

= min
1≤β≤t2

log
∥

∥

lα0

mβsD
(P )
∥

∥

υ
+ log

∥

∥

mβ0sµ
lα0

(P )
∥

∥

υ

≤ max
1≤α≤t1

min
1≤β≤t2

log
∥

∥

lα
mβsD

(P )
∥

∥

υ
+ max

{(α,β) | lα(P ) 6=0}
log
∥

∥

mβsµ
lα

(P )
∥

∥

υ
.(4)
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Inequality (4) holds because α0 was chosen such that lα0(P ) 6= 0. To prove the lemma,
it now suffices to establish the following claim: for all υ ∈MK ,

(5) max
1≤µ≤t

max
{(α,β) | lα(P ) 6=0}

log
∥

∥

mβsµ
lα

(P )
∥

∥

υ
≤ cυ

for some MK-constant (cυ)υ∈MK
.

To prove the claim, we bound by an MK-constant, for arbitrary fixed indices
β̂, µ̂, α̂, the expression

log
∥

∥

mβ̂sµ̂

lα̂
(P )
∥

∥

υ

for P ∈ Uα̂ = {P ∈ X \ Supp(D) | lα̂(P ) 6= 0}.
To get started, we choose a closed embedding of X into PN with the standard

coordinates [x0, . . . , xN ]. We define, for fixed 0 ≤ i ≤ N and υ ∈MK ,

Eiυ := {P ∈ X(K̄) | ‖xi(P )‖υ = max
0≤i′≤N

‖xi′(P )‖υ}.

Obviously, ∪N
i=0Eiυ = X for each υ ∈ MK , so we only need to prove the claim on

Ei0υ ∩ Uα̂ with an arbitrary but fixed 0 ≤ i0 ≤ N . Without loss of generality, we
assume that i0 = 0 and also write U := {P ∈ X(K̄) | x0(P ) 6= 0}, noting E0υ ⊂ U .

We define, on U , fi := xi/x0 for 0 ≤ i ≤ N . In particular, note that f0 ≡ 1.
Then,

(6) sup
P∈E0υ

‖fi(P )‖υ ≤ 1,

for all 0 ≤ i ≤ N , and the regular functions fi, 0 ≤ i ≤ N , generate K[U ], i.e., the
K-algebra of regular functions on U .

Next, we define the following divisors on X (with 1 ≤ α ≤ t1): A = div(x0)
and Dα = div(lα). Since A is ample, it is well-known that, for m a sufficiently large
integer, the divisor mA−Dα is ample again for all α = 1, . . . , t1. Therefore, there is a
positive integer m′ such that m′(mA−Dα) is very ample. For every fixed α, we pick
sections sαj ∈ H0(X,OX(m′(mA − Dα))), j = 1, . . . , dimX + 1, without common
zeros. Moreover, let sm′mA ∈ H0(X,OX(m′mA)) be such that div(sm′mA) = m′mA.
Now, for α = 1, . . . , t1 and j = 1, . . . , dimX + 1, we let

hαj :=
lm

′

α sαj
sm′mA

|U .

Each hαj is a regular function on U such that

Ũα := {P ∈ U | lα 6= 0} ⊇ {P ∈ U |hαj 6= 0}.

Note that the functions hαj have no common zeros, for the following reason. Since the
lα have no common zeros, for every x ∈ U , there is an index α′ such that lα′(x) 6= 0.
Since the sα′j , j = 1, . . . , dimX +1, have no common zeros, there is an index j′ with
sα′j′(x) 6= 0. Hence, hα′j′ (x) 6= 0.

We will abuse notation and suppress the index j, referring to hαj simply as hα,
for α = 1, . . . , t3 = t1(dimX +1). Since these functions, now labeled hα, α = 1, . . . , t3,
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have no common zeros on U , a version of the Nullstellensatz ([BG06, Lemma 2.2.7]),
yields the existence of regular functions gα on U such that

(7)

t3
∑

α=1

gαhα = 1.

Also, we can define, for each α = 1, . . . , t3,

Ẽαυ = {P ∈ E0υ | ‖hα(P )‖υ = max
1≤α′≤t1

‖hα′(P )‖υ}.

Then, for all P ∈ Ẽαυ, for all 1 ≤ α′ ≤ t3,

(8) ‖(hα′/hα)(P )‖υ ≤ 1.

Note that E0υ = ∪t3
α=1Ẽαυ. It thus suffices to prove the claim on Ẽα̃υ ∩Uα̂ for a fixed

arbitrary α̃.
Since fi, 0 ≤ i ≤ N , generate the K-algebra K[U ], there are polynomials p(α)

with coefficients p
(α)
a ∈ K such that

gα = p(α)(f0, . . . , fN),

which implies, due to (6),

(9) sup
P∈E0υ

‖gα(P )‖υ ≤ Cα max
a

‖p(α)a ‖υ.

Concerning the constants Cα, we remark that when υ is one of the finitely many
archimedean elements of MK , then Cα is the number of monomials in p(α). If υ is
nonarchimedean, then we may take Cα = 1 for α = 1, . . . , t3. It is important for our
argument to have these constants equal to 1 for almost all υ.

Next, observe that on Ẽα̃υ, we can write, from (7), that

(10) 1/hα̃ =

t3
∑

α=1

gα
hα
hα̃
.

Thus, from (10), (8) and (9), we have,

(11) sup
P∈Ẽα̃υ

‖1/hα̃(P )‖υ ≤ τ sup
P∈Ẽα̃υ

max
1≤α≤t3

‖gα(P )‖υ ≤ τ max
1≤α≤t3

(Cα max
a

‖p(α)a ‖υ),

where τ = 1 for υ nonarchimedean, and τ = t3 otherwise.
It follows from [Har77, Proposition II.2.2] that f0, . . . , fN and 1/hα̃ generate the

K-algebra K[Ũα̃]. We can thus write, on Ẽα̃υ ∩ Uα̂,

mβ̂sµ̂

lα̂
= p̃(f0, . . . , fN , 1/hα̃),

where p̃ is a polynomial with coefficients p̃a ∈ K. In particular, using (11) and (6),
for all P ∈ Ẽα̃υ ∩ Uα̂,

∥

∥

mβ̂sµ̂

lα̂
(P )
∥

∥

υ

≤ C̃max
a

‖p̃a‖υ sup
P∈Ẽα̃υ

max{‖f0(P )‖υ, . . . , ‖fN(P )‖υ, ‖1/hα̃(P )‖υ}

≤
(

C̃max
a

‖p̃a‖υ
)

·

(

τ max
1≤α≤t3

Cα max
a

‖p(α)a ‖υ

)

.
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Again, the constant C̃ = 1 for nonarchimedean υ. Altogether, it is clear now that the
expression in the last line is different from 1 only for finitely many υ. Thus,

(12) sup
P∈Ẽα̃υ∩Uα̂

log
∥

∥

mβ̂sµ̂

lα̂
(P )
∥

∥

υ
≤ cυ,

where (cυ)υ∈MK
is an MK-constant. The claim is proven.

We now define a global Weil function (λD,υ)υ∈MK
as follows.

Definition 2.5. Let X be a projective nonsingular variety and D be an effective
divisor on X , both defined over K. Extend ‖ ‖υ to an absolute value on the alge-
braic closure K̄υ for all υ ∈ MK . Let OX(D) be the line bundle associated with D.
Write OX(D) =M1 ⊗M−1

2 , where M1,M2 are very ample line bundles. Now choose
generating global sections l1, . . . , lt1 ofM1 and m1, . . . ,mt2 ofM2. For P 6∈ Supp(D),
we call the collection of functions

λD,υ(P ) := max
1≤α≤t1

min
1≤β≤t2

log
∥

∥

lα
mβsD

(P )
∥

∥

υ
,

υ ∈MK , a global Weil function, where sD is a section of OX(D) with div(sD) = D.

Note that the above definition is indeed independent, up to an OMK
(1)-term, of

the choice of the auxiliary line bundles and sections made in the definition. In fact,
let M̃1, M̃2, l̃1, . . . , l̃τ1 and m̃1, . . . , m̃τ2 be another choice of line bundles and bases
as in Definition 2.5. Using the same arguments used to arrive at inequality (4) in
Lemma 2.4, we have

max
1≤δ≤τ1

min
1≤ε≤τ2

log
∥

∥

l̃δ
m̃εsD

(P )
∥

∥

υ
≤ max

1≤α≤t1
min

1≤β≤t2
log
∥

∥

lα
mβsD

(P )
∥

∥

υ

+ max
{(α,β,δ,ε)|(m̃εlα)(P ) 6=0}

log
∥

∥

l̃δmβ

m̃εlα
(P )
∥

∥

υ
.

An argument similar to the one used to prove inequality (12) shows that

max
{(α,β,δ,ε)|(m̃εlα)(P ) 6=0}

log
∥

∥

l̃δmβ

m̃εlα
(P )
∥

∥

υ
≤ cυ,

where (cυ)υ∈MK
is an MK-constant. Hence

max
1≤δ≤τ1

min
1≤ε≤τ2

log
∥

∥

l̃δ
m̃εsD

(P )
∥

∥

υ
≤ max

1≤α≤t1
min

1≤β≤t2
log
∥

∥

lα
mβsD

(P )
∥

∥

υ
+ cυ.

The other direction can be obtained in a similar way.
Due to the well-definedness up to MK-boundedness, we will sometimes abuse

notation in the sequel and write λD,υ = λD,υ + cυ for an MK-constant (cυ)υ∈MK
.

Definition 2.6. For a finite set S ⊂ MK containing all archimedean elements,
define the counting function NS(P,D) by

(13) NS(P,D) =
∑

υ 6∈S

λD,υ(P ).

We remark that the sum defining NS(P,D) is always a finite sum for P ∈ X(K̄).
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Next, we define the notion of integral points appropriate for our setting. For a
more detailed discussion, including some motivational comments, of this notion, we
refer the reader to [Voj87, Chapter 1, §4].

Definition 2.7. A subset Σ of X(K̄) \ Supp(D) is (D,S)-integral if there is an
MK-constant (cυ)υ∈MK

such that for all υ ∈MK \ S and all embeddings K̄ → K̄υ,

λD,υ(P ) ≤ cυ

for all P ∈ Σ. We define the (D,S)-integral set Σ to be K-rational if Σ ⊂ X(K) \
Supp(D). In particular, a subset Σ of X(K) \ Supp(D) is (D,S)-integral if and only
if NS(·, D) is bounded over Σ.

We recall the following generalized version of Schmidt’s Subspace Theorem over
number fields from [Voj89].

Theorem 2.8. Let k be a number field with its set of canonical places Mk.
Let S ⊂ Mk be a finite set containing all archimedean places. Let H1, . . . , Hm be
hyperplanes in Pn defined over k̄ with corresponding Weil functions λH1 , . . . , λHm

.
Then there exists a finite union of hyperplanes Z, depending only on H1, . . . , Hm

(and not k, S), such that for any ε > 0,

∑

υ∈S

max
I

∑

i∈I

λHi,υ(P ) ≤ (n+ 1 + ε)h(P )

holds for all but finitely many P ∈ Pn(k)\Z, where the maximum is taken over subsets
I ⊂ {1, . . . ,m} such that the linear forms defining Hi, i ∈ I, are linearly independent.

For the function field case with L as above, we recall the following effective version
of Schmidt’s Subspace Theorem from [Wan04].

Theorem 2.9. Let H1, ..., Hq be hyperplanes in Pn defined over L and S be a
finite set of prime divisors of V . Then there exists an effectively computable finite
union R of proper linear subspaces of Pn, defined over L and depending only on the
given hyperplanes, such that the following is true. Given ǫ > 0, there exist effectively
computable constants Cǫ and C′

ǫ such that for any x ∈ Pn(L) \ R,

h(x) ≤ Cǫ

or
∑

P∈S

max
J

∑

j∈J

λHj ,P(x) ≤ (n+ 1 + ǫ)h(x) + C′
ǫ,

where the maximum is taken over all subsets J of {1, ..., q} such that the linear forms
Hj, j ∈ J , are linearly independent.

Our main result in this subsection is the following inequality of Schmidt Subspace
Theorem-type for essentially large divisors. Recall that the constant M was already
defined in Theorem 2.2.

Theorem 2.10. Let D be an essentially very large divisor on a nonsingular
projective variety X, both defined over K. Let V be a linear subspace of L(D) as in
Definition 1.5. Let φ0, . . . φm be an arbitrary basis for V and let Φ be the rational
map [φ0 : . . . : φm] : X → Pm.
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(a) If K = k is a number field, and S ⊂MK be a finite set of elements containing
all archimedean ones, then, for every ε > 0,

h(Φ(P )). ≤ .(M(m+ 1) + 1 + ε)NS(P,D),

where “. ≤ .” means that the inequality holds for all P ∈ X(k) outside of a
Zariski closed subset Z of X.

(b) If K = L is the function field of a nonsingular projective variety V over an
algebraically closed field of characteristic 0, and S is a finite set of prime
divisors of V , then there exists an effectively computable finite union R of
proper subvarieties of X depending only on Φ such that the following is true.
Given ǫ > 0, there exist effectively computable constants Cǫ and C′

ǫ such that
for any x ∈ X(L)rR,

h(Φ(x)) ≤ Cǫ

or

h(Φ(x)) ≤ (M(m+ 1) + 1 + ε)NS(x, D) + C′
ǫ.

Proof. We only prove (a) since the proof of (b) is virtually identical. Due to
arguments analogous to those that gave the boundedness (3), we have for P ∈ X(k)
not contained in the support of D:

∑

υ∈S

max
j

log ‖φj(P )‖
m+1+ 1

M
υ ≤

∑

υ∈S

max
I

log
∏

L∈I

maxj ‖φj(P )‖υ
‖L(Φ(P ))‖υ

+ cυ,

where (cυ)υ∈S are finitely many constants. By Schmidt’s Subspace Theorem, for all
P ∈ X(k) outside a Zariski closed subset Z of X ,

∑

υ∈S

max
I

log
∏

L∈I

maxj ‖φj(P )‖υ
‖L(Φ(P ))‖υ

. ≤ .(m+ 1 + ε)h(Φ(P )).

Hence

∑

υ∈S

max
j

log ‖φj(P )‖
m+1+ 1

M
υ . ≤ .(m+ 1 + ε)h(Φ(P )) +

∑

υ∈S

cυ.

We remark that the constant
∑

υ∈S cυ can be absorbed into the term (m + 1 +
ε)h(Φ(P )) and thus be dropped from the inequality. Moreover, by definition,

∑

υ∈S

max
j

log ‖φj(P )‖υ +
∑

υ 6∈S

max
j

log ‖φj(P )‖υ = h(Φ(P )).

We again use the fact that, due to the isomorphism (1), there are sections
s0, . . . , sm ∈ H0(X,OX(D)) such that φj =

sj
sD

, j = 0, . . . ,m, where sD is a sec-
tion of OX(D) with div(sD) = D. Thus

∑

υ∈S

max
j

log ‖φj(P )‖υ +
∑

υ 6∈S

max
j

log ‖
sj
sD

(P )‖υ = h(Φ(P )).
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From Lemma 2.4,

max
j

log ‖
sj
sD

(P )‖υ ≤ λD,υ.

Therefore,
∑

υ∈S

max
j

log ‖φj(P )‖υ +
∑

υ 6∈S

λD,υ(P ) ≥ h(Φ(P )).

So we have
(

m+ 1 +
1

M

)

h(Φ(P ))

≤
∑

υ∈S

max
j

log ‖φj(P )‖
m+1+ 1

M
υ +

(

m+ 1 +
1

M

)

∑

υ 6∈S

λD,υ(P )

. ≤ .(m+ 1 + ε)h(Φ(P )) +

(

m+ 1 +
1

M

)

NS(P,D).

After rearranging the inequality and choosing ε and δ (depending on ε) small, we
obtain the Theorem.

In strict analogy to Corollary 2.3, we obtain the following

Corollary 2.11. Let D be an essentially large divisor on a nonsingular projec-
tive variety X, both defined over a number field k. Let S ⊂Mk be a finite set of places
containing all archimedean ones. Then any set of k̂-rational (D,S)-integral points is

contained in a proper subvariety of X for any finite extension k̂ of k.

Proof. We can assume without loss of generality that k̂ = k and D is essentially
very large. Let Σ be a set of (D,S)-integral points. According to Definition 2.7,
NS(·, D) is bounded over Σ. So, by Theorem 2.10(a), h(Φ(P )) is bounded for all
P ∈ Σ outside a Zariski closed subset Z of X . This means that, due to Northcott’s
Theorem, the set {Φ(P )|P ∈ (Σ\Z)(k)} is finite. Since Φ is a nonconstant morphism
outside of D, the preimage of this finite set is a proper Zariski closed subset Z ′ of X .
We have shown that Σ ⊂ Z ∪ Z ′, which concludes the proof.

3. Proofs of the sharp sufficient criteria for essentially large divisors.

As was stated in the Introduction, the filtration method from [CZ04a], [Ru04] can be
used to prove the sharp bound for the number of components of a large divisor in the
case of X = Pq (Theorem 1.7). We now give the proof. In doing so, we return to the
general setting where we are working over an arbitrary field K of characteristic zero.

Proof of Theorem 1.7. Let Q1, . . . , Qr be homogeneous polynomials of degree di
such that Di = {Qi = 0}. Let P ∈ D(K̄). After replacing each Qi by Q

d/di

i , where
d is the least common multiple of the di’s, we can assume that all Qi have the same
degree d. Without loss of generality, assume that precisely q of the Di(K̄) contain the
point P , and let {γ1, . . . , γq} be the unique set of distinct elements of {Q1, . . . , Qr}
such that P ∈ ∩q

i=1{P ∈ X(K̄) | γi(P ) = 0}.
Let VN be the vector space of homogeneous polynomials of degree N in

K[X0, . . . , Xq]. With the lexicographical ordering on the q-tuples ~i = (i1, . . . , iq)

and σ(~i) :=
∑q

j=1 ij ≤ N/d, we obtain a filtration on VN by letting

W~i =
∑

~e≥~i

γe11 . . . γeqq VN−dσ(~e).
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Note that clearly W~0 = VN and W~i ⊇ W~i′ for ~i′ ≥ ~i. Combining Lemma 2.3 and
Lemma 3.1 of [CZ04a], we note the following lemma for our situation.

Lemma 3.1. There exists an integer N0 (depending only on γ1, . . . , γq) such that

for all integers N > N0 and for all ~i with dσ(~i) < N − N0 and immediate successor
~i′,

∆~i := dimW~i/W~i′ = dq.

Now choose a basis ψ1, . . . , ψm (m =
(

N+q
q

)

) for VN with respect to the above
filtration. For all ν = 1, . . . ,m, write

ψν = γi11 . . . γiqq γ
(ν)

for some γ(ν) ∈ VN−dσ(~i) according to its place in the filtration.

For Ñ ∈ N, let N = Ñ · r · d and write

H0(Pq,OPq(ÑD)) = H0(Pq,OPq (Ñ · r · d)) = H0(Pq,OPq(N)) = VN .

For ν = 1, . . . ,m, let

fν =
ψν

QÑ
1 . . . QÑ

r

.

These rational functions clearly form a basis for L(ÑD). To conclude the proof of
the theorem, we show that they satisfy ordE

∏m
ν=1 fν > 0 for any component E in D

with P ∈ E(K̄). We assume that E is contained in Dj0 . Then

1

ordE D
ordE

m
∏

ν=1

fν =





∑

~i

∆~iij0



− Ñ

(

N + q

q

)

.

Since the number of nonnegative integerm-tuples with sum ≤ t is equal to the number
of nonnegative integer (m + 1)-tuples with sum exactly t, which is

(

t+m
m

)

, and since
the sum below is independent of j, we have that, for N divisible by d and for every j,

∑

~i

ij =
1

q + 1

∑

~̂i

q+1
∑

η=1

iη =
1

q + 1

∑

~̂i

N

d

=
1

q + 1

(

N/d+ q

q

)

N

d
=

N q+1

dq+1(q + 1)!
+O(N q),

where
∑

~̂i

is taken over all nonnegative integer (q + 1)-tuples with sum exactly N/d.

Combining it with Lemma 3.1, we have, for every 1 ≤ j0 ≤ q,

∑

~i

∆~iij0 =
N q+1

d(q + 1)!
+O(N q).
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Thus,

1

ordE D
ordE

m
∏

ν=1

fν =





∑

~i

∆~iij0



− Ñ

(

N + q

q

)

=

(

N q+1

d · (q + 1)!
+O(N q)

)

−
N

dr

(

N q

q!
+O(N q−1)

)

=

(

1

q + 1
−

1

r

)

N q+1

d · q!
+O(N q).

For N sufficiently large, this is positive if r ≥ q + 2.

We continue with the proof of Theorem 1.8, based on the methods of [Fer00],
[EF02], [EF08] and [Ru09].

Proof of Theorem 1.8. Let Q1, . . . , Qr be homogeneous polynomials such that
Di = div(Qi|X). As above, we can assume that the degrees of the homogeneous
polynomials Qi equal d for all i. Let

ϕ : X → Pr−1, x 7→ [Q1(x), . . . , Qr(x)].

Let Y := ϕ(X). By the general position assumption, ϕ is a finite morphism X → Y .
On Pr−1, we have for all N ∈ N a short exact sequence

0 → IY (N) → OPr−1(N) → OY (N) → 0.

The beginning of the corresponding long exact sequence reads

0 → H0(Pr−1, IY (N)) → H0(Pr−1,OPr−1(N))
τ
→ H0(Y,OY (N)),

where τ denotes the restriction map. For N a positive multiple of r, we let

WN := image(τ)

∼= H0(Pr−1,OPr−1(N))/ ker(τ)

∼= H0(Pr−1,OPr−1(N))/H0(Pr−1, IY (N))
∼= K[Y0, . . . , Yr−1]N/(IY )N ,

where (IY )N denotes the set of those homogeneous polynomials of degree N vanishing
on Y . Let VN := ϕ∗(WN ) ⊆ H0(X,OX(Nr D)).

Since ϕ : X → Y is a finite surjective morphism,

dim(VN ) = dim(WN ) = dimK[Y0, . . . , Yr−1]N/(IY )N = HY (N),

where HY (N) is the Hilbert function of Y .
Let P ∈ D(K̄). Without loss of generality, we assume again that there are distinct

Qi1 , . . . , Qiq ∈ {Q1, . . . , Qr} such that P ∈ ∩q
j=1{P ∈ X(K̄) |Qij (P ) = 0}.

Let ~c = (c1, . . . , cr) be the r-vector whose ij-th entry (1 ≤ j ≤ q) is 1, with all

other entries being 0. Let ~y~a
(1)

, . . . , ~y~a
(HY (N))

be monomials such that their equivalence
classes in K[Y0, . . . , Yr−1]N/(IY )N give a basis and such that

SY (N,~c) =

HY (N)
∑

i=1

~a(i) • ~c,
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where SY (N,~c) is the N -th Hilbert weight and the bullet denotes the usual dot prod-
uct. Recall that the N -th Hilbert weight is given by

SY (N,~c) = max

HY (N)
∑

i=1

~a(i) • ~c,

where the maximum is taken over all sets of monomials ~y~a
(1)

, . . . , ~y~a
(HY (N))

whose
residue class modulo IY form a basis of K[Y0, . . . , Yr−1]N/(IY )N . For ν =
1, . . . , HY (N), and N a positive multiple of r, let

fν =
Q

a
(ν)
1

1 . . .Q
a(ν)
r

r

Q
N/r
1 . . .Q

N/r
r

|X .

These functions form a basis for VN understood as a subspace of L(Nr D). To conclude

the proof of the theorem, we show that they satisfy ordE
∏HY (N)

ν=1 fν > 0 for any
component E in D with P ∈ E(K̄). We assume that E is contained in Dj0 .

We recall two basic lemmas from [EF02], [EF08], and [Ru09]. These references
cover the cases of C and number fields. The proof in the function field case is com-
pletely analogous.

Lemma 3.2. Let X ⊂ PN be an algebraic variety of dimension n and degree △.
Let m > △ be an integer and let ~c = (c0, . . . , cN ) ∈ RN+1

≥0 . Then

1

mHX(m)
SX(m,~c) ≥

1

(n+ 1)△
eX(~c)−

(2n+ 1)△

m
·

(

max
i=0,...,N

ci

)

,

where 1
(n+1)△eX(~c) is the normalized Chow weight of X with respect to ~c.

We will not give a definition of the normalized Chow weight here and instead refer
the reader to the above references. For our purposes, all we need is the estimate from
below contained in the next lemma. We remark that the use of the Chow weight in
this context was first introduced by Ferretti [Fer00], who was able to relate it to the
probability measure introduced by Faltings-Wüstholz [FW94] in their proof of arith-
metic inequalities of Subspace Theorem-type based on Faltings’ Product Theorem.

Lemma 3.3. Let Y be a subvariety of Pq−1 of dimension n and degree △. Let ~c =
(c1, . . . , cq) be a tuple of non-negative reals. Let {i0, . . . , in} be a subset of {1, . . . , q}
such that

Y (K̄) ∩ {yi0 = 0, . . . , yin = 0} = ∅.

Then

eY (~c) ≥ (ci0 + . . .+ cin) · △.

We now continue our proof. With our chosen ~c and ~a(i), using Lemmas 3.2 and
3.3 (notice the condition that Q1, . . . , Qr are in general position), and the symmetry
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property of the ~a(1), . . . ,~a(HY (N)) ([Mum77, p. 61]),

1

ordE D
ordE

HY (N)
∏

ν=1

fν =





HY (N)
∑

ν=1

a
(ν)
j0



−
N

r
HY (N)

=
1

q





HY (N)
∑

ν=1

~a(ν) • ~c



−
N

r
HY (N)

=
1

q
SY (N,~c)−

N

r
HY (N)

≥
1

q

1

q + 1
NHY (N)(

q
∑

j=1

cij )−O(HY (N))−
N

r
HY (N)

=
1

q + 1
NHY (N)−

N

r
HY (N)− O(HY (N))

= (
1

q + 1
−

1

r
)NHY (N)−O(HY (N)).

For N sufficiently large, this is positive if r ≥ q + 2.

4. Essentially large divisors on projective varieties with Pic = Z. Our
ultimate (and so far unreached) goal is of course to find a (sharp) lower bound for
the number of (say, big) components in general position necessary for a divisor on
a nonsingular projective variety to be essentially large (cf. Conjecture 1.10). For a
general nonsingular projective variety, it is far from true that (multiples of) effective
big divisors are cut out by hypersurfaces in the ambient projective space, as assumed in
Theorem 1.8. In this final section, we prove, basically for lack of a reference, that for a
nonsingular projective variety with Pic = Z, up to taking multiples, effective divisors
are cut out by hypersurfaces. Thus, Theorem 1.8 can be applied. Consequently,
the above-mentioned ultimate goal has been achieved in the case of Pic = Z, as
formulated in the following corollary. We continue to work over an arbitrary field K
of characteristic zero.

Corollary 4.1. Let q ≥ 1 and r ≥ q+2 be integers. Let X ⊆ Pℓ be a nonsingular
projective variety of dimension q, defined over K. Assume that Pic(X) = Z. Let
D =

∑r
i=1Di be an effective divisor on X defined over K such that the Di are in

general position. Then D is essentially large.

Proof. Due to Theorem 1.8, the corollary is proven once we have established that
there exist positive integers multiples of each Di that are defined by the restriction
to X of a homogeneous polynomial in K[X0, . . . , Xℓ].

To this end, consider the line bundle OX(Di), which represents an element
in Pic(X). Due to Pic(X) = Z, there exist positive integers mi, κi such that
OX(miDi) = OX(κi) as elements of Pic(X). We are free to multiply this equal-
ity with an arbitrary positive integer m̃i, obtaining OX(m̃imiDi) = OX(m̃iκi).

Consider the short exact sequence

0 → IX(m̃iκi) → OPℓ(m̃iκi) → OX(m̃iκi) → 0.
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The corresponding long exact sequence starts with

0 →H0(Pℓ, IX(m̃iκi)) → H0(Pℓ,OPℓ(m̃iκi)) → H0(X,OX(m̃iκi))

→H1(Pℓ, IX(m̃iκi)).

Due to Serre’s Vanishing Theorem, H1(Pℓ, IX(m̃iκi)) = 0 when m̃i is sufficiently
large. Thus, all sections in H0(X,OX(m̃iκi)) extend to sections in H0(Pℓ,OPℓ(m̃iκi))
when m̃i is sufficiently large. In particular, sections si ∈ H0(X,OX(m̃iκi)) with

div(si) = m̃imiDi

extend. However, the sections of OPℓ(m̃iκi) correspond to homogeneous polynomials
of degree m̃iκi in K[X0, . . . , Xℓ]. Thus, m̃imiDi is indeed defined by the restriction
to X of a homogeneous polynomial in K[X0, . . . , Xℓ] when m̃i is sufficiently large.

Finally, we exhibit a large class of nonsingular projective varieties that satisfy the
Pic = Z assumption in Corollary 4.1, namely those of sufficiently small codimension.
We refer the reader to [Har74] or [Laz04, Section 3.2] for more on the algebraic geom-
etry behind this question, which is essentially the problem of extending the Lefschetz
Hyperplane Theorem to nonsingular varieties that are not complete intersections. In
particular, the theorems of Barth [Bar70], Larsen [Lar73], and, in the case of a general
ground field of characteristic zero, Ogus [Ogu73] apply. For our purposes, we simply
state the following proposition, which is an immediate consequence of these theorems.

Proposition 4.2. Let X ⊂ Pℓ be a nonsingular projective variety of dimension
q, defined over K. If 2q − ℓ ≥ 2, then restriction yields an isomorphism

Pic(Pℓ)
∼=
→ Pic(X).

Since Pic(Pℓ) = Z, the proposition gives the following immediate consequence of
Corollary 4.1.

Corollary 4.3. Let q ≥ 1 and r ≥ q+2 be integers. Let X ⊆ Pℓ be a nonsingular
projective variety of dimension q, defined over K. Assume that 2q − ℓ ≥ 2 holds. Let
D =

∑r
i=1Di be an effective divisor on X defined over K such that the Di are in

general position. Then D is essentially large.

We conclude with a comment on the nature of the condition 2q − ℓ ≥ 2. It
is well-known that, by general linear projections, any nonsingular projective variety
of dimension q can be embedded in Pℓ with ℓ = 2q + 1. Thus, for an arbitrary
nonsingular projective variety, one can always find an embedding with 2q−ℓ = −1. In
particular, Corollary 4.3 applies to many interesting special projective varieties such as
hypersurfaces, appropriate complete intersections, and certain Grassmannians, such
as G(2, 5) embedded into P9 under the Plücker embedding. Note that the latter is
not a complete intersection due to Bézout’s Theorem, because its degree is (the prime
number) 5, while it is not contained in any hyperplane.
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1977. Lectures given at the “Institut des Hautes Études Scientifiques”, Bures-sur-
Yvette, March-April 1976, Monographie de l’Enseignement Mathématique, No. 24.
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