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SCHUBERT CALCULUS VIA HASSE-SCHMIDT DERIVATIONS
∗

LETTERIO GATTO†

Abstract. A natural Hasse-Schmidt derivation on the exterior algebra of a free module realizes
the (small quantum) cohomology ring of the grassmannian Gk(Cn) as a ring of operators on the
exterior algebra of a free module of rank n. Classical Pieri’s formula can be interpreted as Leibniz’s
rule enjoyed by special Schubert cycles with respect to the wedge product.
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1. Introduction. The main purpose of this note is to suggest a new simple
point of view to look at (small quantum) Schubert Calculus, based on elementary
considerations of linear algebra. To get into the matter of the paper, it seems worth
to start with an example. Let D be the endomorphism of M4 := ⊕1≤i≤4Z · ǫi defined

by Dǫi = ǫi+1, for 1 ≤ i < 4, and Dǫ4 = 0. Extend it to
∧2

M4, by imposing Leibniz’s
rule with respect to ∧, and compute D4(ǫ1 ∧ ǫ2). One has:

D4(ǫ1 ∧ ǫ2) = D ◦ D ◦ D ◦ D(ǫ1 ∧ ǫ2) = D ◦ D ◦ D(ǫ1 ∧ ǫ3) =

D ◦ D(ǫ2 ∧ ǫ3 + ǫ1 ∧ ǫ4) = D(2ǫ2 ∧ ǫ4) = 2D(ǫ2 ∧ ǫ4) = 2 · ǫ3 ∧ ǫ4.

The claim is that the above iteration of D computes the number (= 2) of lines inter-
secting four others in general position in the projective 3-space (see e.g. [5], p. 1068–
1069, 1073–1074, [4], p. 206). The reason is that the cohomology ring of the grass-
mannian Gk(Cn) can be realized as a natural commutative ring of endomorphisms of
the k-th exterior power of a free module of rank n (Theorem 2.9). This is a conse-
quence of the following nicer and more general fact. Let M be a free Z-module. Using
a terminology borrowed from commutative algebra, as e.g. in [9], p. 207, one says
that Dt :=

∑

i≥0 Dit
i :

∧

M −→ (
∧

M)[[t]] (Di ∈ EndZ(
∧

M)) is a Hasse-Schmidt
derivation on

∧

M if it is a Z-algebra homomorphism, i.e. if:

Dt(α ∧ β) = Dt(α) ∧ Dt(β), ∀α, β ∈
∧

M.(1)

Let E := (ǫ1, ǫ2, . . .) be a (countable infinite) Z-basis of a free Z-module M . If Dt

is the unique HS-derivation on
∧

M such that Dt(ǫ
j) =

∑

i≥0 ǫi+jti (thinking of M

as a submodule of
∧

M), then Schubert Calculus of Gk(Cn), for all (k, n) at once
(0 ≤ k ≤ n), is a formal consequence of formula (1). This is why Dt is named
Schubert derivation (Def. 2.1).

Indeed, for all k ≥ 0,
∧k

M is a Dh-invariant submodule of
∧

M , for each “co-
efficient” Dh of Dt; the point is that the entries of the (infinite) matrix of Dh|

∧kM

with respect to the basis {ǫi1 ∧ . . . ∧ ǫik : 1 ≤ i1 < i2 < . . . < ik} of
∧k

M , can be
computed via Pieri’s formula for S-derivations (Theorem 2.4):

Dh(ǫi1 ∧ . . . ∧ ǫik) =
∑

ǫi1+h1 ∧ . . . ∧ ǫik+hk ,
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the sum being over all non-negative (h1, . . . , hk) such that h1 + . . . + hk = h and

1 ≤ i1 ≤ i1 + h1 < i2 ≤ i2 + h2 < . . . < ik−1 ≤ ik−1 + hk−1 < ik.

This is precisely classical Pieri’s formula, as briefly explained in Sect. 2.8.
Let Mn be the submodule of M spanned by (ǫ1, . . . , ǫn). Via the formal identifi-

cation ǫ1+r1 ∧ . . .∧ǫk+rk 7→ σλ∩ [Gk(Cn)] (the Schubert cycle σλ corresponding to the
partition λ = (rk, . . . , r1) capped with the fundamental class of the Grassmannian)
and using the Chow basis theorem for the cohomology of Gk(Cn), one concludes that,
in fact, the cohomology ring of Gk(Cn) is a (commutative) ring of endomorphisms on
∧k

Mn and that all such, varying k and n, are quotient of a (same) natural ring of
derivations on

∧

M (Thm. 2.9).
The results of this work have been recently improved and generalized by Laksov

and Thorup ([6]) to grassmannian bundles, using the theory of symmetric functions
and of splitting algebras, allowing them to study, in general, the cohomology of (par-
tial) flag varieties of a finite dimensional vector space over an algebraically closed field
([7]).

The current shape of this paper is mostly due to the patients corrections and
substantial remarks of the Referees whom the author is very grateful. For warm
encouragement, but especially for his friendly as sharp criticism, no word would be
enough to thank Dan Laksov.

2. Schubert Derivations. Let
∧

M =
⊕

k≥0

∧k
M be the exterior algebra of

a Z-module M freely generated by E = (ǫ1, ǫ2, . . .). Denote by

∧kE := {(ǫi1 ∧ . . . ∧ ǫik) : 1 ≤ i1 < i2 < . . . < ik}

the induced basis of
∧k

M .

2.1. Definition. A Hasse-Schmidt (HS) derivation on
∧

M is a Z-algebra
homomorphism Dt :=

∑

i≥0 Dit
i :

∧

M −→ (
∧

M)[[t]] (Di ∈ EndZ(
∧

M)).

Formally, the Z-algebra homomorphism condition reads as:

Dt(α ∧ β) = Dt(α) ∧ Dt(β), ∀α, β ∈
∧

M.(2)

Clearly, Dt is uniquely determined by its values on the elements of the basis E of
M (thought of as a submodule of

∧

M). Let D := (D0, D1, . . .) be the sequence of
coefficients of Dt. Formula (2) can be then rephrased by saying that each Dh satisfies
Leibniz’s rule for h-th order derivatives:

Dh(α ∧ β) =
∑

h1 + h2 = h

hi ≥ 0

Dh1
α ∧ Dh2

β.(3)

In fact, the r.h.s of (3) is precisely the coefficient of th in the expansion of the r.h.s.
of (2).

2.2. Definition. The (E)–Schubert derivation (S-derivation) is the unique
HS-derivation on

∧

M such that

Dt(ǫ
i) =

∑

j≥0

ǫi+jtj .(4)
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Such a S-derivation exists: it suffices to extend a map Dt : M −→ M [[t]] satisfy-
ing (4) to all

∧

M by imposing (2).
Next task is to find the components of the endomorphisms Dh :

∧

M −→
∧

M (h ≥ 1)
with respect to the basis

∧

E = ∪k≥0 ∧
k E . One first puts (3) in a more explicit form.

2.3. Proposition. For each h ≥ 0 and each k ≥ 1, one has:

Dh(ǫi1 ∧ ǫi2 ∧ . . . ∧ ǫik) =
∑

h1+...+hk=h

hi≥0

ǫi1+h1 ∧ ǫi2+h2 ∧ . . . ∧ ǫik+hk .(5)

Proof. For k = 1, formula (5) is Definition 2.2. Assume it holds for k − 1.
Application of (3) gives:

Dh(ǫi1 ∧ ǫi2 ∧ . . . ∧ ǫik) =

h
∑

h1=0

ǫi1+h1 ∧ Dh−h1
(ǫi2 ∧ . . . ∧ ǫik),(6)

where

Dh−h1
(ǫi2 ∧ . . . ∧ ǫik) =

∑

h2+...+hk=h−h1

ǫi2+h2 ∧ . . . ∧ ǫik+hk ,

by the inductive hypothesis. Thus, the right hand side of formula (6) turns into:

Dh(ǫi1 ∧ ǫi2 ∧ . . . ∧ ǫik) =
∑

h1+...+hk=h

ǫi1+h1 ∧ . . . ∧ ǫik+hk .

Proposition 2.3 clearly implies that DiDj = DjDi for all i, j ≥ 0. Hence the
evaluation morphism ED : Z[T] −→ EndZ(

∧

M), gotten by sending Ti 7→ Di is
well defined and maps onto the commutative subalgebra Z[D] ⊂ EndZ(

∧

M) gen-
erated by D := (D1, D2, . . .). Indeed, for each k ≥ 1, Z[D] can be seen as a sub-

algebra of EndZ(
∧k

M), because Definition 2.1 and/or Proposition 2.3 imply that

Dn(
∧k

M) ⊆
∧k

M , for each n ≥ 0.

2.4. Theorem. Let I := (1 ≤ i1 < i2 . . . < ik) be a sequence of integers. Then
Pieri’s formula for S-derivations holds:

Dh(ǫi1 ∧ . . . ∧ ǫik) =
∑

(hi)∈H(I,h)

ǫi1+h1 ∧ . . . ∧ ǫik+hk ,(7)

where, to shorten notation, one denotes by H(I, h) the set of all k-tuples (hi) of
non-negative integers such that

1 ≤ i1 ≤ i1 + h1 < i2 ≤ . . . ≤ ik−1 + hk−1 < ik(8)

and h1 + . . . + hk = h.



318 L. GATTO

Proof. By induction on the integer k. For k = 1, formula (7) is trivially true. Let
us prove it directly for k = 2. For each h ≥ 0, let us split sum (6) as:

Dh(ǫi1 ∧ ǫi2) =
∑

h1+h2=h

ǫi1+h1 ∧ ǫi2+h2 = P + P ,(9)

where

P =
∑

i1+h1<i2

h1+h2=h

ǫi1+h1 ∧ ǫi2+h2 and P =
∑

i1+h1≥i2

h1+h2=h

ǫi1+h1 ∧ ǫi2+h2 .

One contends that P vanishes. In fact, on the finite set of all integers i2 − i1 ≤
a ≤ h, define the bijection ρ(a) = i2 − i1 + h − a. Then:

2P =

h
∑

h1=i2−i1

ǫi1+h1 ∧ ǫi2+h−h1 +

h
∑

h1=i2−i1

ǫi1+ρ(h1) ∧ ǫi2+h−ρ(h1) =

=

h
∑

h1=i2−i1

ǫi2+h−h1 ∧ ǫi1+h1 −

h
∑

h1=i2−i1

ǫi1+h1 ∧ ǫi2+h2 = 0,

hence P = 0 and (7) holds for k = 2. Suppose now that (7) holds for all 1 ≤ k′ ≤ k−1.
Then, for each h ≥ 0:

Dh(ǫi1 ∧ . . . ∧ ǫik) =
∑

h′

k
+hk=h

Dh′

k
(ǫi1 ∧ . . . ∧ ǫik−1) ∧ Dhk

ǫik ,

and, by the inductive hypothesis:

∑

(hi)

(ǫi1+h1 ∧ . . . ∧ ǫik−2+hk−2 ∧ ǫik−1+hk−1) ∧ ǫik+hk ,(10)

summed over all non negative (hi) such that h1 + . . . + hk = h and

1 ≤ i1 + h1 < i2 ≤ . . . . . . ≤ ik−2 + hk−2 < ik−1.(11)

But now (10) can be equivalently written as:

∑

(hi,h′′)

ǫi1+h1 ∧ . . . ∧ ǫik−2+hk−2 ∧ Dh′′(ǫik−1 ∧ ǫik),(12)

where the sum is over all non negative (h1, . . . , hk−2, h
′′) such that h1 + . . . + hk−2 +

h′′ = h and satisfying (11). Since

Dh′′(ǫik−1 ∧ ǫik) =
∑

ik−1+hk−1<ik

hk−1+hk=h′′

ǫik−1+hk−1 ∧ ǫik+hk ,

by the inductive hypothesis, substituting into (12) one gets exactly sum (7).

A straightforward application of Pieri’s formula (7) gives:
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2.5. Corollary.

Dh(ǫs
∧ . . . ∧ ǫ

s+j−1
∧ ǫ

s+j
∧ ǫ

ij+1
∧ . . . ǫ

ik ) = ǫ
s
∧ . . . ∧ ǫ

s+j−1
∧ Dh(ǫs+j

∧ ǫ
ij+1

∧ . . .∧ ǫ
ik ).

2.6. Let Mn be the submodule of M generated by En := (ǫ1, . . . , ǫn), q an
indeterminate over Z and Mn[q] := Mn ⊗Z Z[q] – the free Z[q]-module spanned by En.
As a Z-module, the latter is isomorphic to M via the isomorphism

{

Qn : M −→ Mn[q]
ǫα·n+i 7−→ qαǫi , (∀α ≥ 0, 1 ≤ i ≤ n − 1).

Let
∧k

Mn and
∧k

Mn[q] ∼=
∧k

Mn⊗ZZ[q] be the k-th exterior power of Mn and Mn[q]
(thought as a Z[q]-module) respectively. Both are freely generated, over Z and Z[q]

respectively, by {(ǫi1 ∧ . . . ∧ ǫik) : 1 ≤ i1 < . . . < in ≤ n}. Let pn :
∧k

M −→
∧k

Mn

be the natural projection defined as:

pn





∑

1≤i1<...<ik

ai1...ik
· ǫi1 ∧ . . . ∧ ǫik



 =
∑

1≤i1<...<ik≤n

ai1...ik
· ǫi1 ∧ . . . ∧ ǫik

and ∧kQn :
∧k

M −→
∧k

Mn[q] be the Z-module isomorphism induced by Qn. It

is easy to see that pn ◦ Dh :
∧k

M −→
∧k

Mn is the null homomorphism for all
h ≥ n + 1. The proposition below rules the case h ≤ n.

2.7. Corollary. Let I := (1 ≤ i1 < i2 . . . < ik ≤ n) and 0 ≤ h ≤ n. Then:

pn ◦ Dh(ǫi1 ∧ . . . ∧ ǫik) =
∑

{(hi)∈H(I,h) | ik+hk≤n}

ǫi1+h1 ∧ . . . ∧ ǫik+hk ,(13)

and

∧kQn ◦ Dh(ǫi1 ∧ . . . ∧ ǫik) = pnDh(ǫi1 ∧ . . . ∧ ǫik) +

+(−1)k−1q ·
∑

(hi)∈H(I,h)

ik+hk−n<i1

ǫik+hk−n ∧ ǫi1+h1 ∧ . . . ∧ ǫik−1+hk−1 .(14)

where H(I, h) is as in Theorem (2.4).

Proof. Equation (13) is obvious: one writes down expansion (7) and then projects
via pn, canceling all the terms such that ik > n. As for (14), one first uses (7) to
expand Dh(ǫi1 ∧ . . . ∧ ǫik) and then splits the sum as:

Dh(ǫi1 ∧ . . .∧ ǫik) =
∑

(hi)∈H(I,h)

ik+hk≤n

ǫi1+h1 ∧ . . .∧ ǫik+hk +
∑

(hi)∈H(I,h)

ik+hk>n

ǫi1+h1 ∧ . . .∧ ǫik+hk .

The first summand occurring on the r.h.s. is precisely pnDh(ǫi1 ∧ . . .∧ ǫik). Applying
∧kQ to both sides:

∧kQ(Dh(ǫi1 ∧ . . . ∧ ǫik)) =

= pnDh(ǫi1 ∧ . . . ∧ ǫik) +
∑

(hi)∈H(I,h)

ǫi1+h1 ∧ . . . ∧ ǫik−1+hk−1 ∧ qǫik+hk−n.(15)
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Using the Z2-symmetry of ∧, last term of (15) can be written as
(−1)k−1q(C + C), where:

(−1)k−1qC := (−1)k−1q
∑

(hi)∈H(I,h)

ik+hk−n<i1

ǫik+hk−n ∧ ǫi1+h1 ∧ ǫi2+h2 ∧ . . . ∧ ǫik−1+hk−1

is exactly the second summand of the r.h.s. of formula (14), while:

C :=
∑

(hi)∈H(I,h)

ik+hk−n≥i1

ǫik+hk−n ∧ ǫi1+h1 ∧ ǫi2+h2 ∧ . . . ∧ ǫik−1+hk−1 =

=
h

∑

h′=0

h′

∑

hk=i1+n−ik

ǫik+hk−n ∧ ǫi1+h′−hk ∧ Dh−h′(ǫi2 ∧ . . . ∧ ǫik−1).(16)

For each 0 ≤ h′ ≤ h, let ρh′ be the bijection of the set

{a ∈ N : i1 + n − ik ≤ a ≤ h′}

onto itself, defined by ρh′(a) = i1 + n + h′ − ik − a. Then expression (16) can also be
written as:

C =
hX

h′=0

h′X
hk=i1+n−ik

ǫ
ik+ρh′ (hk)−n

∧ ǫ
i1+h′−ρh′ (hk)

∧ Dh−h′(ǫi2
∧ . . . ∧ ǫ

ik−1) =

=
hX

h′=0

h′X
hk=i1+n−ik

ǫ
i1+h1

∧ ǫ
ik+hk−n

∧ Dh−h′ (ǫi2
∧ . . . ∧ ǫ

ik−1) = −C.

Thus C = 0 and the proof of (14) is complete.

2.8. If one associates to any ǫ1+r1 ∧ . . . ∧ ǫk+rk the partition λ = (rk, . . . , r1),
then Pieri’s formula (13) means precisely to add to the Young diagram Y (λ) of λ,
contained in a k(n − k) rectangle, h boxes in all possible ways, no two on the same
column (Cf. ([2]), p. 264): this is a combinatorial way to express classical Pieri’s
formula holding in the grassmannian Gk(Cn) (see also [4]). Moreover, up to renaming
q by (−1)k−1q, formula (14) is nothing else than quantum Pieri’s formula found by
Bertram ([1]). Since H∗(Gk(Cn)) (resp. QH∗(Gk(Cn)), the cohomology ring (resp.
the small quantum cohomology ring) of Gk(Cn), is generated as Z-algebra (resp. as
Z[q]-algebra) by the special Schubert cycles σi and the product structure is completely
determined by Pieri’s formula (resp. quantum Pieri’s formula), one has hence proven
that:

2.9. Theorem. The cohomology ring of the grassmannian Gk(Cn) (resp. the
small quantum cohomology ring) can be realized as a commutative ring of linear oper-

ators Z[D] of
∧k

Mn (resp. Z[q][D] of
∧k

M [q]) via the map σi 7→ Di (resp. σi 7→ Di

and q 7→ (−1)k−1q).

It is worth to remark that the cohomology rings of Gk(Cn), for all 0 ≤ k ≤ n, are
quotients of the same ring Z[D] := Z[D1, D2, . . .] of derivations of the exterior algebra
∧

M of the infinite free Z-module M . Once one is given of Pieri’s formula and of the
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Chow basis theorem, everything follows formally (see e.g. [8]). In particular, within
our formalism, Giambelli’s formula can be recasted as:

ǫ1+r1 ∧ . . . ∧ ǫk+rk = ∆(rk,...,r1)(D) · ǫ1 ∧ . . . ∧ ǫk ∀(rk ≥ . . . ≥ r1 ≥ 0)(17)

where

∆(rk,...,r1)(D) =

∣

∣

∣

∣

∣

∣

∣

∣

Dr1
Dr2+1 . . . Drk+k−1

Dr1−1 Dr2
. . . Drk+k−2

...
...

. . .
...

Dr1−k+1 Dr2−k+2 . . . Drk

∣

∣

∣

∣

∣

∣

∣

∣

,

setting Di = 0 if i < 0. Given any ǫi1 ∧ . . . ∧ ǫik ∈
∧k

M , Giambelli’s problem thus
consists in finding Gi1...ik

(D) ∈ Z[D] (a polynomial expression in (D1, D2, . . .)), such
that:

ǫi1 ∧ . . . ∧ ǫik = Gi1...ik
(D) · ǫ1 ∧ . . . ∧ ǫk.

Such a polynomial can be found “by hands” via suitable “integration by parts” (see [3]
for details), as indicated in the following simple:

2.10. Example. Consider ǫ2 ∧ ǫ5 ∈
∧2

M . One has:

ǫ2 ∧ ǫ5 = D1(ǫ
1 ∧ ǫ5)− ǫ1 ∧ ǫ6 = D1D3(ǫ

1 ∧ ǫ2)−D4(ǫ
1 ∧ ǫ2) = (D1D3 −D4)(ǫ

1 ∧ ǫ2),

having applied twice Corollary 2.5.
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