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STABILITY OF LATTICES AND THE PARTITION

OF ARITHMETIC QUOTIENTS*

BILL CASSELMAN†

1. Introduction. Elements of the group G = SL2(R) act on the upper half
plane

H = {z = x + iy | y > 0}

by linear fractional transformations

[

a b
c d

]

: z 7−→ az + b

cz + d
.

The arithmetic subgroup Γ = SL2(Z) acts discretely on H, and as is well known it has
as fundamental domain the region

D = {|z| ≥ 1, |x| ≤ 1/2} .

On the other hand, let P be the group of upper triangular matrices in G, containing
the group N of upper unipotent matrices. Thus elements of

Γ ∩ P =

{[

±1 n
0 ±1

] ∣

∣

∣

∣

n ∈ Z

}

act on H by horizontal integral translations z 7→ z +n, and a fundamental domain for
Γ ∩ P is therefore the region

{

z ∈ H
∣

∣ x = |RE(z)| ≤ 1/2
}

.

If for Y > 0 we define the region

HY = {z = x + iy | y > Y }

then there are a number of properties it possesses that play an important role in
analysis on the quotient Γ\H, for example in the construction of Eisenstein series and
the proof of the Selberg trace formula:

• The region HY is invariant under the group N as well as the discrete subgroup
Γ ∩ P ;

• The quotient by N(Γ ∩ P ) is isomorphic to the subset [Y,∞);
• for Y ≥ 1, the canonical projection from Γ ∩ P\H to Γ\H when restricted to the

quotient Γ ∩ P\HY embeds it as a neighbourhood of the cusp at infinity;
• the complement of the image of HY in Γ\H is compact.
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608 BILL CASSELMAN

y = Y

The second property may also be formulated as saying that if z and γ(z) both lie
in HY for some γ in Γ then γ lies in P .

In effect, we have a partition of Γ\H into two parts, one a neighbourhood of
infinity which is relatively simple, and the other a compact piece of the interior.

There is another way to formulate this result. Let H∗ be the union of H and
the rational cusps, the Γ-translates of ∞, which may be identified with the points of
P1(Q). If

γ =

[

a b
c d

]

then it takes ∞ to a/c and HY to the disc centred at (a/c, 1/2c2Y ) tangent to R at
a/c. The stabilizers in G of the cusps are the Γ-conjugates of P , and the Γ-transforms
of the regions HY , which are discs unless γ lies in P , are the neighbourhoods of the
cusps in the topology of H∗ defined by Satake. The sets γHY , with Y fixed, as γ
ranges over Γ are disjoint (when not identical), and their union is stable under Γ as is
its complement in H. The quotient of this complement by Γ is compact.

y = Y

As far as I know, it was Jim Arthur who first generalized this result explicitly to
arbitrary arithmetical quotients (in 1977), although I think it’s fair to say that this
generalization was already implicit in Satake’s work on compactifications of arithmetic
quotients. In Arthur’s generalization the subsets of the partition are parametrized
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by Γ-conjugacy classes of rational parabolic subgroups, which is also how Satake’s
rational boundary components are parametrized. Of course Arthur did this work with
the intention of using it in dealing with his extension of the Selberg trace formula, but
subsequently it has also been useful in other contexts.

In this note, which is largely expository, I will explain Arthur’s partition for
GLn(Z), applying ideas almost entirely due to Harder, Stuhler, and Grayson, and
including a self-contained account of their work.

A point z = x + iy in H gives rise to the lattice generated by z and 1. If we
choose for this the basis 1 and −z, we obtain the positive definite symmetric form

Qz(m, n) =
1

y
(m − nz)(m − nz) =

1

y

(

m2 − 2xmn + n2|z|2
)

(normalized so as to have discriminant equal to 1). Its matrix is

Qz =
1

y

[

1 0
−x −y

] [

1 −x
0 −y

]

=

[

1/y −x/y
−x/y x2 + y2/y

]

.

On the other hand, the group SL2(R) acts on the space of positive definite 2 × 2
symmetric matrices Z by the transformations

Z 7−→ tg−1 Z g−1 .

I leave it as an exercise to verify that the two actions are the same—that for any z in
H we have gQz = Qg(z) for all g in SL2(R). The important part of the verification is
that

[ 1 −z ]

[

a b
c d

]−1

= [ 1 −z ]

[

d −b
−c a

]

= [ (cz + d) −(az + b) ]

= (cz + d) [ 1 −(az + b)/(cz + d) ] .

In higher dimensions we therefore have the following generalization of the classical
theory. For any real vector space V , let X = XV be the space of all positive definite
quadratic forms on V . For V = Rn this may be identified with Xn, the space of all
positive definite symmetric n × n matrices, if we define

x(v) = tv x v ,

identifying Rn with column matrices. The space X is a homogeneous space for G =
GL(V ), where an element g in G acts according to the rule gQ(v) = Q(g−1v). The
subgroup acting trivially is ±I. On Xn, this is equivalent to x 7→ tg−1 x g−1. There
is one peculiar point to mention. Although the classical action of SL2(Z) on H and
that on X2 agree, the corresponding actions of GL2(Z) do not—the fractional linear
transformations in GL2(Z) take H to its conjugate, but the natural action of GL2

takes the connected space X2 to itself.

If x is a positive definite symmetric matrix, Gauss elimination applied to x re-
quires no row swapping and hence gives a factorization x = ℓ d u where ℓ is lower
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triangular unipotent, d diagonal, and u upper triangular unipotent. Since x is sym-
metric, ℓ = tu and hence

x = tu du .

The action of GLn on X is therefore transitive. The isotropy subgroup of the identity
matrix (the sum of n squares) is K = On(R), and therefore X = Xn may be identified
with G/K. In fact, it follows equally from Gauss elimination that the subgroup of
upper triangular matrices acts transitively on Xn, and hence also any of its conjugates
in G, or any group that contains one of its conjugates.

Let Γ be the subgroup GLn(Z). The object of these notes is to show how ideas
of [Grayson 1984] (which follows [Stuhler 1976], itself depending heavily on [Harder-
Narasimhan 1975]) can be used to describe a parabolic decomposition of Γ\X used by
Arthur and others in the theory of automorphic forms. A flag in the vector space Rn

is an increasing sequence of vector subspaces. It is a rational flag if the subspaces are
rational (defined by linear equations with coefficients in Q). A parabolic subgroup

of G is the stabilizer of a flag, and a rational parabolic subgroup is the stabilizer
of a rational flag. Any partition n = n1 + n2 + · · · + nk of n into positive numbers
determines the rational flag

0 ⊂ Rn1 ⊂ Rn1+n2 ⊂ . . . ⊂ Rn

and the standard parabolic subgroup associated to this partition is the stabilizer
of this flag. If P is any rational parabolic subgroup of G with unipotent radical N
then there is a canonical surjection from Γ ∩ P\X to Γ\X . Arthur’s result describes
a simple N -invariant subset of Γ ∩ P\X for which this map is an embedding, and
partitions Γ\X into a disjoint union of the images of such embeddings as P ranges
over a set of representatives of Γ-conjugacy classes of rational parabolic subgroups. As
remarked above, this is necessary in the theory of Eisenstein series, where functions in
the continuous spectrum of Γ\X are constructed in terms of functions on the parabolic
quotients (Γ∩P )N\X . Since P contains a conjugate of the group of upper triangular
matrices, P acts transitively on X , which may be identified with the quotient P/K∩P .

Let C be the acute cone {si ≤ si+1} in Rn. The principal result of this paper,
stated roughly, is that

There exists a canonical map associating to each x in Xn a parabolic
subgroup Px and a point sx in C lying in the face of C naturally associated
to P . The point γx maps to γPxγ−1 and sx, and the structure of the
fibres of this map may be described recursively in terms of analogous
maps on lower dimension symmetric spaces.

The space Γ\X is therefore partitioned by Γ-conjugacy classes of rational
parabolic subgroups.

Existing discussions of these matters for arbitrary arithmetic groups can be found
in [Arthur 1978], [Osborne-Warner 1983], [Saper 1994], and [Leuzinger 1995]. Another
recent treatment, more arithmetical in flavour, can be found in the Trieste lectures
[Harder-Stuhler 1997]. But techniques explained in the two papers [Grayson 1984]
and [Grayson 1986] seem to me to be close to ideal, and provide as well an elegant
derivation of classical reduction theory. Incidentally the authors of many of these
papers often seem to be largely unaware of each other and particularly not to have
known about the much older result stated in [Arthur 1978] (Lemma 6.4). Arthur works
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with adèle groups, but his results are easily reformulated and proven for arithmetic
ones (as has been done by Osborne and Warner).

One of the virtues of this approach is that it strengthens known analogies between
symmetric varieties and the buildings of Bruhat-Tits associated to p-adic fields, for
example those pointed out so strikingly in [Manin 1994].

The main reference here is [Grayson 1984], which considers symmetric spaces
associated to GLn,F for number fields F , as well as various orthogonal groups with
respect to symmetric or anti-symmetric forms. In the second paper [Grayson 1986] he
extends his techniques to an arbitrary semi-simple group defined over Q. These papers
of Grayson are just part of a large literature dealing with related material, perhaps
originating with [Harder 1969]. In these notes the only new contribution is to explain
the link between Grayson’s ideas and those of Arthur, and I shall discuss in detail only
SLn and GLn. Incidentally, it seems to me that the theory explained in Grayson’s
papers for these groups and the orthogonal groups is just about perfect, whereas for
other groups there are some loose ends to be tied up. As Grayson himself points out,
for example, it would be interesting to handle arbitrary reductive groups in a similar
spirit, whereas his current theory applies only to semi-simple ones. In this respect
Grayson’s theory again has points in common with the Bruhat-Tits theory. Another
loose end in Grayson’s papers is the role of relative discriminants. The recent paper
[Harder-Stuhler 1997] deals with this question a little more precisely by discussing the
reduction theory for Chevalley groups over number fields.

This paper was written mostly during a visit to the Université de Lyon I. Thanks
are due to Fokko du Cloux for arranging the visit. Armand Borel spent much of his
professional energy on the reduction theory of arithmetic groups, so it is appropriate
that I dedicate this paper to his memory.

2. The basic definitions. I follow Grayson in defining a lattice of rank n
to be a pair Λ = (LΛ, QΛ) where LΛ is an abelian group isomorphic to Zn and QΛ a
Euclidean metric on it. Usually I’ll just refer to the group L, with Q implicit. The
metric Q also induces a Euclidean metric on the real vector space V = LR = L ⊗ R,
and a uniform Riemannian metric on the torus quotient V/L. If (ℓi) is a basis of L
and (ej) is an orthonormal basis of V , then the volume of the parallelogram spanned
by the ℓi is the absolute value of the determinant of the matrix E with entries ℓi•ej.
The matrix Q of the quadratic form with respect to the basis ℓ, on the other hand,
is that with entries ℓi•ℓj . But the matrix Q is also the matrix product tE E, so that
det(Q) = det(E)2. A unit lattice is a lattice whose fundamental parallelograms in LR

have unit area, or equivalently | det(E)| = det(Q) = 1.

Two lattices are isomorphic to each other if there is an isomorphism of the
groups inducing an isomorphism of metrics. Two lattices are similar if their metrics
differ by a positive scalar. Our basic problem, here and more generally, is to describe
as explicitly as possible the isomorphism classes of these structures.

If L is a free subgroup of V of maximal rank, then two quadratic forms x1 and
x2 on V give rise to isomorphic lattices based on L if and only if x2 = γx1 with γ
in GL(L). Thus the set LL of isomorphism classes of lattices with free group L may
be identified with GL(L)\XV . On the one hand, the group L may be assumed to be
Zn. If Q is a positive definite metric on Zn with associated inner product 〈 • , •〉, then
the matrix (〈ei, ej〉) is positive definite and symmetric. This leads to an identification
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of the isomorphism classes of lattices associated of dimension n with the arithmetic
quotient GLn(Z)\Xn, those of unit lattices with GLn(Z)\Xn where Xn is the subset
of matrices in Xn with determinant 1. On the other hand, LR may be identified with
Rn and the quadratic form with the sum of squares, in which case the isomorphism
classes of lattices may be identified with the set of discrete subgroups of Rn of rank n,
modulo rotations. Classically, both of these complementary identifications have been
used.

Even if one wants to work only with unit lattices in dimension n it is necessary to
work with arbitrary lattices of smaller rank. In terms of the group SLn this amounts
to using the copies of GLm embedded along the diagonals of n× n matrices. For this
reason I generally deal with all lattices.

3. Dimension two. We shall first look more carefully at the case n = 2,
where things can be easily understood. In identifying the isomorphism classes of unit
lattices with SL2(Z)\H a certain number of coincidences play an important role and
it is probably best if I recall them.

First of all, any pair u and v in C which are not real multiples of one another
determine a lattice. I’ll choose for this the opposite of the usual orientation in C. In
particular a pair z = x + iy with y > 0 and 1 determine a lattice.

Suppose let u∗ and v∗ be a basis of an arbitrary two-dimensional lattice. Let v
be a complex number with |v| = ‖v∗‖ and u such that |u| = ‖u∗‖, IM(u) > 0, with the
angle between u and v equal to that between u∗ and v∗. Then the pair z = u/v and
1 are similar to the pair u∗ and v∗. Thus

• The upper half-plane H classifies similarity classes of two-dimensional lattices.

It also classifies bases of unit lattices, since there is a unique unit lattice in ev-
ery oriented similarity class. The lattice spanned by z and 1 has area y, so that it
corresponds to the unit lattice spanned by z/

√
y and 1/

√
y.

Every point in H can be transformed by an element of SL2(Z) into an essentially
unique point in the region

D = {z = x + iy | −1/2 < x ≤ 1/2, |z| ≥ 1} .
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Equivalently, the lattice spanned by 1 and z will be similar to an essentially unique
one spanned by 1 and a point of this region.

I think it was Lagrange who first described the algorithm that carries out the
necessary reduction, although for a slightly different purpose. The basic reasoning
behind the algorithm is contained in this very elementary result, to which I give
Lagrange’s name for subsequent reference:

Lemma 3.1. (Lagrange) If L is any lattice, u a primitive vector in L, and v′ a
vector in L′ = L/Zu, then there exists a unique representative v of v′ in L with the
property that its projection onto u lies in the interval (−u/2, u/2 ]. The inequality

‖v‖2 ≤ ‖u‖2

4
+ ‖v′‖2 .

holds, where we identify v′ with a vector v⊥ in the orthogonal complement of u.

u

vv⊥

To see from this why every point z in H may be transformed to an essentially
unique point in the region D, take u to be a vector of least length in the lattice
generated by 1 and z, and apply the Lemma. The vector v will then have length at
least as large as that of u, and after we rotate and scale to get u = 1 the vector v will
lie in the region D. For some points there may be several vectors of least length in this
lattice (i.e. more than just one and its negative), and this will cause some ambiguity
in the choice of point in D. What this amounts to is that the points z and −1/z in D

on the unit circle |z| = 1 will be associated to the same lattice in this procedure.

In summary, if (L, Q) is a lattice of rank two there exists an essentially unique
positively oriented basis u and v of L where u is a vector in L of shortest length
and the projection of v on the line through u lies between ±u/2. For exceptional
lattices corresponding to points on the boundary of D there will be some harmless
ambiguity in the choice of u and v. Our knowledge of the domain D allows us to
classify completely the isomorphism classes of unit lattices. The main result of these
notes will be to generalize this classical result in a somewhat weak sense.

Grayson (following Stuhler) associates to every lattice L of rank two its Newton

polygon. First we make up a set in the plane in the following way: (1) We put (0, 0)
in it. (2) Let L) be the common area of any one of the fundamental parallelograms
of L. We put (2, log L)) in the set. (3) If v is any primitive vector in L (i.e. not a
multiple of one in L) then we put (1, log ‖v‖) in the set. The first coordinate in each
of these points is just a dimension. We plot these points in the plane. For example,
when the lattice is this:
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(with ‖u‖ < 1) we get the plot on the left, and if we shrink-wrap it—for reasons
I’ll explain in a moment—we get the figure on the right:

The shorter a vector, the lower its plotted point. Since the vectors in every lattice
have length bounded away from 0, the plot points are certainly bounded from below.
Therefore the convex hull of the collection of plot points is a polygon bounded from
below. Since there are arbitrarily long primitive vectors in the lattice the left and
right sides of the hull are vertical lines. Grayson calls the set of points plotted the
canonical plot of the lattice, and the boundary of the convex hull of the plot its
canonical polygon. I’ll call it the lattice’s profile.

Let z = x + iy be a point of D, and let a =
√

y. The lattice of unit area
corresponding to z is that spanned by 1/a and (x/a) + ia. The vector 1/a is a vector
of least length in this lattice, by definition of D. The point Grayson attaches to the
lattice is thus (1,− log a). This will lie below the x axis when a > 1. Therefore
the points of the interesting part of D where y ≤ 1 correspond to canonical plots
lying entirely on or above the x-axis, and the profile of such a lattice has its only
vertices at (0, 0) and (2, 0). It is called a semi-stable lattice by Grayson and Stuhler,
and if we don’t assume the lattice to have area A = 1 then a lattice is called semi-
stable if the bottom of its profile is a straight line. If u is the shortest vector in
the lattice then semi-stability means that log ‖u‖ ≥ (1/2) logA or ‖u‖ ≥

√
A. The

terminology is taken from Mumford’s geometrical invariant theory—stable lattices
are the arithmetic analogues of stable vector bundles on Riemann surfaces, which are
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discussed for example in the paper [Harder-Narasimhan 1975].

Points in D where y > 1 correspond to plots falling below the x-axis, and the
profile will have an additional vertex below the x-axis on the line x = 1. More
generally, a lattice which is not semi-stable is one in which ‖u‖ <

√
A. It is said to be

unstable. Thus the degree of instability of a rank two lattice is measured by the size
of its smallest vectors, compared to its volume. One important property that unstable
lattices possess is that for them the line containing a shortest vector, the one giving
rise to the middle vertex, is unique.

Something stronger is true, however, for unstable lattices—something that can
be noticed in the figures above. If u is a shortest vector in an unstable lattice then
ℓ(u) = (1, log ‖u‖) is a vertex on the profile. The lattice’s profile will break at this
point. The nature of the break tells something about the second shortest primitive
vectors in the lattice. Let v be a primitive vector such that u and v span the lattice.
The area A is equal to ‖u‖·‖v⊥‖, where v⊥ is the projection of v orthogonal to u. The
slope of the profile to ℓ(u) is log ‖u‖, and that from ℓ(u) to (2, logA) is log ‖v⊥‖ ≤ ‖v‖.
The existence of the break for u means that the second slope is greater than the first.
Furthermore, any other primitive vector in the lattice will project onto a multiple of
v⊥. Therefore the inside of the parallelogram shown in the following picture is empty
of plotted points:

A

v

u
slope = log ‖u‖

slope = log ‖v
⊥‖

where we have matched the bottom of the canonical polygon with matching sides
of a parallelogram. This explains the apparent gap towards the bottom of the canonical
plot.

Let L be an unstable lattice with shortest vector u, let V1 be the rational line
through u, and L1 = V1 ∩ L. This determines a lattice flag F

0 ⊂ L1 ⊂ L2 = L

called the canonical flag associated here to L. This gives rise in turn to a flag of
rational subspaces

0 ⊂ V1 = L1 ⊗ R ⊂ V2 = L ⊗ R .

Conversely, if F is any rational flag in R2, let HF be the set of all unstable lattices
with flag F . It follows from the remarks just above that HF is invariant under the
unipotent radical NF of the parabolic subgroup PF stabilizing F . More explicitly, if
F∞ is the flag fixed by the subgroup P of upper triangular matrices then HF∞

is the
region {y > 1}. If γ lies in SL2(Z) and γ(∞) = p/q then HγF∞

is the γHF∞
, the

interior of the circle tangent to R at p/q of radius 1/2q2.
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The distinction between stable and unstable partitions the fundamental domain
D.

What is the significance of this partition? The group Γ∩P is made up of matrices

±
[

1 n
0 1

]

with n an integer, and elements of Γ ∩ P act by horizontal integral translation on H.
The group Γ ∩ P is far simpler than Γ itself. A fundamental domain for Γ ∩ P is the
band

{x + iy | −1/2 < x ≤ 1/2}
The region y > 1 in D may therefore be identified with a very simple subregion
of Γ ∩ P\H. Its structure doesn’t mirror any of the complexity of D itself. The
region y ≤ 1 in D, on the other hand, is rather more complicated. I call it the
core of D. What the partition of Arthur does for n > 2 is to divide up similarly
the space GLn(Z)\Xn, partitioning isomorphism classes of lattices of dimension n
into components associated to parabolic subgroups of GLn (or certain conjugacy
classes of them). The component corresponding to the group P may be identified with
a subset of Γ ∩ P\Xn describable in terms of the geometry of P rather than that of
G.

4. Lattices of arbitrary rank. Fundamental domains for the action of
GLn(Z) on Xn have been completely described for a few low values of n. The details
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are useful in certain computations, but since their complexity grows rapidly with n
it is fortunate that explicit knowledge of this sort is rarely necessary in the theory
of automorphic forms. For large n, then, each component in Arthur’s partition will
possess a core of a perhaps unknown (and even unknowable) nature, but the exact
description of that core should not be required to elicit interesting and important
information. In fact the opposite is in some sense true—analytical techniques should
be able to say something about the geometry of the core of an arithmetic quotient
that is almost impossible to access directly.

The simplest way to construct the partition uses the canonical flag of a lattice
of arbitrary dimension. This concept originated perhaps with Gunter Harder, was
extended by Ulrich Stuhler, and improved by Dan Grayson. Grayson’s ideas might be
said merely to add graphic content to those of Stuhler, but the effect on the clarity
of arguments is dramatic. He associates to every lattice its canonical plot, its profile,
and then finally its canonical flag.

If L is a lattice and M is a discrete subgroup, M is called a sublattice if one of
these equivalent conditions holds:

(1) L/M has no torsion;
(2) M is a summand of L;
(3) every basis of M may be extended to a basis of L;
(4) the group M is the intersection of L with a rational vector subspace of LR;
(5) the quotient L/M is a free Z-module.

The sublattices of dimension one, for example, are the free subgroups spanned
by a single primitive vector, one which is not a multiple of another lattice vector.
If M is a sublattice then the vector space MR inherits a metric from LR, so from
every sublattice, as indeed from every discrete subgroup, one obtains again a lattice
of generally lower rank.

The volume of a lattice L is that of the compact torus LR/L, or equivalently the
n-dimensional volume of the parallelopiped spanned by any basis of L. Suppose L to
have rank n. If (ℓi) is a basis of L and (ej) an orthonormal basis of LR and then the
volume of L is the absolute value of the determinant of the square matrix [ 〈ℓi, ej〉 ]
whose i-th column is made up of the coordinates of ℓi with respect to the basis (ej).
If M is a sublattice of rank m in L with basis ℓ1, . . . , ℓm then the volume of M is the
length of the vector ℓ1∧ . . .∧ ℓm in

∧m
L, or in other words the square root of the sum

of the squares of the determinants of the m × m minor matrices in the n × m matrix
whose columns are the coordinates of the ℓi with respect to any orthonormal basis of
LR.

If M is a lattice, let M) be the volume of the quotient MR/M , and let dim(M)
be its rank. We associate to M ⊆ L the point

ℓ(M) = (dim(M), log M))

in R2, and define (following Grayson and Stuhler again) the canonical plot of the
lattice L to be the set of all points ℓ(M) as M ranges over all its sublattices. The
origin all by itself is considered to be a lattice of dimension 0 and, by convention,
volume 1. It therefore corresponds to the plotted point (0, 0). If M has rank one then
its volume is the length of a generator. Since the lengths of vectors in a lattice are
bounded below so are the plots (1, logM)) as M ranges over all rank one sublattices.
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For M of rank m the volume of M is the same as the volume of the rank one sublattice
lattice

∧m
M in

∧m
L, and again the point (m, log M)) must be bounded from below

by a constant depending only on L. Define the profile of L to be the polygonal
boundary of the convex hull of its canonical plot. The plot of a lattice is just about
impossible to compute in any sense, but its profile can be computed (in principle) by
finding the shortest vectors in each of its exterior products. In practice, this is an
infeasible computation for large dimension.

Since there exist arbitrarily long primitive vectors in L and more generally lattices
of any rank smaller than n = dim(L) of arbitrarily large volume, we may as well add to
the profile the points (0,∞) and (n,∞). The sides of the profile are therefore vertical.
Its bottom is a convex polygonal line from (0, 0) to (n, log L)) if n is the rank of L.

The profile will contain inside it at least the convex hull of the four points (0,∞),
(0, 0), (n, log L)), (n,∞), and it may happen that this is all of it. When this is the
case, L is said to be semi-stable. When this is not the case, the profile of Λ will lie
strictly below the straight line from (0, 0) to (dim(L), log L)).

Here, for example, is the plot we get from the three-dimensional lattice with basis
(1, 1, 2), (2, 0,−3), (2, 1, 5) scaled suitably to obtain a unit lattice:

As in the earlier two-dimensional plot, the gaps at the bottom are significant, as
we shall see in Proposition 4.3.

If M is a sublattice of L, then the projection from LR/MR onto the orthogonal
complement of MR in LR is an isomorphism, and in this way the quotient space inherits
a metric from that on LR. The quotient group L/M in the quotient space together
with this metric defines therefore a lattice, the quotient lattice.

Suppose M to be a sublattice of L with basis (mi), (ei) to be an orthonormal
basis of MR, (nj) to be a complement to M in a basis of L. Suppose also that the fj

extend the ei to an orthonormal basis of L. Then 〈m, fj〉 = 0 for m in M , and the
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volume of L is

L) =

∣

∣

∣

∣

det

[

〈m, e〉 〈n, e〉
〈m, f〉 〈n, f〉

]∣

∣

∣

∣

=

∣

∣

∣

∣

det

[

〈m, e〉 〈n, e〉
0 〈n, f〉

]∣

∣

∣

∣

= |det [ 〈m, e〉 ]| |det [ 〈n, f〉 ]| .

The columns of the matrix [ 〈n, f〉 ] are the coefficients of the projections of the nj

onto the orthogonal complement of M , and its determinant is therefore the volume of
the quotient lattice L/M . It donates one term among several non-negative terms to
the volume of the sublattice of L spanned by the ℓj. All in all, as a generalization of
the formula A = b · h for the area of a parallelogram spanned by a two-dimensional
lattice:

Proposition 4.1. If M is any sublattice of L then

L) = M)L/M)

and if N is any sublattice of L complementary to M then

N) ≥ L/M) .

The second assertion generalizes the simple fact that the length of the orthogonal
projection of a vector cannot be larger than the length of the vector. It reduces to that
result, in fact, if one considers exterior powers of L. As first pointed out by Stuhler,
it has a simple useful generalization, when it is applied to the lattices M/M ∩M∗ and
M∗/M ∩ M∗ in M + M∗/M ∩ M∗:

Corollary 4.2. If M and M∗ are any two sublattices of L then

M + M∗)

M)
≤ M∗)

M ∩ M∗)

or equivalently
M + M∗)M ∩ M∗) ≤ M)M∗)

This result is expressed by Grayson in additive terms:

Proposition 4.3. (Grayson’s parallelogram rule) Suppose that M and M∗ are
sublattices of L. Then

log M) ≥ log M + M∗) + log M ∩ M∗) − log M∗) .

Why is it called the parallelogram rule? We have a short chain of lattices

M∗ ∩ M ⊆ M∗ ⊆ M∗ + M .
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Let
d = dim(M + M∗) + dim(M ∩ M∗) − dim(M∗)

ℓ = log M + M∗) + log M ∩ M∗) − log M∗) .

Then d is the dimension of M . The Stuhler-Grayson inequality says neither more nor
less than that the point ℓ(M) = (dimM, log M)) lies on or above the point (d, ℓ). It will
lie exactly at (d, ℓ), furthermore, if and only if M∗ and M project to orthogonal lattices
in (M + M∗)/(M∗ ∩ M). But the point (d, ℓ) is the fourth corner of a parallelogram
whose other vertices are ℓ(M ∩ M∗), ℓ(M∗), and ℓ(M + M∗). The useful situation is
that illustrated below:

M

(d, ℓ)

M∗

M ∩ M∗

M + M∗

The vertices of a profile are its extremal points, where it actually bends. The
points (0, 0) and ℓ(L) = (n, log L)) are certainly vertices. The first of two main results
in this theory concerns other possibilities.

Lemma 4.4. Suppose M∗ to be a lattice with ℓ(M∗) a vertex on the profile.
Whenever M is any other lattice with ℓ(M) on the profile we must have either M ⊆ M∗

or M∗ ⊆ M .

Proof. Start off by letting M be arbitrary, M∗ a vertex of the profile.

M

M∗

M ∩ M∗

M + M∗

Then M ∩ M∗ will lie somewhere to the (inclusive) left of both, and M + M∗

will lie somewhere to the (inclusive) right of both. The parallelogram whose bottom
boundary is M ∩M∗, M , M + M∗ will, by the parallelogram rule, lie underneath M .
Unless it is one-dimensional, M will be separated from the profile. Therefore if M
lies on the profile, the parallelogram must be degenerate, and this means that either
M ∩ M∗ = M∗ and M∗ ⊆ M , or M + M∗ = M∗, in which case M ⊆ M∗.

As a consequence:

Theorem. (a) The sublattices of L giving rise to the vertices of the profile of L
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are unique. (b) Any set of sublattices corresponding to extremal points of the profile
form a flag.

This flag is called by Grayson the canonical filtration of L. I call it the canon-

ical flag. A lattice is semi-stable if and only if its canonical flag is trivial.

If M ⊆ L is the sublattice corresponding to a vertex (i, ℓ) of the profile of L, then
that part of the polygon of L running from x = 0 to x = i is the profile of M , and
that part running from x = i to x = n is a translation of that of L/M . If N occurs
in the canonical flag of L and contains M then N/M occurs in the canonical flag of
L/M .

Here is another corollary of the Lemma.

Theorem. (Grayson’s criterion) Suppose

L0 = {0} ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lk = L

to be a flag with the property that each quotient Li/Li−1 is semi-stable, and such
that the slope of (Li−1, Li) is less than the slope of (Li, Li+1). Then this flag is the
canonical flag.

Proof. Suppose M to be any other sublattice of L. We want to know that ℓ(M)
lies above the plot P of the ℓ(Li). We prove by induction that if M ⊆ Li then this is
so. For i = 1 this is immediate.

M

Li−1

Li
M ∩ Li−1

M + Li−1

Suppose that M ⊆ Li with i > 1. Then M +Li−1 is contained in Li and contains
Li−1, hence its plot lies on or above the segment (Li−1, Li). By induction, the plot of
the intersection M ∩Li−1 also lies on or above P . The parallelogram rule thus implies
that the plot of M also lies on or above P .

An isomorphism of two lattices takes the canonical flag of one into that of the
other. The canonical plot and profile of a lattice are therefore invariants of the iso-
morphism class of a lattice, as is the GL(L)-conjugacy class of the canonical flag.

In general, if p is a function defined on the integer interval [0, n], I’ll call its profile
the polygon that starts at (0,∞), then follows segments (i, p(i)) in increasing order
of i, and finally goes up to (n,∞). The convex ones among these are the profiles of
lattices. The polygons obtained in this way I’ll call profile polygons.

5. The geometry of acute cones. This section is largely a self-contained
account of a simple geometrical construction first applied in this subject in [Lang-
lands:1989]. The new feature here is the connection with Grayson’s diagrams.
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Suppose ∆ to be a set of linearly independent vectors in a Euclidean space V .
Let P be a basis of V . I define a weight map to be a map α 7→ ̟α from ∆ to P
satisfying the condition that for all ̟ in P

̟•α =
{

1 if ̟ = ̟α

0 otherwise.

Fix V , ∆, P , and a weight map for the rest of this section. The subspace of V
perpendicular to ∆ is complementary to the subspace spanned by the image of the
weight map; let P be a basis of V extending that image and containing a basis of that
complement.

For each Θ ⊆ ∆ let Θ⊥ be the subset of the ̟ in P that are perpendicular to the
α in Θ, and let

νΘ = orthogonal projection onto the subspace spanned by Θ .

The map νΘ will be referred to as normalization. The set Θ⊥ is also the complement
of the ̟α for α in Θ. The vectors ̟α are by no means unique—any of them may be
translated by a vector orthogonal to all the α in ∆. They may be made unique by
imposing the condition that the ̟α all lie in the subspace spanned by the α. I’ll not
impose this condition on a weight map, because then we would lose the very useful
feature feature that

The restriction of a weight map to a subset of ∆ is still a weight map.

I’ll fix V , ∆, and a weight map for the rest of this section.

Let C = C∆ be the open cone dual to the α in ∆—the v in V such that α•v > 0
for all α. The vector

∑

̟∈P c̟̟ lies in C if and only if c̟ > 0 whenever ̟ = ̟α for
some α in ∆. The cone C is invariant under translation by elements of ∆⊥.

̟α̟β

−α −β

C = C∅
C{β}C{α}

C∆

� = f�; �g
The faces of C are parametrized by subsets of ∆—to Θ corresponds the face CΘ

of v such that α•v = 0 for α in Θ and α•v > 0 for α not in Θ. In addition, let VΘ be
the linear subspace spanned by CΘ, that of all v with α•v = 0 for α in Θ. Thus C∅ is
C itself and C∆ = V∆, the face of lowest dimension, the linear space spanned by the
̟ in ∆⊥. Let

πΘ = orthogonal projection onto VΘ .

Thus πΘ and νΘ are complementary, in the sense that they add up to the identity
operator and their images are orthogonal.
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The cone C also determines a partition of the whole space V —to each of its open
faces F associate the set V C

F of points p for which the point of C closest to p lies on F .
This partition is shown above in dimension 2. In general, V C

C is just C itself. I write
V ∆

Θ for V C
CΘ

.

In summary:

C∆ = {v ∈ V |α•v > 0 for all α ∈ ∆}
C∆
Θ = {v ∈ C∆ |α•v = 0 for all α ∈ Θ}

VΘ = {v ∈ V |α•v = 0 for all α ∈ Θ}
V ∆

Θ = {v ∈ V | C∆
Θ contains the nearest point to v in C∆ }

Lemma 5.1. Suppose v to be a point of V not in C, v to be a point of C, and H
the hyperplane containing v and perpendicular to v − v. Then v is the nearest point
in C to v if and only if all points of C lie on the side of H opposite to v.

v

v

This is because of the convexity of the sphere centred at v and passing through
v.

Proposition 5.2. The points in V ∆
Θ are those of the form

v =
∑

Θ

cαα + v

where v lies in CΘ and each cα ≤ 0. In particular

V ∆
∆ =

{

∑

∆

cαα +
∑

∆⊥

c̟̟
∣

∣

∣
all cα ≤ 0

}

,

or, equivalently, it is the inverse image under orthogonal projection of the closed cone
spanned by the −∆.

Proof. Suppose v in V but not in C. Then according to the Lemma v lies in V ∆
Θ

with nearest point v if and only if the hyperplane H perpendicular to v − v contains
v on one side and C on the other. If v lies in CΘ then it is easy to see that H must
contain a neighbourhood of v in CΘ, hence all of CΘ. Therefore

v − v =
∑

α∈Θ

cα α ,
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and since the ̟ in Θ are on the other side from v, all cα ≤ 0. The converse is also
straightforward.

Because the vectors in Θ are orthogonal to the face CΘ, this says that the set V ∆
Θ

is the product of two sets, and these turn out to be rather easy to describe. The set
V ∆

Θ is the intersection of π−1
Θ (CΘ) and V Θ

Θ , and V Θ
Θ is itself the inverse image under

νΘ of the closed cone spanned by −Θ.

Now I take up the class of examples that we’ll be interested in later on. Let
E = Rn with orthogonal basis εi and coordinates si. For 1 ≤ i ≤ n−1 let αi = εi+1−εi,
so that

αi•

(

∑

sjεj

)

= si+1 − si .

Then let ∆ = {αi | 1 ≤ i ≤ n− 1}. The subspace spanned by the αi is that where the
sum of coordinates vanishes. If for i ≤ n

̟i = −ε1 − · · · − εi

then
αi•̟j =

{

1 if i = j
0 otherwise

so that the space orthogonal to αi is spanned by the ̟j with i 6= j. Since αi•αj =
−1 if |i − j| = 1 and otherwise vanishes, the cone spanned the αi is obtuse. That
spanned by the ̟i is acute. The projection of ̟i onto the space spanned by the αi is
ν∆(̟i) = ̟i − (i/n)̟n, since ̟i•̟n = i. In these circumstances the cone C∆

C =
{

∑

siεi

∣

∣

∣
s1 < . . . < sn

}

.

If (si) is a point of Rn, I define its profile to be the profile polygon that moves
from x = i to x = i + 1 along a segment of slope si. If it passes through the points
(i, yi) then we must have

y0 = 0, yi − yi−1 = si or yi = yi−1 + si

so that
yi = s1 + · · · + si = −̟i•

(

∑

sjεj

)

.

Proposition 5.3. The map taking a point of Rn to its profile is a bijection of
Rn with the set of profile polygons. A point of Rn lies in C if and only if its profile is
convex.

The last is true because slopes si of a profile are non-decreasing if and only if it
is convex. Going backwards, given a profile polygon I define its slope to be the point
(si) of Rn whose profile it is.

The cone V ∆
∆ spanned by ̟n and the −αi is that of all v such that ν∆(̟i) •v ≤ 0

for i ≤ n−1, or equivalently where yi−(i/n)yn ≥ 0 for 1 ≤ i < n. Since (i/n)yn is the
linearly interpolated y-value at x = i on the line from (0, 0) to (n, yn), this implies:

Proposition 5.4. A profile (yi) corresponds to a point of V ∆
∆ if and only if it

lies completely above the straight line from (0, 0) to (n, yn).
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In this case, its the bottom of its convex hull is just a straight line segment.

For each ℓ ≥ 0 let Iℓ = {1, . . . , ℓ} and for each I ⊆ In−1 let ΘI be the set of αi

with i in I. For each such I, the set Θ⊥
I is the set of ̟j with j in In − I.

Proposition 5.5. A point (si) lies in the subspace spanned by ΘI if and only if
the coordinates yi vanish whenever i is in In − I.

Projection onto the linear subspace VΘ (where α•v = 0 for α in Θ) is very nicely
described in terms of profiles.

Proposition 5.6. Let Θ = ΘI be a subset of ∆. If Π is the profile of a point
(si) in Rn, the profile of the projection πΘ(s) of s onto VΘ is the polygon obtained
from Π by skipping along in straight line segments among the vertices of Π whose
x-coordinate is not in I.

In the following picture, I = {1, 2, 4}, so it skips from x = 0 to x = 3 and then
to x = 5.

Θ-projection

Proof of the Proposition. The second profile certainly satisfies the condition that
si = si+1 for i in I, which means that it lies in VΘ. The two profiles agree at the i not
in I, which means that their difference is orthogonal to the ̟i with i not in I. But
this means in turn that the difference is a linear combination of the α in Θ.

In other words, if the original profile is (yi) then the projected one y∗ has y∗,i = yi

for i not in Θ, and for i in between two successive integers dk and dk+1 not in I the
values of y are linearly interpolated:

y∗,i = ydk
+ (ydk+1

− ydk
)

(

i − dk

dk+1 − dk

)

.

I recall that a profile polygon is normalized by shearing it so as to place its final
vertex on the x-axis. The vertical coordinate yi is replaced by y∗

i = yi − (i/n)yn. In
terms of the slope, this is the same as ν∆.

Suppose I to be a subset of In, with lacunae dk. That is to say that dk and dk+1

do not lie in I but all the i with dk < i < dk+1 do. Let Θ = ΘI . The Θ-normalization
of a profile shears each of the segments in the range [dk, dk+1] so as to normalize it—
i.e. so as to place its endpoints on the x-axis. In a formula: for dk < i ≤ dk+1 the new
vertical coordinate becomes

y∗,i = (yi − ydk
) − (ydk+1

− ydk
)

(

i − dk

dk+1 − dk

)

.



626 BILL CASSELMAN

Θ-normalization

Proposition 5.7. If (si) is the slope of a profile, then its Θ-normalization is its
orthogonal projection onto the linear subspace perpendicular to VΘ.

Proof. The formulas show that it is the complement of πΘ, the orthogonal pro-
jection onto VΘ.

Here is a few figures, illustrating the comparison between profiles and slopes.
First projection:

T

πΘ(T )

and then normalization:

T

νΘ(T )

A partition of V gives rise to other partitions by translating the original one.
Grayson and Arthur describe partitions of C of two different kinds, and each of these
gives rise in turn, as we shall see, to a partition of Γ\X . Grayson starts with the
partition of V by the signs of coordinates, and then shifts it by an element T of C to
give one of C:
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T

This was adequate for Grayson’s purposes, but the partition used by Arthur
fits more nicely into applications to automorphic forms. It just shifts the Langlands
partition by an element T .

T

C∆
∆(T )

Let C∆
Θ (T ) be the intersection of C with the translation by T of V ∆

Θ .

T
C∆
Θ (T )

CΘνΘ(T )

πΘ(T )

Like V ∆
Θ itself, it has a relatively simple product structure, one that has a useful

description in terms of profiles. It is because of this product structure, and the con-
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sequent structure induced on a corresponding subset of X , that Arthur’s partition is
more useful in automorphic forms.

First let’s look at C∆
∆ . I’ll say that one point T∗ in Rn dominates another point

T if T∗+V ∆
∆ contains T . The points dominated by the origin, for example, are exactly

those in V ∆
∆ . What does this mean in terms of profiles? First of all, it is independent

of normalization, since V ∆
∆ is invariant under translation by ̟n.

Proposition 5.8. If T ∗ and T are both points in the plane ̟n•v = 0, the point
T∗ dominates the point T if and only if the profile Π of T lies entirely above the profile
Π∗ of T∗.

Π

Π∗ T

T ∗

The proof is straightforward, given the description of V ∆
∆ in Proposition 5.6.

This might be informally phrased as saying that the points in C∆
∆(T ) are T-

stable. As for the other C∆
Θ , it is easy to see that its orthogonal projection onto the

face spanned by any other CΘ is equal to the translation by πΘ(T ) of CΘ. What about
the perpendicular projection? This is onto the Θ-normalized points whose profiles are
convex in the segments [dk, dk+1] and dominated by νΘ(T ). If T has this profile:

and Θ = {α3, α5} then the Θ-normalization of CΘ contains the points whose
profiles lie in this region:
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Finally, the following is a geometric formulation of an observation in the paper
[Aubert-Howe:1992].

Proposition 5.9. The point of C nearest to v = (si) is that point v whose profile
is the convex hull of the profile of v.

Proof. It must be shown that v−v lies in the span of the −αi. If (i, yi) lies on the
hull then this means neither more nor less than that yi − yi ≥ 0. This is immediate.

There is a well known algorithm to find the convex hull of any finite set of 2D
points which is particularly effective here (see Chapter 1 of [de Berg et al.:1997]). It
can be roughly described as scanning from left to right, adjusting to avoid concave
regions.

This is ridiculously efficient, since each vertex is touched only twice, and the whole
process is simply proportional to the number of points in the polygon. I do not know of
an algorithm of comparable efficiency for finding nearest points on an arbitrary convex
subset of Euclidean space, even for arbitrary simplicial cones. Grayson’s discussion
of the orthogonal and symplectic groups suggests a similar algorithm for the classical
root systems, but each family is dealt with in an apparently different fashion.

6. Lattice flags. Suppose L to be a free abelian group of rank n and V = L⊗R.

A flag F in V is an increasing sequence of real vector spaces

V0 = {0} ⊂ V1 ⊂ . . . ⊂ Vk = V .

I define the dimension of the flag to be the array (di) of dimensions of its components,
and set Θ = ΘF to be the complement of these dimensions in {1, . . . , n}. Thus for
the trivial flag {0} ⊂ V we have Θ = {1, . . . , n− 1}. The stabilizer in GL(V ) of a flag
F is a parabolic subgroup P = PF , and the subspaces Vi are called its components.
If Γ = GL(L), we know that the quotient Γ\XV parametrizes isomorphism classes of
lattices. What does the quotient Γ ∩ P\XV parametrize?

The group L induces a rational structure on V , and a flag is called rational if
its components are rational. If F = (Vi) is a rational flag then the filtration

L0 = {0} ⊂ L1 = L ∩ V1 ⊂ . . . ⊂ Lk = V

is called a lattice flag. Because each Vi is rational, each intersection Li is a free
subgroup of L of rank equal to the dimension of Vi. If x is a positive definite quadratic
form on V then each Li becomes a sublattice. Two lattice flags obtained from forms
x1 and x2 and the same rational flag F are are isomorphic if and only if x2 = γx1

with γ in the stabilizer of P as well as GL(L). Therefore
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The quotient Γ ∩ P\XV parametrizes lattice flags based on F .

The structure of this quotient is related to isomorphism classes of lattices of lower
rank. An element of P induces an action on each quotient Vi/Vi−1. The map from
P to

∏

GL(Vi/Vi−1) is surjective, and the kernel is the unipotent radical NP of P .
This map therefore identifies the reductive quotient MP of P with

∏

MP,i where
MP,i = GL(Vi/Vi−1). If x is a quadratic form on V then on each Vi/Vi−1 the linear
isomorphism of Vi/Vi−1 with Vi ∩V ⊥

i−1 induces a quadratic form xi on Vi/Vi−1. Every
x in XV thus also gives rise to an orthogonal decomposition of V into subspaces

V i = Vi ∩ V ⊥
i−1

∼= Vi/Vi−1 .

The reductive component MP of P may be canonically identified with the stabilizer
of the decomposition V = ⊕V i, effecting a splitting of the canonical surjection from
P to MP . The group AP , the centre of MP , may be identified with the matrices
acting as scalars on each V i. By choosing a basis of V compatible with the orthogonal
decomposition V = ⊕Vi, we represent a in AP as a diagonal matrix (aj), with a acting
on Vi by aj if di−1 < j ≤ di. The map

σP : a 7−→ (aj)

is a canonical identification of AP with the subgroup (aj) of Rn with aj = aj+1

whenever j is not one of the di.

The image of Li/Li−1 in Vi/Vi−1 is a free discrete group of maximal rank There
exists also, therefore, a canonical map from XV to

∏

XVi/Vi−1
induces a canonical map

from lattices in V to an array of lattices in the quotients Vi/Vi−1. This is P -covariant,
and the fibres are the NP -orbits in XV . The quotient Γ∩ P\XV therefore maps onto
∏

Γi\Xi with fibres isomorphic to Γ ∩ NP \NP , where Mi = GL(Vi/Vi−1), Γi is the
image of Γ ∩ P in Mi, and Xi = XVi/Vi−1

.

If P = gQg−1 are two conjugate parabolic subgroups, there is a canonical isomor-
phism of AP with AQ, since a parabolic subgroup is its own normalizer. To each each
element a of AP corresponds a profile polygon—its bottom is the unique polygonal
path whose slope from x = j−1 to j is log |aj | where (aj) = σP (a). The slopes of such
polygons make up the linear subspace of Rn where αi = 0 for i not in the dimension
of F .

The canonical plot of a lattice flag (Li) is the set of all the two-dimensional
points (dimM, log M)) where Li−1 ⊆ M ⊆ Li for some i. The profile of a lattice

flag is the unique polygon which in the range [dimLi−1, dimLi] is equal to the convex
hull of this plot. The polygon in this range, translated back to the origin, is the
canonical profile Πi of Li/Li−1, which is called its i-th segment. The map taking a
flag profile Π to the sequence (Πi) of its segments is a bijection between the set of
all flag profiles and sequences of polygons Πi satisfying the condition that Πi be the
profile of a lattice of rank dimLi − dim Li−1.

The profile contains at least the points λi = (dim Li, log Li)). It need not be
overall convex, nor do the vertices of the profile have to be points where the profile
bends. Here is a typical flag profile:
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λ0

λ1

λ2

These definitions are consistent with the earlier one in a trivial sense, since the
profile of a lattice L is clearly the same as that of the flag {0} ⊂ L determined by
L alone. But we also have a more interesting consistency. I say that one lattice
is subordinate to another if its components are components of the other. This is
straightforward to prove:

Lemma 6.1. The profile of a lattice is the same as the profile of any flag subor-
dinate to its canonical flag.

Any lattice may be scaled by a constant a, simply multiplying its metric by |a|.
The normalization of a lattice is the one we get by scaling it so as to have unit
volume. The effect of scaling by a on the profile of a lattice is to shear it, moving each
point (d, ℓ) to (d, ℓ + d log |a|). The geodesic action of Borel-Serre generalizes this
operation. Suppose given a lattice flag F and an element a of AP . Suppose that a
acts as ai on Vi/Vi−1, and therefore corresponds to an operator on all of V that acts
as multiplication by ai in V i. We can define a new lattice flag by changing the metric
on V in the natural way—if x has the orthogonal decomposition x = ⊕ xi with xi in
V i determined by F , with norm

∑ ‖xi‖2, then the new norm of x is
∑

a2
i ‖xi‖2. For

example, if a = (c, 1/c) in dimension 2 then Ra takes z = x + iy to x + ic2y, whereas
the usual fractional linear transformation takes z to c2z. One important thing to
realize about the geodesic action is that it doesn’t preserve convexity of a profile, as
this portrait of the profiles of a lattice under transformation by the geodesic action
shows:

The normalization of a lattice flag F is the lattice obtained by normalizing each
of the components in its associated graded lattice. If vi = Li) then this normalization
is also RaF where a = (v−1

i ). The map taking F to ν(F) = (v−1
i ) defines a canonical

map ν from lattice flags F to the connected component A0
P , where P = PF . A flag F

is normalized if and only if ν(F) = 1.
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7. The parabolic decomposition. I review the situation before going on.

Suppose L to be a free finitely generated group, say of rank n, and V = L ⊗ R.
The space of lattices based on L, that is to say that of Euclidean metrics on L, may
be identified with XV , the space of all positive definite quadratic forms on V . The
group GL(V ) acts on XV according to the formula

gx(v) = x(g−1v) .

Two points x1 and x2 give rise to isomorphic lattices if and only if x1 = γx2 with
γ in ΓL = GL(L). If XV is the subset of lattices of discriminant 1, or equivalently
those with V/L) = 1, then XV

∼= XV ×Rpos. If a form x has discriminant D then the
projection takes x to (x/

√
D,

√
D).

To each point x of XV , we associate its lattice, its profile, its canonical flag
F = Fx, the stabilizer Px of that flag, hence also the slope (array) s = sx of its
profile. Let ΘPx

be the set of i in [0, n−1] such that si = si+1. The profiles of lattices
are precisely the convex profile polygons, so that the image of the slope map from XV

to Rn is precisely the closed cone C = C∆ where all si ≤ si+1 for 1 ≤ i ≤ n − 1.

In summary, each x in XV gives rise to a parabolic subgroup P = Px and a
point s = sx in CΘ where Θ = ΘP . As pointed out in [Ji-MacPherson 2002], the
set of all such points (P, s) with P a rational parabolic subgroup of G and s a point
of CΘP

make up the interior of the cone C(|T |) on the Tits complex |T | of G. We
therefore have in this case a canonical map from XV into this cone. Following Ji and
MacPherson I call this cone the rational skeleton of XV . I’ll call the canonical map
the canonical skeletal projection σ. Leslie Saper has pointed out to me that this
cone occurs already, in a related manner, in [Borel-Serre 1973].

If P is the rational parabolic subgroup stabilizing the flag F , then define

XP = {x | Fx = F} .

There is a canonical projection from this onto CΘP
. The space XV is the disjoint

union of the XP as P varies over all rational parabolic subgroups. The set XG, in
particular, parametrizes stable lattices. For any γ in ΓL, γXP = XγPγ−1 . The action
of ΓL does not change the slope. Hence the first part of this:

Proposition 7.1. The set XP , and more particularly the inverse image with
respect to the skeletal projection of any point of CΘP

, is stable under Γ ∩ P as well as
NP .

We have already seen the second part proven.

From now on let Γ be any subgroup of ΓL of finite index.

Corollary 7.2. The canonical map from Γ ∩ P\XP to Γ\X is an embedding.
The images of Γ∩P\XP and Γ∩Q\XQ overlap if and only if P and Q are Γ-conjugate
and in that case they are equal.

The skeletal projection σ maps XP onto CΘP
, and each fibre σ−1(s) of this map

is stable with respect to Γ ∩ P and NP . What is the structure of the quotient (Γ ∩
P )NP \σ−1(s)?

Suppose F = (Vi) to be a rational flag and P its stabilizer, so that MP =
∏

Mi.
The projection from Vi/V ⊥

i−1 to Vi/Vi−1 to gives rise to a Euclidean metric on Vi/Vi−1,
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hence a point of XVi/Vi−1
. These all together give rise to a canonical map from XV to

∏

XVi/Vi−1
. The fibres of this map are the orbits of NP . According to the notation

introduced above, for each i the space XMi
is the space of semi-stable lattices in

Vi/Vi−1. The image of XP in
∏

XVi/Vi−1
is XMP

=
∏

XMi
. To state it formally:

Proposition 7.3. If P is a rational parabolic subgroup of GL(V ), there exists a
canonical map from XV onto XMP

whose fibres are the orbits of NP .

Now let M be the reductive component of a rational parabolic subgroup P of
GL(V ).

Proposition 7.4. There exists a canonical isomorphism XM
∼= XM × VΘ.

Proposition 7.5. For any rational parabolic subgroup P the set XP is stable
under NP . The canonical projection identifies the quotient of XP by NP with the
subset of XMP

whose slope lies in CΘP
.

We therefore understand the structure of XV reasonable well. In effect, we have
reduced the question of describing it to that of describing the structure of stable
unimodular lattices for all dimensions at most n. We have little hope of understanding
the space of such lattices in any non-trivial way, but this at least is true:

Proposition 7.6. The quotient Γ\XG is compact.

Vectors in lattices in XG have bounded minimal length and the lattices have unit
volume. This therefore follows from Mahler’s criterion, which I’ll recall in the next
section.

From the canonical skeletal projection σ a whole family of skeletal projections
can be constructed. They are parametrized by points of C = C∆.

T

C∆
∆(T )

Let T be an arbitrary point of C. First of all define XG(T ) to be the set of all x
in X for which the slope sx lies in C∆

∆(T ), the points of C dominated by T . If T = 0
these are just the usual semi-stable lattices, and in general I’ll call them T-stable.
Let XG(T ) be the intersection of XG(T ) with X. Both of these are stable under ΓL.
If T lies in the face CΘ then XG(T ) contains points in all the XP with Θ ⊂ ΘP .

Proposition. 7.7. The quotient Γ\XG(T ) is compact.

This also follows from Mahler’s criterion.
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T
C∆
Θ (T )

CΘνΘ(T )

πΘ(T )

Let P be a rational parabolic subgroup and Θ = ΘP . Let XP (T ) be those x in XQ

with Q ⊆ P for which the slope lies in CΘ(T ). This agrees with the earlier definition
of XG(T ). The product structure of CΘ(T ) described in the earlier section on the
Langlands decomposition shows that this has the product structure AP (T )/A∩K times
∏

XVi/Vi−1
(T ), where AP (T ) is the inverse image in A0

P of πΘ(T )+CΘ. Note that A0
P
∼=

CΘ via logarithms, and the right action of A0
P is compatible with this. The skeletal

projection σT associated to T takes a point in XP (T ) to the point x πΘ(sx)− πΘ(T ),
which lies in CΘ. The previous results for the sets XP have straightforward analogues
for XP (T ).

There is one final useful remark. Suppose P to be a maximal rational parabolic
subgroup of GL(V ). F the corresponding flag V0 ⊂ V1 ⊂ V . Let d be the dimension
of V1, I the complement of d in In, Θ = ΘI .

To each x in XV corresponds a lattice flag F ∩L, and hence to each x the profile
of this flag, a point in Rn in the region αdP

ge0, and then the projection onto the
line containing CΘ. Define X+

P (T ) to be the inverse image of πΘ(T ) + CΘ in X . The
following is a basic fact of reduction theory, but as far as I can say it was first observed
by Arthur.

Proposition 7.8. For any T in C the XG(T ) is the complement of the union of
X+

P (T ) as P ranges over the maximal rational parabolic subgroups of G.

On the one hand the region C∆(T ) is the complement in C of the projections onto
the lines πΘ(T )+CΘ. This means that XG(T ) is contained in the intersection. On the
other, if x lies in one of these regions then the profile of x has to lie below the profile
of πΘ(T ), and x cannnot lie in XG(T ).

8. Mahler’s criterion. I formulate here a variant of Mahler’s criterion for the
relative compactness of a set of lattices.

Suppose A and B to be positive numbers, E a Eucidean real vector space of
dimension n. I define a weakly reduced frame in E with respect to A and B to be
any subset of n vectors vi satisfying the following conditions:

• ‖vi‖ ≤ B for all i;
• for each j the projection of vj onto the subspace perpendicular to v1, . . . , vj−1

has length at least A.
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Since projections do not increase length, the second condition implies also that
the projection of any vi with i ≥ j onto the subspace perpendicular to v1, . . . , vj−1

has length at least A. Recursively, this definition amounts to requiring that (1) A ≤
‖vi‖ ≤ B for all i and (2) the projections v⊥i (i ≥ 2) perpendicular to v1 form a weakly
reduced frame of dimension one less for A and B.

In these circumstances the volume of the parallelopiped spanned by the vi is at
least An. As a consequence, any weakly reduced frame is actually a frame—i.e. a
basis of E—and for a given A and B the set of all associated frames is a compact
subset of frames.

Theorem. There exist for every a, K > 0 and positive integer n constants A
and B such that if L is any lattice of dimension n, with volume at most K and all
its vectors of length a or more, then L possesses a basis which is weakly reduced with
respect to A and B.

From this it follows immediately that every Γ\Xn(T ) is compact.

Proof. For n = 1 the Theorem is clear, since volume and length are the same.

The proof continues by induction on n. In the proof it will be shown that one may
choose A to be (

√
3/2)n−1a, and I’ll take this to be part of the induction assumption.

Let µn be the volume of the unit ball Bn(1) in Euclidean space Rn. A classic theorem
of Minkowski asserts that if we choose r so that

Bn(r)) = µnrn ≥ 2nL) or r ≥ 2 (L)/µn)
1/n

then L will contain a vector inside B(r). Since the volume of L is bounded by K,
if we choose r = b = 2(K/µn)1/n we can find a vector v1 of length at most r inside
L. We may assume it to be a vector of least length in L, and in particular that it be
primitive in L. The vector v1 now satisfies the conditions

a ≤ ‖v1‖ ≤ b .

I claim that the quotient L∗ = L/Zv1 satisfies the same conditions as those on L, but
of course with possibly different constants a∗, K∗. First of all, the volume of L∗ is
equal to L)/‖v1‖, which is at most K∗ = K/a. It remains to show that the lengths of
vectors in L∗ are bounded from below by a suitable constant. This result is made more
explicit in the following result, which is an easy consequence of Lagrange’s Lemma.

Lemma 8.1. If
‖v‖ ≥ a

for all non-zero vectors in L then

‖v∗‖ ≥ a∗ =

√
3

2
a

for all non-zero vectors v∗ in L∗.

Proof. Choose v representing v∗ as suggested by Lagrange’s Lemma. Thus v =
v∗ + αv1, with |α| ≤ 1/2, and

‖v∗‖2 + α2‖v1‖2 = ‖v‖2
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Since v1 has least length, we also have

‖v‖2 ≥ ‖v1‖2, ‖v∗‖2 ≥ (1 − α2) ‖v1‖2 ≥ (3/4) ‖v1‖2 ≥ (3/4)a2

which concludes the proof of the Lemma.

To conclude the proof of the Theorem, note that by the induction assumption we
can find a basis (v∗,i) (for i ≥ 2) of L∗, A∗ = (

√
3/2)n−1a and B∗ > 0 satisfying its

conclusion. We may lift each v∗,i to a vector vi with |vi•v1| ≤ ‖v1‖2/2. The vi form a
basis of L. But now we have

‖vi‖2 = ‖v∗,i‖2 + ‖ui‖2 ≤ (B∗)2 + b2/4

if ui is the projection of vi onto the line through v1. This proves the theorem, with
A = A∗ and B =

√

(B∗)2 + b2/4.

This proof is (of course) not much different in substance from either of the proofs
found in §1 of [Borel 1972] or Chapters V and VIII of [Cassels 1959], but is perhaps
somewhat more direct.
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