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On the T(1)-theorem for the Cauchy integral 
Joan  Verdera 

Abstract .  The main goal of this paper is to present an alternative, real variable proof 
of the T(1)-theorem for the Cauehy integral. We then prove that the estimate from below of 
analytic capacity in terms of total Menger curvature is a direct consequence of the T(1)-theorem. 
An example shows that the L~-BMO estimate for the Cauchy integral does not follow from L 2 
boundedness when the underlying measure is not doubling. 

I n t r o d u c t i o n  

In this paper  we present an al ternative proof  of the T(1) - theorem for the Cauchy 

integral opera tor  with respect to an underlying measure which is not assumed to 

satisfy the s tandard  doubling condition. This result has been proved recently in IT3] 
and, independently,  in [NTV1] where fairly general C a l d e r d ~ Z y g m u n d  operators  

are considered. The  proof  in [T3] exploits a tool specific to the Cauchy  kernel, 

called Menger curvature  (see Section 1 for the definition) and is based on two main  

ingredients: a good .k inequality and a special argument ,  which is designed to  make 

the t ransi t ion fl'om an L 2 est imate  to a weak (1, 1) inequality. This a rgmnent  

involves analyt ic  capaci ty  (concretely, the inequali ty (18) below) and consequently 

is of a complex analyt ic  nature.  Our  approach avoids use of complex analysis. In  

fact, our s t ra tegy  consists in finding in any given disc a "big piece", in the  sense of 

Guy  David [D1], [D2], on which the opera tor  is bounded  on L 2. We then plug in the 

s tandard  good A inequali ty to control  the maximal  Cauchy integral by the centered 

maximal  operator ,  as in [D1], [D2]. In this second step one only needs to  check tha t  
the doubling condit ion is not  really used in the classical arguments .  Thus  our proof  

is actual ly  reduced to the const ruct ion of a "big piece", which turns  out to  be fairly 

simple because of the good posit ivi ty propert ies  of Menger curvature.  We proceed 

now to s tate  precisely the  main  result. 

Let # be a positive Radon  measure in the plane. Our  goal is to es t imate  the 

Cauchy integral opera tor  on L 2 (p). In view of the  singulari ty of the Cauchy kernel 
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(2) 

where 

1 / ( z - ( )  we assume that  # satisfies the growth condition 

(1) #(D) <_ Cr(D) for each disc D, 

where r(D) stands for the radius of D and C is some positive constant independent 
of D. Indeed, if # has no atoms then (1) is necessary for the LZ(#) boundedness 
of the Cauchy integral [D2, p. 56]. We say that  the Cauchy integral operator is 
bounded on L2(p) whenever, for some positive constant C, one has 

f ICr 2 d# <_ C / Ifl 2 d~, f C L2(#), e > O, 
dc  de  

/ (  f ( ( )  
(3) C~(f#)(z)-- -z]>~ ( - z  d#(() ,  z E C .  

Notice that  the integral in (3) is absolutely convergent for each z, as can readily be 
seen applying the Schwarz inequality and then using (1). 

A necessary condition for (2) is obtained by taking as f the characteristic 
function XD of a disc D and restricting the donlain of integration in the left-hand 
side of (2) to D, 

(4) .It) IC~(XDP)I2d#<C#(D) for each disc D, c > 0 .  

The T(1)-theorem for the Cauchy integral can now be stated as follows. 

T h e o r e m .  Let p be a positive Radon measure satisfying (1). Then (2) follows 
f 'om (4). 

We remark that  if p satisfies the doubling condition 

(5) p(2D) < C#(D) for each disc D, 

where 2D stands for the disc concentric with D of twice the radius, then (4) is 
easily seen to be equivalent to requiring that  C~(#) belongs to BMO(#), uniformly 
in r Hence we recover the familiar condition in the standard formulation of the 
T(1)-theorem for the operator T : C  [D2, p. 30], 

C(1) - C(#) belongs to BMO - BMO(p). 

In the doubling context the theorem can readily be proved using Menger curvature 
and interpolation between H 1 and BMO (see Section 4). 

In Section 1 we gather some preliminaries including notation, terminology and 
background. Section 2 contains the proof of the theorem. In Section 3 we remark 
that  the estimate from below for analytic capacity in terms of Merger curvature 
(inequality (18) below) follows readily from the theorem by purely real variable 
arguments. Section 4 shows that  if the doubling condition (5) fails then L 2 bound- 
edness of C does not imply the L~176 estimate. 
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1. P r e l i m i n a r i e s  

Given three distinct points zl, z2, z3 E C one has the identity [Me] 

1 
(6) ~ (Zz(2) --Z~r(1))(Z~(3) --Z~(1)) -- C(Zl, Z2, Z3) 2, 

where the sum is taken over the six permutations of {1, 2, 3} and c(zl, z2, z3) is 
the Menger curvature of the given triple, that  is, the inverse of the radius of the 
circumference passing through zl, z2 and z3. For a positive Radon measure z / the  
quantity 

c(")~ = J J L  ~(~1' ~' Z3)2 d/J(zl) d/J(z2) d/.'(z3) 

is called the total Menger curvature of ~ or simply the curvature of u. Note that  
we have not defined C(Zl, z2, z3) for triples where at least two of the points are the 
same; for such triples we may set c(zl, z2, za)=0.  

The first application o f  (6) to the L 2 theory of the Cauchy integral operator 
was the author's proof of the L u boundedness of the Cauchy integral on Lipschitz 
graphs (see [V2] and [MV]). There we showed that  the arc length measure on an 
arc of a Lipschitz graph has finite curvature. 

Later on the identity (6) was used to obtain estimates from below for analytic 
capacity [Me] and to describe uniform rectifiability via the mapping properties of 
the Cauchy integral operator [MMV 1. The results in IV2] or [MV] were explicitly 
mentioned in [Me, pp. 828-829] but unfortunately no reference was made to [V2] 
or [MV], which already existed in preprint form. This has caused some misunder- 
standing of the real sequence of events and some inaccuracies in attributing the 
results. Impressive progress has been made, using (6), in recent work by several 
authors [DM], [JM], [L], [Ma], IT1], IT2], [T3], cuhninating in David's solution of 
Vitushkin's conjecture [D3]. 

In our estimates we will use two variants of the Hardy-Lit t lewood maximal 
operator acting on a complex Radon measure t,, namely, 

M u ( z ) = s u p  lYl(D(z,r)), z e C ,  
r>O r 

and 

v . . ( z )  = sup la(D(z ,  r)) 
~>0 ~(D(z, ~)) ' z e s p t . ,  

where D(z,r) is the open disc centered at z of radius r and spt # is the closed 
support of #. 
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It follows from the Besicovitch covering lemma that  M ,  satisfies the weak type 
estimate [J, p. 8] 

(7) , { z :  > t} < ClI.I  
- t 

and since 

Mp(z) <_ CM.•(z), z C spt #, 

because of (5), (7) also holds when M .  is replaced by M. 

Actually the weak type (1, 1) estimate for M is a consequence of the simplest 
standard covering lemma IS, Lemma 1, p. 12] and so there is nothing deep in it. 
Although we could work only with M .  we prefer to keep the distinction between M 
and M .  to emphasize those steps where the Besicovitch covering lemma necessarily 
comes into play. Notice that  (7) coupled with the obvious L ~176 estimate gives, by 
interpolation, the inequality 

/c  M~(f #)P d# < C /c  lflP d#, l < p <  oc. 

The letter C will denote either the Cauchy integral operator or a constant 
which may be different at each occurrence and that  is independent of the relevant 
variables under consideration. The precise meaning of C will always be clear from 
the context. 

2. T h e  p r o o f  

Let ~ be a complex Radon measure. Set 

(8) C~(z) = [ d~,(() z ~ C. 
JIr zl>~ ( - z '  

The integral in (8) is absolutely convergent for all z provided ~ is a finite measure 
or, more generally, provided 

s dl r(() < oo. (9) 1+1(~ 
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L e m m a  1. Let uj, j = l ,  2, 3, be three real Radon measures satisfying (9) with 
u replaced by uj, j = l ,  2, 3. Then 

J t J  e 

where the sum is taken over the permutations of {1, 2, 3}, 

S~={(zl ,z2,  z3) c C a : [ z x - z 2 [ > c ,  IZl z a ]>c  andlz2-z3[>c}  

and 

IRI ~_ C E f MPa(2)(za(1))MPa(3)(za(1) ) dPa(') (za(1))' 
cr JC 

C being an absolute constant. 

Proof. Set 

Tc = {(Zl, z2, z3) �9 63:Iz1 -z31 > c and Iz2-zal > c}, 

v~ = {(~1, ~ ,  za) �9 c3 :  Iz~-z~l _< ~, IZl-~31 > 2~ and I~ ~al > ~} 

and 

Then 

V~ ={(z l , z i , z3 )  c c a :  Izl-Z21 ~c ,  ~<  Izl-z31 ~2c  and [z2 z31 >~}. 

f f f  d.x(z~) d.~(~) d.~(~3) 
J J J s  (~1 z ~ ) ( ~ - z ~ )  
+ f f f  d.1(~1) d.~(z~)d.~(~) 

J J J u  o ( ~ l - Z 3 ) ( ~ - z ~ )  
+fff  dux(Zl) dL'2(z2)d~'3(z3) 

JJJv~ (~1 - ~ )  (~  - ~ )  

= f / / ~  d-~(~l) d .~(~)  d-3(~)  +I~+:I~,  

where the last identity is a definition of I~  and II~. To estimate I~ and II~ we 
assume, without loss of generality, that  the uj are positive measures. Then 

c f f f d~'l(Zl) dp2(z2) dPa(Z3) < 
JJJ~ 

C f f  Mp3(Zl) d~l(Zl) d~2(z2) 
JJl~ 

C [ ML,2(zl)Mu3(zx) dL,1 (zx). < 
J 
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For II~ we write 

1 / / / V  ~ ]II~[ <_ 7g dpl dp2 dp3 

_< - -  Mp3 (zl) db'l (zl) dl.'2 (z2) 
c 1 z2l<_e 

J M~'2 (Zl)Mp3 (zl) dpl (zl). < C 

Operating in a similar way for any a and then summing over a we get the conclusion 
of the lemma. [] 

We apply Lemma 1 to Ul=V2 f# with f a (real function) in L2(#) and /]3 = 
XDP with D a fixed disc. We then have 

./r~ ]Ce(f ")12 d , + 4  Re L C~(f #)Ce(xu#)f d, (10) 2 

: .l l .l l . )  

In particular taking f=XD o n e  gets 

6s I<(x.~)l ~ d.:.//s ~(~,~,<)ev(~)~v(~)dv(C)+O(~(D)), 
e N D  3 

and thus 

(11) f f s c~(z, w, r dp(z) dp(w) d,(r <_ C,(D), 

provided (4) holds. 
It is worth pointing out that (11) was inexactly at tr ibuted in [NTV1, p. 705]. 

Indeed, a first version of (11) appears in [V2] and [MV] and later on in [MMV] in 
the form at hand. 

We come now to the core of the argument that  produces a "big piece" inside a 
given disc D. 

Set 

@(z)=//D2c~(z,w,r162 z�9 

By Chebyshev 

I ( / D @ ( Z ) d # ( z ) + / D  'C~(XDP)'2 d# ) ~{z  �9 D:  ~D(Z) > t or IC~(XD~)(z)I > ~} _< 

< c , ( n )  
-- f2 
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Hence, given 0 < 0 < 1  (O will be chosen later), there exists a compact EcD such 
that  

CD(Z)< v/C-/O and IC~(XD#)(z)I<_ v/C/O , zEZ, 
and 

so that  

Set, as in IT3], 

#( D\ E) < O/Z( D ). 

s k(~,,~) d.(~) _< ~,(~) < ~-, ~cE. 

Since k(z, w)=k(w, z), Schur's lemma now gives that  iffEL2(E) (=L2(E,  d/z)) then 

jjj2  ~,C)f(z)f(w)xD(~) d/z(z) d/z(w) C2(Z, d/z(() 

<-/c ,f(z), s ,f(w),k(z, w) d/z(w) dp(z) <_C L f2 d/z' 

where C C(O) does not depend on e. 
Therefore from (10) 

.1/2 

and consequently 

[D '<(s")12 d. _< c s s 2 d., 

By duality this implies 

(~2) s I<(s.)l ~ ~/z_< c / o  s ~ a/z, 

We now need an appropriate Cotlar type inequality. 
measure v satisfying (9) set, for zEC,  

%~.(z) = sup IC~.(z) I 

and 

f ~ L ~(E). 

f C L 2 (D). 

For a complex Radon 

c*. (~)  : sup c ; . ( = ) .  
c>O 
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L e m m a  2. 

condition 
Let r and 1., be positive Radon measures satisfying the growth 

r ( D ) + p ( D ) _ <  Cr(D), for each disc D, 

and such that for some c>O 

So Ic (f dr)l  io Ill2 dr' 

Then 

f ~ L2 (r). 

~2 \YE 

< ~ f2 dr. 

We now want to have the above inequality at our disposal for a general f cL2(r ) .  
This essentially means that, for each open disc D, Ce boundedly maps L2(D c) into 

L2(D) with a constant independent of e. This is clear if C~ is replaced by 

C( f r ) ( z )=  limoC~(fr)(z), z e  D, f E L2(De). 

The reason is that, C( f r )  being holomorphic on D, we only need to apply Carleson's 

theorem twice, 

s IC(fr)l 2 dr_< C LD IC(fr)12 Idzl < C SDc If12 dr- 

However we wish to have a real variable proof, which could be extended to R *~ and 

n 1 dimensional kernels. This can be done painlessly and in fact is implicit in 

David's paper [D1]. 

L e m m a  3. Let A be an open disc and let # and 1-, be positive Radon measures 
satisfying 

r (D)+, (D)  < Cr(D) for each disc D, 

and #(A c) L,(A)=O. 

(la) 

C~_ ( f  #)(z) <_ C[M~,(ICe(f #)I 2 d~)l/2 + M~,(Ifl 2 d#)l/2]. 

For a proof for the case p=~ ,  which can be seen to work under our hypothesis, 

we refer the reader to IT1, Lemma 3 and Theorem 4]. 

Combining (12) with Lemma 2 applied to ~=XE# and P=XD# we get, for each 

feL2(D) ,  
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/ cC*( fu)2d#<C[ IflZdu, fcL2(u). 
J C  

Proof. Assume, without loss of generality, that  A is centered at the origin and 
let r be its radius. Oivml z E A let d be the distance from z to 0A. We claim that  

(14) C*(fu)(z) < C*(fu)(w)+CM(fu)(w), Iw-~l <_ 2d. 

Fix e>0.  Assume first that  e<d .  Then for Iw-zl<_2d, 

ICe (fu) (z) l = [Ca(f u)(z)[ < ICaa(fu) (z)l+ M(fu)(w). 

The same inequality holds for d<_e<4d, so that  we are left with the case 4d_<e. Set 

fl=XD(z,e)f, f2=f fl. Thus, for Iw zl<_2d, 

]Ce(fu)(z)-C~(f2u)(w)i < CM(fu)(w) 

and 

ICe (fur)(w) - Ce (fu)(w)] <_ CM(fu)(w) 

because of standard simple estimates. Therefore the claim follows. 
Set 

F(w) - C* (fu)(w)+CM(fu)(w). 

Using (14), the simplest covering lemma [S, Lemma 1, p. 12] and the growth con- 
dition on #, one proves that  (see for example [S, pp. 59-60]) 

#{z �9 A : C * ( f @ ( z )  > t} < Cl{w �9 OA : F(w) > t}l , 

where I" I denotes one dimensional Lebesgue measure. Then 

L C*(fu)2(z)d#(z)< C(foz x C*(fu)2(w)ldw,+ ~ozx M(fu)2(w),dw,) 

<<_C /c If]2 du 

by [D1, Proposition 5, p. 164] and [D1, Proposition 3, p. 161]. 5 

Lemma 3 and (13) now give 

C /c f2  d#, f �9 L2(#), (15) #{z �9 E :  Ce*(f #)(z ) > t} < V 
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which shows that  E is indeed a "big piece". 

The proof of the theorem is practically complete. One last step is left: we 
have to check tha t  (15) allows us to prove an appropriate  good A inequality without 
resorting to a doubling condition on #. For the reader 's  convenience we present the 
well-known argument,  which can be found in [D2, pp. 61-62]. The good A inequality 
we need is the following. 

For each ~ > 0  there exists 7=3,(r / )>0 small enough so tha t  

(16) #{z:  C~(f#)(z) > ( 1 + . )  and M~(f2#)x/2(z) < "yt} < �89 C~(f#)(z) > t}. 

Once (16) is established we deduce that  C~ satisfies the same L p inequalities as 
M,(f2#) 1/2 [D2, p. 60]. Then 

In particular 

LC2(f~)~d~<C, f IflPd#, 2 < p < o c .  
- -  J C  

/cIC (f )IPd,<C, f ]f[Pd#, 2 < p < ~ ,  
- -  J C  

and by duality we get the same est imate for 1 < p < 2  and so for p = 2  by interpolation. 
Let us prove (16). The set f~ {z:C~(fu)(t)>t} is open. Given aCSNft, S the 

1 dist(a, fU). By the support  of #, let D(a) be the disc with center a and radius g 

Besicovitch covering lemma f tAS can be covered by a family of discs Dj=D(aj) 
which is almost disjoint, that  is, such that  each point in the plane belongs to at 
most N discs Dj, N being an absolute constant. Notice that  then the family {4Dj } 
is almost disjoint too, because the discs 4Dj are Whi tney discs, in the sense that  

their radii are comparable to their distances to fU. This is one of the key facts in 
order to allow us to dispense with the doubling condition. 

We are going to show that,  given ~1>0 and 0 < a <  1, there exists 7=7(~1, a ) > 0  
such that ,  for all j ,  

(17) #{z E SnDj: C~ (f#)(z) > ( l+r / ) t  and M~(f21t)a/2(z) < 7t} < ct/z(4Dj). 

Then summing over j ,  

#{z E S: C~ (f p)(z) > ( l + ~ ) t  and M~(f2 p)l/2(z) <_ 7t} <_ aNp(ft), 

where N now stands for the constant of almost disjointness of {4Dj}. Choosing a 
so that  a N  �89 we get (16). 

Let us turn our at tention to (17). Fix j and set D=Dj, a=aj. Assume, without 
loss of generality, tha t  there exists bCS~D such tha t  M,(f2#)l/2(b)<_Tt. Let w be 
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a point in fU such tha t  Iw-al:dist(a, a ~) and set B:D(w, 9r), where r =  ~l~-al 
is the radius of D. Hence DcA=--D(b, 3r)C4DcB. Set f l=fxB and f 2 = f - f l  . 
Then, for zCD and 6_>e, 

a n d  so  

1 fB If(01 d~(C) 1C8 (fl/~) (z) l = [Ca (xA f)  (z) l§ r 

<_ C~ (XA f)(Z) +CM(fp)(b) <_ C~ (xzxf)(z) +CTt, 

ICa(f p)(z)l < ICa(fup)(z)l+C*(xz~f l~)(z)+C~/t. 

To compare Ca(f2#)(z) with Ca(f#)(w) we use the standard arguments (see [D1] 
oi" [D2]). We obtain 

and 

Therefore 

I Ca ( f 2 # ) ( z ) -  Ca (f2#)(w)] < CM(fp)(b) 

C*(f/~)(z) <_ C*(xAftx)(z)+(l+CT)t, z cD. 

Now choose 7 so that  2C~_<~] and let E be a "big piece" associated to the disc D 
and the number  0. Then 

* 1 #{z C D: C~ (f #)(z) > ( l+r / ) t  } _< #( D\E)+ p{ z E E: C~ (xAf p)(z ) > 5rlt } 
C < Op(D) + ~ / A  f2 d# 

C < O#(D) § ~ # ( A ) M ,  (f2#)(b) 

<_ (0+C('7/~1)2)#(4D) <_ o~#(4D) 

provided 0 and 3' are chosen small enough so that  O+C(~/rl)2<a. 

3. Estimating analytic capacity from below 

Let K be a compact subset of C, G(K) its analytic capacity, and let # be 

a positive measure supported in K satisfying #(D)<_r(D) for each disc D and 

c(#) < oc. Then for some positive constant C one has [Me] 

11~113/2 (~8) -y(K) _> C 
(11~11-F- c2 (~)) 1/2" 
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The original proof of (18) is rather simple but relies on Garabedian's L 2 description 
of analytic capacity [G] and thus depends on complex analysis techniques. We give 
here a quick derivation of an inequality slightly better than (18) from the T(1)- 
theorem described in the preceding sections, using purely real variable methods. 
Therefore the T(1)-theorem for the Cauchy integral and (18) are equivalent state- 
ments. Similar arguments have been used independently by Tolsa in [T2] for other 
purposes. 

Given a compactly supported positive measure #, set 

E ( # ) =  f e  M#(z) d# ( z )+~  c.(z) d#(z), 

where 

4(z) f/o z < c .  

The quantity E(#) and the function Mu(z)+e,(z ) seem to be appropriate candi- 
dates to play the roles of "energy" and "potential" associated to the kernel 1/z. 

T h e o r e m .  For each compact subset K of the plane, 

(19) 7(K) > C sup{E(/z)-I : sptt t  C K and Ibll = 1}. 

If # is a positive measure supported on K such #(D)<_r(D) for all discs D, 
then 

( ~ ) E(l,) < II~ll+c0,)ll~ll 1/2 
E ~ -i1,,112 _ ibll 2 - 

and so (18) follows from (19). 

Hl*lll/2+e(u) 
11~113/2 

Proof of the theorem. Take a probability measure # supported on K with 
E(#) <oc. By Chebyshev there exists a compact subset J of K such that  #(J)_> ~, 
and M#(z)<A and cu(z)<_A fox" all zcg,  where A=2E(#) .  

Set ~'--~lJ. Then 11~11>�89 u(D)<Ar(D) for each disc D and 

(20) c~(z)<A,  z E s p t u .  

Clearly (20) gives (11) with p, replaced by u and therefore the Cauchy integral is 
bounded on L 2 (u) by the T(1)-theorem discussed in the previous sections. We wish 
now to have the weak L 1 inequality 

(21) ~{z: IC~(~)l > t} _< ?11~11, 
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where A is any finite measure in the plane and C some absolute constant. 

This follows by standard Calderdn-Zygmund theory if p is doubling and by a 

simple argument found recently in [NTV2] in the general case. Dualizing the weak 

type inequality (21), as in IT3] or [VII, we obtain that there exists a p-measurable 

function h, 0_~h<l, with ~(J)~_2fhd~ and ]C(hd~)(z)l~_CA , for each zEC\d. 

Here C(h dr,) is just the locally integrable function (I/z)*h dp. Therefore, for sonm 
absolute constant C 

C C 
7(K)  > A E ( # ) '  

as desired. [] 

4. Fa i lure  o f  t h e  L ~ - B M O  e s t i m a t e  

When p is a doubling measure the proof of the T(1)- theorem for the Cauchy 
integral is very simple, as showed in [V2] and [MV]. The reasoning goes as follows. 

Fix a disc D and take a bounded, p-measurable  function f supported on D. Because 
of (10) and (11) we get 

IC~(f P)12 d# <- 2 ( f D ICe(f p)12 dp)l/2 (/C ICe(XDP)12 dp) 1/2 

_}_ 2 / / / D  3 Ilflloo c2(z, w, () dp(z) dp(w) dp(()§ 

<_C#(D) 1/2 ICe(fp)12 d#) +Cp(D)III[IL 

and so 

(22) 

with C independent of c. 

fD lCe(f p)12 dp ~ cllfll~/z(D), 

The above inequality and standard arguments show that  Cs maps L~ 
boundedly into BMO(p)  and maps the atomic version of H i ( p )  boundedly into 

Ll (#)  (see [J, p. 49]). Interpolation between BMO and L ~ now gives that  C~ maps 
L 2 into L 2. 

By BMO(#)  we understand the space of locally integrable functions with re- 
spect to #, such that  for each disc D centered at a point in spt p one has 

fD lf(z)-- fDI dp(z) ~ Cp(D), 
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C being a positive constant independent of D and 

fD -- p (D)  f dp. 

An a tom is a #-measurable function a, supported on some disc D centered at 

a point in sp tp ,  such tha t  lal<p(D) -1 and f c  adp=O. The atomic version H~t(# ) 
of H i is then the set of functions of the form 

~ Ajaj, 
j-1 

oo 
where aj is an a tom for all j and ~ j  i I AjI< oo. 

When the measure p is non-doubling one can still obtain (22) from the hypoth- 

esis of the T(1)-theorem, but we shall see tha t  (22) implies neither the L ~ - B M O  
nor the H~t-L i estimate. The example we shall describe is rather simple. In fact, 
the measure # will be the one-dimensional Lebesgue measure restricted to a certain 

subset of the real line. 

Set I n  4 -2'~, n = 0 ,  1, 2, . . . ,  and 

In 2 2 : [An_l, 2An-l], 

l r~= [1An_l, I~A n l_~An_l] , 2  1%=1, 2, 3 , . . . .  

Define # as the one-dimensional Lebesgue measure restricted to 

( - 1 , 0 ) u  L~u& . 

Let Dn denote the disc of radius i An-i .  Then the gAn i centered at the point ~ 

function oo 
h = ~ ( X l n  \ /D "~--12--n --Xan)]~ n) 

n=l 

lies in H~t (#). We claim tha t  

/ ]  IC(h)(x)l dx +oo, 
1 

where for f c L i ( R )  we write 

[ ~  f(t) dt. C( f ) (x)=P.V.  
J _  oc t--X 
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Fix a positive integer n, and write IN = (a, b) and J~ (a,/3). Then 

C(Xz,,)(x)-C(x&)(x ) =log b-~x - l o g / 3 - x  > 0 for x_~ 0. 
a - - x  o ~ - - x  

A simple computation gives 

f jfb ( t 1-- ) ( 1 + ~ / )  C(x~)(x)  dz = log 1+ at > llog 
1 

and 
0 ( 1 )  ( 1 )  /_lC(X, )(x)ax=ff log 1+ dt<_llog I - F ~  , 

where l=b a. 
Since #(D~)NA2~_I, we conclude that 

IC(h)(x)ldx>_C 2- 1og; ;11_ 
1 n=l  

as claimed. 
Thus 6" does not map Hit(#) into LI(/~), although it maps L2(#) into L2(#). 

To show that L~176 is not mapped boundedly into BMO(>) we resort to the most 
elementary fact concerning the duality between H~t(i,t ) and BMO(#). Namely, given 
an atom a and a disc D as in the definition of atom, there exists a function b in 
L~(#),  [tblloo=l, for which one has 

lc  IC(a)l d#= /c  C(a)bd#= - /c  aC(b) d# = -  Jc a(C(b)-C(b) D) dp 

<_ IC(b)-C(b).kd,. 

Then the L~176 estimate would imply the 1 1 Hat-L estimate, which fails. 
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