Positive harmonic functions vanishing on the boundary of certain domains in \mathbb{R}^n

Michael Benedicks

1. Introduction

Let *E* be a closed, proper subset of the hyperplane y=0 in \mathbb{R}^{n+1} . A point in \mathbb{R}^{n+1} is, as is customary, denoted by (x, y), where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}$. We assume that each point of *E* is regular for Dirichlet's problem in $\Omega = \mathbb{R}^{n+1} \setminus E$. *C* will in the following be a constant, the value of which may vary from line to line.

Consider the cone \mathscr{P}_E of positive harmonic functions in Ω with vanishing boundary values at each point of E. It is easily seen that \mathscr{P}_E contains a non-zero element (Theorem 1).

According to general Martin theory (see e.g. Helms [8]) each positive harmonic function u in an open set Ω may be represented as an integral

$$u(x) = \int_{A_1} K(x,\,\xi)\,d\mu(\xi),$$

where Δ_1 denotes the set of minimal points in the Martin boundary of Ω . For each $\xi \in \Delta_1$, the function $x \to K(x, \xi)$ is harmonic and minimal positive in the sense of Martin. We recall that a positive harmonic function $u: \Omega \to \mathbb{R}$ is minimal positive, if for each positive harmonic function $v: \Omega \to \mathbb{R}$

$$v < u \Rightarrow v = \lambda u$$
 for some λ , $0 \leq \lambda < 1$.

Now we return to the special setting of this paper, i.e. $\Omega = \mathbb{R}^{n+1} E$, $E \subset \{y=0\}$. In this situation two cases may occur (Theorem 2):

Case 1. All functions in \mathcal{P}_E are proportional.

Case 2. \mathscr{P}_E is generated by two linearly independent, minimal positive harmonic functions.

Stated in terms of Martin theory: the Martin boundary of Ω has either one or two "infinite" points.

The main aim of this paper is to give conditions on the set E, which determine whether Case 1 or Case 2 occurs. We thereby prove a conjecture made by Kjellberg [13].

2. The existence of functions in \mathscr{P}_E . Some lemmas

First we formulate a lemma, which will be quite useful in the sequel.

Lemma 1. Let $B = \{(x, y) \in \mathbb{R}^{n+1}; |x|^2 + y^2 < 1\}$, the open unit ball in \mathbb{R}^{n+1} . Suppose that u is subharmonic in B and that the following estimate holds:

$$u(x, y) \leq \frac{1}{|y|^n}, \quad (x, y) \in B$$

Then

$$u(x, y) \leq C_{\varepsilon}$$
 for $|x| \leq 1-\varepsilon$, $(x, y) \in B_{\varepsilon}$

where C_{ε} only depends on ε .

Proof. This lemma is a special case of the "log log-theorem" of Beurling and Levinson (Levinson [14]) extended to subharmonic functions in higher dimensions by Domar [4, Th. 2].

Theorem 1. \mathcal{P}_E contains a non-zero function.

Proof. Let $D_m = \{(x, y) \in \mathbb{R}^{n+1}; |x|^2 + |y|^2 < m^2\}$ and let v_m solve the Dirichlet problem

$$v_m(x, y) = \begin{cases} 1 & |x|^2 + |y|^2 = m^2 \\ 0 & (x, y) \in D_m \cap E \end{cases}$$
$$\Delta v_m = 0 \quad \text{in} \quad D_m \searrow E.$$

We normalize by putting $u_m(x, y) = v_m(x, y)/v_m(0, 1)$ and claim that there is a constant C_M , depending only on M such that

(2.1)
$$u_m(x, y) \leq C_M, \quad (x, y) \in D_M, \quad m \geq 2M.$$

By Harnack's inequality it easily follows that

(2.2)
$$u_m(x, y) \leq \frac{C'_M}{|y|^n}, \quad (x, y) \in D_M.$$

Thus an estimate of type (2.1) holds for $(x, y) \in D_M \cap \{|y| \ge 1\}$. For points $|y| \le 1$ we apply Lemma 1 to conclude that (2.1) holds.

The function w_M solving the Dirichlet problem

$$w_{M} = \begin{cases} C_{M} & \text{on} \quad |x|^{2} + y^{2} = M^{2} \\ 0 & \text{on} \quad E \cap D_{M} \\ \Delta w_{M} = 0 & \text{in} \quad D_{M} \setminus E \end{cases}$$

is a harmonic majorant for all u_m , $m \ge 2M$ on D_M and therefore $\{u_m\}_{m=1}^{\infty}$ is equicontinuous on each D_M , and we may extract a subsequence converging uniformly on each compact subset to a function u harmonic in Ω . Because of the majorization

$$u_m(x, y) \leq w_M(x, y), \quad (x, y) \in D_M, \quad m \geq 2M$$

it follows that u takes the boundary value 0 on E. Since u(0, 1)=1, u is non-zero and Theorem 1 is proved.

Lemma 2. (Herglotz' theorem.) A positive harmonic function u in the upper halfspace y>0 has the representation

(2.3)
$$u(x, y) = xy + C_n \int \frac{y \, d\mu(t)}{(|x-t|^2 + y^2)^{\frac{n+1}{2}}}$$

where $\varkappa \ge 0$ and μ is a positive measure.

When $u \in \mathscr{P}_E$, u(x, 0) is a continuous function on \mathbb{R}^n and (2.3) reduces to

(2.4)
$$u(x, y) = \varkappa y + C_n \int \frac{yu(t, 0)}{(|x-t|^2 + y^2)^{\frac{n+1}{2}}} dt.$$

A similar representation also holds in the lower halfspace.

Lemma 3. Each function $u \in \mathscr{P}_E$ satisfies the growth estimate

(2.5)
$$u(x, y) = O(|(x, y)|) \quad as \quad |(x, y)| \to \infty$$

Proof. We may without loss of generality assume that u is symmetric with respect to the hyperplane y=0. By (2.4) it follows that

(2.6)
$$u(0, R) \leq Ru(0, 1)$$

and Harnack's inequality gives the estimate

$$u(x, y) \leq C \frac{R^{n+1}}{|y|^n}$$
 for $|(x, y)| \leq 2R$.

We conclude that (2.5) is true for points in the cone $|y| \ge |x|/4$. For points close to the hyperplane y=0 we argue as follows:

Take a point $(x_0, 0)$ such that $|x_0| = R$ and consider the ball $\{(x, y) \in \mathbb{R}^{n+1}; |(x, y) - (x_0, 0)| \le R\}$. Normalize the coordinates (x, y) by putting

$$\begin{cases} x = x_0 + R\xi \\ y = R\eta. \end{cases}$$

The function $v(\xi, \eta) = U(x_0 + R\xi, R\eta)$ is subharmonic in $|(\xi, \eta)| < 1$ and satisfies there the estimate

$$v(\xi,\eta) \leq C \frac{R}{|\eta|^n}.$$

By Lemma 1, $v(\xi, \eta) \leq C'R$ for $|(\xi, \eta)| < 1$, $|\xi| \leq 3/4$ and it follows that

$$u(x, y) \leq C'R$$
 for $|(x, y) - (x_0, 0)| \leq \frac{R}{2}$,

where the constant C' depends only on the dimension. Since (2.5) is known to be true in the cone $|y| \ge |x|/4$, we conclude that (2.5) holds and the proof of Lemma 3 is complete.

Lemma 4. If $u \in \mathcal{P}_E$ has the representation

(2.7)
$$u(x,y) = C_n \int \frac{|y|u(t,0)}{(|x-t|^2+y^2)^{\frac{n+1}{2}}} dt$$

then

u(x, y) = o(|(x, y)|) as $|(x, y)| \rightarrow \infty$.

Proof. The proof is identical to the proof of Lemma 3 except that the initial estimate (2.6) is replaced by u(0, R) = o(R).

3. Some characterizations of the cone \mathcal{P}_E

We first state some definitions and results from Friedland & Hayman [5], which will be needed later.

Definition. A function u, $u: \mathbb{R}^d \to \mathbb{R}$, has the domain D as a *tract*, if u > 0 in D and $u \to 0$ as x approaches any finite boundary point of D from the inside of D.

When u is a subharmonic function in \mathbb{R}^d , let $M(r) = \max_{|x|=r} u(x)$ be the maximum modulus.

We recall the definitions of the order λ and the lower order μ of a subharmonic function

$$\lambda = \lim_{r \to \infty} \frac{\log^+ M(r)}{\log r}, \quad \mu = \lim_{r \to \infty} \frac{\log^+ M(r)}{\log r}.$$

Thus Lemma 3 shows that $\lambda \leq 1$ for all functions in \mathcal{P}_{E} .

When combining Theorem 1 and Theorem 2 of Friedland & Hayman [5] we obtain

Lemma 5. Let $\ell(k, d)$ be the infimum of the lower orders of subharmonic functions with k tracts. Then $\ell(k, d) \ge 2(1-1/k)$.

Remark. As is seen from the proof in [5], p. 143, for a positive, subharmonic function u with k tracts, it is even true that its maximum modulus M(r) satisfies

$$M(r) \ge C(u) r^{2\left(1-\frac{1}{k}\right)}.$$

Our first characterization of \mathcal{P}_{E} is given in

Theorem 2. The cone \mathscr{P}_E is either one- or twodimensional.*

Proof. By Theorem 1, dim $\mathscr{P}_E \ge 1$. We suppose dim $\mathscr{P}_E \ge 3$, which we will show leads to a contradiction. Then there exist three linearly independent, minimal positive harmonic functions v_1 , v_2 and v_3 . It follows that the sets

$$\begin{aligned} \Omega_1 &= \{(x, y) \in \Omega; \ v_1(x, y) > v_2(x, y) + v_3(x, y)\} \\ \Omega_2 &= \{(x, y) \in \Omega; \ v_2(x, y) > v_1(x, y) + v_3(x, y)\} \\ \Omega_3 &= \{(x, y) \in \Omega; \ v_3(x, y) > v_1(x, y) + v_2(x, y)\} \end{aligned}$$

are disjoint and non-empty. If say $\Omega_1 = \emptyset$, $v_1 \le v_2 + v_3$ in Ω , and then by Kjellberg [12, Th. 1], v_1 is a linear combination of v_2 and v_3 , which contradicts the linear independence.

We define

$$w = \max(0, v_1 - v_2 - v_3, v_2 - v_1 - v_3, v_3 - v_1 - v_2).$$

w is subharmonic in \mathbb{R}^{n+1} and has at least 3 tracts. Lemma 5 now gives that w has lower order $\mu \ge 2(1-1/3)=4/3$. But this contradicts that $\mu \le \lambda \le 1$ for all functions in \mathscr{P}_E (Lemma 3), and the proof is finished.

The following theorem, which will be used in the sequel, maybe also illuminates the two cases.

Theorem 3. Case 1 is characterized by either of the following equivalent conditions:

(i) \mathcal{P}_E is one-dimensional;

- (ii) all functions in \mathcal{P}_E are symmetric with respect to the hyperplane y=0;
- (iii) all functions in \mathcal{P}_E satisfy the growth estimate

$$u(x, y) = o(|(x, y)|) \quad as \quad |(x, y)| \to \infty.$$

In an analogous manner, we may also give three equivalent characterizations of Case 2.

(I) \mathscr{P}_E is two-dimensional;

(II) there exist non-symmetric functions in \mathcal{P}_{E} ;

(III) there exists a function $u \in \mathscr{P}_E$ such that $u(x, y) \ge |y|$.

For the proof of Theorem 3 we need the following:

Lemma 6. If $u \in \mathscr{P}_E$ has the representation (2.7) (i.e. the constant \varkappa in the representation (2.4) is 0 both for the upper and lower halfspace), then for all $x \in \mathbb{R}^n$ the function $y \to u(x, y)$ is increasing for $y \ge 0$.

* Added in proof. An extension of Theorem 2 valid when E is a closed subset of a C^2 hypersurface appears in Ancona [1]. *Proof.* Let a > 0 and define

$$v(x, y) = u(x, 2a - y) - u(x, y).$$

v is subharmonic for $y \ge a$ and v(x, a) = 0. Form the halfball

$$B((0, a); R) = \{(x, y) \in \mathbb{R}^{n+1}; |x|^2 + (y-a)^2 < R^2, y > a\}.$$

The harmonic measure of the spherical surface of the halfball evaluated at $(x, y), y \ge a$, is O(1/R) as $R \to \infty$. Since by Lemma 4 v(x, y) = o(R) as $R \to \infty$, it follows that $v(x, y) \le 0, y \ge a$. Putting y = a + h, h > 0, we conclude that $u(x, a - h) \le u(x, a+h)$ and the proof of Lemma 6 is complete.

Proof of Theorem 3.

(i) \Rightarrow (ii): If a non-symmetric function *u* exists, then u(x, y) and u(x, -y) are linearly independent and hence \mathcal{P}_E cannot be one-dimensional.

(ii) \Rightarrow (iii): Since $u \in \mathscr{P}_E$ is symmetric, it has the representation

$$u(x, y) = \varkappa |y| + C_n \int \frac{|y|u(t, 0)}{(|x-t|^2 + y^2)^{\frac{n+1}{2}}} dt.$$

But here $\varkappa = 0$. (If $\varkappa > 0$ then $u - \varkappa y/2 \in \mathscr{P}_E$, which contradicts that all functions in \mathscr{P}_E are symmetric.) By Lemma 4 it now follows that u(x, y) = o(|(x, y)|) as $|(x, y)| \to \infty$.

(iii) \Rightarrow (i): Suppose that \mathscr{P}_E is two-dimensional. Let u_1 and u_2 be two minimal positive harmonic functions, which generate \mathscr{P}_E . Then the sets $\Omega_1 = \{(x, y); u_1(x, y) > u_2(x, y)\}$ and $\Omega_2 = \{(x, y); u_2(x, y) > u_1(x, y)\}$ are both non-empty, and consequently the function

$$v(x, y) = \max(0, u_1(x, y) - u_2(x, y), u_2(x, y) - u_1(x, y))$$

is subharmonic and has two tracts.

By the remark following Lemma 5, we conclude that the maximum modulus of v, $M_v(r)$, satisfies

$$M_v(r) \ge Cr^{2\left(1-\frac{1}{2}\right)} = Cr.$$

We now see from the definition of the function v that

$$\max_{\nu=1,2} \max_{|(x, y)|=r} u_{\nu}(x, y) \ge Cr, \quad C > 0.$$

This contradicts the assumption (iii) and the proof of the equivalence (i) \Leftrightarrow (ii) \Leftrightarrow (iii) is finished.

The proof of the second part, $(I) \Leftrightarrow (II) \Leftrightarrow (III)$ is essentially contained in the proof of the equivalence $(i) \Leftrightarrow (ii) \Leftrightarrow (iii)$ above.

4. The distinction theorem

We now introduce a function $\beta_E(x)$, $x \in \mathbb{R}^n$, which measures how "thin" the set E is at ∞ . Let $0 < \alpha < 1$ and let K_x be the open cube in \mathbb{R}^{n+1} with center at (x, 0) and side $\alpha |x|$, all sides parallel to the coordinate planes. Let $\Omega_x = K_x \setminus E$. $\beta_E(x)$ is defined as the harmonic measure of ∂K_x in Ω_x , evaluated at the point x, i.e. let w^x solve the Dirichlet problem

$$w^{\mathbf{x}}(\xi) = \begin{cases} 1 & \text{on } \partial K_{\mathbf{x}} \\ 0 & \text{on } E \cap \Omega_{\mathbf{x}} \end{cases}$$
$$\Delta w^{\mathbf{x}} = 0 \quad \text{on } K_{\mathbf{x}} \backslash E.$$

Then $\beta_E(x) = w^x(x)$.

The following theorem gives a necessary and sufficient condition on E in terms of the function β_E , which determines whether the dimension of the cone \mathscr{P}_E is 1 or 2.

Theorem 4. Let E and \mathcal{P}_E be as defined in the introduction. Then dim $\mathcal{P}_E = 1$ or 2 and

$$\dim \mathscr{P}_E = 1 \quad if \text{ and only if } \quad \int_{|x| \ge 1} \frac{\beta_E(x)}{|x|^n} \, dx = \infty;$$
$$\dim \mathscr{P}_E = 2 \quad if \text{ and only if } \quad \int_{|x| \ge 1} \frac{\beta_E(x)}{|x|^n} \, dx < \infty.$$

The proof will depend on the following simple lemma:

Lemma 7. Let K be the unit cube in \mathbb{R}^{n+1} .

$$K = \{ (x, y) \in \mathbb{R}^{n+1}; \ |x_i| \le 1, \ i = 1, 2, \dots, n, \ |y| \le 1 \}$$

and let $F \subseteq K \cap \{y=0\}$ be a closed set, all points of which are regular for Dirichlet's problem.

Let ω_y be the harmonic measure of $\{|y|=1\} \cap K$ with respect to $\mathcal{D} = \mathring{K} \setminus F$ and let ω be the harmonic measure of ∂K with respect to \mathcal{D} . Then

(4.1)
$$\omega_{\mathbf{v}}(0) \leq \omega(0) \leq (n+1)\,\omega_{\mathbf{v}}(0).$$

Proof. The left inequality in (4.1) follows just by harmonic majorization. To prove the right inequality, we define ω_i as the harmonic measure of $\{|x_i|=1\} \cap \partial K$ in \mathcal{D} . Then

$$\omega(x, y) = \sum_{i=1}^{n} \omega_i(x, y) + \omega_y(x, y),$$

and the desired inequality is a consequence of the inequality

(4.2)
$$\omega_i(0) \leq \omega_y(0), \quad i = 1, 2, ..., n.$$

We now prove (4.2) for i=1. First we write

$$\omega_1(x, y) = \psi_1(x, y) - w_1(x, y)$$
$$\omega_y(x, y) = \psi_y(x, y) - w_y(x, y),$$

where $\psi_1(\psi_y)$ is the harmonic measure of $\{|x_1|=1\} \cap K$ ($\{|y|=1\} \cap K$) with respect to \mathring{K} . w_1 and w_y solve the following Dirichlet problems for $\mathring{K} \setminus F$:

$$w_1(x, y) = \begin{cases} \psi_1(x, y) & \text{on } F\\ 0 & \text{on } \partial K \end{cases}$$
$$\Delta w_1 = 0 \quad \text{in } \mathring{K} \setminus F$$
$$w_y(x, y) = \begin{cases} \psi_y(x, y) & \text{on } F\\ 0 & \text{on } \partial K \end{cases}$$
$$\Delta w_y = 0 \quad \text{in } \mathring{K} \setminus F.$$

Since by symmetry $\psi_1(0) = \psi_y(0)$, the inequality (4.2) follows from harmonic majorization and the inequality

$$(4.3) \qquad \qquad \psi_1(x,0) \ge \psi_y(x,0),$$

which in turn is a consequence of

(4.4)
$$\psi_1(x_1, x_2, \dots, x_n, 0) \ge \psi_1(0, x_2, \dots, x_n, 0)$$
$$= \psi_y(0, x_2, \dots, x_n, 0) \ge \psi_y(x_1, x_2, \dots, x_n, 0).$$

The two inequalities in (4.4) may easily be proved by reflections of the functions ψ_1 and ψ_y in the hyperplane $x_1 = a$ in analogy with the proof of Lemma 5, and the proof of Lemma 7 is completed.

Proof of Theorem 4. We first prove

$$\int_{|x| \ge 1} \frac{\beta_E(x)}{|x|^n} \, dx = \infty \Rightarrow \dim \mathscr{P}_E = 1.$$

Suppose on the contrary that dim $\mathscr{P}_E=2$. Then according to Theorem 3 there is a function $u \in \mathscr{P}_E$ such that

$$(4.5) u(x,y) \ge |y|.$$

We now need an estimate of u(x, 0) from below. Recall the notion of the moving cubes K_x , introduced in the definition of the function $\beta_E(x)$.

From (4.5) it follows by harmonic majorization that

$$u(x, 0) \geq C|x|\omega\left((x, 0), K_x \cap \left\{|y| = \frac{1}{2}\alpha|x|\right\}, \Omega_x\right),$$

where we have used the standard notation $\omega(\xi, F, \mathcal{D})$ for the harmonic measure of $F \subseteq \partial \mathcal{D}$ with respect to \mathcal{D} evaluated at ξ . But by Lemma 7, $\omega((x, 0), K_x \cap \{|y| = \alpha |x|/2\}, \Omega_x) \geq \beta_E(x)/(n+1)$ and hence

$$u(x,0) \geq C |x| \beta_E(x).$$

By Herglotz's theorem (Lemma 2), we have

$$u(0,1) \ge C \int_{\mathbf{R}^n} \frac{u(x,0)}{(|x|^2+1)^{\frac{n+1}{2}}} dx \ge C \int_{\mathbf{R}^n} \frac{|x|\beta_{\mathbf{E}}(x)}{(|x|^2+1)^{\frac{n+1}{2}}} dx \ge C \int_{|x|\ge 1} \frac{\beta_{\mathbf{E}}(x)}{|x|^n} dx = \infty.$$

This contradiction shows that dim $\mathscr{P}_E = 2$, and this completes the proof of the first implication.

We turn to the proof of the implication

$$\int_{|\mathbf{x}|\geq 1} \frac{\beta_E(\mathbf{x})}{|\mathbf{x}|^n} d\mathbf{x} < \infty \Rightarrow \dim \mathscr{P}_E = 2.$$

Again we argue by contradiction and assume dim $\mathscr{P}_E = 1$, which by Theorem 3 and Lemma 2 implies that u is represented by a Poisson integral of its boundary values ($\varkappa = 0$ in (2.4)). In particular

(4.6)
$$u(0, R) = C \int_{\mathbf{R}^n} \frac{Ru(x, 0)}{(|x|^2 + R^2)^{\frac{n+1}{2}}} dx$$

and $u(0, R)/R \rightarrow 0$ as $R \rightarrow \infty$. Choose a sequence $R_k \rightarrow \infty$ such that

(4.7)
$$\frac{u(0,r)}{r} \leq \frac{u(0,R_k)}{R_k} \quad \text{for} \quad r \geq R_k.$$

By Harnack's inequality and Lemma 6 it follows that

(4.8)
$$u(x, 0) \leq Cu(0, |x|)\beta_E(x).$$

The estimate (4.8) inserted in (4.6) gives:

$$u(0, R_k) \leq C \int_{\mathbb{R}^n} \frac{R_k u(0, |x|)}{(|x|^2 + R_k^2)^{\frac{n+1}{2}}} \beta_E(x) \, dx.$$

We split the integral into two parts, thereby obtaining

(4.9)
$$u(0, R_k) \leq C \int_{|x| \leq R_k} \frac{R_k u(0, |x|)}{(|x|^2 + R_k^2)^{\frac{n+1}{2}}} \beta_E(x) \, dx + C \int_{|x| \geq R_k}.$$

In the first integral we use the estimates

(4.10)
$$\begin{cases} u(0, |x|) \leq Cu(0, R_k), |x| \leq R_k \end{cases}$$

(4.11)
$$\left\{\frac{1}{(|x|^2 + R_k^2)^{\frac{n+1}{2}}} \le \frac{1}{R_k^{n+1}}\right\}$$

and in the second

(4.12)
$$\int \frac{u(0, |x|)}{|x|} \leq \frac{u(0, R_k)}{R_k}, \quad |x| \geq R_k$$

(4.13)
$$\left| \frac{1}{(|x|^2 + R_k^2)^{\frac{n+1}{2}}} \le \frac{1}{|x|^{n+1}} \right|.$$

(4.10) is again a consequence of Harnack's inequality and Lemma 6. (4.12) is just a reformulation of (4.7).

After the introduction of the estimates (4.10)—(4.13) and division by R_k , (4.9) takes the form

$$(4.14) \qquad \frac{u(0,R_k)}{R_k} \leq C \frac{u(0,R_k)}{R_k} \left(\int_{|x| \leq R_k} \frac{\beta_E(x)}{R_k^n} dx + \int_{|x| \geq R_k} \frac{\beta_E(x)}{|x|^n} dx \right).$$

But the convergence of

$$\int_{|x|\ge 1} \frac{\beta_E(x)}{|x|^n} \, dx$$

immediately implies that both integrals in the parenthesis of the right hand side of (4.14) tend to 0 as $R_k \rightarrow \infty$. This is a contradiction and also the proof of the second part of Theorem 4 is complete.

5. Some corollaries and applications of Theorem 4

Corollary 1. Suppose that E omits a one-sided circular cone \mathscr{K} in \mathbb{R}^n for $|x| \ge R_0$. Then dim $\mathscr{P}_E = 1$.

Proof. We need only check that

$$\int_{|x|\ge 1}\frac{\beta_E(x)}{|x|^n}\,dx=\infty.$$

But this is obvious, since if α is chosen small enough, $\beta_E(x)=1$ on the part of a slightly smaller cone \mathscr{K}' , where $|x| \ge 2R_0$.

Let $S_{x_0}(r)$ denote the open ball in \mathbb{R}^n with midpoint x_0 and radius r.

Positive harmonic functions vanishing on the boundary of certain domains in \mathbb{R}^n

Corollary 2. Suppose that

$$m_n(E \cap S_{x_0}(A | x_0|^{\alpha})) \ge \delta > 0$$

for all $x_0 \in \mathbb{R}^n$, $|x_0| \ge R_0$ and some $\alpha < 1/(3n+1)$, A > 0, $\delta > 0.*$ Then dim $\mathcal{P}_E = 2$. Here m_n denotes n-dimensional Lebesgue measure.

In particular we deduce

Corollary 2'.

$$m_n(E \cap S_{x_0}(r)) \geq \eta m_n(S_{x_0}(r))$$

for all $|x_0| \ge R_0$ and some $\eta > 0$, r > 0 implies that dim $\mathcal{P}_E = 2$.

For the proof of Corollary 2 we shall need the following lemma about estimation of harmonic measure, which might also be of some independent interest.

Lemma 8. Let $E' \subseteq \{(x, 0) \in \mathbb{R}^{n+1}; |x| \leq R\}$, all points of which are regular for Dirichlet's problem and suppose that

$$m_n(E' \cap S_{x_0}(h)) \geq \eta m_n(S_{x_0}(h))$$

for some $\eta > 0$ and all x_0 , $|x_0| \leq R-h$. Let $\omega(x, y)$ solve the Dirichlet problem

$$\omega(x, y) = \begin{cases} 1 & |x|^2 + y^2 = R^2 \\ 0 & (x, 0) \in E' \end{cases}$$

$$\Delta \omega = 0 \quad in \quad \{(x, y) \in \mathbb{R}^{n+1}; \ |x|^2 + y^2 < R^2\} \setminus E'.$$

Then

$$\omega(0,0) \leq \frac{Ch}{\eta^3 R},$$

where C is an (absolute) constant.

Proof. Without loss of generality we may assume h=1. Let us introduce the following notation:

$$F_m = \left\{ x \in \mathbb{R}^n; \ |x_v - m_v| \leq \frac{1}{2}, \ v = 1, 2, ..., n \right\}, \quad m \in \mathbb{Z}^n$$

$$b_m = \sup_{x \in F_m} \omega(x, 1)$$

$$M_m = \sup_{x \in F_m} \omega(x, 0).$$

Consider the Dirichlet problem for the half ball $\{(x, y) \in \mathbb{R}^{n+1}; |x|^2 + y^2 \leq \mathbb{R}^2, y \geq 0\}$. Let P(x, y; x', y') be the Poisson kernel for this problem. (x, y) denotes an interior point and (x', y') belongs to the boundary. Put

$$A_{ml}(x) = \int_{F_l \setminus E'} P(x, 1; x', 0) \, dx', \quad x \in F_m,$$

* There is no reason to believe that the constant 1/(3n+1) is best possible.

63

where $m, l \in \mathbb{Z}^n$. (A_{ml}) satisfies the following conditions:

(5.1)
$$\begin{cases} \sum_{|l| \le R} A_{ml}(x) \le 1 - \sigma, \quad \sigma = \frac{\eta}{C} \end{cases}$$

(5.2)
$$\left(A_{ml}(x) \leq \frac{C}{|m-l|^{n+1}}\right)$$

Consider the following Dirichlet problem for the halfball:

$$u(x, y) = \begin{cases} 1 & |x|^2 + y^2 = R^2 \\ 0 & (x, 0) \in E' \\ M_m & (x, 0) \in F_m \setminus E', m \in \mathbb{Z}^n, |m| \le R \end{cases}$$

$$\Delta u = 0 \quad \text{in} \quad \{(x, y) \in \mathbb{R}^{n+1}; \ |x|^2 + y^2 < R^2, \ y > 0\}$$

Let $a_{ml} = A_{ml}(x^{(m)})$, where $x^{(m)} \in F_m$ is a point such that $b_m = \omega(x^{(m)}, 1)$. By harmonic majorization

$$(5.3) b_m \leq \sum_{|l| \leq R} a_{ml} M_l + C_m,$$

where C_m is the maximum of the harmonic measure of $|x|^2 + y^2 = R^2$, y > 0, evaluated at $(x, 1), x \in F_m$.

Clearly the following inequality holds:

(5.4)
$$C_m \leq \min\left(\frac{C}{R-|m|}, 1\right) = g_m.$$

We also need the estimate

$$(5.5) M_m \le b_m + g_m$$

It follows by a reflection of the harmonic function $\omega(x, y)$ in the hyperplane y=1/2 analogous to that in the proof of Lemma 6. Thus, define

$$v(x, y) = \omega(x, y) - \omega(x, 1-y).$$

v is superharmonic in

$$S_m = \left\{ (x, y); \ |x - m|^2 + \left(y - \frac{1}{2}\right)^2 \le \left(R - |m| - \frac{1}{2}\right)^2, y \ge \frac{1}{2} \right\}$$
$$v\left(x, \frac{1}{2}\right) = 0$$

and $v(x, y) \ge -1$ on the spherical surface of S_m . Since the harmonic measure of the spherical surface is $O((R-|m|)^{-1})$ at the point (m, 1), we conclude that (5.5) holds.

When the estimates (5.4) and (5.5) are introduced in (5.3), it takes the form

$$(5.6) b_m \leq \sum_l a_{ml} (b_l + g_l) + g_m.$$

From this inequality we wish to conclude that

$$b_m \leq \frac{C_{\sigma}}{R - |m|}.$$

In order to do so, we show that the matrix $A = (a_{ml})$ is a strict contraction (||A|| < 1) with respect to the weighted l^{∞} -norm

$$\begin{cases} \|b\| = \max_{|m| \leq R} |b_m| \varkappa_m \\ \varkappa_m = \max \left(R - |m|, K \right), \end{cases}$$

when $K = K(\sigma)$ is large enough.

Evidently, for $||b|| \leq 1$

$$(Ab)_m \leq (1-\sigma)\frac{1}{K},$$

so we only have to verify that

$$(Ab)_m \leq (1-\delta) \frac{1}{R-|m|}, \quad |m| \leq R-K, \, \delta > 0.$$

Splitting the sums in three parts, we have

$$(Ab)_{m} \leq \sum_{|l| \leq R} a_{ml} \frac{1}{\varkappa_{l}} \leq \sum_{|l-m| \leq \frac{\sigma}{2}(R-|m|)} a_{ml} \frac{1}{R-|l|} + \sum_{\frac{\sigma}{2}(R-|m|) \leq |l-m| \leq R-|m|-1} \frac{C}{|l-m|^{n+1}} \frac{1}{R-|l|} + \sum_{|l-m| \geq R-|m|-1} \frac{C}{|l-m|^{n+1}} \frac{1}{K} = S_{1} + S_{2} + S_{3}.$$

Using (5.1), the first sum is estimated as follows:

$$S_1 \leq \frac{1-\sigma}{1-\frac{\sigma}{2}} \cdot \frac{1}{R-|m|} \leq \left(1-\frac{\sigma}{2}\right) \frac{1}{R-|m|}.$$

The second sum is estimated by an integral

$$S_{2} \leq C \int_{\frac{\sigma}{2}(R-|m|) \leq |t| \leq R-|m|-1} \frac{1}{|t|^{n+1}} \frac{1}{R-|t+m|} dt$$
$$\leq C \int_{\frac{\sigma}{2}(R-|m|) \leq r \leq R-|m|-1} \frac{1}{r^{n+1}} r^{n-1} \frac{1}{R-r-|m|} dr$$
$$\leq C \left[\frac{1}{\sigma(R-|m|)^{2}} + \frac{\log(R-|m|)}{(R-|m|)^{2}} \right].$$

Similarly the third sum is estimated by an integral

$$S_3 \leq C \int_{r \geq R-|m|-1} \frac{1}{K} \frac{1}{r^{n+1}} r^{n-1} dr \leq \frac{C}{K} \frac{1}{R-|m|}.$$

If $K \ge C'/\sigma^2$ for some constant C', it follows that

$$\|A\| \leq 1 - \frac{\sigma}{4}.$$

We now return to the inequality (5.6), which implies the vector inequality

$$(5.7) b \leq A(b+C_1Kr)+C_2Kr$$

with

$$r_m = \min\left(\frac{1}{K}, \frac{1}{R-|m|}\right).$$

Clearly $||r|| \leq 1$. Since A is a contraction it follows that

$$b \leq Ab + CKr$$
,

from which we conclude

$$b \leq CK(I-A)^{-1}r.$$

Consequently

$$||b|| \leq CK ||(I-A)^{-1}|| \leq \frac{C}{\sigma^3}.$$

By the definition of the norm

$$b_0 \leq \frac{C}{R\sigma^3}.$$

Remembering the inequality (5.5) and the fact that $\sigma \sim \eta$, we finally get the required estimate

$$\omega(0,0) \leq \frac{C}{R\eta^3}$$

and the proof of Lemma 8 is finished.

Proof of Corollary 2. We choose $\eta = C/|x|^{n\alpha}$ and $h = |x|^{\alpha}$ in Lemma 8 and thereby obtain the estimate

$$\beta_E(x) \leq C \frac{|x|^{(3n+1)\alpha}}{|x|}$$

Since $\alpha < 1/(3n+1)$, the integral $\int_{|x| \ge 1} \beta_E(x)/|x|^n dx$ converges.

Theorem 4 now implies that dim $\mathscr{P}_E = 2$, which is the desired conclusion.

We have now essentially proved the conjecture of Kjellberg [13], which in our notation may be stated as follows:

Corollary 3. If $E \subseteq \mathbb{R}^n$ has the property that there are numbers R and $\varepsilon > 0$, such that each ball in \mathbb{R}^n of radius R contains a subset of E of n-dimensional Lebesgue measure ε , then a function $u \in \mathscr{P}_E$ has the representation:

$$u(x, y) = cy + \varphi(x, y), \quad y > 0,$$

where φ is bounded in \mathbb{R}^{n+1} .

What remains to prove is the boundedness of φ . We first note that u is bounded on the hyperplane y=0. This is a consequence of the estimate u(x, y)=O(|(x, y)|)(Lemma 3) and the estimate of harmonic measure in Lemma 8. That φ is bounded now follows immediately, since φ is the Poisson integral of the bounded function u(x, 0) (cf. (2.4)) and Kjellberg's conjecture is completely proved.

We shall now confine ourselves to the case, when n=1 (the complex plane) and to regularly distributed intervals, where sharper results may be obtained.

Theorem 5. Let p be a real number, $p \ge 1$, and put

$$E = \bigcup_{m=-\infty}^{\infty} [\operatorname{sign}(m) \cdot |m|^p - d_m, \operatorname{sign}(m) \cdot |m|^p + d_m],$$

where $\{d_m\}_{m=-\infty}^{\infty}$, $0 < d_m < 1/2$, is a sequence of real numbers such that

 $\log d_k \sim \log d_m \quad \text{if} \quad k \sim m,$

 $k, m \to \infty \text{ or } k, m \to -\infty.$

Then

(i) dim $\mathscr{P}_E = 1$ if and only if $\sum_{m \neq 0} -\frac{\log d_m}{m^2} = \infty$;

(ii) dim $\mathscr{P}_E = 2$ if and only if $\sum_{m \neq 0} -\frac{\log d_m}{m^2} < \infty$.

Proof. We first prove

$$\sum_{m\neq 0} \frac{-\log d_m}{m^2} = \infty \Rightarrow \dim \mathscr{P}_E = 1.$$

Again we intend to apply Theorem 4. Without loss of generality we may assume

$$\sum_{m=1}^{\infty} \frac{-\log d_m}{m^2} = \infty.$$

To estimate the harmonic measure $\beta_E(t)$ for t>0, we use the auxiliary function log $|\sin \pi z^{1/p}|$, defined for Re z>0, where the branch of $z^{1/p}$ is chosen, which is

positive for real positive z. On the circle $|z-k^p|=d_k$ we have

$$|\sin \pi z^{\frac{1}{p}}| \leq |z-k^{p}| \cdot \max_{|z-k^{p}| \leq d_{k}} \pi \left| \cos \pi z^{\frac{1}{p}} \cdot \frac{1}{p} z^{\frac{1}{p}-1} \right| \leq d_{k} \cdot 2\pi \frac{1}{p} k^{1-p}.$$

Consider the square

$$R_t = \{(x, y); |x-t| \leq \frac{1}{2}t, |y| \leq \frac{1}{2}t \}.$$

It follows that

$$u_1(z) = \log|\sin \pi z^{\frac{1}{p}}| + \min_{\frac{1}{2}t \le k^p \le \frac{3}{2}t} \log \frac{1}{d_k} - C \le 0$$

on

$$\bigcup_{\substack{\frac{1}{2}t \leq k^p \leq \frac{3}{2}t}} \{z \in \mathbb{C}; |z - k^p| = d_k\}$$

and

$$u_1(z) \leq Ct^{\frac{1}{p}} + \min_{\substack{\frac{1}{2}t \leq k^p \leq \frac{3}{2}t}} \log \frac{1}{d_k} \quad \text{on} \quad R_t.$$

Therefore, for $t \in I_m = \{t \in \mathbb{R}; (m+1/4)^p \le t \le (m+3/4)^p\},\$

$$\beta_{E}(t) \geq C \frac{u_{1}(t)}{t^{\frac{1}{p}} + \min_{\frac{1}{2}t \leq k^{p} \leq \frac{3}{2}t} \log \frac{1}{d_{k}}} \geq C \frac{\min_{\frac{1}{2}t \leq k^{p} \leq \frac{3}{2}t} \log \frac{1}{d_{k}} - C_{1}}{t^{\frac{1}{p}} + \min_{\frac{1}{2}t \leq k^{p} \leq \frac{3}{2}t} \log \frac{1}{d_{k}}}$$

Because of the assumption (5.8)

$$\beta_E(t) \ge C \frac{\log \frac{1}{d_m} - C_1}{m + \log \frac{1}{d_m}} \quad \text{for} \quad t \in I_m.$$

Using this estimate we get

$$\int_{|t|\ge 1} \frac{\beta_E(t)}{|t|} dt \ge \int_1^\infty \frac{\beta_E(t)}{t} dt$$

$$\geq C \sum_{m=1}^{\infty} \int_{I_m} \frac{1}{t} \frac{\log \frac{1}{d_m} - C_1}{m + \log \frac{1}{d_m}} dt \geq C \sum_{m=1}^{\infty} \frac{m^{p-1}}{m^p} \cdot \frac{\log \frac{1}{d_m} - C_1}{m + \log \frac{1}{d_m}}.$$

To show that the sum in the right hand side is divergent, we divide the situation up into two cases:

68

Case 1. $d_m \leq e^{-m/2}$ only for finitely many m. Then for some N_0 ,

$$\int_{|t|\geq 1}\frac{\beta_E(t)}{|t|}\,dt\geq C_1\sum_{m=N_0}^{\infty}\frac{\log\frac{1}{d_m}-C_2}{m^2}=\infty.$$

Case 2. $d_m \leq e^{-m/2}$ for infinitely many m. We choose a subsequence m_j such that

$$m_{j+1} \geq 4m_j$$
.

But (5.8) implies that

$$\log d_k \leq -Cm$$
 for $\frac{1}{2}m \leq k \leq 2m$.

Hence

$$\int_{|t|\geq 1} \frac{\beta_E(t)}{|t|} dt \geq C \sum_j \sum_{\substack{1\\2\\m_j \leq k \leq 2m_j}} \frac{1}{m_j} - C_1 \sum_{m=1}^{\infty} \frac{1}{m^2} = \infty$$

and the proof of the first part of Theorem 5 is complete.

Note that for this part we only need a one-sided condition on E, e.g.

$$E \cap [0, \infty) = \bigcup_{k=1}^{\infty} [k^p - d_k, k^p + d_k],$$

where $\sum_{k=1}^{\infty} (-\log d_k)/k^2 = \infty$ and (5.8) holds.

Now turn to the proof of the implication

$$\sum_{m\neq 0} \frac{-\log d_m}{m^2} < \infty \Rightarrow \dim \mathscr{P}_E = 2.$$

We first prove $\int_1^\infty (\beta_E(t)/t) dt < \infty$.

For $m \ge 1$ define

(5.9)
$$\varepsilon_m = m - m \left(1 - \frac{d_m}{m^p}\right)^{\frac{1}{p}} \sim \frac{1}{p} \frac{d_m}{m^{p-1}}.$$

The function which we will use to estimate the harmonic measure is $F(z^{1/p})$, harmonic for Re z>0, $z \in \bigcup_{k=1}^{\infty} [k^p - d_k, k^p + d_k]$, where

$$F(w) = \log |\pi w| + \sum_{m=1}^{\infty} \left\{ \frac{1}{2\varepsilon_m} \int_{m-\varepsilon_m}^{m+\varepsilon_m} \log \left| 1 - \frac{w}{t} \right| dt + \log \left| 1 + \frac{w}{m} \right| \right\}.$$

Again the branch of $z^{1/p}$ is chosen, which is positive for real positive z. A simple computation shows that for real w

$$\frac{1}{2\varepsilon_m}\int_{m-\varepsilon_m}^{m+\varepsilon_m}\log|w-t|\,dt\ge\log\varepsilon_m.$$

Moreover

$$\left|\frac{1}{2\varepsilon_m}\int_{m-\varepsilon_m}^{m+\varepsilon_m}\log|w-t|\,dt-\log|w-m|\right|$$

(5.10)

$$\leq \frac{\varepsilon_m^2}{6} \sup_{m-\varepsilon_m \leq t \leq m+\varepsilon_m} \frac{1}{|w-t|^2} \leq \frac{\varepsilon_m^2}{|w-m|^2}$$

for $|w-m| \ge 1$.

In particular, for w=0, (5.10) becomes

(5.11)
$$\left|\frac{1}{2\varepsilon_m}\int_{m-\varepsilon_m}^{m+\varepsilon_m}\log t - \log m\right| \leq \frac{\varepsilon_m^2}{m^2}.$$

We shall need a lower bound for F(w) when $w \in [m - \varepsilon_m, m + \varepsilon_m]$:

$$F(w) = \log \left| \frac{\sin \pi w}{(w+m+1)(w-m)(w-m-1)} \right| + \sum_{k=m-1}^{m+1} \frac{1}{2\varepsilon_k} \int_{k-\varepsilon_k}^{k+\varepsilon_k} \log |t-w| dt + \sum_{\substack{k=1 \\ k \neq m-1, m, m+1}}^{\infty} \left\{ \frac{1}{2\varepsilon_k} \int_{k-\varepsilon_k}^{k+\varepsilon_k} \log |t-w| dt - \log |z-k| \right\} + \sum_{\substack{k=1 \\ k=1}}^{\infty} \left\{ \log k - \frac{1}{2\varepsilon_k} \int_{k-\varepsilon_k}^{k+\varepsilon_k} \log t dt \right\} \geq \min_{\substack{w \in [m-\varepsilon_m, m+\varepsilon_m]}} \log |\pi \cos \pi w| - 2\log 2 + \log \varepsilon_{m-1} + \log \varepsilon_m + \log \varepsilon_{m+1} - \sum_{\substack{k=1 \\ k \neq m-1, m, m+1}}^{\infty} \frac{\varepsilon_k^2}{|w-k|^2} - \sum_{\substack{k=1 \\ k \neq 1}}^{\infty} \frac{\varepsilon_k^2}{k^2} \geq -3 \max_{\substack{m-1 \leq k \leq m+1}} \log \frac{1}{\varepsilon_k} - 10.$$

Consider again the square

$$R_t = \{(x, y); |x-t| \leq \frac{1}{2}t, |y| \leq \frac{1}{2}t \}.$$

It follows that

$$u_2(z) = F(z^{1/p}) + 3 \lim_{\substack{1 \ 4 \ m \le k \le \frac{7}{4} \ m}} \log \frac{1}{\epsilon_k} + 10 \ge 0 \text{ on } R_t$$

and

$$u_2(z) \ge Ct^{\frac{1}{p}}$$
 on $|y| = \frac{1}{2}t, |x-t| \le \frac{1}{2}t.$

70

Furthermore F(z) is bounded above for real z. Using Lemma 7 and (5.8) we conclude that for $m^p \leq t \leq (m+1)^p$

$$\beta_E(t) \leq C \frac{\frac{1}{4} \max_{m \leq k \leq \frac{7}{4}m} \log \frac{pk^{p-1}}{d_k} + C_1}{\frac{1}{t^p}} \leq C \frac{\log p + (p-1)\log m + \log \frac{1}{d_m} + C_1}{m}.$$

Hence

$$\int_{1}^{\infty} \frac{\beta_{E}(t)}{t} \leq C \sum_{m=1}^{\infty} \frac{(m+1)^{p} - m^{p}}{m^{p}} \frac{\log p + (p-1)\log m + \log \frac{1}{d_{m}} + C_{1}}{m}$$
$$\leq C' \sum_{m=1}^{\infty} \frac{-\log d_{m}}{m^{2}} + C' \sum_{m=1}^{\infty} \frac{\log p + (p-1)\log m + C_{1}}{m^{2}} < \infty.$$

The proof of $\int_{-\infty}^{-1} (\beta_E(t)/|t|) dt < \infty$ is completely analogous and thus the proof of Theorem 5 is finished.

Acknowledgements

It is a pleasure to thank several mathematicians in the Stockholm area for valuable help during the work on this paper.

I was led to these questions through a problem in Fourier analysis, suggested by professor H. S. Shapiro. Professor B. Kjellberg kindly introduced me to his work on positive harmonic functions and has given me continuous advice, inspiration and criticism. Professor P. Koosis informed me of Domar's extension of the log log-theorem, which simplified many of the proofs. Finally, I wish to thank professor L. Carleson for his good advice and suggestions, especially in the proof of Lemma 8.

References

- 1. ANCONA, A., Une propriété de la compactification de Martin d'un domaine euclidien, Ann. Inst. Fourier (Grenoble) 29 (1979), 71-90.
- 2. BENEDICKS, M., Positive harmonic functions vanishing on the boundary of certain domains in \mathbb{R}^{n+1} , Proceedings of Symposia in Pure Mathematics Vol. XXXV, Part 1 (1979), 345-348.
- 3. BOAS, R. P., JR., Entire functions, Academic Press, New York, 1954.
- 4. DOMAR, Y., On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3 (1957), 429—440.
- 5. FRIEDLAND, S. & HAYMAN, W. K., Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions, *Comm. Math. Helv.* 51 (1976), 133-161.

Michael Benedicks

- HAYMAN, W. K., On the domains where a harmonic or subharmonic function is positive, Advances in complex function theory, Lecture Notes in Mathematics 505, Springer-Verlag, Berlin, 1974.
- HAYMAN, W. K. & ORTIZ, E. L., An upper bound for the largest zero of Hermite's function with applications to subharmonic functions, *Proc. Royal Soc. Edinburgh* 17 (1975/76), 183—197.
- 8. HELMS, L. L., Introduction to potential theory, Wiley, New York, 1969.
- 9. KESTEN, H., Positive harmonic functions with zero boundary values, *Proceedings of Symposia* in Pure Mathematics Vol. XXXV, Part 1 (1979), 349-352.
- 10. KESTEN, H., Positive harmonic functions with zero boundary values. Preprint.
- 11. KJELLBERG, B., On certain integral and harmonic functions, Thesis, Uppsala, 1948.
- 12. KJELLBERG, B., On the growth of minimal positive harmonic functions in a plane domain, Ark. Mat. 1 (1951), 347-351.
- 13. KJELLBERG, B., Problem 3.12, Symposium on complex analysis Canterbury, 1973, 163. Cambridge University Press (1974).
- 14. LEVINSON, N., Gap and density theorems, American Math. Soc. Col. Publ. Vol. XXVI.

Received May 17, 1979

Michael Benedicks Institut Mittag-Leffler Auravägen 17 S-182 62 Djursholm Sweden