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Introduction

We shall here study certain several variable analogues of the operator M*
defined by

3

M¥f(@) = sup / e_wf(?dt , el <=,

—

and the Fourier series maximal operator treated by Carleson [4] and Hunt [7].
Let R* be the FEuclidean space of dimension s and let 7, ={x =
= (2,...,%)€ER, 0<m; <27, 1=1,2,...,s} If e=(2,...,2) and

8

s 12
E=(&,...,&) belong to R* we set x-&=>x& and || = (fo) .

i=

L. Hérmander has observed that the first part of the proof in [4] can be
generalized to yield the following (unpublished) result.
If ¥ is a C® Calderén — Zygmund kernel defined in R®, s>2, and if

/ If(@)] (log* |f(x)])**° dx < o0 for some &> 0, then /k(x — Be HH(t)dt ‘ —
TS

= o(log log &), |&] = o, for almost every x in T,
In Sections 1 to 3 in this paper we prove among other things the following
theorem, which generalizes the LP estimate of the operator M* in [7].
TaeEOREM. Assume that k is @ Calderén — Zygmund kernel defined in R®, s > 2,
which has continuous derivatives of order << s + 1 outside the origin. Let the operator
M be defined by

Mf(x) = sup
feR®

/k(x — e fdi |, x€T,.

T,

s
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Then | Mfll, < Cillfllp, 1 < p < oo, where the norms are LP norms taken with respect
to T, and C, is a constant depending only on s, k and p.

To prove the above theorem the second part of Carleson’s proof in the version
of Hunt is used. Most of the steps in the proof can easily be carried over to the
case of several variables, but we need a new method to get the estimate required
for the analogue of the »change of pairsy in [4] and [7]. This method is described in
Section 1 and the details are carried out in Section 3.

In Section 4 we prove that the above theorem holds also in the case when k
is odd but without smoothness.

Section 5 contains extensions and applications of the results mentioned above.
In Sections 5 and 6 the following convergence result is proved.

THEOREM. Let u be a bounded Borel measure in R* and assume that p has no
point mass at the origin. Let k be a Calderon — Zygmund kernel with the property
that klog* |k| is integrable over the unit sphere and let its Fourier transform k

satisfy / E(@) du(x) = 1. Define K and Kz by
RS

K(z) = p(z) k(x) and Kg(x) = R°K(Rz), R > 0.

Then lim | Kgx(x — &) fE)dt = f(x) for almost every = in R* if f€ LP(R*) for
R0
Bs
some p with 1 <p < oo. (Here as always the integral is taken in the principal
value sense.)

In Section 6 we consider the square partial sums S,f(z) = > ce™* of the Fourier
{kil<n

series of a function f€ L'(T,) with Fourier coefficients cx, k € Z*. We prove
that if f € LP(T,) for some p > 1, then lim S,f(z) = f(x) for almost all x. This

result has been obtained simultaneously and independently by C. Fefferman [5],
who uses a method different from ours. In the case s == 2, p == 2, the convergence
has also been proved by N. R. Tevzadze [16]. Fefferman’s proof can unlike ours
be modified to handle other types of convergence than the one just described.
Our method, however, gives a stronger result than Fefferman’s when we extend
the above convergence result to classes of functions close to L!(T,). More precisely
we can prove that f€ L (log L)*loglog L is a sufficient condition for the con-
vergence almost everywhere of the square partial sums.

In Section 7 we estimate the rectangular partial sums Swnf(x , y) = > > cue'®=+¥)

of the Fourier series of a function f€ ILYT,). We prove that if f€ LP(T,) for
some p>1, then Smf(x,y)= o(logmin (m,n)), m,n—> o, almost every-
where, Fefferman [6] has constructed a counter-example, which shows that this
result is best possible in the sense that log min (m ,n) can not be replaced by
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émn log max (m ,n) for any double sequence {&m,} with lim em, = 0. The above

n,n—> o0

estimate is used to prove that if the coefficients of a function f satisfy
2, lomn[* (log min (jm] - 2, |n| + 2) < co, then lim Spmflz,y) = flx, y)

for almost all (z,y). This result improves a theorem of Kaczmarz [9].

In Section 8 finally we point out a connection between the operator M* and
Bochner — Riesz summability of critical index of multiple Fourier series in odd
dimensions.

1. A theorem on maximal singular integrals

Let s be an integer not less than 2 and let A denote the class of all complex-
valued functions k£ defined in R*\ {0}, which satisfy the following three conditions
k is positively homogeneous of degree — s, ie. k(Ax) = A~%k(x) for

2>0, x€RN\{0} (L.1)
/ k(x)do () = 0, where S is the unit sphere in R® and do is the surface ele-

S
ment on S (1.2)

k € C*H(RN\{0}) (1.3)

Operators defined by convolution with kernels of this type are a subclass of the
operators studied by Calderén and Zygmund in [1]. We notice that the kernels in
A can be written in the form k(x) = Q(x)|z|™®, x« # 0, where £ is homogeneous
of degree zero.

For a fixed kernel k& in <A and f € LYT,) define the operator M by

Mf(x) = sup /k(x — e~ ftydt |, x €T, (1.4)

EERS
Ts

where the integral is taken in the principal value sense. It is not difficult to prove
that for almost every z €T,

lim k(x — t) e~ f(t)dt
C AN A

exists for every £ € R* and by first taking the sup in (1.4) over a countable set
of &8 we can also prove that Mf is measurable. For M we will give the following
estimates, in which {|]|, denotes the norm in L?(7,) and m denotes s-dimensional
Lebesgue measure.
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TaeEorEM 1.1.

(A) If / |f(@)] logt [f(x)| logt log? | f(z)|dx < oo, then Mf(x) is finite a.e. in T,.

(B) [[Mfll, < Const. / |f(@)| (log* | f(2)})* da + Const.

©) 1 Mflle <Cplifllp, 1<p<< .
(D) m {x €T, ; Mf(zx) > y} < Const. exp (— Const. v,/ ||fll.), ¥ > 0.

Here and in Sections 2—5 by Const. we mean a number depending only on the
dimension s and the kernel £ and C, denotes a number depending only on s,
k and op.

In Section 3 will be given the proof of the following basic result.

Lenvma 1.2, If yp is the characteristic function of a measurable set F < T, then

1 1 . 1
m{x €T, ; Myp(x) > y} < { Const. 3 log y mF , if 0 <y <3
Const. exp {— Const. y} mF , of y>1

(A), (B) and (D) follow from Lemma 1.2 in essentially the same way as in the
proof of (A), (B) and (D) in [11]. (See [11], pp. 5561—552 and 563—570.) That M
is a bounded operator on LP(T,), 1 < p << oo, is most easily proved by use of
the interpolation theorem of Stein and Weiss. (See [15], p. 264.)

The proof of Lemma 1.2 is modelled on the proof of the estimate of
m{M*yp(x) > y} in [7]. The proof in the case of several variables is different from
the one dimensional proof at some points. The greatest difficulty in our case lies
in the proof of the inequality needed for the change of pairs (Lemma 3.3), in which
we estimate an expression of the form

/ k(x — ) (1 — %9 p(tyde

er)

where o isacubein R, # €Ew and h € LYw). In the one variable case k(t) = ¢
and k()(1 — &) = t1(1 — &%) is a O function, which makes the estimate
of the above integral easy. (See [7], p. 252.) In the case when £ is a Calderén —
Zygmund kernel the function k(t)(1 — €**) has a singularity at the origin and we
need a new technique to get the desired estimate. For simplicity assume that
o = T,. We proceed in the following way. Let ¢ be a non-negative function in
C*(R*) with compact support and let @) =1 for [t| <27x4/s. Define K
by K(t) = k@)1 — **) ¢(t), t€R'. Let H be the function in LY(R®) with
Fourier transform H(u) = (1 — [u)t+Y2, |u| <1, and H(w) =0, |u]> 1.
Define Hyp by Hg(t) = R*H(Rt). The above integral equals the sum of
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/K*HR(x — t) h(t)dt and /(K(x —t) — KxHpg(x —t)) h(t)dt. We estimate the first
Ts TS

integral by use of the Fourier coefficients of » and the second in terms of the
Hardy — Littlewood maximal function of k. We then choose R se that the
majorants of both the integrals are small. For further details see Lemma 3.3.

2. Notation

Let Z denote the integers, Z, the non-negative integers and let B be the set
ofall cubes w = {x ER*; 722" < < (i + 1)27-27%, 4=1,2,...,s}, for
which 7, and » >0 are integers and o C (— 47, 4n)’ = {x € R’*; |x:| < 47,
t=1,2,...,s}. We define B* to be the set of all cubes which can be written
as above, but for which we replace the condition that 7; shall be an integer with
the condition that 2r; is an integer. We let 8(w) denote the side length of a cube
o andlet b, denotethenumber 2% k =0,1,2,... For x €R’, w € B, é(w) =

27+ 277, and f € LlYw) set ¢ (w) =c (o, [f)=(mw)? /f(x) exp (— 12'« - x)dx and

Cul@) = O, ) = C" 3 Iy s (@) (L4 )1, where O" = {3 (14 [p))~*}™
ez® €zs
If w*€B* n€ Z and f € LYw*) we define Cf(w*) = max Ca(w’), where

o’ ranges over the 4° subcubes of w* with 44(w’) = d(w*). If £ is a non-negative

N
real number, & = Ze,- 2! (where & equals 0 or 1 and we choose & so that

1= — 00

N
lime = 0), and w €B with &) = 27-27", we define {w] =2 27" If

i—-—00 iy
E=(&,...,&) €ER,, ie. £ €R* and its components are non-negative, we define
flw] = (&lw], ..., &lw]). For o* € B* by an abuse of notation we also set

flo*] = &[], where 46(w’) = é(w*). I dw*)=4-27-27" let Z(0*) =
{n € Z°; nJw*] =2""n}. If w is a cube and 1> 0 let Aw denote the cube with
the same center as o and side length d(iw) = 1d(w).

If K is a function defined in R* and R a positive number define Ky by
Kyi(t) = R*K(Rt), ¢ € R°. Finally let

Sie, %) = Sua, 0* , f) = f b — e~ f(0dt, f € Do)

()

where the integral is taken in the principal value sense.
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3. Proof of the basic result

To shorten the proof of Lemma 1.2 we will assume that the reader is familiar
with [7] and mention only the points where there are differences between the two
proofs. For instance in the definitions of the polynomials Pi(z , ®) and the partitions
2(n[w*], w*), k) we split cubes into 2° subcubes instead of splitting intervals
into two subintervals. In the definition of G, |w| is replaced by §(w) and |n — A[w]]

by max |n; — Afw]]. f equals the characteristic function yr of a measurable
1<i<s

set I included in T,

The following lemma is needed.

Lemma 3.1. Let w €B, d(w) = 2n-27", and let ¢ € O w). Then there is a
representation of @

p(t) = > y,e " t€w,
w
with
ly,| < Const. (1 + |u)=*1 > sup |Dpl27M, 4eze, (3.1)

lal[<e+1 o
where |lof| denotes > xi.
1

Proof. ¢ can be extended to a function in 3w with Fourier coefficients satisfying
(3.1). (For the extension see e.g. [14], ch. VI, p. 18.)

We now describe how the remainder terms can be estimated. Assume that the
pair p* = (n[w*], o*) satisfies the condition

Q(k) : p* € G4y, , C*(p*) < by and n € Z, (0¥)

‘and that the partition Q(p*,%) has been constructed. For z € Lw* w*(z) is
defined to be one of the cubes in the set {® € B*;x €1 ® and there exists
w € Q(p*, k) such that wc® and (@) = 26(w)} which has maximal side
length. We need the following lemma, which is essentially due to Hormander.

Lemma 3.2. There exists a set T*(p*) c w* with

mT*(p*) < Const. exp {— Const. Lk}mew* , such that

x €Tw*, x & T*(p*) implies /

[Se(x , i) — Se(x, w*(x))| < Const. Lkbe_yy
for all EE€R with £[w*] = n[w*] and all of € B* such that x € tof and
0*¥x) C of C o*.

Proof. For t€w€Qp*,k), Ow)=2r-2" set E()=cy—r(w) and
M(t) = Cy—ve(w). From the construction of Q(p*,k) it follows that for ¢ €w
and {[w*] = n[w*] we have

[E:(t)] < Const. M(t) < Const. Cyp,5(w) < Const. b,_,y .
Set
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Sy, 0f) — Sy(w, w*(@) = [ k(z — e~ f(t)dt = A(z) + B(z) + O(@) ,
N\ o*(x)
‘where

A@) = | k(x — t)e " EF B (t)de
of\w*(®)

B(z) = [ klx — t) (Bt) — e "E Bu(t))dt and
oIN\o* ()

Clx) = [ k(e — 1) (7™ f(t) — E.(t))d¢ .
w@FNw* ()

First consider A(x). From the estimate
lk(x — )€€ E =) _ 1) < Const. §(w*) |x — t|=*+, Ew*] = n[w*],
it follows that

e €= =4 (x) — f k(z — 8)Eq(t)] < Const. E¥ () ,
0§ \e*()

where B} is the Hardy — Littlewood maximal function of E,. If g is defined
for g € LY(R*) by

g(x) = sup ’ f k(x — t)g(t)dt ‘ , x€R*,
>0
il > ¢

the above estimate yields |[A(x)| < Const. (B.(z) + E¥(x)).
To estimate B(x) we observe that for ¢ €w € Q(p*, k)

E(t) — e Bo(t) = 7 (o)t / e (u) (€6 1)du .
Applying Lemma 3.1 to the function gu)= ¢ _1 4 €w, we get
[B(t) — e~ Bo(f)| < Const. d(w)d(w*)2M,(t) if ¢ €w and E[w*] = n[w*]. From
this estimate it follows that

/ k(z — t) (Be(t) — e‘i‘E"‘)"E,.(t))dti < Const. 5(w*)2 / o — ¢|=*F L (t)dt

(23] w

and we conclude that |B(x)] < Const. M¥(x).

It remains to estimate C(x). Suppose o € Q(p*, k) and that o is not con-
tained in w*(x). For u € R* set L(u) = (1 4 |u|)—*1. Denoting the center of
o by ¢ we use Lemma 3.1 to prove that
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klx —t) — k(x — t,) = Zyﬂ_‘glz‘“, t€w,

where |y, | < Const. (1 4 |u])=2Ly)+(x —#,). Using this representation we obtain

} / k@ — 1) 67/ (t) — Egor))dtf <

< t / (k(x — 1) — k(x — tO»e"f"f(t)dt} + ] / (b — 1) — k(o — ) B0t <

< Const. /La(w).l (x — t)M.(t)dt .

w

Defining 4(¢) by 4(t) = d(w), t €w € Q(p* , k), and setting

M o(z) = / Ly (@ — ) Mu(t)dt we have [C(x)| < Const. Mo (x) .

w*

Collecting the estimates of A, B and C we get

k(@ — t)e =" f(t)dt | < Const. (Ba(x) + M¥*(x) + M. (x))
o Nw*(x)
for all & and wf with the properties in the statement of the lemma.
M, can be estimated by use of the fact that the adjoint of the operator g—§F

can be majorized by the Hardy — Littlewood maximal function. (See e.g. [17],
pp. 253—255.) For [, and M well-known estimates hold and we obtain

m{z € w* ; Bu(w) -+ M¥(x) + Ha() > 2} < Const. exp {— Const. 2| ML,,}me* ,
A>0.

The lemma now follows if we choose A1 = Const. Lk b,_.y.

The reason for proving the above lemma for all & with &[w*] = n[w*] is that
the several variable analogue of the Lemma 3.4 in [7] fails.

We will now describe how the estimate necessary for the change of pairs (cf. [7],
Lemma (10.2)) can be obtained. Also in this case it is the lack of an analogue of
Lemma 3.4 in [7] that makes the proof more complicated. What is needed is the
following lemma.

Lemma 3.3. Suppose that wf € B*, x €L wf, & and £ €ER’, and |& — & <
Ad(wF)t where A is a constant. Assume that there exist a complex number o and
i € Z* such that C¥wg ,f — 0e™) < e if |&loF] — «] < C, for some constants ¢
and C. Then for all R with 0 < R <(C

1185, o) — 18:(x , of)1| < Const. {|o| + AR + ART(f*(z) + lel)} -
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We use the above lemma in the proof of the analogue of Lemma (10.2) in [7].
We then have (for the definitions of pf and 7 see [7])
A = Const. b2, ¢ = Const. bfy, C =by’ , f*(@) < Const.y
and |o| < Const. (O*(pF) + bify) < Const. y .
Lemma 3.3. yields
8., , )] — 1Se(w , )|} < Const. (C*(pF) + bey + bi"Rbiy -+ b *R™Py) .
and choosing R = b;® we obtain
[185,(x » 05)] — 18z, w§)|] < Const. (C*(@5) + buy) ,

which is the desired estimate.
Proof of Lemma 3.3. Defining g by g(t) = f(t) — ™ we get

HS&(x,a)f,k)] - [Sg(x,wg‘)][ <

/ k(x — t) (1 — 60 =)= g(p)dt 1 +

/ k(t)er'dt ’ ,

Wy
w

+ 2[g| sup
7@

where the sup is taken over all 7 € R* and all cubes w with 0 € 1 w. The last
Const. |g] (1 + sup

term is not greater than
/ k(t)er'dt ,)
>0

n€R® i <7

According to [1], pp. 89—90, k()¢ dt is uniformly bounded in r and 7
t<r
and hence the last term in the] IaJoove inequality is majorized by Const. |g|.

We introduce some auxiliary functions. Let ¢ € C*(R®) vanish for [{| > 3004/,
be equal to 1 for [¢] < 2004/ s and satisfy 0 < g(t) <1 for all ¢ € R*. Assume
S(w¥) = 27 -2~ and define K by K(t) = k(t)(1 — e¢~59"p(2%), ¢t € R*. Let
H(t) = OpJ, 1po ([t]) [t]7°7%, £ € R, where J,,;, is the Bessel function of order

s 1/2 and C, is a constant chosen so that / H(t)dt = 1. The following properties

A R’
of H and its Fourier transform H are well-known. (See e.g. [10], pp. 51—52.)

H(t) =0@1), lt|—0 (3.2)
H(p) = O(jt]~Y), Ji]— oo (3.3)
Ay = (1 — w2 o] <1, and H@) =0, jul>1  (3.4)
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Setting A(x) = /K*H2vR (x — t) e~ g(t)dt and

Bz) = / (K(x — t) — K+Hypg (x — 1)) 6= glt)dt

we have

k(x — t) (1 — 659 E=0) g=ittg(n\dt — A(z) + B(w) .

wf

For the estimation of A(z) first observe that for all u € R*
|K(u)] < / (K@) |dt < Const. |, — &| 2‘”/ it]—*He(t)dt << Const. 4.
Rs L3

R
From (3.4) it follows that

jul?
(2R

KsHypg(t) = (27)~ | K(u) (1 —
|u|<2”R

(s+1)/2
) e*'du, t€R®,

and using Fubini’s theorem we obtain

Aw) = (27)~* / Rw) (1—(2@2)2)@“)/2&”{ / e-"<“+fv"g(t)dt}du.

ful £2°R ot

If B < C the hypothesis of the lemma implies that

‘/e —ietEt g)dt | < Const. 27"e, |u] < 2R,

and hence
|A(z)| < Const. AR°s, R <C. (3.5)
To estimate B(x) we introduce the function
Dz, h)= | |K(z)— K(z—t)|dt, z€R*, h >0,
lf)<h
We claim that
D(z , h) < Const. AL F Pz 712 | 2] < 2771004/ s, h>0. (3.6)
For h < [z]/2 we use the mean value theorem and the estimate

ID:K(z)| < Const. A2°|z|™*, 0 < || <277200+/s, ¢4=1,2,...,8, (3.7)
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to prove (3.6). (3.7) is easily obtained by a direct computation of D;K. For h > |z|/2
the estimate |K(z)| < Const. 427|z|~**! is used to establish (3.6).
We will now prove that

|K(2) — K#Hypp(z)| < Const. AR 2P [z|=+!12 for |2] < 2771004/ 5. (3.8)
We have

K(z) — KxHypple) = | (E(2) — K(z — w)) Hyplu)du +

lu| <{vR)

+ | (K() — K(z — u)) Hyplu)du .
. |u|>(2?R)-*
From (3.2) it follows that the first term is less than Const. (2’R)*®(z, (2°R)™)
and using (3.6) we see that this can be majorized by the right hand side of (3.8).
Using (3.3), introducing polar coordinates and performing a partial integration we

can estimate the second term with Const. (2'R) [ &(z, r)r~2dr. (3.6) implies
@Ry
that this is less than Const. A R="22"2z|=*+'2 and hence the proof of (3.8) is complete.
By use of (3.8) B(z) can be estimated:

|B(z)| < Const. AR“I/ZZ”/zf |z — ¢ 7"t |g(t)|dt < Const. AR Pg*(x) .
The definition of g implies that g*(x) < f*(x) + |o| and we obtain |B(z)| <
Const. AR™"?(f*(x) + |o|). This completes the proof of the lemma.

We remark that at the end of the proof of the basic result there are constructed
sequences {&} and {wf}, where & €R’ and o € B*, corresponding to the
sequences {n;} and {wj} in Section 11 in [7]. The proof in several variables is
different from the one in [7] in that we do not require that & € Z°, (w]*) for each j.

With the modifications mentioned in this section the method in [7] gives the
result

m{z €Ts;myp(e) >y} <By?mbF, y>0, 1<p< o, (3.9)

where B, << Const. p?/(p — 1). Choosing p suitably (depending on y) we obtain
Lemma 1.2.

4. 0dd kernels without smoothness

In this section we will show that if the kernel % is odd, then the operator M
associated with % is bounded on LP(T,), 1 < p < o, even if k does not satisfy
regularity conditions such as (1.3). Let <A’ denote the class of all complex-valued
kernels & which satisfy the following three conditions
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k is positively homogeneous of degree — s (4.1)

k is integrable over the unit sphere and / k(x)do(z) = 0 (4.2)
§

k is odd. (4.3)

Kernels in the class <A’ are special cases of kernels treated by Calderén and
Zygmund in [2]. (See Theorem 3, p. 290.)

THEOREM 4.1. Let k € A’ and let M be defined asin (1.4). Then the inequalities
(B), (C) and (D) in Theorem 1.1. hold for M.

Proof. It is not difficult to see that Mf is measurable if f€ Llog L(T,). In
the proof of the theorem we will use the results for the operator M* in [7]. It is
easy to see that the results in [7] hold even if we replace M* by the operator M,
defined by

7T

/e_iaf(t)dt{, x€(—m,m).

x— 1t

M, f (%) = sup

E€ER

—_T

We first give the proof of (C). Assume that f € LP(T,) and extend f to R®
by setting it equal to zero outside 7T,. Let

@@:/@@—of@ww,xEﬂ,
|x—t|>e

and let S.(x) be the pointwise limit of Si(z), when & tends to zero. Using the
fact that % is odd we get

Si2) = / Ko — e f(dt = / Hy)e =6 (o — y)dy =

lx—t{>¢ [y1>e
e / ( / Ky )e™" flz — ty et dt) doly) =
S &
=e ¥ 1 / k(y') ( / 71 f(x — ty')dt> do(y’) .
S [¢]>>e

Letting ¢ tend to zero we obtain
so) = e ) ([ 2o pta — i) aoty)
S R
for almost every z € T, and all £ € R®*. We therefore have

Mf@) <3 / k()| (sup / 1 6 f — ty')dt)do(y'>.

n€R
N R
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Using Minkowski’s inequality for integrals and Theorem 1 in [7] we obtain

fly < [ 16 dety) G,ifly and (©) is proved
S
The proof of (B) is similar and is therefore omitted.

To prove (D) we will show that the inequality (3.9) holds for M with
B, < Const. p3/(p — 1)2.. Setting

Myyp( ,y') = sup

7ER

/ t1 e yple — ty') di

we get Myplx) <% f &y | Myyr( , y') do(y’). From the basic result in [7], pp.

235—236, it follows that
m{x € Ty ; Myyxple ,y') > 1} < (Const.)P p?P(p — 1Yy PiPmF for A>0, 1 <p< w,

y' € S. For the moment let f* denote the nondecreasing rearrangement of a function
Jf defined on 7T, and let f** be defined as in [8], p. 257, with r =1, M = T,.
Using the inequality (2.2) in [8], p. 258, we get

sup {7 (Myp)*(t) < sup (M) () <

>0

<1 f )] up 7zl 5N O)oly) <
<%pp— 17 / lk(y’)l{il(p EP(Myys(+ 5 y))*(0)doly') <

< 1p(p — 1) Const. 2(p — 1) HmF)"? f lh(y") doty’) =

= Const. p? (p — 1)~2(mF)"" .

Thig inequality yields (3.9) with B, <C Const. p3(p — 1)=2 = O(p), p— . Using
this estimate of B, we can complete the proof of (D) as in [11], pp. 568—570.

5. Extensions and applieations

In this section we will give some extensions and applications of Theorems 1.1
and 4.1. We first remark that a careful examination of the proofs of Theorems 1.1
and 4.1 shows that the theorems hold also if we replace M by the operator J7
defined by
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Mf(2) = sup _ k(x — e * ft)dt | .
>0, 5€R
ToN{rs [x—t]<<e}

We also point out that the results for the operator M; proved in [7] and [11]
are special cases of the corresponding results for M in Theorem 1.1. This can
be seen by taking s = 2 and choosing % as a suitable odd kernel.

So far we have only studied functions defined in 7T,, but now we will define
the analogue of the operator M for functions defined in R°. For f€ LP(RY),
1 <p < oo, let Nf be defined by

Nf(x) = sup

sERS

/ klx — e ' f(t)dt |, = € R®,

RS

where k € A or SA’. Then the following theorem holds.
THEOREM 5.1. If k belongs to <A or SA’, then

INfllp < Collfllp, 1 <p < o0, (5.1)
where the norms are taken with respect to Re.
Proof. Let @ denote the cube {x € R®*; x| <1, 1 =1,...,s} We wil

use the fact that Theorems 1.1 and 4.1 hold with 7, replaced by @, if M is
defined by Mf(x) == sup /k(x — e f(t)dt|, x€Q. Let f€LPR*) and let
£

Fo(x) = sup , x €Enf), andset F,(z) equal to zero for x € n@,

3

/ k(@ — t)e™ " f(t)dt

nQ
n=1,2,... Performing a change of variable and using the homogeneity of &

we get

Fu(z) = M(f(n-)) (n7l2) , @ €nQ.
Hence Theorem 1.1 or 4.1 with 7, replaced by @ yields

/ [Fn(2) [P doe < C’ﬁ/ \f (@) [P dw .
nQ nQ

If we use the fact that Nf(z) < lim F,(x), (5.1) now follows from the above estimate

and Fatou’s lemma.

We will now use Theorem 5.1 to prove a convergence result.

THEOREM 5.2. Let u be a bounded Borel measure in R and assume that p
has no point mass at the origin. Suppose that k belongs to A or A’ and that
lim / p(x) k(x)dx = 1. Let K be defined by K(x) = p(x) k(z), = % 0. Then

&0
> e<|x{<i
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R>w

R
1 <p << o0
Proof. First observe that Kg(x) = u(Rx)k(x). Let f€LP(R*). Lebesgue’s

lim/KR(x — B f@)dt = f(x) for ae. x in R* if f€ LP(R%) forsome p with

theorem on dominated convergence implies that for a.e. z € R* lim / Kg(x — ) f(t)dt
=0
|x—t[>¢

exists and equals / e”in"‘< / k(x — £)e™E f(t) dt) du(&) for all R > 0. We denote
J

R R
this limit by Spf(x) and set S*f(x) = sup |Sgf(x)|. It follows that S*f(x) < ||ullNf(x),
R>0

where |[g]| is the total mass of x. Theorem 5.1 yields [|S*f|l, < Cpllull[lflls, which
implies that the theorem will be proved if we can show that lim Sif(z) = f(«)
R

for all 2 if f€ C®(R*) and has compact support. Let f be of this type and fix
x € R®. Take 1 so large that the support of f is contained in a ball with center
« and radius A. Using the hypothesis we have

”

1= | Kg(x—t)dt + lim | K(y)dy,
|Jo—t] <4 I%A—)SOTy[SQ
and hence
Sef(@) — flx) = ] Ky(x — &) (f(t) — f(z))dt — f() Iim/K(y)dy :
jw—t] <A g_}fSIyISQ

The second term obviously tends to zero when R tends to infinity and the first
term equals

k(@ — 1) (f(0) — f(x))dt} e du(E) - (5.2)
RS |x—t=2

For & 0 it follows from Riemann — Lebesgue’s lemma that the inner integral
tends to zero when R tends to infinity. For all & and R the inner integral is

bounded by / k(z — )] 1f@) — f(®)|dt, which is finite. Since u has no point
l=—]<4

mass at the origin, Lebesgue’s theorem on dominated convergence proves that

(5.2) tends to zero when R tends to infinity. This completes the proof of the theorem.

We remark that if &k € 4, then the equality lim w(@)k(z)de = 1 is implied

e=>0
I e<{x|<1

by the condition
/ F)du(z) = 1. (5.3)

RS
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We will now give an example of a measure u and kernels k, which satisfy
the conditions in Theorem 5.2.

Example 5.3. Let u be a discrete measure with point mass 2—°Il& at the

1
points (& ,...,&), &= 4+1, 1=1,2,...,s, and with no mass at any other
points. Assume that %k € S{ and that ?2(81 yo..s8) = Il&g for & = 4 1. Then,
1
if 1<p< oo and f€LP(RY),
lim (— %)* / I sin R(xy — §)ke(x — t)f(t)dt = f(x) a.e. in R*. (5.4)
R>o 1

Proof. Tt is easy to see that / lg(x) du(z) =1 and pg(zx) = (— 9)° I sin zj, and
R '
hence (5.4) follows from Theorem 5.2.

The existence of kernels k& in <{ which satisfy the conditions in the above
example follows from the fact that every function in C®(R*\{0}), which is
homogeneous of degree zero and has mean value zero over the unit sphere, is the
Fourier transform £ of some C® Calderén — Zygmund kernel k. (See [3], p. 312.)

We also want to point out that if k& € A, then the assumption that f € L?(R®)
in Theorem 5.2 can be replaced by the condition that f has compact support and

/ [f(x)] log* |f(x)| logt logt |f(x)|dx is finite. The proof of this is analogous to the

proof of (A) in [11]. If k € &’ it is sufficient that f has compact support and that
f(x)dog* |f(x){)? is integrable, which follows from (B) in Theorem 4.1.

In the case s = 1 we will give an alternative formulation of Theorem 5.2. Let
K ={K; K@) =2L4x), x€R\{0}, where u is a bounded Borel measure

on R without point mass at the origin and — in / sgn (x)du(x) = 1}. Since
R

— 4z sgn (x) is the Fourier transform of z—! the last condition is just the analogue

of (5.3). Theorem 5.2 for s = 1 with k{z) replaced by z—t implies that if f € L?(R),

1<p<< oo, and K €K, then lim f«Kgz(x) = f(x) for a.e. z in R. If K€K

R—>oo
we define its Fourier transform by K(y) = lim e” " K (x)dz. It follows that
~ Iffz(c’n e [H SN
Ry)= —in ] sgn (y -~ t)du(t) and a calculation shows that the Fourier transforms

k
of the kernels in X are precisely the functions L of bounded variation, which

satisfy the following three conditions:



CONVERGENCE ALMOST EVERYWHERE OF CERTAIN SINGULAR INTEGRALS 81

Ly) = 3Ly +)+ Ly —)), y€R (5.5)
L(0) =1 and L is continuous at the origin . (5.6)
lim L(y) + lim L(y) = 0 (8.7)

¥+ y>-—w

We obtain the following summability result.
CoroLLARY 5.4. Let 1 <p <2 and f€ LP(R). Assume that L is a function
of @ bounded variation, which satisfies (5.6). Then lim 51_ L<?i> f () ¥ dy = fx)
n>w &JT n

for a.e. x €R.
Proof. We need only show that condition (5.7) can be removed. This can be
© 0

~ A

verified if we consider / L<g> fly)e™dy and / L(g> fly)e™dy separately.
n n

6. The square partial sums of multiple Fourier series

In this section we study the square partial sums of a function f € LY(T,), given by

Saf (@) = > cre™ =~ | II Da(a: — 8:)f(0)dt,
kil <n i=1
TS

where ¢, are the Fourier coefficients of f and D, denotes the Dirichlet kernel.
Let M. f(x) = sup |Saf(x)|, = €T, Then the following theorem holds.

n€Z+
TeEOREM 6.1.

> 0

If/ |f(z) | logtif(x)]) logtlog™ |f(x)|de << oo then lim Sa f(x) = f(x) a.e.in T,. (6.1)
M.l < Const. / I[f(x) | (log™ |f(z)])*dx + Const. (6.2)

IMflp < Collfly, 1<p < 0. (6.3)

Proof. We first treat the case s =2. Let 1 < p < oo and define for f € LP(R?)
and £ €R S.f by

it (t, , ¢
SLf(x) = // ACEL) dt, dt,, z€R?.

— 1) (2 — 1)

To prove (6.3) it is sufficient to prove that the operator M, defined by M. f(x) =
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= sup }S; f(x)|, = € R% is a bounded operator on LP(R?). We first claim that if
ZeR

S €LP(R?) then for a.e. 2 in R?

(t; 1) 1 ( /f(u1 — Uy 5 Up) )
dt, dt, + =2f(x) =
‘//(xl—tl) x2 tp) ! +nf(x /x1+x2—u1 I Lo — Ug du2 du1+

Jluy s uy — uy) )
+ / Zy + Ty — ug (/ - Uy dul duz ’ (64)

where the integrals are to be taken in the principal value sense. To establish (6.4)
it is enough to prove it for f in a dense subclass of LP(R?). This can be done by
computing the Fourier transform of both sides of (6.4) for f € L*R?) or we can
proceed in the following way. Let f(z; , %) = fi(x))falxs), where f, and f, € O( R)
and have compact support. We obviously have

f(tl 2 tz) . f(tl 4 t2) + f(tl ) t2)
(T — W)@y — b)) (w2 — (G F ) — &) (@ + 2 — (W) —t)
for & # 2y, o # Xy 4 + ty # 2.+ 2, (6.4) follows if we integrate this relation
over the region {(ty,%); [, — | >e, v — | >& |og + 25— (4 + )| > 6},
perform a change of variables in the integrals obtained on the right hand side and
let first & and then & tend to zero. The term #?f(x) enters because of the fact that

. / / du dv
lim — — 2.
50 U

0= u—~v|<1 .
Now fix f€LP(R%). Replacing f(t;,%) by e *GHf(t ,¢) in (6.4) and
taking the supremum over all £ € R we get

/ o—im (/f — Uy, uz) )du

Xy + Xy — Uy !
...1,51‘, f ul , u2 >

ﬁ/x1+m2—u2</ dul du,

Using the L? estimates of the Hilbert transform and the operator M, defined
in Section 4 we obtain | M. fllpre < Cllfllp,me» and the proof of (6.3) is complete.
(6.1) and (6.2) can be proved by use of the above method and the results in [7]
and [11] for functions belonging to classes close to L1
In the case s> 2 we use the following analogue of (6.4):

ff Sl a3 R0, 6o
1) z —t, i=1

M, f(x) < sup
&

+

+ sup
&

+ 22| f(@)] . (6.5)

where
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flug oo iy, ws — Zuj,uiﬂ,...,us)
TR
— ’“1 x:—l - ut—l)(xl-l-l - ul+l) ( C ’I,l/s)

S
R D& — % Ro—1
1

dul...dui_lduiﬂ...du,,)dui, 1=1,2,...,s,

0, if s is odd
and @, = s nf, if s=4k 42, k=0,1,2,

—a, if s=4k, k=1,2,
(6.6) is most easily proved by computation of Fourier transforms. For example if
f € L*R’) then '

Fyy) = (— imy sgn (4) Msgn (1 — y)f () ae. y €R'.

As an application of the method which gave the estimate of M, we will now
prove that the condition k € <A in Theorem 5.2 can be replaced by the assumption
that %k is a Calderén — Zygmund kernel for which klog* |k| is integrable over
the unit sphere. First define the operator My for 0 <O < 2z by

ff —1.’(coset1+31n6t2)
¢, t)dt dt, |
xl—tl)xz—tz)f(l 2) 1%%2

x€R:,fELPRY,l <p< .

M f(x) = sup
teR

My, can be estimated by an obvious modification of the method which was used
to estimate M. and we obtain

1Mo fllpme < Collflpre» 1 <p < 0, (6.7)

where (), is independent of 6.
Let k be a kernel of the type described above and define the operator
N.,E€R, by

fk(x — e ftydt|, x€R*, fELPRY), l<p< .

RS

N .f(x) = sup

R>0

Using (6.7) and the estimates in [2], p. 304, we can prove that

IV flpme < Collfllpme » 1 <p < 0, (6.8)

where C, isindependent of &. The crucial step in the proof of (6.8) is the observation
that if % and %, are odd Calderén — Zygmund kernels, then



84 ARKIV FOR MATEMATIK. Vol. 9 No. 1

[ 1w ( [ kerererage g~ z)dz) dy =
s |

lyl>s

== g i— !Jkl(y') kz(z’)<f(fﬂzbiff(x —ty — uz’)du) dt) do(y’) da(z')

t]=>z R
for almost every « € R* and every 5 € R® and £>0.
We now use (6.8) to extend Theorem 5.2. With the same notations as in the
theorem we obtain

§*f(2) < f N.f@)du(@)] ,
RS

and Minkowski’s inequality for integrals yields [IS*fll, << Cullullllfll,. The rest of
the proof is the same as in Theorem 5.2.

7. The rectangular partial sums of double Fourier series
For fe€ LYT,) let the rectangular partial sums be defined by

Senfle ) = 3 3 aud®? = [ [ Dote — 0Dy — wfe, wiitdu, (2, ) €73,
T,

k=—m l=—n

where cg are the Fourier coefficients of f.
Tarorem 7.1. If f€ LP(T,) for some p > 1, ihen

Senflx,y) =0 (logmin (m,n)), m,n—> o, for ae (x,y)€T,.

Proof. If g € LY(T;) we denote its partial sums by S.g(z) = Sau(g ; ) = Sa(g(-) ; )
and set STg(x) = Sf(g;z) = SF(g(-); x) = sup |S.g(x)|, z€T,. Extend g to

the real axis by setting it equal to zero outside 7,. Using well-known estimates
of the Dirichlet kernel we can easily prove that

1Sng(x)| < Const.logn g*(x), 2€T,, n>2, (7.1)

where g* denotes the Hardy — Littlewood maximal function of g. Let 1 < p < o0
and f € LP(T,). Since

Swnf(@,y) =7 | Du(z —1) <n—1 Doy — u) f(¢, u)du) dt ,
Jreotm]
(7.1) implies that

[Smnf (2, ¥)| < Const. logmsupl;llf’f Doy —w)f(t,u)du dt, (x,y)€T,,

xEw

m =2,
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where |w| denotes the Jength of an interval o and we have set f equal to zero
outside 7,. From the above inequality it follows that

1
;’fo‘(f(t,');y)dt, (@,y) €T, .

Using the LP estimates of the Hardy — Littlewood maximal function and the
operator SF, we can prove that the LP norm of the left hand side above is less
than C,)|f|;. By approximation of f with trigonometric polynomials we can use
this fact to prove that Sn.f(x,y) = o (log m) a.e. From the symmetry it follows
that Swunf(x,y) = o (logn) a.e. and hence S..f(z,y) = o (log min (m ,n)) a.e.

We remark that it is easy to show that the assumption f € LP(7,) for some
p > 1 in the above theorem can be replaced by f € L (log L)*T,).

We will now give a condition on the Fourier coefficients of a funetion f € L3(1}),
which is sufficient for the convergence a.e. of the rectangular partial sums. First
define 8§ by S¥f(x,y) = sup |[Smf(x,y)| for (x,y) €T, and f€ LYT,).

THEOREM 7.2. Assume that the Fourier coefficients cmn of o function f€ LXT,)
satisfy > |emn[*(log min (jm| + 2, |n] + 2))2 < 0. Then lim Spaf(x ,y) = flx , y)

sup (I8mnf(x , y)|/log m) < Const. sup

mz=2,n x€w

m,n—> o

a.e tm T, and
IS5 flle < Const. {3 [ema  (log min (Jm] + 2, |n] + 2))217.
Proof. Let Ilmn= (logmin (jm| + 2, |n] + 2))1 and let Aluww="1m +
F lnitner — bmit,n — lmony1 - We furthermore set [ = lu and Al =1l — ;.
Let f satisfy the assumptions in the theorem and let g be the function in L(T}),

which has Fourier coefficients [) cm,. Define T* for k€ ILNT,) by T*h =
Sup (JSmnlt|lms). If we use the fact that Al,, — Al, for m = n and vanishes for

m # n, & partial summation yields

min(m,n)—1 min(m , n)—1 min(m,n)—1

S f = kzo Sung Al - kzo Sprg Al + kzo Sing Al + O(T*g) .
Denote the three first terms on the right by A, B and C respectively. Define o3
and o* by oh = (k+ 1) z Sk and o*h = sup lowh|, h € LY(T,). Another
partial summation shows that 'A] < Const. o*g. WVe also define P* and @* by

P*h(x , y) = sup f K.y — u) { sup ’f Dp(x — t) k(¢ , w)dt 1 } du

Q*h(x , y) = sup / Kz — 1) { sup }fDn(y — u) h(t , w)du ! } dt

and.
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where » € LNT,), (x,y) €T, and K, denotes the Fejér kernel. A partial sum-
mation in the expression for B yields

|B] < Const. sup{ (k+ 1)t z Smig} < Const. P*g
o
and analogously it follows that |C| << Const. @*g.

We have shown that &SFf < Const. (o*g + P*g -+ @*g + T*g). Using the
boundedness in L2(T;) of the operator Sf we can prove that P* and @* are
bounded operators on I2(T,). Also T* is bounded by the proof of Theorem 7.1
and the same holds for o* by Theorem 6.1. We therefore get

1851l <X Const. Jigll, = Const. ( 3, lemn* Lui) " .

The convergence of S,.f follows from this inequality and the proof is complete.
Theorem 7.2 is slightly stronger than the theorem in [9], p. 95, in which Kaczmarz
proves that > |emal? log (|m| 4 2)log (In] + 2) < o is a sufficient condition for

the convergence a.e. of Spn.
We give one more theorem on the convergence of the rectangular partial sums.
THEOREM 7.3. Let {mu}y be a sequence of integers such that my = 0, m; =1

and my fme >q>1, k=1,2,... Assume that p>1 and f€ LP(T,). Then
klrlglemk S,y =flx,y) for ae. (x,y) €T,.
Proof. Let g€ IMT,) and define Ay = Sog and Adwg = Smg — Smr_19,
k=1,2,... For fixed y €T, we define f'(x,y) = Ay (f(,y);2) and
k=0

[,y = Z Ao (fC 5 y) ; ). From Theorem (4.24) in [19], p. 233, it follows that
f’ and f” are well-defined a.e. and that
f@,y)=f",y) +f(x,y) ae (7.2)

and

1l < Cellfllp » 1"l < Collfllp» (7.3)
where the norms are taken with respect to T,. We define G, by
Ga(@ , y) = Sulf(@ ) 5 y)

and we let G, and ¢ be defined by the same formula with f replaced by f’
and f’. (7.2) yields

Sunf (@, y) = Sm(Gr (-, 9) 5 ) + Sl Gr(- 1 9) 5 @) .

From the definition of f it follows that for fixed y as a function of « @, hasa
Fourier series with gaps. Hence the inequality (1.20) in [19], p. 164, implies that



CONVERGENCE ALMOST EVERYWHERE OF CERTAIN SINGULAR INTEGRALS 87
SUp |Smy(Ga (-, ) ; )] < Comst. sup f Kz — 8|64t , y)Idt < Covst. P*f'(z , ) ,
k m

where P* is the operator defined in the proof of Theorem 7.2. Defining R* by
R*h = sup |8, .h|, b € LNT,), we get R*f < Const. (P*f’ + P*f"). The bounded-
k.,n

ness of the operator P* on LP(T,) combined with (7.3) yields [[B*f|, < Cpllfllps
and the theorem follows from this estimate.

8. Bochner — Riesz summability of multiple Fourier series

In this section let 7', denote the cube {x € R*; ;] <=z, i=1,...,s} Let
« be equal to the critical index 1(s — 1) and, for f€ LYT,), let Sif(z) =
iniZ/ﬁ(l — %;l:)acnei”"‘, where ¢, are the Fourier coefficients of f. We define
S* by S*f(z) = sup |SEf(x)]. Hence for s =1 8* equals Sf. The operator S*
has been studied If; E. M. Stein [12].

T

,..,tg
[,
X —

been used to estimate Sp. (See [7].) We will show that for all odd values of s
there is a close connection between the operators S* and M,.
Assume that the functions @ and @, defined for non-negative real numbers
satisfy the following three conditions:
@ is non-negative, convex, @(0) = 0 and D(u)/u — o, w — < {cf. [18], p. 25). (8.1)
Either @, satisfies the same conditions as @ and the inequality
D,(2u) < Const. D(u),w >0, or Di(u)=wu. {8.2)

has

The operator M,;, defined in Section 4 by M, f(x) = sup
fER

D, (u log u) < Const. P(u), v >1. (8.3)
Let L (T,) denote the class of all measurable functions f on 7', for which
f @(|f(x)])dz is finite. Then the following theorem holds.

Ts

THEOREM 8.1. Suppose that f DM, f(x))dr < A f D(|f(x)))dz + B for all

J € Ly(T,) for some constants A and B. Then, if s is odd, there exist constants
A" and B’ such that for f€ Lg(T,)

[ oustpni <ar [ o(apie + 5.
T T,
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Proof. Assume that f has period 2z in each variable and that f € L,(T%).

We have Sgf(x) = (2n)~* f De@) fx — y)dy, where Dpw) = (1 _ %)O‘ein-x.

In]<R

Let g(x) equal f(x) for x € 27T, and let g vanish outside 27,. Before considering
S*f  we will study the functions ogg(x) = (27)"* f Hy(y)g(x — y)dy and
BS

2\
o*g(x) = sup |ogg(x)|, where Hy(z) = f(l — M) e*dy. In [2], p. 308, Calderén

R
>0 lyl<R

and Zygmund observed that Hy can be written Hg(z) = w(R|x|)|x|™®, where v
is an odd Fourier — Stieltjes transform of a measure u on the real line. Introducing
polar coordinates and using the fact that 3 is odd we get

o) = (20) f WRly)) =g — y)y =
RS

<«

e f ( f p(B) 9w — ty')dt) do(y’) =

= et [ ([ v e — i) 2ot

S R

Denoting the inner integral by gi(z,y’) we have

e ) = [ [ rigte — ty')dt) au(e)

R R

and

sup |gg(x , y")| < ||ul| sup f et Tg(w — ty’)dtl- (8.4)
R FER 4

It follows that o*g(x) < Const. / sup |gr(@, ¥')|do(y’) and (8.2) and Jensen’s
R

inequality for convex functions yield
Py(a*y(e) < Const. [ G,up fate ) doty). (8.5)
s

Using (8.4) and the assumption in the theorem we see that
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f @, (sup |gr(z , y’)]) dv < Const. f @(lg(x)|) dx + Const. <

T,

s

< Const. f D(|f(x)]) dx 4 Const., ¢ €8.
TS

Hence, integrating (8.5) we obtain

/ D,(c*g(x))dz < Const. f &(|f(x)]) dx + Const. (8.6)

TS

s

It remains to compare S*f with o*g. Defining Agx(z) = Dgz(x) — Hg(x) we get

S2f(z) — oxgla) = (2a)~ f M) f(@ — y)dy — (27) f Ha() 9w — )y, ©€T,.
T, RENT,

Using the estimate of Az on p. 103 and the relation (4.4) on p. 105 in [13], we
obtain

S*f(z) < o¥g(x) - Const. f [f® ] log™ |f(@)1dt 4 Const., x € T .
TS

Jensen’s inequality combined with (8.2) and (8.3) now yields

D,(S*f(x)) < Const. {Ql(a*g(x)) + / D f(t))dt + 1} , z€T,.
TS

The theorem follows if we integrate this inequality and use (8.6).
Taking @,(u) = u, P(u) = u(logt %)? and using Theorem 2 in [7] we see that
if s is odd then Theorem 8.1 implies the well-known result ([12], pp. 96—97)

/S*f(x)dx < Const. f |f(x)|(log® |f(x)])%dx -+ Const. (8.7)

One consequence of Theorem 8.1 is that if the estimate
fle(x)dx < Const. f [ (@) |dogt |f(x)])2de + Const.
T, T,

can be improved in the sense that @(u) == u(logt «)? can be replaced by a function
¥P(u) suchthat lim (¥(u)/ @(u)) = 0, then (8.7) can be improved in the same way.

u—->
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