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Introduction 

We shall here s tudy  cer ta in  several var iable  analogues of  the  opera tor  M*  
def ined b y  

M*f(x) = sup -- [ e-i"~f(t) dt , ix[ < 
~  x = t  

and  the  Four ie r  series maximal  opera to r  t r e a t ed  b y  Carleson [4] and  H u n t  [7]. 
Le t  R" be the  Eucl idean  space of  dimension s and  let  T,-----{x = 

= @ I , - - - , x ~ ) E R ' ;  0 < x i < 2 z ,  i =  1 , 2  . . . . .  s}. I f  x - -  @ l , . - . , x s )  and  

= ( $ 1 '  " ' "  ' $" )  belong to R" we set x .  $ = xi~i and  Ix] = x . 
i = 1  

L. I t 6 r m a n d e r  has observed  t h a t  the  f irs t  p a r t  of the  p roof  in [4] can be 
general ized to yield the following (unpublished) result .  

I f  k is a C ~ C a l d e r 6 n - - Z y g m u n d  kernel  def ined in R', s ~ 2, and  if 

f ]f(x)[(log+,f(x)])~+~dx<oo for some ~ > 0 ,  t h en  f k(x--t)e-'e"f(t)dt= 
T s Ts 

= o ( l o g l o g  I~]), t~]-+ 0% for almost  eve ry  x in T,. 
I n  Sections 1 to  3 in this pape r  we prove  among  o ther  things the following 

theorem,  which generalizes the  L p es t imate  of  the  opera tor  M*  in [7]. 
TEEORE~. Assume that k is a Calderdn -- Zygmund kernel defined in R', s ~_ 2, 

which has continuous derivatives of order ~ s 4- 1 outside the origin. Let the operator 
M be defined by 

Mf(x) = sup f k(x -- t) e-~"f(t)dt , x E T, o 

~ E R  s . /  
T s 
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Then llMflrp ~ Cp[Iflre, 1 < p < ~ ,  where thenorms are LP norms ta/cenwithrespeet 
to T ,  and Cp is a constant depending only on s, /C and p. 

To prove the above theorem the second part  of Carleson's proof in the version 
of Hunt  is used. Most of the steps in the proof can easily be carried over to the 
case of several variables, but  we need a new method to get the estimate required 
for the analogue of the ))change of pairs)> in [4] and [7]. This method is described in 
Section 1 and the detaits are carried out in Section 3. 

In  Section 4 we prove tha t  the above theorem holds also in the case when /C 
is odd but  without smoothness. 

Section 5 contains extensions and applications of the results mentioned above. 
In Sections 5 and 6 the following convergence result is proved. 

THEOREM. Let # be a bounded Borel measure in R" and assume that # has no 
point  mass at the origin. Let /C be a Calder6n - -  Zy gmund  /cernel with the property 
tha t  /C log + I/c] is integrable over the unit  sphere and let its Fourier transform fc 

satisfy / ~ c ( x ) d # ( x ) =  1. Define K and K ,  by 
. /  

R s 

K(x)  -~ ~(x) /c(x) and Kn(x)  = t~ 'K(Rx) , R :> O. 

Then limfK.(x--t)f(t)dt --f(x) for almost every x in R" i f  f E L P ( R  ~) for 
R---> oo Y 

B s  

some p with 1 ~ p ~ ~ .  (Here as always the integral is ta/cen in the principal  
value sense.) 

In Section 6 we consider the square partial sums S~f(x) ---- ~ cke +k'~ of the Fourier 
(k~l<_a 

series of a function f E LI(T+) with Fourier coefficients ek, /C C Z'. We prove 
tha t  if f C LP(T,) for some p > 1, then lim S, f (x)  = f (x)  for almost all x. This 

result has been obtained simultaneously and independently by C. Fefferman [5], 
who uses a method different from ours. In the case s ~-- 2, p -- 2, the convergence 
has also been proved by N. 1%. Tevzadze [16]. l%fferman's proof can unlike ours 
be modified to handle other types of convergence than the one just described. 
Our method, however, gives a stronger result than Fefferman's when we extend 
the above convergence result to classes of functions close to LI(T,). More precisely 
we can prove tha t  f r L (log L)" log log L is a sufficient condition for the con- 
vergence almost everywhere of the square partial sums. 

In  Section 7 we estimate the rectangular partial sums S,,~f(x,  y) = ~ ~ ckte ~(k~̀+t~') 
- - n t  - - n  

of the Fourier series of a function f e Lt(T2). We prove tha t  if f e LP(T2) for 
some jo > I, then S =, f ( x ,  y) = o(log rain (m, n)), m ,  n --> oo, almost every- 
where. Fefferman [6] has constructed a counter-example, which shows tha t  this 
result is best possible in the sense tha t  log win (m, n) can not be replaced by 
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e~. log max (m, n) for any double sequence {s~.} with lim s~. = O. The above 
In~rl---~ oo 

estimate is used to prove tha t  if the coefficients of a function f satisfy 
~. [cmlZ (logmin (Ira] -1- 2 ,  Inl + 2))2< ~ ,  then l imSm. f (x ,y )  -~ f ( x , y )  

m , r t  m , n ~  c~ 

for almost all (x, y). This result improves a theorem of Kaczmarz [9]. 
In  Section 8 finally we point out a connection between the operator M* and 

Bochner -- Riesz summability of critical index of multiple Fourier series in odd 
dimensions. 

1. A t h e o r e m  on m a x i m a l  s ingu lar  integrals  

Let s be an integer not less than 2 and let  ~4 denote the class of all complex- 
valued functions k defined in R'~{0}, which satisfy the following three conditions 
k is positively homogeneous of degree - - s ,  i.e. k(2x) ~ 2-~k(x) for 

> o ,  x ~ R~\{o} (1.1) 

~- 0, where S is the unit  sphere in R" and d~ is the surface ele- f le(x) clz (x) 

S 

ment on S (1.2) 

k e C~+I(R'~{0}) (1.3) 

Operators defined by convolution with kernels of this type are a subclass of the 
operators studied by Calder6n and Zygmund in [1]. We notice tha t  the kernels in 
d can be writ ten in the form k(x) = ~9(x)Ix] -~, x # 0, where ~9 is homogeneous 
of degree zero. 

For a fixed kernel k in ~4 and f E LI(T,) define the operator M by 

= sup f k(x - ], x e rs,  (1.4) 
~ER s 

T s 

where the integral is taken in the principal value sense. I t  is not difficult to prove 
tha t  for almost every x E T, 

lim f k(x -- t) e-~'t f(t)dt 
~-+0 f l  

T s \(t ~ I~-tE<~) 

exists for every ~ E R' and by first taking the sup in (1.4) over a countable set 
of ~:s we can also prove tha t  Mf  is measurable. For M we will give the following 
estimates, in which I] ]]p denotes the norm in LP(T,) and m denotes s-dimensional 
Lebesgue measure. 
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THEOREM 1.1. 

(A) I f  f If(x) I log+ If(x)[ log+ log+ Tf(x)]dx < ~ ,  then Mf(x) is finite a.e. in Ts. 
, ]  

T s 

(B) [IMflll ~ C o n s t . / l f ( x ) L  (log + If(x)l) ~ dx -~ Const. 
, ]  

T s 

(C) [[Mf][p ~_ Cp flf[IP, 1 < 2~ < ~). 

(D) m {x e T8 ; Mr(x) > y} ~ Const. exp (-- Const. y/[lflTo~), y > o.  

Here and  in Sections 2- -5  by  Const. we mean  a number  depending only on the  
dimension s and  the kernel /c and  Cp denotes a number  depending only on s, 
k and  p. 

In  Section 3 will be given the  proof  of the following basic result. 
LEMMA 1.2. I f  Y,F is the characteristic function of a measurable set F c T,, then 

Const. l l o g l m F  i f  O < y < �89 
m(x e T, " M)~F(x) > y} < ' -- 

' --  Const. e x p { - - C o n s t ,  y } m F ,  i f  y > � 8 9  

(A), (B) and (D) follow from L e m m a  1.2 in essentially the same way  as in the  
proof  of (A), (B) and  (D) in [11]. (See [ l l ] ,  pp. 551--552 and  563--570.) Tha t  M 
is a bounded operator  on JLP(Ts), 1 < p < ~ ,  is most  easily proved by  use of 
the interpolat ion theorem of Stein and  Weiss. (See [15], p. 264.) 

The proof of  L e m m a  1.2 is modelled on the  proof  of  the est imate of 
m{M*ZF(X ) > y} in [7]. The proof  in the ease of several variables is different  from 
the one dimensional proof  at  some points.  The greatest  diff icul ty  in our case lies 
in the  proof  of the inequal i ty  needed for the change of pairs (Lemma 3.3), in which 
we est imate  an expression of the form 

f k(x -- t) (] --  
e i $ ' ( x - - t ) )  h(t)dt , 

o) 

where ~o is a cube in R', x E ~ and h E LI@). In  the one variable case k(t) = t -1 
and k ( t ) ( 1 -  e ~'~) = t - 1 ( 1 -  e ~)  is a C ~ function,  which makes the es t imate  
of  the  above integral easy. (See [7], p. 252.) In the case when k is a Calder6n --  
Z y g m u n d  kernel the  funct ion k(t)(1 -- e ~'') has a s ingular i ty at  the origin and  we 
need a new technique to get the  desired estimate.  For  simplicity assume t h a t  

= T, .  We proceed in the following way. Le t  ~v be a non-negative funct ion in 
C~(R ~) wi th  compact  support  and  let ~(t) = 1 for ltl _< 2 ~ s .  Define K 
by  K(t) = k(t)(1 --  e ~'~) ~v(t), t q R'. Le t  H be the  funct ion in L~(R ~) with 

Fourier  t ransform / t (u)  = (1 - -  l u l 2 )  ( s + l ) ] 2 ,  IUl __< 1, and /~(u) = 0, lu] > 1. 
Define HR by  HR(t) = R'H(Rt). The above integral equals the sum of 
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f K*H~(x h(t)dt and  / (K(x -- K*H~(x h(t)dt. We es t ima te  the  f i rs t  
f 

t) t) t)) 
. 2  

T~ T~ 
in tegra l  b y  use of  the  Four ie r  coefficients of  h and  the  second in t e r m s  of  the  
H a r d y -  L i t t l ewood  m a x i m a l  funct ion  of  h. We  t h e n  choose R so t h a t  the  
m a j o r a n t s  of  b o t h  the  in tegrals  are small.  Fo r  fu r the r  detai ls  see L e m m a  3.3. 

2. Notation 

L e t  Z denote  the  integers,  Z+ the  non-nega t ive  integers  and  let  B be the  set  
o f a l l c u b e s  o ~ = { x E R ' ; r i 2 z . 2  - ~ x i ~  ( r i +  1 ) 2 z . 2  -~, i =  1 , 2  . . . . .  s}, for  
which ri and  ~ 0  are integers  and  o) c ( - - 4 ~ , 4 ~ ) ' = { x E R ' ;  [xl] ~ 4 ~ ,  
i = 1 , 2 , . . .  , s}. We  define B* to  be  the  set of  all cubes which can be  wr i t t en  
as above,  b u t  for which we replace the  condi t ion t h a t  rl shall be  an  in teger  wi th  
the  condi t ion t h a t  2r, is an  integer .  W e  let  ~(r denote  the  side length  of  a cube 
co and  let  bk denote  the  n u m b e r  2 -4, k = 0 ,  1 , 2 . . . .  Fo r  ~ E R' ,  o) E B ,  ~((o) ---- 

2 z .  2 -+, and  f E L~((o) set  c~(o~) = c:(~o, f)  = (ma)) -1 / f(x) exp  ( - -  i 2 ~  �9 x)dx and  
f .  

. J  

c o  

Cc (O ) = , f )  = C ' ~  + I 1) -=-1 , where C' = { 7. + } -1. 
~ E Z  s I~EZ s 

I f  o)* E B * ,  n E Z" and  f E/2(o)*) we define C*@*) = m a x  Cn(E), where  
w �9 

w' ranges  over  the  4" subcubes  of  w* wi th  4~(co') = 5(o~*). I f  ~ is a non-nega t ive  
N 

real  number ,  ~ = ~ 1 2  ~ (where sl equals  0 or 1 and  we choose el so t h a t  
i = - - o o  N 

l ims l  = 0), a n d  (o E B wi th  ~((o) = 2 n - 2  - ' ,  we define ~[(o] = ~ s i 2 1 - L  I f  

= (~1, �9 �9 �9 , ~)  E R+, i.e. ~ C R ~ and  its componen t s  are non-nega t ive ,  we define 
~[w] = (~[~]  . . . . .  ~,[o~]). F o r  o9" E B* b y  an  abuse  of  no t a t i on  we also set  
~[(o*] = ~[~o'], where  4~@') = ~((o*). I f  6@*) = 4" 2~"  2 -~ let  Z~(~o*) = 

{n E Z + ;  n[w*] ~ 2-~n}. I f  ~o is a cube and  2 ~ 0 let  ~e) denote  the  cube wi th  
the  same  center  as (~ and  side length  6(~o)) = ~8((o). 

I f  K is a funct ion  def ined in R" and  /~ a pos i t ive  n u m b e r  define K~ b y  

K~(t) = R'K(Rt), t E R ~. F ina l ly  let  

S~(x, co*) = S~(x, o~* , f)  = f ]c(x -- t)e-~" f(t)dt , f E D ( ~ * ) ,  
d 

O)  $ 

where the  in tegra l  is t a k e n  in the  pr incipal  va lue  sense. 
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3. Proof of the basic result 

To shorten the proof  of L e m m a  1.2 we will assume t h a t  the reader is familiar  
wi th  [7] and  ment ion only the  points where there are differences between the  two 
proofs. For  instance in the definitions of the polynomials Pk(x ,  0)) and the part i t ions 
X2((n[0)*], 0)*),/c) we split cubes into 2 ~ subcubes instead of splitt ing intervals 
into two subintervals.  In  the definit ion of Gk ]0)[ is replaced by  d(0)) and  In --  ~[0)] l 
b y  max  t n l -  ),i[0)][. f equals the  characteristic funct ion Zv of a measurable 

l _ i ~ s  

set F included in T,. 
The following lemma is needed. 
LEMMA 3.1. Let 0 ) E B ,  5(0))= 2 n .  2 -~, and let q~ C C'!I(~).  Then there is a 

representation of cf 

~(t) ~-- ~ 7~e -i3"~2~'', t E0), 
/t 

I~.l ~ Const. (1 q- ltt[) -'-1 ~ sup 1D~I2 -~II~11, # E Z ' ,  (3.1) 
l Ial]_<s+l ~o 

s 

where [[a[[ denotes ~ al. 
1 

Proof. cf can be extended to a funct ion in 3~ with  Fourier  coefficients satisfying 
(3.1). (For the extension see e.g. [14], ch. VI, p. 18.) 

We now describe how the  remainder  terms can be est imated.  Assume t h a t  the  
pair p* = (n[0)*], 0)*) satisfies the  condition 

Y2(k) : p*  C G~L , C*(p*) ~ b~-ly and n E Z~(0)*) 

a n d  t h a t  the par t i t ion  f2(p*,  k) has been constructed.  For  x E 10) .  0)*(x) is 
defined to be one of the cubes in the set {~5 E B * ; x  E 1e5 and  there exists 
0) E Y2(p*, k) such t h a t  0) c r and  ~((5) ---- 2~(0))} which has maximal  side 
length. We need the following lemma, which is essentially due to HSrmander .  

LEMMA 3.2. There exists a set T*(p*)  c 0)* with 
mT*(p*)  ~_ Const. exp {-- Const. Lie}m0)*, such that 
x E lo )*  , x ~ T*(p*)  implies / 
]S~(x , 0)*) - -  S~(x , 0)*(x))] < Const. Llcb~_ly 

1 * for all ~ E R +  with ~[0)*J----n[0)*] and all 0)*o E B *  such that x E ~ w o  and 
0)*(x) c 0)* C 0)*. 

Proof. For  t E 0) E sg(p*,/c), 5(0)) = 2~ .  2 -", set E~(t) = c2-~(0)) and  
M~(t) -= C2-~@). From the construction of f2(p*,  It) it  follows t h a t  for t E 0) 
and ~[0)*] = n[0)*] we have 

IE~(t) i ~ Const. M~(t) ~ Const. C,[~I(0) ) ~ Const. bk_~y . 

Set 

with 
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s 
Se(x , (o~) - -  S~(x , o)*(x)) = / k(x  - -  t ) e -~" f ( t )d t  = A (x )  + B(x)  + C(x)  , 

, . /  
o~:\ o~*(~) 

where 

A ( x )  ~ f k (x  - -  t)e -~(~-~)'' E~(t)dt , 

o)$\~o*(~) 
f ,  

B(x )  7 1 . k ( x  - -  t)(E~(t)  - -  e-~(~-~)'tE~(t))dt and  

C(x) = f k (x  - -  t) ( e -~" f ( t )  E~(t))dt . 
J ~\o~ *(~) 

Firs t  consider A(x) .  F r o m  the  es t imate  

]/c(x - -  t)(e ~(~-')'(~-0 - -  1)] < Const. (~@.)-1 Ix _ t l - .+ l ,  ~[(o*] = n[(o*],  

i t  follows t h a t  

[ "  
le'(e-~)'XA(x) [ k (x  - -  t)En(t)l Const. E*(x)  , i 

J ~o~\~*(~) 

where  E* is the  I-Iardy - -  L i t t l ewood  max ima l  func t ion  of  En. I f  g is def ined 
for g E LI(R ") b y  

~(x)=sup f k(x -- t)g(t)dt l , x t R" , 
~>0[. ~> 

the  above  es t imate  yields [A(x)l < Const. (En(x)-~ E*(x) ) .  
To es t imate  B(x)  we observe t h a t  for  t E ~o E ~9(p*, k) 

g~--n  . t  f - -  E~(t) - -  e -  ' ) E , ( t )  = e -~(~-n)'' (mo~) -1 e-~n'~f(u) (e ~(~-")'('-~) 1)du . 
J 
r 

Applying  L e m m a  3.1 to  the  funct io~ ~(u) = e ~(~-")'(t-~) - - 1 ,  u E c g, we get  
[E~(t) --e-~(~-~)"E,,(t)] ~_ Const. ~@)5@*)-lM.(t)  i f  t E co and $[co*] : n[(o*]. F r o m  
this es t imate  i t  follows t h a t  

f k(x-- t) (E~(t) -- e-'(~-')"E.(t))dt <Const.~(~*)-i/ ]x - -  t[- '+iM,( t )dt  

o) ~o 

and  we conclude t h a t  ]B(x)I < Const. M*~(x). 
I t  remains to  es t imate  C(x).  Suppose o~ E Y2(T*, k) und t h a t  e) is no t  con- 

ra ined in eo*(x). For  u E R" set L(u )  = (1 -~ ]u]) - '-1. Denot ing  the  center  of  
o) by  t o we use L e m m a  3.1 to  p rove  t h a t  
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k(x  - t) - k (x  - to) = ~ ~ . e  - '3- '  " " ,  t e (9 ,  
t t  

where ]Y,I ~ Const. (1 -k l f l l ) - s - l i ~ ( < , j ) - l (  x - -  to) .  Using this representation we obtain 

f I~(x --  t ) -  E~(t))dt (e-'~'tf(t) 

09 

~_ (k(x --  t) --  k(x --  to))e-~'~f(t)dt + (]c(x --  t) - -  k(x --  ~_ 

o )  o )  

/ L~(o~)_, (x --  t)Mn(t)dt. Const. 

o)  

Defining (~(t) by  5(t) = 5(0), t E (9 E Y2(p*,/c), and setting 

_~n(x) = f L~(O_~ (x --  t)Mn(t)dt we have ]C(x)[ ~_ Const. 2~(x) . 

Collecting the estimates of A, B and C we get 

f .  k(x --  t)e-'~'tf(t)dt ~ Const. (E~(x) + M*~(x) ~- ~n(x))  
o~*\ o~ (~) 

for all ~ and co* with the properties in the statement of the lemma. 
7~, can be estimated by  use of the fact that  the adjoint of the operator g -~  !7 

can be majorized by  the H a r d y -  Littlewood maximal function. (See e.g. [17], 
pp. 253--255.) For E~ and M~* well-known estimates hold and we obtain 

m{x E (9* ; ~ , (x)  ~- M*~(x) + ~lT,(x) > ~} ~ Const. exp {-- Const. ~/ i] i ,  il~}m(9* , 

~ 0 .  

The lemma now follows if we choose ~--~ Const. Llc b~_ly. 
The reason for proving the above lemma for all ~ with ~[(9"] = n[(9*] is that  

the several variable analogue of the Lemma 3.4 in [7] fails. 
We will now describe how the estimate necessary for the change of pairs (cf. [7], 

Lemma (10.2)) can be obtained. Also in this case it is the lack of an analogue of 
Lemma 3.4 in [7] that  makes the proof more complicated. What  is needed is the 
following lemma. 

L ~ M ~  3.3. Suppose that (9* E B*, x E1 �9 ~(9o, ~o and ~ E R+ and ]~0--~[ 
A~((9*o) -1 where A is a constant. Assume that there exist a complex number ~ and 

E Z* such that * * Qe ia't) C~@o , f  - -  ~ s i f  1~0[(9'] --  a[ ~ C, for some constants e 
and C. Then for all R with O ~ R ~_C 

IIS~.(x, (9")I --  IS~(x, (9")I] ~ Const. (1~1 + AR'~ + AR-~/~(f*(x) § l~l)}- 
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We use the above lemma in the proof of the analogue of L e m m a  (10.2) in [7]. 
We then  have (for the  definit ions of ~* and  g see [7]) 

A ~ Const. b~ -2 e --~ Const. -1/2 , OkL Y,  C = b~L 9 , f*(x)  <__ Const. y 

_ ~12~,~ < Const. y and  ]el < Const. (C*(~*) + ~kLVJ -- 

L e m m a  3.3. yields 

I[S~.(x, w0*)l --  IS~(x , m *o )ll ~ Const. (C*(~o*) @ bky + bE21~'b~]~y -]- b[2R-112y) . 

and  choosing R ~ b~ -~ we obtain 

[lSe,(x, c o * ) [ -  [Ss(x, co*o)[I ~ Const. (C*(~*) + bky), 

which is the desired estimate.  
Proof of Lemma 3,3. Defining g by  g ( t ) = f ( t ) -  ~e ~z'' we get 

IlSe.(x, ~ * ) l -  ISe(x,~*)l[ _< l/~(x-t)(1- e'(~-~')'('-O)e-~e"'g(t)dt + 
1 , 9  

+21elsupfk(t)e'"dt[,,~,~o 
eo  

where the sup is t aken  over all V E t1" and  all cubes ~o with  0 E i w. The last 
t e rm is no t  greater t h a n  

Const. [~[(1 + s u p  fk(t)e'~'tdt ) .  
r >0  I J  
v e R  s [tl<r 

According to [1], pp. 89--90, f]~(t)e',"dt is uni formly  bounded in r and  V 
J 

Itl_<, 
and hence the  last  t e rm in the above inequal i ty  is majorized by  Const. IQI. 

We introduce some auxi l iary functions.  Le t  ~v E C~(R ') vanish for It[ > 300 ~ / s ,  
be equal to 1 for It] < 200 ~r and  satisfy 0 < ~(t) < 1 for all t E R'. Assume 
d@*) = 2~.  2 -" and  define _K b y  K(t) = k(t)(1 --  e~(~-~')")~v(2"t), t E R ~. Le t  
It(t) = CoJ,+l/z (Itl) Itl -~-~12, t E R ~, where J,+a/2 is the Bessel funct ion of order 

s + 1/2 and  C o is a constant  chosen so t h a t  / H(t)dt = 1. The following properties 

IR s 

of H and  its Fourier  t ransform / t  are well-known. (See e.g. [10], pp. 51--62.) 

H ( t )  = 0(1) ,  Itl-+O (3.2) 

I t ( t )  = O(]t]-=-l), It[---> ~ (3.3) 

/~ (u)  = (1 - Iup)(,+~)/~, lul < 1 ,  and .H(u) = 0 ,  lul > 1 (3.4) 
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Sett ing 

we have 
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A(x) = f K*H2~ R (x -- t) e-~~ g(t)dt and  

B(x) -~ f (K(x -- t) -- K,H2~ R (x -- t)) e-i~o.t gft)dt 
J ~oy 

k(x -- t)(1 --  e ~(~-a)'(x-0) e-~o'tg(t)dt = A(x) -4- B(x) . 

For  the  es t imat ion of A(x) first  observe t h a t  for all u C R '  

I~(u)l < f lK(t)[dt < Const. I~o -- ~t 2-" f Itl-'§ < Const. A .  

I t s  R s 

From (3.4) it  follows tha t  

( lu]~(8+l)/2e'u''du' t E R ' '  K,H2~(t ) = (2x)-' /~(u) 1 ( 2 ~ i  ] 

lul_<2 R 

and using Fubini ' s  theorem we obtain 

A(x) = ( 2 ~ ) - s f  l~(~'( 1 ( ) ]~z'2 I(s+m'/2ei"x{f e-i('+~~ d~" 

I f  R ~ C the  hypothesis  of the  ]emma implies t h a t  

f e -i(~+~~ < Const. 2 -~ ' s ,  lu] _< 2~R, 

and  hence 

[A(x)l < Const. A R ' s ,  tt < C.  (3.5) 

To est imate  B(x) we introduce the funct ion 

q ) ( z , h ) - - - - /  ] K ( z ) - - K ( z - - t ) ] d t ,  z E R  ~, h > O .  
. ]  

Itl _<h 

We claim t h a t  

q)(z, h) < Const. A2~h'+X/21zI-S+l/2 , [z I < 2 -~ 100 ~ / - s ,  h > 0 .  (3.6) 

For  h < [z]/2 we use the  mean  value theorem and the  es t imate  

ID~K(z)[ < Const. A2~lz] -" , 0 < Izl < 2 -~ 200 ~ / s ,  i = 1 , 2 . . . . .  s ,  (3.7) 
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to prove (3.6). (3.7) is easily obtained by  a direct computation of D~K. For h > Iz ]/2 
the estimate [K(z)[ ~ Const. A2~Iz[ -~+1 is used to establish (3.6). 

We will now prove that  

[K(z) -- K*H2~R(z)[ <_ Const. A R  -~/2 2~/2Iz] -~+1/2 for lz] ~ 2 -~ 100 ~/-8. 

We have 

(3.8) 

s 
K(z) --  K*H2,R(z ) = ] (K(z) --  K(z --  u))H2~R(u)du -4- 

, 2  

1"I-<(2~R)-' 

A- / (K(z) --  K(z  --  u)) H2~R[u)du . 
fb 

. /  

lul>(2vR)-x 
From (3.2) it follows that  the first term is less than Const. (2~/~)@(z, (2~R) -1) 
and using (3.6) we see that  this can be majorized by  the right hand side of (3.8). 
Using (3.3), introducing polar coordinates and performing a partial integration we 

can estimate the second term with Const. (2~R)-1 /q~(z ,  r) r-'-2dr. (3.6) implies 

(2 ~ ~),- 
t h a t  this is less than Const. AR-1/22v/2 [z[ -s+ 1/2 and hence the proof of (3.8) is complete. 

By  use of (3.8) B(x) can be estimated: 

[B(x)[ _< Const. AR-II22~12 f Ix --  t l - '+1/2 Ig(t)Idt < Const. AR-112g*(x) . 
. /  

The definition of g implies that  g*(x) <_f*(x) + ]~[ and we obtain [B(x)] < 
Const. AR-11:(f*(x) -t- ]~[)- This completes the proof of the lemma. 

We remark that  at the end of the proof of the basic result there are constructed 
sequences {~1} and {co*}, where ~j E R~ and wj* E B*, corresponding to the 
sequences {nj} and {co*} in Section 11 in [7]. The proof in several variables is 
different from the one in [7] in that  we do not require that  ~i E ' * Z+(%. ) for each j .  

With the modifications mentioned in this section the method in [7] gives the 
result 

m{x 6 Ts ; mZF(X ) > y} < B~, y-P m E ,  y > O, 1 < p < ~ ,  (3.9) 

where Bp _< Const. p2/(p _ 1). Choosing p suitably (depending on y) we obtain 
Lemma 1.2. 

4. Odd kernels  w i thout  s m o o t h n e s s  

In this section we will show that  if the kernel k is odd, then the operator M 
associated with k is bounded on /2(Ts), 1 < p < ~ ,  even if k does not satisfy 
regularity conditions such as (1.3). Let  ~4' denote the class of all complex-valued 
kernels k which satisfy the following three conditions 
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k is positively homogeneous of degree -- s (4.1) 

k is integrable over the unit sphere and / k ( x ) d a ( x )  -~ 0 (4.2) 
, ]  
s 

k is odd. (4.3) 

Kernels in the class d '  are special cases of kernels treated by Calder6n and 
Zygmund in [2]. (See Theorem 3, p. 290.) 

THEOREM 4.1. Let k C ~4' and let M be defined as in (1.4). Then the inequalities 
(B),  (C) and (1)) in Theorem 1.1. hold for 21I. 

Proof. I t  is not difficult to see tha t  M f  is measurable if f E L log L(Ts). In  
the proof of the theorem we will use the results for the operator M* in [7]. I t  is 
easy to see tha t  the results in [7] hold even if we replace M* by the operator M1, 
defined by 

We first give the proof of (C). Assume tha t  f C Lv(T,) and extend f to lt" 
by setting it equal to zero outside T,. Let 

-- f k(x -- t)e-~'tf(t)dt, x �9 Ts,  S~(x) 
. ]  

I x - t l > s  

and let S~(x) be the pointwise limit of S~(x), when s tends to zero. Using the 
fact tha t  k is odd we get 

S~(x) = / "  k(x - t)e-~'t f(t)dt = / k ( y ) e - ' ~ ' ( = - z ) f ( x -  y)dy = 
, ]  , ]  

[x-tl>~ lyl>~ 

, . .  , + , +  = 
S e 

= e-i~'x l f k(y') ( f  t-l e~'/t f (x -- ty')dt) da(y') . 
S [tI>~ 

Letting s tend to zero we obtain 

/ ( / )  S~(x) = e -~'~ �89 k(y') t -1 e~'/' f ( x  -- ty')dt dcr(y') 
s R 

for almost every x �9 Ts and all ~ �9 R'. We therefore have 

l]~f(X) ~l f [~(y')[ (s~If t-le~vtf(x-- ty')dt)d.(y'). 
s R 
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Using l~inkowski's inequality for integrals and Theorem 1 in [7] we obtain 

IIMf[[p ~_ 1 / ik(y, ) [d~(y') Cp]]fHp and (G) is proved. 
. /  

S 

The proof of (B) is similar and is therefore omitted. 
To prove (D) we will show that  the inequality (3.9) holds for M with 

Bp ~ Const. p3/(p _ 1)2. Setting 

M l Z F ( x  , Y')  = sup f t -~ e ~'~' ZF(X - -  ty ' )  dt 
VER J 

II 

MZF(x ) ~ �89 ; Ik(y')lM~x~(x , y') d(~(y'). From the basic result in [7], w e  get PP. 
J 

S 

235--236, it follows that  

m{x e T, ; M1ZF(X, y') > 4} ~ (Const.)Ppee(p -- 1)-e),-emF for ~ > 0 ,  1 < p < oo, 

y' e S. For the moment let f*  denote the nondecreasing rearrangement of a function 
f defined on T, and let f**  be defined as in [8] ,p.  257, with r =  I , M = T , .  
Using the inequality (2.2) in [8], p. 258, we get 

sup tl/P(MZF)*(t) ~ sup tl/P(MZF)**(t) 

_< �89 [" I~(y')[ {sup t~/e(M~x~( �9 , y'))**(t)}d~(y') < 
Y 

S 

�89 -- 1) -1 ; Ik(Y')l {sup t l /e(Ml~( �9 , y'))*(t)}da(y') ~ 
. /  t~O 

S 

�89 P(P - 1)-1 Const. p 2 ( p -  1)-l(mF)~]p ; ]]c(Y') lda(Y') -~ 
J 
S 

--~ Const. 193 (p -- 1)-~(mF) 1/e . 

This inequality yields (3.9) with B e ~ Const. pa(p _ 1)-2 ~ O(p), p ~ oo. Using 
this estimate of B e we can complete the proof of (D) as in [11], pp. 569--570. 

5. Extensions and applications 

In this section we will give some extensions and applications of Theorems 1.1 
and 4.1. We first remark that  a careful examination of the proofs of Theorems 1.1 
and 4.1 shows that  the theorems hold also if we replace M by  the operator ~r 
defined by  
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f  f(x) sup s ! k(x --  t)e-~" f (t)dt . 
e >  0, ~ER d 

Ts\ ( t ;  Bx--tl<e ) 

We also point out tha t  the results for the operator M 1 proved in [7] and [11] 
are special cases of the corresponding results for M in Theorem 1.1. This can 
be seen by taking s = 2 and choosing k as a suitable odd kernel. 

So far we have only studied functions defined in T,, but  now we will define 
the analogue of the operator M for functions defined in R ". For f E LP(R~), 
l < p <  ~ ,  let N f  be defined by 

N f ( x ) = s u p  f k ( x - - t ) e - ~ " f ( t ) d t ] ,  x E W ,  
~ER s 

I t  s 

where k E d or d ' .  Then the following theorem holds. 
THEOZ~ 5.1. I f  k belongs to d or ~4', then 

IINf/I/, _< Cpllfll~, 1 < p < oo, (5.1) 

where the norms are taken with respect to R". 
Proof. Let Q denote the cube {xER* ;  tx~l__< 1, i =  1 . . . . .  s}. We will 

use the fact tha t  Theorems 1.1 and 4.1 hold with T, replaced by Q, if M is 

defined by Mf(x)  = sup / k(x -- t)e-Wtf(t)dt[, x E Q. Let f E LP(R ~) and let 
f .  

Q 
/ i  

~,(x) = sup / k(x -- t)e-~'~ f (t)dt , x E nQ, and set F~(x) equal to zero for x ~ nQ , 

=Q 

n = 1 , 2 , . . .  Performing a change of variable and using the homogeneity of k 
we get 

F=(x) = M ( f ( n .  )) (n- ix) ,  x E nQ . 

Hence Theorem 1.1 or 4.1 with T~ replaced by Q yields 

fyo(x)] dx<_C f [ f (x ) l 'dx .  
,~0. n q  

I f  we use the fact tha t  2Yf(x) <__ lira F~(x), (5.1) now follows from the above estimate 
n - - ~  o o  

and Fatou's  lemma. 
We will now use Theorem 5.1 to prove a convergence result. 
T~nORE~ 5.2. Let # be a bounded Borel measure in R ~ and assume that ,u 

has no point mass at the origin. Suppose that k belongs to d or ~ '  and that 
F "  

/ fi(x) k ( x ) d x =  1. Let K be defined by K ( x ) = f i ( x ) k ( x ) ,  x #  lira O. Then 
8--~ 0 . ]  
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s 
lim ] K ~ ( x - - t ) f ( t ) d t  =f(x )  for a.e. x in R" if f E L P ( R  s) for some 19 with 
R - >  ~ . )  

W 
l < p <  Go. 

Proof. First observe tha t  K~(x) = ~(Rx)k(x). Let f CLP(W). Lebesgue's 
/ =  

theorem on dominated convergence implies tha t  for a.e. x E tP lim ] KR(x -- t)f(t)dt 
e-+0 J 

[x- t l>e 
/ * / f .  \ 

/e-ln~'X(/k(x--t)eiR~'tf(t)dt)dtt(~) for all R > 0 .  We denote exists and equals 
j ~ . /  / 

Rs  B s 

this limit by  SRf(x) and set S*f(x) = sup ISRf(x)[. I t  follows that  S*f(x) < il~ll~f(x), 
R>0 

where I[gl is the total mass of #. Theorem 5.1 yields IlS*flTp < @I)~ll [Tftl~, which 
implies tha t  the theorem will be proved if we can show tha t  lira SRf(x) = f ( x )  

R-->co 

for all x if f E C~(II ") and has compact support. Let f he of this type and fix 
x C R'. Take 2 so large tha t  the support of f is eontained in a ball with center 
x and radius 2. Using the hypothesis we have 

/ ; 1 = K R ( x -  t)dt + lim K(y)dy, 
F - + ~  J 

I~-~1-<~ n~<_ Ig-<~ 
and hence 

f SRf(x) -- f(x) = ~<-/ KR(x -- t) (f(t) -- f(x))dt -- f(x) o+~lim a K(y)dy. 
Ix-  RX-<lyl-<e 

The second term obviously tends to zero when R tends to infinity and the first 
term equals 

/ { /'e'E~"lc(x-- t) (f(t) -- f(x))dt} e-"~'~d#(~) . (5.2) 

Rs Ix - t l -< ) .  

For ~ ~= 0 it follows from Riemann --  Lebesgue's lemma that  the inner integral 
tends to zero when _R tends to infinity. For all ~ and R the inner integral is 

bounded by / f~(~ --  t)l If(t) --  f(x)lat, whioh is finite. Since # has no point 

t 
mass at the origin, Lebesgue's theorem on dominated convergence proves tha t  
(5.2) tends to zero when R tends to infinity. This completes the proof of the theorem. 

We remark tha t  if k E ~4, then the equality lim / ~(x)k(x)dx = 1 is implied 
e-~0 J 

by the condition 

k(x)d~t(x) = 1. (5.3) 

R s 
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We will now give an example  of a measure  # and kernels k, which sa t i s fy  
the  condit ions in Theorem 5.2. 

s 

Example 5.3. Le t  # be a discrete measure  with point  mass 2 - ' / / s ~  a t  the  
1 

points  ( ~ 1 , . - - , ~ ) ,  e~=  ~- 1, i =  1 , 2  . . . .  , s ,  and  with no mass at  any  o ther  
s 

points.  Assume t h a t  k E d and t ha t  k~(sl . . . .  , ~) = Hs~ for ~ = ~ 1. Then,  
1 

if  1 < p <  ~ and  fELP(R') ,  

s 

lim ( - -  i) �9 H sin R(xj -- tj)k(x -- t)f(t)dt = f(x) a.e. in R �9 . (5.4) 
R ~  co 1 

ns 

Proof. I t  is easy to see t h a t  k(x) d#(x) = 1 and fi(x) = ( - -  i) 8 / / s i n  xi, and  
I 

Rs 

hence (5.4) follows f rom Theorem 5.2. 
The  existence of  kernels  k in ~4 which sat isfy the  condit ions in the  above  

example  follows f rom the  fac t  t h a t  eve ry  funct ion  in C~(R*~{0}),  which is 
homogeneous  of  degree zero and  has mean  value zero over  the  uni t  sphere, is the  
Four ier  t rans form fc of  some C ~ Calder6n - -  Z y g m u n d  kernel  k. (See [3], p. 312.) 

We also want  to  poin t  out  t h a t  if  k E r t hen  the  assumpt ion  t h a t  f E /2 (1 t ' )  
in Theorem 5.2 can be replaced b y  the  condi t ion t h a t  f has compact support and  

f If(x)] log + ]f(x)] is f inite.  The  of  this is to the  log+ log+ If(x) lax proof  a n a l o g o u s  

Rs 

proof  of (A) in [11]. I f  k E d '  i t  is sufficient t h a t  f has compact  suppor t  and  t h a t  
f(x)(log+ ]f(x)I) ~ is integrable,  which follows f rom (]3) in Theorem 4.1. 

I n  the  ease s --I 1 we will give an  a l te rna t ive  formula t ion  of  Theorem 5.2. L e t  
'~ = { K ; K ( x )  : ~,(x) ,  x E R ~ { 0 ) ,  where # is a bounded  Borel  measure  

on R wi thou t  poin t  mass a t  the  origin and  --  i z  / sgn (x)dl~(x) -~ 1}. 
f ,  

Since 
l 

- -  i~ sgn (x) is the  Four ie r  t r ans fo rm of  x -1 the  last  condi t ion is jus t  the  analogue 
of  (5.3). Theorem 5.2 for s ---- i wi th  k(x) replaced b y  x - I  implies t h a t  i f  f E I2 (R) ,  
1 < p <  oo, and  K E P ( ,  t hen  l im f* KR(x )= f ( x )  for  a.e. x in R. I f  K E  

R--> co 

we define its Four ier  t r ans form b y  K(y)  ~-- lim / e-~X~'K(x)dx. I t  follows t h a t  
~-->0 

g-...oo ~<<lxl~N 
s 

/~(y) = - - / ~  / sgn (y + t)d~(t) and  a calculat ion shows t h a t  the  Four ie r  t ransforms  

R 

of the  kernels in ~E are precisely the  funct ions L of bounded  var ia t ion,  which 
sat isfy the  ~bllowing three  conditions: 
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L(y) = �89 + )  + L(y  - - ) ) ,  y E R 

L(O) = 1 and L is continuous at the origin. 

lim L(y)  + lim L(y) =- 0 
y - + + ~  y-~--  co 

We obtain the following summability result. 

(5.5) 

(5.6) 

(5.7) 

COROLLARY 5.4. Let 1 < p ~ 2 and .f E IY(R) .  Assume that L is a function 
l 

f "  l \ 

of ~ f(~) 
J kn /  

R 

for a.e. x E R .  
Proof. We need only show that  condition (5.7) can be removed. This can be 

/(:),, /(:),, verified if we consider L y)dXXdy and L y)d'Xdy separately. 

0 - -cO 

6. The square partial sums ot multiple Fourier series 

In this section we s tudy the square partial sums of a function f E/2(T,),  given by  

/-. 
S , f ( x )  = ~ ck e 'k'x ~- ~-" 11D~(x, - -  tOf(t)dt , 

lki[<, t  d ~ = l  % 

where ck are the Fourier coefficients of f and D~ denotes the Dirichlet kernel. 
Let M , f ( x )  ~ sup ]S~f(x)], x E Ts. Then the following theorem holds. 

nCZ + 

THEORElV[ 6.1. 

I f /  ]f(x) [ (log+lf(x)[)~log+log+ ]f(x) Idx < ~ then l imS~ f ( x )  = f ( x )  a.e. in T~. (6.1) 
. ]  
% 

]IM,fl]l ~ C o n s t . /  If(x) I (log+ ]f(x)])~+ldx + Const. (6.2) 
. ]  
% 

llM, fJ[p ~ C~ H flip, 1 < p < ~ .  (6.3) 

Proof. We first treat the case s : 2. Let  1 < :p < co and define for f E L~(R2) 
and ~ E R  S'~f by  

ffe-'~('l+")f(tl,t~) , I e  ~;f(x) = ( ~ t ~  ~) ~tl ~t~ x e 
R ~ 

To prove (6.3) it is sufficient to prove that  the operator M~ defined by  M~f(x) = 
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= sup ]S'r x q. R ~, is a bounded operator  on LP(R~). We first  claim t h a t  if  
set l  

f eLP(R 2) t hen  for a.e. x in R 2 

(xl - -  tl) (x2 - -  4)  x l  + x 2 - -  % \ . ]  -x- 2 • u-~ d %  d%-q- 
R ~ R R 

- - -  dui d % ,  (6.4) 
xi § x~ --  % Xl --  ui 

R R 

where the integrals are to be t aken  in the principal value sense. To establish (6.4) 
i t  is enough to prove it for f in a dense subclass of  LP(R2). This can be done by  
computing the Fourier  t ransform of both  sides of (6.4) for f e L~(It ~) or we can 
proceed in the following way.  Le t  f ( x i ,  x2) : fi(xl)f~(x~), where f i  and f2 e C ' ( R )  
and  have compact  support.  We obviously have 

f ( 4  , 4) f(t~ , 4)  f ( t l  , 4) 
(X 1 - -  t l ) (X  2 - -  t2) - -  (X 1 Jr- X~ - -  ( t  1 - ~  /2))(X2 - -  t2) -~- (X 1 Jr- X 2 - -  (t  I Jr- t 2 ) ) ( x  I - -  t l )  ' 

for t i r x 1, 4 r x~, t i ~- t 2 ve x i,q- x 2. (6.4) follows if  we integrate  this relat ion 
over the region { ( t l , 4 ) ;  ] x i - - t i l  > s ,  Ix~--41 > e, Ix i ~ - x ~ -  (t i + t ~ ) [  > 8}, 
perform a change of variables in the integrals obtained on the r ight  hand  side and  
let first  e and  then  ~ t end  to zero. The te rm ~2f(x) enters because of the fact  t h a t  

l i m f f  o uv 
[u+vl_<~ 

~_<l~-vt_<l 
Now fix f E LP(R2). Replacing f ( t~ ,  4)  by  e-~'( ' i+")f(tl ,  4)  in (6.4) and  

taking the supremum over all ~ C R we get 

- -  ~e n Xl  + x2 - -  u l  ~JR X2 - -  u2 du2 d u l  + 

(r,<--:-=->) R x l  + x2 - -  '11"2 ~ Xl  - -  u l  dadl du~ + ~l/(x)t �9 ( 6 . 5 )  

Using the  ]~P est imates of the  t I i lbert  t ransform and the  operator  M 1 defined 
in Section 4 we obtain ]lM:f][p, m < Cell flip,n,, and  the  proof of (6.3) is complete. 

(6.1) and  (6.2) can be proved by  use of the above me thod  and  the results in [7] 
and [11] for functions belonging to classes close to 11. 

In  the case s > 2 we use the following analogue of  (6.4): 

f f  . . . . . .  f :", . . . . .  '.) , , . , ,  (X 1 - -  t l ) . - .  (Xs - -  ts) ' : i  
I I  s 

where 
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= f 1 
n ~ x j - - u ~  

1 

a n d  a. = 

f ( u l  ~ �9 . . ,  ~ i - - l  ~ g i  - -  ~ q~j : 7~iq-I . . . . .  ~ s )  

( f f  f -, ( X  1 -  U l )  �9 �9 �9 (Xi--1  - -  U I - - 1 ) ( X I + I  - -  U i + l ) "  �9 �9 (Xs - -  Us) 
R S - - 1  

d u l  �9 �9 �9 du~-~du~+~ . . . d u , )  du~ , i = 1 , 2 , . . . , s ,  

0, if s is odd 

~8, if s = 4 k + 2 ,  k - - - - 0 , 1 , 2  . . . .  

- - ~ ' ,  if s = 4 k ,  k = - l , 2  . . . .  

(6.6) is most easily proved by  computation of Fourier transforms. For example if 
f E L2(R s) then 

~x A 

F~(y )  = (-- i~)" sgn (Y0 H s g n  (Yi - -  Y ~ ) f ( Y ) ,  a.e. y e R s . 

As an application of the method which gave the estimate of M'  8 we will now 
prove that  the condition k C ~4 in Theorem 5.2 can be replaced by  the assumption 
that  k is a CalderSn -- Zygmund kernel for which k log + ]k] is integrable over 

r the unit sphere. First define the operator M o for 0 ~ 0 _~ 2~ by  

M ' o f ( x  ) : sup~ea f n f  (xle-i~(~~176 tl)(X~ ' + si'~ f -  (ti , t~)dt I dt~ , 

X E l:[ 2 , f  C L P ( R 2 ) ,  1 ~ p  ~ oo . 

r M o can be estimated by  an obvious modification of the method which was used 
to estimate M~ and we obtain 

t []MofH~,m ~_ C.IIfIl~,R., 1 < p < oo,  (6.7) 

where Cp is independent of O. 
Let k be a kernel of the type  described above and define the operator 

N~, ~ E R s, by  

= s u ,  f t)e~n~" f ( t )  dt  , x E R s , f C LP(R') ,  1 < p ~ oo . 
R > 0  J 

R s 

Using (6.7) and the estimates in [2], p. 304, we can prove that  

IINefllp,a. _< Cp[Ifll.,a~ , 1 < p < ~ ,  (6.8) 

where Cp is independent of ~. The crucial step in the proof of (6.8) is the observation 
that  if k 1 and ke are odd Calder6n -- Zygmund kernels, then 
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f kl(y) ( f  k2(z)e~"(x-Y-~ f ( x  -- y -- z)dz)dy -- 
[y]>E Rs 

l f f lq(y') l f/]~e-i(~]'Y't+~'z'u) uz')du)dt)da(y')da(z') 
- - e '~~u  J t~u f ( x -  t y ' - -  

s s ltl>~ R 

for almost every x E R "  and every VCR"  and s > 0 .  
We now use (6.8) to extend Theorem 5.2. With the same notations as in the 

theorem we obtain 

s,f  (x) < f N~f(x) I@(~)I 
R s 

and Minkowski' s inequality for integrals yields IIS*f]le ~ Cp]l#ll Ilfllp. The rest of 
the proof is the same as in Theorem 5.2. 

7. The rectangular partial sums of double Fourier series 

For f E LI(T2) let the rectangular partial sums be defined by  

&,nf(x, y) =~=_,~ ,=-n~ ck~e~(kx+~Y) = ~-2 f f Dm(x - t)Dn(y - u ) f ( t '  u )d tdu '  (x '  y) e T2 '  

% 

where ck~ are the Fourier coefficients of f. 
THEOREM 7.1. I f  f EL~(T2) for some p > 1, then 

Sm,,f(x , y) = o (log min (m , n)) , m , n ~  ~ ,  for a.e. (x , y) E T 2. 

Proof. I f  g E L I ( T 1 )  w e  denote its partial sums by  Sng(x) =- Sn(g ; x) = S,~(g(.) ; x) 
and set S * g ( x ) = S * ( g ; x ) = S * ( g ( . ) ; x ) = s u p  IS,g(x) l, x E T  1. Extend g to 

n 

the real axis by  setting it equal to zero outside T r Using well-known estimates 
of the Dirichlet kernel we can easily prove that  

IS, g@)[ __< Const. log n g*(x) , x E T 1 , n > 2 ,  (7.1) 

where g* denotes the Hardy  -- Littlewood maximal function of g. Let 1 < p < oo 
and f e LP(T2). Since 

&..f(x , y) = ~-~ f D,~(x -- t) (~-~ f D~(y -- u)f(t , u)du)dt , 
T1 

(7.1) implies tha t  

]S,~,f(x,y),  < Const. l ogm sup ~ / ! / x e o ~  

TI 

D,(y -- u)f( t  , u)du dt , (x , y) e T2 , 

m ~ 2 ,  



C O N V E R G E N C E  AL2CfOST EVEI~YWt~EI%E O r  C:ERTAE'~ S INGULA/~  INTEGI~ALS 8 5  

where [~o[ denotes the length of an interval oo and we have set f equal to zero 
outside T~. From the above inequality it follows tha t  

it/ s u p  ( l & . , f ( x  y ) l / l o g m )  < e o n s t .  , �9 , , , s u p - -  S*( f ( t  . ) , y ) d t  (x y) e T  2. 
rn~ 2,rt - -  XE,o 1 (D 

Using the Lp estimates of the Hardy  -- Littlewood maximal function and the 
operator S*, we can prove that  the LP norm of the left hand side above is less 
than Cp]lf]] F. By approximation of f with trigonometric polynomials we can use 
this fact to prove that  S,,~f(x,  y) = o (log m) a.e. From the symmetry it follows 
tha t  Smnf(x, y) = 0 (log n) a.e. and hence Sin,f (X, y) = O (log rain (m, n)) a.e. 

We remark that  it is easy to show that  the assumption f E LP(T2) for some 
p > 1 in the above theorem can be replaced by f C L (log L)2(T2). 

We will now give a condition on the Fourier coefficients of a function f C L2(T2), 
which is sufficient for the convergence a.e. of the rectangular partiM sums. First 
define S* by S* f (x , y) : sup I&,.f(x,y)l for ( x , y ) eT~  and f E L l ( T 2 ) .  

m , n  

THEOREM 7.2. Assume that the Fourier coefficients c,,~ of a function f ~ L2(T2) 
satisfy ~ ]c~,]2(log rain (]m I + 2, In 1 -? 2))3< ~ .  Then l imSm=f(x , y ) = f ( x , y )  

m,rr m,n-+~ 
a.e. in T 2 and 

IlS*fl[2 _< Const. {~ Ic,~,[ 2 (log min (Ira[ § 2 ,  Inl + 2))2} 1/2 �9 
m~ n 

Proof. Let l,,, = (log min (Ira] + 2, ]n] + 2)) -1 and let A l~n = lm, + 
+ lm+L,+l --  Ira+l,, -- lm,,+l. We furthermore set lk = lkk and Alk = lk --  lk+l. 
Let f satisfy the assumptions in the theorem and let g be the function in LZ(T2), 
which has Fourier coefficients 1,:Jcm,. Define T* for h eLl(T2) by T*h = 
sup (]Sm,h]l,,,). I f  we use the fact tha t  Alto, = A l m  for m = n ~nd vanishes for 

m ~= n, a partial summation yields 
rain(m, n)-- 1 min(m, n)-- 1 min(m, n)-- 1 

Sm~f = ~. Skk~ z~lk -~ ~,, Srakg Z]Ik ~- ~ & . g  Alk + O ( T * g )  . 
k 0 k=O k=O 

Denote the three first terms on the right by A, ]3 and C respectively. Define ak 
k 

and ~* by (~kh= (k + 1 ) - l~S~ jh  and ~ * h =  sup [~kh[, h ELI(T~) .  Another 
j = O  k 

partial summation shows tha t  IAI < Const. a*g. We also define P* and Q* by 

T 1 T~ 

and 

T1 T1 
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where h C LI(T~), (x, y) E T~ and Kn denotes the Fejdr kernel. A partial sum- 
mation in the expression for B yields 

k 

]B] < Const. sup {(k § 1) -1 ~ S,.sg } ~ Const. P*g 
k j = 0  

and analogously it follows that  ICI < Const. Q*g. 
We have shown that  S* f  < Const. (a*g § P*g -4- Q*g -4- T 'g) .  Using the 

boundedness in /52@1) of the operator SI* we can prove that  P*  and Q* are 
bounded operators on L2(T2). Also T* is bounded by  the proof of Theorem 7.1 
and the same holds for a* by  Theorem 6.1. We therefore get 

IIS2"fl]2 <_ Const. IlgH2 = Const. ( ~ [Cmnl 2 l~n : )  1/2 �9 
m , n  

The convergence of Sm,,f follows from this inequality and the proof is complete. 
Theorem 7.2 is slightly stronger than the theorem in [9], p. 95, in which Kaczmarz 

proves that  ~ ]Cm=lUlog (Iml -4- 2)log (Inl -4- 2) < ~ is a sufficient condition for 
r r t~  r t  

the convergence a.e. of Smn. 
We give one more theorem on the convergence of the rectangular partial sums. 
THEORE~ 7.3. Let {mk}~ be a sequence of integers such that m o = O, m 1 = 1 

and i n k + l / i n k > q >  1, k =  1 , 2 , . . .  Assume that p >  1 and f CLv(Te). Then 
lim Smk. , f (x  , y) -----f(x, y) for a.e. (x , y) e T2. 

]~ ~ rt--)- o o  

Proof. Let g e LI(T1) and define Aog = Sog and Akg = S,~kg -- S,,k_lg, 

k ~  1 , 2  . . . .  For fixed y e T 1 ,  we define f ' ( x , y ) - ~ A 2 k + l ( f ( ' , y ) ; x )  and 
cc k = 0  

f " ( x ,  y ) ~ - ~ o  A2k(f(''k== y) ;x). From Theorem (4.24) in [19], p. 233, it follows that  

f '  and f"  are well-defined a.e. and that  

and 

f ( x  , y) = f ' ( x  , y) § f"(x  , y) a.e. (7.2) 

]If'lip ~< Gllfiip, IIf"ilp _< cp}]fllp, (7.3) 

where the norms are taken with respect to T 2. We define Gn by  

Gn(x, y) : S , ( f (x  , . ) ; y )  

and we let G~' and G: be defined by  the same formula with f replaced b y  f '  
and f" .  (7.2) yields 

Sm,, f(x,  y) : S,~(G'~(. , y) ; x) § S,~(G:(. , y) ; x) . 

From the definition of f '  it follows that  for fixed y as a function of x G: has a 
Fourier series with gaps. Hence the inequality (1.20) in [19], p. 164, implies that  
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( y ) ;  _< oons  f K=+ - t)[G:(t, y)ldt ~ Const. P'f '(x, y), 
T~ 

where P* is the operator defined in the proof of Theorem 7.2. Defining R* by 
R*h = sup IS=k,=hl, h ~ LI(T~), we get R ' f <  Const. (P*f' + P*f"). Thebounded- 

k~rt 

hess of the operator _P* on LP(T2) combined with (7.3) yields [[R*fl[e < C~llfll~, 
and the theorem follows from this estimate. 

8. B o c h n e r -  Riesz summability of multiple Fourier series 

In  this section let T, denote the cube { x E R ' ;  Ix~l _ ~ ,  i ~ -  1 . . . .  ,s}. Let 
a be equal to the critical index { ( s -  1) and, for f r  LifTs), let S~f(x)-~ 
~(  ~n'~ ~.x 

i , ~ l , ~ \ l - - - ~ )  cne , where cn are the Fourier coefficients of f.  We define 

S* by S*f(x) = sup [S~f(x) l. Hence for s = 1 S* equals S*. The operator S* 
R>0 

has been studied by E. M. Stein [12]. 

f e-i~'f(t) [ 
The operator M1, defined in Section 4 by Mlf(x ) = sup J x ~  t dt , has 

~ER 

been used to estimate S*. (See [7].) We will show tha t  for all odd values of s 
there is a close connection between the operators S* and M 1. 

Assume tha t  the functions O and r defined for non-negative real numbers 
satisfy the following three conditions: 
r is non-negative, convex, ~b(0) = 0 and q~(u)/u -~ oo, u -+ oo (ef. [18], lo. 25). (8.1) 
Either q~l satisfies the same conditions as ~b and the inequality 

q51(2u ) ~__ Const. e l (u ) ,  u _~ 0, or q~l(u) --~ u .  (8.2) 

r log u) < Const. ~b(u), u > 1 . (8.3) 

Let  L+(Ts) denote the class of all measurable functions f on Ts for which 

f qs(tf(x)l)dx is finite. Then the theorem holds. following 

T s 

Suppos~ that [ +I(MII(x))~z <_ =4 ] +(l/(z)l)d~ + B for THEOREM 8.1. 

T~ T~ 

f E L+(T1) for some constants A and B. Then, i f  s is odd, there exist constants 
A' and B' such that for f CL+(T,) 

f ~ ) I ( S * f ( x ' ) )  d x  ~ ~ ' f  +(l+(x)l)~ + ~' 
T s T s 
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Proof. Assume that  f has period 2z in each variable and that  f e L~(T, ) .  

f ]n'2~a 'n'* We have ,S~f(.) = (2~) ~ 9E(y)f(x -- y)dv, where G(~) 7o~ ~ -- -~Z] ~ �9 
Ts 

Let g(x) equal f (x )  for x C 2T, and let g vanish outside 2T,. Before considering 

S * f  we will s tudy the functions aEg(x) = (2~)- ' . / -  HR(y) g(x - -  y)dy and 

IV 

f( (~*g(x) = sup I(~Rg(x) l, where HR(x ) = 1 - -  - ~ ]  e y. In [2], p. 308, Calderdn 
R>0 Iyi<R 

and Zygmnnd observed that  H E can be written HE(x) = F(Rlxl)Ix[-",  where 
is an odd Fourier --  Stieltjes transform of a measure # on the real line. Introducing 
polar coordinates and using the fact that  yJ is odd we get 

. E g ( x )  = [yl-~g(x --  y )dy  = 

R S  

oo 

S 0 

= (2~)-s l f ( f  w(Rt) t-lg(x -- ty')dt) d,~(y') . 
S I't 

Denoting the inner integral by  gE(x, y') we have 

~E(X , y') = f ( f e-'E'~ t-lg(x -- ty')dt) d#(~) 
l't R 

and 

sup lgE(x, Y')I ~ ]]/~ll sup f e ~ , t - l g ( x _  ty ' )dt  . 
E ~cR 

R 

(8.4) 

I t  follows that  ~*g(x) _ Const. f supE [~E(x, y')[d~(y') 
S 

and (8.2) and Jensen's 

inequality for convex functions yield 

r  ~ Const. f r  [gR(x , y')j)  da(y') . 

s 

Using (8.4) and the assumption in the theorem we see that  

(8.5) 
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f el(sup I~R(x, r ~x _< Const. f ~(Ig(~)l) dx + Const. _< 
T~ T s 

Const. f ~(lf(x)t) dx -t- Const., y' e S .  

T~ 

Hence, integrating (8.5) we obtain 

f r <_ oo,~t, f ~([ / (x)I)dx + Cons~. (8.6) 
m * l  

T s T~ 

I t  remains to compare S*f  with a*g. Defining AR(x ) =- DR(x) - -  HR(x) we get 

T s n S ~ T s  

Using the estimate of A R on p. 103 and the relation (4.4) on p. 105 in [13], we 
obtain 

(l*g(x) -4- Const. f If(t) l log + If(t)Idt -~ Const., x S ' f  (x) c 

T~ 

Jensen's inequality combined with (8.2) and (8.3) now yields 

q~l(S*f(x)) _~ C o n s t . { r  + 1 } ,  x C T , .  

T~ 

The theorem follows if we integrate this inequality and use (8.6). 
Taking q51(u ) = u, r  ~ u(log + u) ~ and using Theorem 2 in [7] we see that  

if s is odd then Theorem 8.1 implies the well-known result ([12], pp. 96--97) 

f ~.j(x)~x <_ Const. f IJ(x)I(log§ ll(x)l)~dx + Const. (8.7) 
T~ T, 

One consequence of Theorem 8.1 is that  if the estimate 

f Mif(z)dz ~ Cons~. f rj(z)t(~o~+ ,l(~),):~ + Const. 

T~ T I 

can be improved in the sense that  ~b(u) ~ u(log+ u) 2 can be replaced by a function 
T(u) such that  lira (T(u)~qS(u))  = O, then (8.7) can be improved in the same way. 

u--> co 
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