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1. I n t r o d u c t i o n  

In 1967 Gunning and Narasimhan proved that  every open Riemann surface admits a 

holomorphie function without critical points [GN], thus giving an affirmative answer to 

a long-standing question. Their proof was an ingenious application of the approximation 

methods of Behnke and Stein. 

A complex manifold is called Stein (after Karl Stein [Ste], 1951) if it is biholomorphic 

to a closed complex submanifold of a complex Euclidean space C N. Open Riemann 

surfaces are precisely Stein manifolds of complex dimension one. In this paper we prove 

the following result. 

THEOREM I. Every Stein manifold admits a holomorphic function without critical 

points. More precisely, an n-dimensional Stein manifold admits [ �89 holomor- 

phic functions with pointwise independent differentials, and this number is maximal for 

every n .  

For a more precise statement see Theorems 2.1 and 2.6. An example of Forster [Fol] 

provides for each n c N  an n-dimensional Stein manifold which does not admit more than 

[�89 (n + 1)] holomorphic functions with independent differentials (Proposition 2.12 below). 

The question on the existence of noncritical holomorphic functions on a Stein mani- 

fold has been open since the 1967 work of Gunning and Narasimhan [GN]; it was men- 

tioned in Gromov's monograph [Gro3, p. 70]. Our proof, which also applies to Riemann 

surfaces, is conceptually different from the one in [GN]. It is much easier to construct 

noncritical smooth real functions on smooth open manifolds; see e.g. Lemma 1.15 in 

[God, p. 9]. 
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The critical locus of a generically chosen holomorphic function on a Stein manifold is 

discrete. Conversely, we prove that  for any discrete subset P in a Stein manifold X there 

exists a holomorphic function f E O ( X )  whose critical locus equals P (Corollary 2.2). 

Recall that  a holomorphic map f = ( f l ,  ..., f q ) :  X---}cq is a submersion if its differen- 

tial dfx: TxX---}rf(x)Cq~C q is surjective for every x E X .  Equivalently, the differentials 

of its component  functions must be linearly independent, i.e., dr1Adf2 A ... Adfq r  Thus 

the differential of a holomorphie submersion X--+C q induces a surjective complex vector 

bundle map T X - - + X x  C q of the tangent bundle of X onto the trivial bundle of rank q 

over X.  Our main result is that ,  for q < d i m  X,  this necessary condition for the existence 

of a submersion X - + C  q is also sufficient. 

THEOREM II.  (The homotopy principle for holomorphic submersions.) I f  X is 

a Stein manifold and l ~ < q < d i m X  then every surjective complex vector bundle map 

T X - + X x  C q is homotopic to the differential of a holomorphic submersion X--+C q. 

The homotopy referred to above belongs to the space of surjective complex vector 

bundle maps T X - + X •  C q. Theorem II  is the holomorphic analogue of the basic ho- 

motopy principle for submersions of smooth open manifolds to real Euclidean spaces, 

due to A. Phillips [Phl] and M. Gromov [Grol]. A more precise s tatement  is given 

by Theorems 2.5 and 2.6 in w We don ' t  know whether the same conclusion holds for 

q = d i m  X > 1 (for open Riemann surfaces see [GN]). 

By using the tools developed in this paper  one can also prove the following. If 

fo, f l:  X--+cq are holomorphic submersions ( q < d i m X )  whose differentials dfo, dfl are 

homotopic through a family of surjective complex vector bundle maps of T X  onto 

the trivial bundle X x C q then there exists a homotopy of holomorphic submersions 

f~: X - + C  q (~-C [0, 1]) connecting f0 to f l -  The details are included in the sequel to this 

paper,  entitled 'Holomorphic submersions from Stein manifolds' (to appear  in Ann. Inst. 

Fourier), in which we investigate the same problem for more general target  manifolds. 

Theorem I is a corollary of Theorem II  and a result of Ramspot t  IRa] to the effect that  

the cotangent bundle of an n-dimensional Stein manifold admits  [�89 (n + 1)] independent 

sections, and these define a surjective complex vector bundle map  T X - - + X x  C[ (~+1)/2]. 

Ramspot t ' s  theorem combines the Lefschetz theorem [AF] with the s tandard method 

of constructing sections of fiber bundles over CW-complexes by stepwise extension over 

the skeleta. Our proof gives both results simultaneously and does not use Ramspot t ' s  

theorem. 

We give numerous applications to the existence of nonsingular holomorphic folia- 

tions on Stein manifolds. We prove that  every complex vector subbundle E c T X  with 

trivial quotient T X / E  is homotopic to the tangent bundle of a holomorphic foliation 
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(Corollary 2.9); the same is true if T X / E  admits locally constant transition functions 

(Theorem 7.1). Analogous results for smooth foliations on open manifolds were proved 

by Grolnov [Grol] and Phillips [Ph2], [Ph3], [Ph4], and on closed manifolds by Thurston 

[Thl], [Th2]. Every n-dimensionM Stein manifold admits nonsingular holomorphic sub- 

mersion foliations of any dimension ~> [�89 and if X has geometric dimension k~<n then 

it admits submersion foliations of any dimension >~ [�89 (Corollary 2.7). We construct 

submersion foliations transverse to certain complex submanifolds of X (Corollaries 2.3 

and 2.11) or containing it as a leaf (Corollaries 2.10 and 7.2). 

Our construction depends on three main ingredients developed in this paper. We 

postpone the general discussion to w and mention at this point only the following splitting 

lemma for biholomorphic maps (Theorem 4.1): If A, B c X  is a Cartan pair in a complex 

manifold X then every biholomorphic map 7 sufficiently uniformly close to the identity 

in a neighborhood of A N B  admits a decomposition ~/=floa -1, where a (resp. fl) is a 

biholomorphic map close to the identity in a neighborhood of A (resp. of B). 

This lemma is used to patch a pair of holomorphic submersions f ,  g to C q, defined 

in a neighborhood of A and B respectively, which are sufficiently uniformly close in a 

neighborhood of A A B, into a submersion f in a neighborhood of A U B. The map ~/arises 

as a transition map satisfying f=go~ near ANB.  From ~/=/~oc~ -1 we obtain foa=go/3 ,  

which gives f .  

Our splitting lemma plays the analogous role in our construction of submersions 

as Cartan's lemma (on product splitting of holomorphic maps with values in a complex 

Lie group) does in Cartan's theory or in the Oka Grauert  theory. A key difference is 

that  our lemma gives a compositional splitting of biholomorphic maps and is closer in 

spirit to Kolmogorov's work on compositions of functions [Ko]. We prove it by a rapidly 

convergent Kolmogorov-Nash-Moser-type iteration (w 

Our proof of Theorem II breaks down for q=dim X > 1 due to a possible Picard-type 

obstruction in the approximation problem (Lemma 3.4). Hence the following problem 

remains open. 

Problem 1. Does a parallelizable Stein manifold of dimension n >  1 holomorphically 

immerse in C 7~ (i.e., is it a Riemann domain over c n ) ?  

This well-known problem (see [BN, p. 18] or [Gro3, p. 70]) was our main motivation 

for the present work. To find such an immersion it would suffice to obtain an aff• 

answer to any of the following two problems. 

Problem 2. Let B be an open convex set in C n for n > l .  Is every holomorphic 

immersion (=submersion) B - + C  n a uniform limit on compacts of entire immersions 

C n ~ C n ?  
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The analogous problem for mappings with constant Jacobian may be related to 

the Jacobian problem for holomorphic polynomial maps [BN, p. 21]. The situation is 

much bet ter  understood for biholomorphic maps: If f is an injective holomorphic map 

from a convex open set B c C  n onto a Runge set f ( B ) c C  n then f can be approximated 

uniformly on compacts in B by holomorphic automorphisms of C n [ALl. No comparable 

result seems to be known for noninjective immersions. 

Problem 3. Let f = ( f l ,  ..., fq):X--+cq be a holomorphic submersion for some q< 

d i m X .  Given a (1,0)-form 00 such that  dflA...AdfqAOor on X,  find a homotopy of 

(1,0)-form Ot (tEl0, 1]) such tha t  dflA...AdfqAOtr for all te l0 ,  1] and Ol=dg for some 

gEO(X).  (The map (f,  g): X---}C q+l is then a submersion.) 

Problem 1 has an affirmative answer if one can solve Problem 3 with q = n - 1 .  Ex- 

plicitly, given a holomorphic submersion f :  X n---~C n-1 such that  ker df is a trivial line 

subbundle of TX,  find a g E O(X) whose restriction to every level set { f =  c} is noncritical. 

2. T h e  m a i n  r e s u l t s  

Let X be a Stein manifold (for their general theory see [GR] and [H52]). Denote by O(X) 

the algebra of all holomorphic functions on X.  A compact  set KC X is said to be O(X)- 

convex if for any point x E X \ K  there exists f E O ( X )  satisfying I f ( x ) l > m a x g  Ill. An 

O(Cn)-convex set is called polynomially convex. A function is holomorphic on a closed 

subset K C  X if it is holomorphic in some unspecified open neighborhood of K;  the set 

of all such functions (with the usual identification of functions which agree near K )  is 

denoted O(K). We denote by j~(f)  the r-jet of a function f at xEX.  The critical set of 

l E O ( X )  is Cri t ( f ;  X ) = { x E X :  dfx=0};  a function without critical points will be called 

noncritical. We denote by Izl the Euclidean norm of z E C  ~. 

(1) Functions with prescribed critical locus. Our first main result is 

THEOREM 2.1. Let X be a Stein manifold, Xo c X a closed complex subvariety of X 

and K c X  a compact O(X)-convex subset. Let U c X  be an open set containing XoUK 

and f EO(U) a holomorphic function with discrete critical set P={P~,P2, ...}C XoUK. 

For any c > 0  and r, n l , n 2 , . . . E i  there exists an l E O ( X )  satisfying Cr i t ( f ;X)=P,  

I f ( x ) - i ( x ) I < c  for all xEK,  "~ - "~ 'k( f - f )=o (k - - l , 2 ,  ...). 3x(f - f)=O for all xEXo, and 3pk 

In particular, if f is noncritical on U then ] is noncritical on X.  

Theorem 2.1 implies that  any noncritical holomorphic function on a closed complex 

submanifold X0 of a Stein manifold X extends to a noncritical holomorphic function 
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on X.  Furthermore,  there exist noncritical functions satisfying the axioms of a Stein 

manifold ([H52, p. 116, Definition 5.1.3]). Theorem 2.1 is proved in w 

The critical locus of a generically chosen holomorphic function on a Stein manifold 

is discrete. Theorem 2.1 implies the following converse. 

COROLLARY 2.2. Let P={Pl,P2,P3, ...} be a discrete set in a Stem manifold X and 

let fk be a holomorphic function in a neighborhood of Pk with an isolated critical point 

at Pk for k = 1 , 2 , . . . .  For any choice of integers nkCN there exists an f E O ( X )  with 

C r i t ( f ) = P  such that f - fk vanishes at least to order nk at Pk for every k = l ,  2, .... 

(2) Foliations by complex hypersurfaces. We denote by T X  the holomorphic tangent 

bundle of X and by T*X its holomorphic cotangent bundle. For the general theory of 

foliations we refer to [God]. 

COROLLARY 2.3. Every Stein manifold admits a nonsingular holomorphic foliation 

by closed complex hypersurfaces; in addition such a foliation may be chosen to be trans- 

verse to a given closed complex submanifold. 

Proof. A closed complex submanifold V of a Stein manifold X is itself Stein and 

hence admits  a noncritical function fEO(V)  by Theorem 2.1. By Car tan ' s  theorem 

f extends to a holomorphic function on X.  Since the extension remains noncritical 

on X0, Theorem 2.1 gives a noncritical function / c O ( X )  such that  f lw=f .  The family 

of connected components of the levels sets { f = c }  (cCC) is a foliation of X by closed 

complex hypersurfaces transverse to V. 

COROLLARY 2.4. If V is a smooth closed complex hypersurface with trivial normal 

bundle in a Stein manifold X then V is a union of leaves in a nonsingular holomorphic 

.foliation of X by closed complex hypersurfaces. This holds in particular if H2(V; Z ) = 0 ,  

or if X =  C". Any smooth connected complex curve in a Stein surface is a leaf in a 

nonsingular holomorphic foliation. 

Proof. Choose a holomorphic trivialization of the normal bundle N = T X I v / T V ~ _  

V• C. The projection h: N--+C on the second factor is a noncritical holomorphic function 

on N, and N 0 = { h = 0 }  is the zero-section of N. The Docquier Grauert  theorem [DG] (see 

also Theorem 8 in [GR, p. 257]) gives an open neighborhood f ~ c X  of V and an injective 

holomorphic map r f~--+N with r  Then f=hor  is a noncritical function on ft 

with { f = 0 } = V .  Applying Theorem 2.1 (with X 0 = V )  we obtain a noncritical function 

l E O ( X )  which vanishes on V, and the foliation { f = c }  clearly satisfies Corollary 2.4. 

The second s ta tement  follows from the isomorphism Pic (V) = H ~ (V; (_9") _~ H 2 (V; Z); the 

latter group vanishes if V is an open Riemann surface. Since every divisor on C n is a 

principal divisor, the normal bundle of any complex hypersurface VC C ~ is trivial. 
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(3) Holomorphic submersions and foliations. We now consider the existence of holo- 

morphic submersions f = (f l ,  ..., fq): X--+ C q for q ~< n =  dim X. The components of f are 

noncritical functions with pointwise independent differentials, i.e., dr1 A... A dfq 7~ 0 on X. 

Hence an obvious necessary condition is that  there exists a q-tuple 0=(01, ..., Oq) of con- 

tinuous differential (1, 0)-forms on X satisfying 01A...AOqI~7~O for all x E X .  Any such 

ordered q-tuple will be called a q-coframe on X. We may view 0 as a complex vector 

bundle epimorphism 0: T X - - + X x  C q of the tangent bundle T X  onto the trivial bundle 

of rank q over X.  Clearly we may speak of holomorphic q-coframes, homotopies of q- 

coframes, etc. If Oj=dfj for some f j c O ( X )  ( j = l ,  ...,q) we shall write O=df and call 0 

exact holomorphic. The following two theorems are our main results; they are proved 

in w 

THEOREM 2.5. Let X be a Stein manifold and l ~ < q < d i m X .  For every q-coframe 0 ~ 

on X there exists a homotopy of q-coframes 0 t (tE [0, 1]) such that 01=df where f: x ~ c q  

is a holomorphic submersion. Furthermore, if X o , K C X  are as in Theorem 2.1, r E N ,  

e>0 ,  and if we assume that O~ ~ is exact holomorphic in art open set U D X o U K ,  

the homotopy may be chosen, such that Ot=df t is exact holomorphic in a neighborhood of 

X o U K  for every rE[0, 1], f t _ f o  vanishes to order r on Xo, and I f t - f ~  on K.  

Theorem 2.5 also holds for q = d i m X = l  and is due in this case to Gunning and 

Narasimhan who proved tha t  for every nonvanishing holomorphic one-form 0 on an open 

Riemann surface there exists a holomorphic function w such that  eWO=df is exact holo- 

morphic [GN, p. 107]. The homotopy Ot----etWO consisting of nonvanishing one-forms con- 

nects 00=0 to Ol=df. We do not know whether Theorem 2.5 holds for q = d i m X > l .  

We state separately the case when the necessary condition on the existence of a 

q-cofl'ame is au tomat ica l ly  fulfilled due to topological reasons. Recall that  any Morse 

critical point of a strongly plurisubharmonic function on an n-dimensional complex mani- 

fold has Morse index at most n [AF]. If X admits  a strongly plurisubharmonic Morse 

exhaustion function p:X--+R all of whose critical points have index ~<k (and k is a 

minimal such), we say that  X has geometric dimension k; such an X is homotopically 

equivalent to a k-dimensional CW-complex [AF]. 

THEOREM 2.6. Let ~: X-+  R be a strongly plurisubharmonic Morse exhaustion func- 

tion on an n-dimensional Stein manifold X .  Assume that c is a regular value of Q 

and every critical point of ~ in { x C X : ~ ( x ) > c }  has Morse index <<.k. I f  q<~q(k,n):= 

r a i n { n -  [ � 8 9  then every holomorphie submersion f: { x e X : ~( x ) < c}-+ C q can be 

approximated uniformly on compacts by holomorphic submersions f: X - + C  q. Every n- 

dimensional Stein manifold X admits a holomorphic submersion to C[(~+1)/2]; if  X has 

geometric dimension k then it admits a holomorphic submersion to C q(k'n). 
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Proposition 2.12 below shows that  the submersion dimension in Theorem 2.6 is 

optimal for every n. Theorem 2.6 immediately gives 

COROLLARY 2.7. Every Stein manifold X of geometric dimension k admits nonsin- 

gular holomorphic foliations of any dimension ~ [�89 If X is parallelizable, it admits a 

holomorphic submersion X-+C n-1 ( n = d i m X )  and nonsingular holomorphic foliations 

of any dimension >~ 1. 

The foliations in Corollary 2.7 are given by submersions to Euclidean spaces; hence 

all leaves are topologically closed and the normal bundle is trivial. 

Remark. The Oka-Grauert  principle applies to q-cofraInes on a Stein manifold and 

shows that  any q-coframe is homotopic to a holomorphic q-coframe, and any homotopy 

between a pair of holomorphic q-coframes can be deformed to a homotopy consisting 

of holomorphic q-coframes. This is seen by viewing q-coframes as sections of the holo- 

morphic fiber bundle Vq(T*X)--+X whose fiber Vx q is the Stiefel variety of all ordered 

q-tuples of C-independent elements in T*X. Since the Lie group GLn(C) ( n = d i m X )  

acts transitively on ~q, the Oka-Grauert  principle [Gra] applies to sections X--+ V q (T'X).  

(4) Existence of homotopies to integrable subbundles. The components of a q-coframe 

on X are linearly independent sections of T'X,  which therefore span a trivial complex 

subbundle of rank q in T*X. Conversely, every trivial rank-q subbundle OCT*) (  is 

spanned by (the components of) a q-coframe. Different q-coframes 0, 0 ~ spanning the 

same subbundle of T*X are related by O~=O.A for some A: X-+GLq(C). A homotopy of 

q-coframes induces a homotopy of the associated subbundles of T*X. Hence Theorem 2.5 

implies 

COROLLARY 2.8. Let X be a Stein manifold. Every trivial complex subbundle OC 

T*X of rank q<dim X is homotopic to a subbundle generated by independent holomorphic 

differentials dr1, ...,dfq. If 0 is holomorphic then the homotopy can be chosen through 

holomorphic subbundles of T*X. 

The last statement follows fl'om the Oka-Grauert  principle [Gra]. Corollary 2.8 

admits the following dual formulation in terms of subbundles of T X  (for a generalization 

see Theorem 7.1). 

COROLLARY 2.9. Let X be a Stein manifold of dimension n. Every complex sub- 

bundle E c T X  of rank k>>.l with trivial quotient bundle T X / E  is hornotopic to an in- 

tegrable holomorphic subbundle k e r d f c T X ,  where f: X-+C n-k is a holomorphic sub- 

mersion. If E is holomorphic then the homotopy may be chosen through holomorphic 

subbundles. 
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Pro@ The complex subbundle O = E  • c T * X  with fibers Ox={AET~X:  A(v)=0 for 

all v 6 E x }  (the conormal bundle of E )  satisfies O~_(TX/E)* and hence is trivial. Corol- 

lary 2.8 gives a homotopy O t c T * X  (t6[0,1]) from O ~  to a subbundle O I c T * X  

spanned by n - k  independent holomorphic differentials dr1, . . . ,dfn-k. The homotopy 

E t =  ((~t)ZC T X  satisfies Corollary 2.9. The last statement follows from the Oka Grauert 

principle. 

We conclude with a couple of results on the existence of submersion foliations which 

either contain a given submanifold as a leaf, or else are transverse to it. Both depend on 

Theorem 2.5 and are proved in w 

COROLLARY 2.10. Let X be an n-dimensional Stein manifold and V c X  a closed 

complex submanifold. I f  T X  admits a trivial complex subbundle N satisfying T X I v =  

T V |  then there is a holomorphic submersion f: X - + c q  ( q = n - d i m  V)  such that V 

is a union of connected components of the fiber f - l (O) .  I f  dimV~> [�89 then the above 

conclusion holds provided that V has a trivial normal bundle in X .  

COROLLARY 2.11. Let X be a Stein manifold, ~: V~->X a closed complex submani- 

fold, and f = ( f l , . . . , f q ) :  V--+C q a holomorphic submersion. I f  there is a q-coframe O= 

(01, ..., Oq ) on X satisfying ~ * O j =df  j ( j = l ,  ..., q) then there exists a holomorphic submer- 

sion F: X--+cq with F l u =  f . Such an F always exists if  q<<. [ l ( n + l ) ] ,  where n = d i m X .  

(5) An example. The following example shows that  the submersion dimension in 

Theorem 2.6 is maximal for every n. 

PROPOSITION 2.12. Set Y={[x:y:z]  6Cp2:z2-t-y2+z2r and 

X = ~ Y'~' if  n = 2m, 

[ y m •  if n = 2 m + l .  

Then X is an n-dimensional Stein manifold which does not admit a holomorphic sub- 

mersion to C [(n+1)/2]+1. 

Proof. These manifolds were considered by Forster [Fol, p. 714], [Fo2, Proposition 3]. 

He showed that  Y is a Stein surface which admits a strong deformation retraction onto the 

real projective plane M =  { [x: y: z]: x, y, z 6 R} ~ R P  2 contained in Y as a totally real sub- 

manifold. Thus Y is a complexified R P  2, and X is homotopic to (Rp2)  m. Using the fact 

that  T Y I M ~ T M @ T M  (as real bundles) Forster proved that  the St iefebWhitney class 

w2m(TX)  is the nonzero element of the group H2m(x ;  Z2)=H2m((Rp2)m;  Z2)=Z2~ and 

consequently the Chern class c,~ ( T X )  is the nonzero element of H2"~(X; Z)=Z2.  Hence 

c , ~ ( T * X ) = ( - 1 ) m c m ( T X ) r  [MS, p. 168], which implies that  T*X does not contain a 

trivial complex subbundle of rank n - m + 1 =  [ �89 +1. (Proof: if T * X = E @ E '  where 
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E '  is trivial then Or [MS, Lemma 14.3], which means that  rankE~>m 

and consequently rankE~<~n-m.)  Hence there exists no submersion X--+C [(~+1)/2]+1. 

(The only essential property of X is that  the Chern class of T X  of order [�89 does not 

vanish.) 

Recall that  holomorphic immersions of a Stein manifold X into Euclidean spaces 

of dimension N > d i m X  satisfy the following homotopy principle (Eliashberg and Gro- 

mov [Gro3, pp. 65-75]): Every injective complex vector bundle map TX--+X• N is 

homotopic to the differential of a holomorphic immersion X-+C y. In particular, every 

n-dimensional Stein manifold admits a holomorphic immersion in C [3~/2], and the mani- 

fold X in Proposition 2.12 does not immerse in C [3~/2]-1 [Fo2, p. 183]. A comparison 

with Theorem 2.6 shows that  the submersion dimension q(n) and the immersion dimen- 

sion N(n), respectively, are symmetric with respect to n = d i m X :  

q(n)=[�89189 N(n)=n+[�89 

If X has geometric dimension at most k and k~>2 then X admits a submersion to C n-[k/2] 

and immersion in C n+[k/2}, and both bounds are sharp (an example is the manifold 

y[k/2] • Cn-2[k/2] where Y is as in Proposition 2.12). 

(6) Remarks on parallelizable Stein manifolds. By Grauert  [Gra] the tangent bundle 

of a Stein manifold X is holomorphically trivial if and only if it is topologically trivial 

(as a complex vector bundle). The question whether every such manifold immerses in 

C n with n = d i m X  remains open for n > l .  Every closed complex submanifold X c C  N 

with trivial normal bundle is parallelizable [Fol, p. 712]. (Triviality of the normal bundle 

is equivalent to X being a holomorphie complete intersection in some open neighbor- 

hood.) In particular, every closed complex hypersurface in C n+l is parallelizable [Fol, 

Corollary 2], but it is unknown whether these immerse into C n. J . J .  Loeb [BN, p. 19] 

found explicit holomorphic immersions X--+C ~ of algebraic hypersurfaces X c C  n+l of 

the following type: 

X = {(z0, zl, ..., zk): zd+Pl(zl)+...+Pk(zk) = 1} C C n-1 , 

where z0 E C, zj E C ~,  Fj is a homogeneous polynomial of some degree dj on C ~ for every 

j = 1,..., k, and nl  +.. .  + nk =n .  These manifolds are even algebraically parallelizable but 

do not admit algebraic immersions to C '~. An example of this type is the complex 

n-sphere E~={zECn+X : y~ 4=1}. 
In another direction, Y. Nishimura IN] found explicit holomorphic immersions 

CP2\C--+C 2 where C is an irreducible cuspidal cubic in C P  2. Further examples and 

renmrks on parallelizable Stein manifolds can be found in [Fol]. 
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Unlike E ~, the real n-sphere S n = E n N R  ~+1 (which is a maximal totally real sub- 

manifold of E '*) is parallelizable only for n = l ,  3, 7. By Thnrston ([Thl], [Th2]) S 3 and S 7 

admit C~-foliations of all dimensions. However, a simply-connected closed real-analytic 

manifold (such as S n for n >  1) does not admit any real-analytic foliations of codimension 

one (Haefliger [Hall). 

(7) Comparison with smooth immersions and submersions. The homotopy classifica- 

tion of smooth immersions X--+Rq was discovered by Smale [Sm] and Hirsch [Hi1], [Hi2]. 

Subsequently analogous results were proved for submersions (Phillips [Phl] and Gro- 

mov [Grol]), k-mersions (Feit [Fe]), and maps of constant rank [Ph5]. Gromov's mono- 

graph [Gro3] offers a comprehensive survey; see also the more recent monographs [Sp] 

and [EM]. Our Theorem 2.5 is a holomorphie analogue of the basic homotopy principle 

for smooth submersions X--~Rq which holds for all 1 ~<q~<dimR X provided that  X is a 

smooth open manifold (see [Hi2], [Phl], [Grol] and [Ha2]). 

The differential relation controlling smooth immersions of positive codimension is 

ample in the coordinate directions, and the corresponding homotopy principle follows 

from the convex integration lemma of M. Gromov (see the discussion and references in 

Subsection (2) of w below). The smooth submersion relation is not ample in the coor- 

dinate directions (Example 2 in [EM, p. 168]), and the homotopy principle for smooth 

submersions is obtained by exploiting the invariance of the submersion condition un- 

der local diffeomorphisms and reducing the problem to a subpolyhedron in the given 

manifold. On the other hand, we shall see that  the complex (holomorphic) submersion 

relation is ample in the coordinate directions on any totally real submanifold, and this 

is exploited to obtain a maximal rank extension of the map across a totally real handle 

(Lemma 6.5). The invariance under local biholomorphisms is also strongly exploited in 

the approximation and patching of submersions. 

The results of homotopy principle type on Stein manifolds are traditionally referred 

to as (instances of) the Oka principlel see the recent survey [F3]. 

(8) Outline of proof of the main theorems. Our construction relies on three main 

ingredients developed in this paper. 

The first one is a new technique for approximating a noncritical holomorphic func- 

tion f on a compact polynomially convex subset K c C  '~ by entire noncritical func- 

tions (w We exploit the invariance of the maximal rank condition under biholomor- 

phisms. Choose a preliminary approximation of f on K by a holomorphic polynomial h 

with finite critical set E=Cr i t (h )  disjoint from K. When n > l ,  the main step is to find 

an injective holomorphic map q~: C ~ - + C n \ E  (a Fatou Bieberbach map) which is close 

to the identity map on K and whose range avoids E. Such a q5 can be obtained as a 
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limit of holoinorphic automorphisms of C n using methods developed by Anders6n and 

Lempert  [A], [ALl, and Rosay and the author [FR], IF1], [F2]. T h e n / = h o e  is noncritical 

on C n and approximates f uniformly on K. For n =  1 we give a different proof using 

Mergelyan's theorem. Similar methods are developed for submersions C n-+C q for q<n. 

The second ingredient concerns patching of holomorphic submersions. Let A, B C X 

be compact sets in a complex manifold X such that  AUB has a basis of Stein neigh- 

borhoods and A \ B N B \ A = ~ .  For any biholomorphic (=injective holomorphic) map 

7: V-+X, sufficiently close to the identity map in a neighborhood V c X  of C=AAB, we 

obtain a compositional splitting ~'=/3oa -1, where a (resp. /3) is a biholomorphic map 

close to the identity in a neighborhood of A (resp. B) (Theorem 4.1). If f (resp. g) is a 

submersion to C q in a neighborhood of A (resp. B) and g is sufficiently uniformly close 

to f in a neighborhood of C then f = g ~  for a biholomorphic map V close to the identity; 

splitting 7=/3oa -1 as above we obtain foa=go/3 near C; this gives a submersion f in a 

neighborhood of AUB which approximates f on A. 

Remark. The standard cS-method for patching f and g would be to take h =  

f + x ( g - f )  and f=h-T(Oh),  where T is a bounded solution operator to the cS-equation 

in a neighborhood of AUB and X is a smooth function which equals zero in a neighbor- 

hood of A\B and one in a neighborhood of B\A.  Since Oh=(g-f)Ox, the correction 

term T(~h) is controlled by If-gl,  and hence ] is noncritical in a neighborhood of A 

provided that  Ig-fl  is sufficiently small in a neighborhood of AAB. However, to insure 

that  f is also noncritical in a neighborhood of B we would need the pointwise estimate 

Id(T(Oh))l< Idgl. Since we obtain g by a Runge approximation of f on ANB (and we 

have no control on its differential on B\A), such an estimate is impossible. 

In the construction of submersions X-+C q for q> 1 another nontrivial problem is the 

crossing of the critical levels of a strongly plurisubharmonic Morse exhaustion function 

~) on X. We combine three ingredients (w 

a convex integration lemma of Gromov, or Thorn's jet transversality theorem 
when q~< [ �89 to obtain a smooth extension across a handle; 

holomorphic approximation on certain handlebodies; 

- -  the construction of an increasing family of smooth strongly pseudoconvex neigh- 

borhoods of a handlebody, passing over the critical level of 6- 

We globalize the construction using the ~bumping method'  similar to the one in 

[Gro4], [HL3], [FP1], [FP2], [FP3]. We exhaust X by an increasing sequence AoCA1c 
o~ X A2 c . . .  C Uk=l Ak = of compact O(X)-convex sets such that  the initial function (or 

submersion) f=fo is defined on A0, and for each k~>0 we have Ak+I=AkUBk where 

(Ak, Bk) is a special Caftan pair. This enables us to approximate a noncritical function 
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fk on Ak by a noncritical function fk+l on Ak+l. The limit ]= l imk~o~ fk is a noncritical 

function on X. The details are given in w for functions and in w for submersions. 

In w we construct holomorphic sections transverse to certain holomorphic foliations, 

thus generalizing Corollaries 2.9 and 2.10. 

3. A p p r o x i m a t i o n  o f  n o n c r i t i c a l  f u n c t i o n s  a n d  s u b m e r s i o n s  

This section uses the Anders6n Lempert theory of holomorphic automorphisms of C ~ 

[A], [ALl as developed further in [FR], IF1], [F2]. The following is one of the main steps 

in our construction of noncritical holomorphic functions. 

THEOREM 3.1. Let K be a compact polynomially convex subset of C ~. Let f be a 
holomorphic function in an open set UDK satisfying df Ts Given e>0  there exists a 
g E O ( C  ~) satisfying dg~O on C n and SUPK I f-gl<e. 

Proof. Choose a compact polynomially convex set LC U with smooth boundary and 

containing K in the interior. Such an L may be obtained as a regular sublevel set of 

a strongly plurisubharmonic exhaustion function on C ~ which is negative on K and 

positive on C n \ U  [H52, Theorem 2.6.11]. 

Consider first the case n =  1. Since L c C is smoothly bounded and polynomially con- 

vex, it is a union = [-Jj=l Lj of finitely many compact, connected and simply-connected 

sets Lj. Since f '(z)~O for zCU, there is a holomorphic function h in a neighborhood 

of L such that fl(z)=eh(Z) for each z. 

For every j = 2 ,  .. . ,m we connect L1 to Lj by a simple smooth arc Cj contained in 

C \ L  except for its endpoints ajEL1, bjELj. Furthermore we choose the arcs Cj to be 

pairwise disjoint. The sets S:=LLJC2U...UCm and C \ S  are connected, and h can be 

extended to a smooth function on Cj satisfying fcj eh(r dC=f(bJ)-f(aJ) for j = 2 ,  ..., m 

(where Cj is oriented from aj to bj). By Mergelyan's theorem we can approximate h 

uniformly on S as close as desired by a holomorphic polynomial h. Choose a point aCL1 
and define g(z)=f(a)+fZes162 The integral does not depend on the choice of the 

path, and hence g is an entire function on C satisfying g~(z)=eh(z)~O for each zCC.  If 

zEL, we can choose the path of integration from a to z entirely contained in S and with 

length bounded from above independently of z. (If zELj for j > l ,  we include the arc 

Cj in the path of integration.) It follows that g approximates f uniformly on L. This 

completes the proof for n =  1. 

Assume now n~>2. Since L is polynomially convex, there exists for any c > 0  a 

holomorphic polynomial h on C n satisfying SUPL I f -h i< ~c.1 If c is chosen sufficiently 

small then dhr on K. For a generic choice of h its critical set E={zCCn:dhz=O}C 
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C n \ K  is finite (since it is given by n polynomial equations Oh/Ozj=O, j = l ,  ...,n). To 

complete the proof we need 

PROPOSITION 3.2. Let K be a compact polynomially convex subset of C n (n~>2). 

Given a finite set E c C ~ \ K  and 6>0  there is a biholomorphic map r of C n onto a 

subset 0 c C n \ E  such that I r  for all zEK.  

Recall that  a biholomorphie map of C ~ onto a proper subset of C n is called a Fatou 

Bieberbach map. Thus r is a Fatou Bieberbach map whose restriction to K is close to 

the  identity map and whose range avoids E. 

Assume for a moment  tha t  Proposition 3.2 holds. Let c=sup~eL Idhzl. Choose 6< 

min{dist(K,  C ~ \ L) ,  e/2c}. Let g=hoCEO(C n) where r is furnished by Proposition 3.2. 

Then dgz=dhr162 for every zCC n (since r  and dh#O on C a \ E ) .  

For every z c K we have 

tg(z)-h(z) l  = Ih(r ) -h ( z ) l  <~ clr  ) - z  I < c6 < �89 

and hence I9 ( z ) - f ( z ) l  <c.  This proves Theorem 3.1. 

Proof of Proposition 3.2. Choose cE (0, 1). Let B denote the closed unit ball centered 

at the origin in C ~ and rB its dilation by r > 0. Choose a compact  set L c C ~ \ E  containing 

K in its interior. Let r ~ > l  be chosen such that  L C ( r l - 1 ) B .  Set r k = r l + k - 1  and 

~ k : 2 - k - l c  fo r  k=1 ,2 ,3 ,  . . . .  

Consider the holomorphic flow on a neighborhood of L U E  in C ~ which rests near L 

and moves the finite set E out of the ball rzB. Since the trace of this flow is polynomially 

convex, the time-one map can be approximated uniformly on L by holomorphic automor-  

phisms of C n according to Theorem 1.1 in [FR]. This gives a holomorphic automorphism 

g)z of C ~ satisfying I r  for zEL and ~ ) I ( E ) A r l B = ~ .  (That  is, we pushed 

E out of the ball r i b  by a holomorphic automorphism of C ~ which is el-Close to the 

identity map on L.) 

Set E z = r  By the same argument there is an automorphism r of C ~ satisfying 

[~;2(z)-zl<e2 for z e r l B  and r  

Continuing inductively we obtain a sequence of automorphisms r of C n such that  

]~k(z)--zl<ek on rk 1B and r  for each k = l ,  2, .... By Proposition 5.1 

in [F2] (which is entirely elementary) the sequence of compositions Cko r  . . . . .  r  con- 

verges as k-+oc to a biholomorphic map ~: ft--+C ~ from an open set f ~ c C  n onto C n. 

By construction we have L C f t c C ' ~ \ E  and [~(z)-zl<e for zcL .  The inverse map 

r  is biholomorphic onto f t c C ~ \ E  and is uniformly close to the iden- 

t i ty on K .  Choosing e sufficiently small we can insure tha t  tdp(z)-z]<6 for zEK.  This 

proves Proposit ion 3.2. 
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To construct holomorphic submersions X--+cq for l < q < n = d i m X  we need a suit- 

able analogue of Theorem 3.1 for submersions f :  U--+C q, where U is an open set in C ~ 

containing a given compact  polynomially convex set KC C n. The initial approximation 

of f gives a polynomial map h: Cn--~C q for which E : = { z c C n :  rankdhz<q}  is an alge- 

braic subvariety of C n of complex dimension q - 1  (which is at most n - 2 ) .  To conclude 

the proof as above we would need a Fatou-Bieberbach map  whose range contains K but  

omits E. Unfortunately we have been unable to construct such a map, and we even have 

some doubts about  its existence due to the possible linking of K and E. Instead we prove 

a result of this kind only for very special pairs (K, E) which suffices for the application 

at hand. 

PROPOSITION 3.3. Let x = ( z , w )  be complex coordinates on C n = C r x C  ~. Let 

D C C T and KC C" be compact polynomiaUy convex sets such that D x {0} ~ C K C  D x C ~ 

and each fiber K z = { w E C ~ :  (z, w ) E K }  ( z c D )  is convex. Assume that s>~2 and q<.r+l .  

Let f: U--+cq be a holomorphic submersion in an open set U c C  n containing K .  Given 

s > 0  and a compact set L c D x  C s containing K ,  there exists a holomorphic submersion 

g: V--+cq in an open set V D L  satisfying sup K If - g l < e .  

Remark. Proposit ion 3.3 is only used in the proof of Proposit ion 6.1 (w with r =  

n - 2 ,  s=2 ;  hence the only condition on q is q<~n-1. 

Pro@ Denote by 7c: C ~ - + C  ~" the projection 7r(z, w) =z .  We can approximate f uni- 

formly on a neighborhood of K by a polynomial map h=(h l ,  ..., hq): Cn--+C q. A generic 

choice of h insures that  the set E : = { x E C  ~ :rank dhx <q} is an algebraic subvariety of 

dimension q - 1  ~<r which does not intersect K and the projection 7tiE: E--+C r is proper. 

(This follows from the jet transversality theorem: E is the common zero-set of all maxi- 

mal minors of the complex (q x n)-matr ix  (Ohj/Oxz); at each point at least n -  ( q -  1) of 

these equations are independent. Hence for a generic choice of h the set E has dimension 

q - 1 .  For a complete proof see Proposit ion 2 in [Fo2]. The properness of 7r]~ is easily 

satisfied by a small rotation of coordinates.) We may assume that  L = D x B  for some 

closed ball B c C C  To complete the proof we take g=ho~p where ~p is furnished by the 

following lemma. 

LEMMA 3.4. (Hypotheses as above.) For every 6>0  there exists a holomorphic 

automorphism ~ of C n of the form r  f l (z ,w))  such that ~p(L)NE=2~ and 

Remark. If q=n  then E is a hypersurface in C ~. In this case Lemma 3.4 fails since 

the complement C n \ E  may be Kobayashi hyperbolic, which would imply that  any entire 

map ~: C ~ - ~ C n \ E  is constant. 
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To prove Lemma 3.4 we shall need a version of Theorem 1.1 (or Theorem 2.1) 

from [FR] with a holomorphic dependence on parameters.  Recall tha t  a vector field 

is complete if its flow exists for all times and all initial conditions. We shall consider 

holomorphic vector fields on C n of the form 

s 0 

V(z,w)=Eaj(z,w)~--WTWj, z E C " ,  w E C  *, (3.1) 
j 1 

where the aj's are entire (or polynomial) functions on C n = C ~ x  C s. Its flow remains 

in the level sets {z=const} ,  and V is complete on C n if and only if V(z, .  ) is complete 

on C s for each z C C  r. 

LEMMA 3.5. If  S>~2 then every polynomial vector field of type (3.1) on C ~ x C  ~ is 

a finite sum of complete polynomial fields of the same type. 

Proof. We can write a polynomial field (3.1) as a finite sum V(z, w ) = ~  z~V~(w) 
8 O~ C~: 1 where Va(w)=~j=l  a~,j(w)O/Owj and z = z  1 ... z~ ~. By [AL] every polynomial holo- 

morphic vector field on C ~ for s~>2 is a finite sum of complete polynomial fields (see 

the Appendix in IF1] for a short proof).  Hence each V~(w) is a finite sum of complete 

polynomial fields. The products of such fields with z ~ are complete on C n, which proves 

the result. 

Remark. For a more general result in this direction see Lemma 2.5 in IV] and the 

recent preprint [Ku]. 

Lemma 3.5 implies that  the t ime-t  map of any entire holomorphic vector field (3.1) 

can be approximated,  uniformly on any compact  set on which it exists, by holomorphie 

automorphisms of C n of the form (z, w)--+(z, p(z, w)) (Lemma 1.4 in [FR]). The same 

holds for t ime-dependent entire holomorphie vector fields of the form (3.1). From this 

one obtains the following parametr ic  version of Theorem 2.1 from [FR]. 

COROLLARY 3.6. Assume that Or: f~0--+f~t (tE [0, T]) is a smooth isotopy of biholo- 

morphic maps between domains in C ~, with r the identity map on ft0, where n=r+s,  

s>~2, and each r is of the form Ct(z,w)=(z,~t(z ,w))  ( z E C  ~, wcC~) .  If  M c f t 0  is a 

compact polynomially convex set such that Ct (M) is polynomially convex in C n for every 

tE[0, T] then r can be approximated, uniformly on M, by automorphisms of C ~ of the 

form (z, w)-+(z, cp(z, w)). 

Proof of Lemma 3.4. Let E, K and L be as in the lemma. The set E ' : = E N ( D x C  s) 

is polynomially convex, E ' A K = ~  and M : = K U E '  is also polynomially convex. Let 

Ot(z,w)=(z, etw). Since the fibers K~ (zED) are convex and contain the origin, the 
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subvariety Ot(E)cC ~ is disjoint from K and Mt=KUOt(E') is polynomially convex for 

every t~>0. Clearly OT(E)NL=2~ for a sufficiently large T > 0 .  

Consider the flow Ct which rests on a neighborhood of K and equals Ot on a neigh- 

borhood of E ~. Since Ct(M)=Mt is polynomially convex for every t~>0, Corollary 3.6 

gives an automorphism r w ) =  (z, ~(z, w)) approximating CT uniformly on a neighbor- 

hood of M. Thus r is close to the identity on a neighborhood of K and r  

Since r maps each of the aifine planes {z} x C ~ to itself, it follows tha t  r  L = Z .  The 

inverse ~ = r  clearly satisfies Lemma 3.4. 

4. Compositional splitting of biholomorphic mappings 

Let X be a complex manifold of dimension n. An injective holomorphic map ~/: V-+X 

in an open set V c X  will be called biholomorphic. Set A = { ~ E C : I ~ I < I } .  Suppose that  

5 r is a nonsingular holomorphic foliation of X of dimension p and codimension q=n-p .  

Every x EX  is contained in a distinguished chart (U, r where UC X is an open subset 

containing x and r U- -+AncC n is a biholomorphic map onto the open unit polydisc 

in C ~ such that ,  in the coordinates (z,w) on A n = A P x A  q (zEA p, wEAq), r  is 

given by {w=c},  cEA q. Fix a number 0 < r < l .  For any distinguished chart (U, r on X 

let U'CU be defined by r p) x A q. Given any relatively compact  set V c c X ,  

there exists a finite collection of distinguished c h a r t s / d =  {(U d, e j ) :  l~<j E N} such that  

VC [_JN 1 U~ and//4 is Jr-regular in the sense of Definition 1.5 in [God, p. 72] (this means 

tha t  for every Ui, Uj E ld the set Ui N Uj is contained in a distinguished chart). 

Definition. A biholomorphic map 7: V-+X is said to be an Jr-map if there exists///  

as above such that  for every (Uj, r  the restriction of "y to VN U~ has range in Uj and 

is of the form (z, w)--+ (cj (z, w), w) in the distinguished holomorphic coordinates on U d. 

Thus an 5V-map preserves the leaves of Jr and does not permute  the connected com- 

ponents of a global leaf intersected with any of the distinguished sets Uj. The definition 

is good since the transition map between a pair of distinguished charts preserves this 

form of the map. Any ~/preserving the leaves of Jr (in the sense that  x and ~(x) belong 

to the same leaf) which is close to the identity map in the fine topology on X,  defined 

by 5 c, is of this form. (The restriction of the fine topology to any distinguished local 

chart U _  ~ APx A q is the product  of the usual topology on A p and the discrete topology 

on Aq. For further details see [God, pp. 2 3 and pp. 71 75].) 

THEOREM 4.1. Let A and B be compact sets in a complex manifold X such that 

D = A U B  has a basis of Stein neighborhoods in X and A \ B N B \ A = Z .  Given an open 

set C c X  containin 9 C:=ANB there exist open sets AIDA, BrDB, CrDC, with Ctc 
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AtOB~CC, satisfying the following. For every biholomorphie map 7: C--~X which is 

sufficiently uniformly close to the identity on C there exist biholomorphic maps c~: X - + X ,  

/3: Bt--~X, uniformly close to the identity on their respective domains and satisfying 

7=/3oc~ -1 on C'. 

I f  ~ is a holomorphic foliation of X and 7 is an J:-map on C then we can choose 

and /3 to be Jr-maps on A t and B', respectively. I f  Xo is a closed complex subvariety 

of X such that X o N C = ~  then we can choose c~ and /3 as above such that they are 

tangent to the identity map to any given finite order along Xo. 

Theorem 4.1, which is a key ingredient in our construction of noncritical holomorphic 

functions and submersions, is proved in this section by a Kolmogorov Nash-Moser-type 

rapidly convergent iteration. (We shall only need it for the trivial foliation with X as 

the only leaf, but we prove the extended version for possible future applications.) It 

will be used in Propositions 5.2 and 6.1 below to patch pairs of noncritical functions or 

submersions (we have already explained in the introduction why the standard cS-theory 

does not suffice). Similar decompositions have been used in the theory of quasiconformal 

mappings and in complex dynamics. For example, a theorem of Pfluger [Pf] from 1961 

asserts that  every orientation-preserving quasiconformal homeomorphism 7: R - + R  is the 

restriction to R of the composition/3oc~ -1, where c~ and/3 are conformal maps of the upper 

and lower half-plane, respectively, to itself which map R to R. (See also [LV, p. 92].) 

We begin with preparatory results. We fix once and for all a complete distance 

function d: X x X - + R +  induced by a smooth Riemannian metric on TX.  Given a subset 

A C X and an r > 0 we set 

A(r) = { x G X : d ( x , y ) < r  for some y E A } .  

If A is a (relatively) compact, smoothly bounded domain in X then for all sufficiently 

small r > 0  the set A(r) is a smoothly bounded open domain. 

We say that  the subsets A, B c X  are separated if A \ B O B \ A = 2 J .  

LEMMA 4.2. Given A, B c X  and r > 0  then we have (AUB) ( r )=A(r )UB(r )  and 

( A O B ) ( r ) C A ( r ) N B ( r ) .  I f  d and B are (relatively) compact and separated in X then 

for all sufficiently small r > 0  we also have ( A N B ) ( r ) = A ( r ) O B ( r ) ,  and the sets A(r) 

and B(r)  are separated. 

Proof. The first two properties are immediate. Now write A = ( A \ B ) U  (AOB),  B =  

(B \A)U  (ANB) and apply the first property to get 

d(r)  = ( A \ B ) ( r ) U ( A O B ) ( r ) ,  B(r)  = ( B \ A ) ( r ) U ( A O B ) ( r ) .  
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If A \ B O B \ A = ~  then for all sufficiently small r > 0  we have (A\B)(r)N(B\A)(r)=~ 
(in fact, even the closures of (d\B)(r) and (B\A)(r) are disjoint). Hence the previ- 

ous display gives A(r)n B(r)= (A OB)(r) as well as the separation property for the pair 

A(r),  B(r). 

LEMMA 4.3. Let A, B c X  be compact sets in a complex manifold X satisfying 
A \ B N B \ A = ~ .  Assume that AUB has a basis of Stein neighborhoods. Given open sets 
fiDA, BDB, CDC=ANB, [)DAUB, there exist compact sets A', B ' c X  satisfying 

(a) A c A ' c A ,  BCB'CB, A ' N B ' C C ;  

(b) A'\B' f lB ' \A '=~;  
(c) the set D'=AtUB'c [) is the closure of a smoothly bounded strongly pseudocon- 

vex Stein domain in X. 

Proof. If r > 0  is chosen sufficiently small then by Lemma 4.2 we have A ( r ) c c A ,  

B ( r ) c C B ,  d(r)nB(r)=C(r)ccC,  and the sets d(r), B(r)  are separated. By assump- 

tion there is a closed strongly pseudoconvex Stein domain D ' c X  with AUBCD'C 
A(r)UB(r). I t  is easily verified that  the sets A'=A(r)ND', B'=B(r)ND' satisfy the 

stated properties. 

Due to Lemma 4.3 it suffices to prove Theorem 4.1 under the assumption tha t  X 

is a Stein manifold, A, B c X  is pair of separated compact  subsets and D=AUB is the 

closure of a smoothly bounded strongly pseudoconvex domain. We assume this to be the 

case for the rest of this section. 

Let 9 v be a holomorphie foliation of X with leaves 5rx (xEX). By Car tan ' s  Theo- 

rem A the tangent bundle T P C  TX of $- is spanned by finitely many holomorphic vector 

fields L1,L2, ...,L,~ on X.  (We may have to shrink X a bit.) Denote by 0tJ(x) the flow 

of Lj for t ime t e C ,  solving (O/Ot)OJ(x)=Lj(OJ(x)) and OJo(x)=x. The map 0 j is de- 

fined and holomorphic for (x,t) in an open neighborhood of X •  {0} in X •  Their 

composition 

e(x,t) =e(x, tl,...,t,~):= 0 ~  . . . . .  0 ~ o~  ' t~ ~t~[ x) E X 

is a holomorphic map on an open neighborhood UC X x C m of the zero-section X x {0} "~, 

satisfying O(x, t)E.~x for all (x, t)cU and 

O(x,O)=x, O~jO(x,t)lt=o=Lj(x), x~X ,  l<~j<~m. 

Hence O := Or 0 It= o maps the trivial bundle X • C "~ surjectively onto the tangent bundle 

T5 v of $r. Splitting XxCm=E| we see that  O:E-+TJ r is an isomorphism of 

holomorphic vector bundles. In any holomorphic vector bundle chart on E we have a 
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Taylor expansion 
m 

O(x, t~ ,  . . . ,  t , ~ )  = x + ~ tjLj ( x )  + o(Itl 2) (4.1) 
j = l  

where the remainder O(]t[ 2) is uniform on any compact subset of the base set. 

Choose a Hermitian metric [. ]E on E.  Given an open set V c X  and a section 

c:V--+E[v we shall write Ilc[Iv=sup~vlc(x)lE. By the construction of 0 and E,  

x-+O(x, e(x)) is an 5C-map provided that  IlelIv is sufficiently small. 

Given a map 7:V--+X we define ]]'7-idllv=sup~vd("/(x),x),  and we say that  2/ 

is e-close to the identity on V if [[-y-idllv<e. The following lemma follows from the 

implicit function theorem. 

LEMMA 4.4. For every open relatively compact set V c c X  there exist constants 

M1>~1 and Co>0 satisfying the following property. For every 5c-map 7 : V - + X  with 

n~/- id] lv<eo there is a unique holomorphic section c: V-+E of E t v -+V such that for 

every x E V  we have O(x,c(x))=7(x) and 

Me -1 Ic(x)l ~< d(.y(x), z) ~< Me le(x)l. 

If .7" is the trivial foliation with X as the only leaf, Lemma 4.4 asserts that  every 

biholomorphic map 7: V-+X sufficiently close to the identity map has the form "7(x)= 

O(x, c(x)) for some holomorphic section e: V--+TV. 

We shall write the composition "yoc~ simply as 7c~. From now on ~11 our sets in X 

will be assumed contained in a fixed relatively compact  set for which Lemma 4.4 holds 

with a constant 21//1. Recall tha t  V(5) denotes the open &neighborhood of V C X  with 

respect to the distance function d. 

LEMMA 4.5. Let V c c X .  There are constants 50>0 (small) and M2>0  (large) 

with the following property. Let 0<5<6o  and 0 < 4 e < 5 .  Assume that a,/3,7: V(5)--+X 

are 5c-maps which are e-close to the identity on V(5). Then ~:=/3-17c~: V--+X is a 

well-defined 5c-map on V. Write 

ct(x)=O(x,a(x)),  

~(x) =O(x,e(x)), 
/3(x) = O(x, b(x)), 

~(z)  = O(x ,~(x) ) ,  

where a,b,c are sections of EIv(6)-+V(5 ) and 5 is a section of E Iv -+V given by 

Lemma 4.4. Then 

l ls-(e+a-b)l lv <~ M25-1e 2. (4.2) 
If  e = b - a  on V(5) then rlallv<<.M25-1e 2 and Jl~-idtlv<<.M1M2a-le 2. 

Pro@ The conditions imply that  y a  maps V biholomorphically onto a subset of 

V(2e). Since /3 is e-close to the identity map on v(a),  the degree theory shows tha t  
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its range contains V ( a - e ) .  Hence ~-1 is defined on V ( a - s  and is e-close to the iden- 

t i ty on this set. Since 4s it follows that  ~=/3-1~c~ is defined on V and maps V 

biholomorphically onto a subset of v(3s 
To prove the estimate (4.2) we choose a holomorphic vector bundle chart on rr: E:-+X 

over an open set U c X  and let U c c U .  We shall use the expansion (4.1) for 0 on 

r ~ - I ( U ) c E ;  this suffices since V(5) can be covered by finitely many such sets U. We 

replace the fiber variable t in (4.1) by one of the functions a(x), b(x) or c(z). These 

are bounded on V(d) by Mle  where M1 is the constant from Lemma 4.4. This gives for 

xeUnv(a), 
?'l'z 

ol(x) = X + E aj (x)Lj (x) + O(c2), 
j = l  

7/t 

~3(x) = x+ E bj (x)nj (x) + O(e2), 
j - - 1  

m 

. r (x )  = x + c j ( x ) L j ( x )  + 
j = l  

where the remainder term O(e 2) is uniform with respect to xcUNV((5). For xEUNV 
this gives 

m 

~(a(x))  = a ( x ) + E  cj (oe(x))Lj (~(x)) + O(c 2) 
j = l  

m m 

= x + E (aj (x)§ (x))Lj (x) + E (cj (ee(x))Lj (c~(x)) - cj (x )n j  (x)) + O(e2). 
j = l  j = l  

To estimate terms in the last sum we fix j and write 9(x)=cy(x)Lj(x ) for xEUNV(a). 
Since ]]cjllw(a)<Mlc and 4e<(i, the Cauchy estimates imply ]]dcjllany(~)=O(e/(5) (here 

dcj denotes the differential of cj). Since Ly is holomorphic in a neighborhood of V(($), we 

may assume that  its expression in the local coordinates on U is uniformly bounded and 

has uniformly bounded differential. This gives ]ldglluny(~)=O(e/($). Since d(x, a (x ) )<e ,  

there is a smooth arc A: [0,1]-+U, of length comparable to e, such that  A(0)=x and 

A(1) =c~(x). Then 

[g(o~(x)) -g(x) l <~ f011dg(k(w)I �9 I.k'(r) ldr <. 0(~ 1 s  

(the extra e is contributed by the length of A). This gives for xEUnV, 
m 

7(o~(x))=x+E (aj(x)+cj(x))Lj(x)+O((5 lc2). 
j = l  
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The same argument holds for the composition of several maps provided that  c is suffi- 

ciently small in comparison to & the error term remains of order O(5-1s 

It remains to find the Taylor expansion of /~-1 on the set UNV(2s where U is 

a local chart as above. S e t / ~ ( x ) = x - E ~ _  1 bj(x)Lj(x) for xEUNV((~). Assuming that  

/~(x) c UN V(2s we obtain 

?Tt 

/~(/~(x)) =/J(x)  - E bj (/~(x)nj (/~(x)) 
j = l  

m 

= x + E  (bj (x)Lj ( x ) -  bj (/~(x))Lj (~(x))) + O(s 
j = l  

= x@O(5- -1s  

We have estimated the terms in the parentheses on the middle line by O(5-1s 2 ) in 

exactly the same way as above, using the Cauchy estimates and integrating over an 

arc of length comparable to s Writing 3 ( x ) = y ~  U NV(2s x=/~ - l ( y ) ,  the above gives 

3(Y) =/~- i  (y) + 0(5-1s and therefore 

77~ 

z - l ( y )  = y -  E bj(y)Lj(y)-~-O( 5-1s 
j - 1  

The same argument as before gives 

77~ 

~(x) = (/~-lTa)(x) = x+ E (cy(x)+aj(x)-by(x))Lj(x)+O(5 1s 

j=l 

for xCUNV. This proves the estimate (4.2). 

Remark. The proof of Lemmas 4.4 and 4.5 shows that  for each fixed open set Vo c c  X 

the constants MI, M:, 5o may be chosen independent of V for any open set VCVo. In 

this case, O(5- i s  2) means <<.C5-1s 2, with C independent of s 5 and V. 

LEMMA 4.6. Let E ~ X  be a holomorphic vector bundle over a Stein manifold X.  

Let U, V c X  be open sets such that U\VNV\U=25 and D=UUV is a relatively com- 

pact, smoothly bounded, strongly pseudoconvex domain in X.  Set W=UNV.  There is a 

constant M3~>l such that for every bounded holomorphic section c: W ~ E I w  there exist 

bounded holomorphie sections a: g ~  EIu, b: V ~  EIv satisfying 

c=blw-alw, Ilallg<M311cllw, Ilbllv<M311cllw. 

Such a and b are given by bounded linear operators between the spaces of bounded holo- 

morphic sections of E on the respective sets. The constant M3 can be chosen uniform 
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for all such pairs (U,V) in X close to an initial pair (Uo, Vo) provided that D = U U V  

is sufficiently d2-close to Do=UoUVo. If  Xo is a closed complex subvariety of X and 

XoNW=2~ then for every sCN we can insure in addition that a and b vanish to order 

s on Xo. 

Proof. This is a s tandard application of the solvability of the cS-equation. We give 

a brief sketch for the sake of completeness. 

Condition (b) insures tha t  there is a smooth function X: X - +  [0, 1] which equals zero 

in a neighborhood of U \ V  and equals one in a neighborhood of V\U.  Since D = U U V  

is a relatively compact  strongly pseudoconvex domain in X,  there exists a bounded 

linear solution operator T for the cS-equation associated to sections of E - + X  over D. 

Precisely, for any bounded cS-closed E-valued (0, 1)-form g on D we have OE(T(g))=g 

and IIT(g)I]D ~<const ]]g]]D, and the constant can be chosen uniform for all domains in X 

which are sufficiently d2-close to an initial strongly pseudoconvex domain. (For functions 

this can be found in [HL1, p. 82]; the problem for sections of a vector bundle E can be 

reduced to that  for functions by embedding E as a subbundle of a trivial bundle over X.)  

Observe that  Xc extends to a bounded smooth section of E over U, and ( X - 1 ) c  

extends to a bounded section over V. Since s u p p ( O x ) N D c W = U N V ,  the bounded 

(0, 1)-form 9=O(Xc)=O((X-1)e)=eO~ on W extends to a bounded (0, 1)-form on D 

which is zero outside of W. It  is immediate tha t  the pair of sections 

a = - x c + T ( g ) l u ,  b = ( 1 - X ) c + T ( g ) l  V 

satisfies Lemma 4.6. The last s tatement  (regarding the interpolation on X0) follows in 

the case of functions from [FP2, Lemma 3.2]; the same proof applies to sections of E--+X 

by embedding E into a trivial bundle over X.  

LEMMA 4.7. Let A, B c X  be compact sets such that A \ B N B \ A = ~  and D = A O B  

is a closed, smoothly bounded, strongly pseudoconvex domain in X .  Let jz be a holomor- 

phic foliation of X and let Xo be a closed complex subvariety of X with X o N C = O ,  where 

C = A N B .  Then there are constants r0>0 ,  50>0 (small) and M4, M s > l  (large) satis- 

fying the following. Let 0<r~<r0, 0<~<(~0 and sEN.  For every iX-map 7: C(r+~)--+X 

satisfying 4M4 ]lT-id]]c(,+6)<(5 there exist iX-maps c~: A(r +(~) --+X and/3: B(r  +~) -+X, 

tangent to the identity map to order s along Xo, such that ~:=/3-17c~ is an iX-map on 

C(r) satisfying 

]]~-id]lc(~) < M55 1]]7-id]1~(~+6). (4.3) 

Pro@ If r0 and 50 are chosen sufficiently small, the set D(t) is a small C2-pertur - 

bation of the strongly pseudoconvex domain D = A U B  for every tE [0, r0+50], and hence 
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we can use the same constant as a bound on the sup-norm of an operator  solving the 

c~-problem on D(t). 
Let c =  ll'~-idllc(T+5). By Lemma 4.4 there is a holomorphic section c: C(r+6)-+E, 

with IIC11c(~+5) ~ I l c ,  such that  ~/(x)=O(x, c(x)). (Here we can use the constant M1 for 

the set D(r0+60).)  Write c=b-a where a is a section of E over A(r+6) and b is a 

section of E over B(r+6) furnished by Lemma 4.6. The sup-norms of a and b on their 

respective domains are bounded by MIM3C, where the constant M3 from Lemma 4.6 can 

be chosen independent of r and 6. Set 

a(x) = O(x, a(x)), x e A(r+5), 

Z(x)=O(x,b(z)), xeB(r+5). 

By Lemma 4.4 we have Ila-idllA(T+5)<M2M3c and II/~-idllB(~+5)<M2M3c. Set M 4 =  

M~M3. If  0 < 4 M 4 c < 5  then by Lemma 4.5 the composition ~ = / 3 - 1 ~ a  is an 5c-map 

on C(r) satisfying the estimate (4.3) with Mh=M2M2=M~M2M~. This completes the 

proof. 

Pwof of Theorem 4.1. By Lemma 4.3 we may assume that  D=AUB is the closure of 

a smooth strongly pseudoconvex domain in X and A\B A B\A = Z. Choose a sufficiently 

small number 0 < r 0 < l  such that  the initial 5c-map 7 is defined on the set Co:=C(ro) 
and Lemma 4.7 holds for all 6, r > 0  with 6+r<<.ro. For each k=0 ,  1, 2, ... we set 

k 

r k = r 0 1 - I ( 1 - 2  J), 6k=rk--rk+l=r~2 -k-1. 
j = l  

The sequence r k > 0  is decreasing, r * = l i m k _ ~ r k > 0 ,  5k>r*2 -k  1 for all k, and 

k = 0 6 k = r 0 - - r  *. Set Ak=A(r~), Bk=B(rk) and Ck=C(rk). We choose r0>0  suffi- 

ciently small such that  Ck=A~nBk for all k (Lemma 4.2). 
1 Let c0:=l l~- idl tco.  Assuming that  4M4c0<60=~r0 ,  Lemma 4.7 gives 5c-maps 

ao:Ao--+X and /3o:B0-+X such that -),1=/~ol-),ozo: CI--+X is an 5C-map defined on C1, 

satisfying 

1171-idllc~ < M55olE02 < 2Me02, 

where we have set M=Mh/r*. Define c l= lh ,  z-idllc~ , so Cl<2Mc~. Assuming for a 

moment  that  4M4c1 <61, we can apply Lemma 4.7 to obtain a pair of 5C-maps hi :  A1--+X, 

/31 : B I - + X  such that  ~/2 =/31-13'1al : C2 -->X is an 5C-map satisfying 

c2 :=  1172-idllc= < M h d l l a l  2 < 22Me~. 

Continuing inductively we obtain sequences of 5C-maps 

ak:Ak--+X, /3k:Bk-+X, ~k:Ck + X  
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such that  7 k + l = / 3 k l ' ~ k O ~ k  : C k + l - - + X  is an 9r-map satisfying 

<Ms5 k a t< ek+l := ltTk+l-idllc~+~ -1 2 2k+lMe2. (4.4) 

The necessary condition for the induction step is that  4Mack <Sk holds for each k. Since 

5 k > r , 2 - k  1, it suffices to have 

4Mack < r*2 - k - l ,  k = 0, 1, 2, . . . .  (4.5) 

In order to obtain convergence of this process we need 

LEMMA 4.8. Let M, M4>~I. Let the sequence •k>0 be defined recursively by 8o = 

~o>0 and ~)k+l=2k+lMo 2 for k=O, 1, If ~o<r*/32MM4 then ~k<(4Mco)2k<( !~  2k . . . .  \ 8 /  

and 4M~sk<r*2 -k-1 for all k=O, 1, 2, .... 

Assuming Lemma 4.8 we complete the proof of Theorem 4.1 as follows. From (4.4) 

we see that  ck ~L)k where ~)k is the sequence from Lemma 4.8. From the assumption 

1 (since 0 < r * < l  and M4~>1). Hence the Co <r*/32MM4 we obtain q := 4Me0 < r*/8M4 < g 
�9 k 2 k 

sequence Ck=llTk--ldllck<q 2 < (-~) converges to zero very rapidly as k--+cr The second 

estimate on Ok in Lemma 4.8 insures tha t  (4.5) holds, and hence the induction described 

above works. 

Setting ~k=aoal ... ak: Ak--+X, ~k=/30~1 .../3k: Bk-+X, we have 7k+l=/3~-17~k on 

Ck+l for k=0 ,  1, 2, .... Our construction insures that ,  as k--+oc, the sequences ~k and 

/3k converge, uniformly on A(r*) and B(r*), respectively, to 9r-maps a:A(r*)--+X and 

/3: B(r*)--+X, respectively. Furthermore,  the sequence 7k converges uniformly on C(r*) 

to the identity map  according to (4.4) and Lemma 4.8. In the limit we obtain ~ - 1 7 a = i d  

on C(r*), and hence 7=r  -1 on a(C(r*)). If e0>0 is chosen sufficiently small (for a 

fixed r0) then the latter set contains a neighborhood C'  of C. This completes the proof 

of Theorem 4.1, provided that  Lemma 4.8 holds. 

Proof of Lemma 4.8. The sequence is of the form Ok=2~kMbke~ k where the expo- 

nents satisfy the recursive relations 

ak+l=2ak+k+l,  a 0 = 0 ;  

bk+l=2bk+l, b0=0;  

Ck+l = 2ck, co = 1. 

The solutions are a k = 2  k }-~=1 J 2 - j < 2 k + l ,  bk = 2 k -  1, ck=2 k. Thus 

2 k +  1 2 k 2 k 2 k 
P k < 2  M c o = (4Moo)  , 
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which proves the first required estimate. From the assumption eo<r*/32MM4 we get 

1 Hence and q := 4Me0 < r*/8M4 < g. LOk < q2k< (~) 2k 

4M4ok < (4M4q)q2k-l=(4M4"4Mco)(~)2k- l< ( �89 -k-1  

for all k ) 0 ,  which proves the second estimate. Lemma 4.8 is proved. 

Remark. The above construction actually gives nonlinear operators A, B on the set of 

5C-maps ~ which are sufficiently uniformly close to the identity on a fixed neighborhood 

of C such tha t  the pair of 5C-maps c~=A(7), ~ = B ( ~ )  satisfies ~/=/3c~ -~. This yields 

the analogous result for families {~/p:pCP} of 5C-maps which depend continuously on 

a parameter  p in a compact  Hausdorff space P and which are sufficiently close to the 

identity map on a neighborhood of C. 

5. Cons truc t ion  of  noncrit ical  ho lomorphic  funct ions  

A compact  set K in a complex manifold X is said to be a Stein eompaetum if it has 

a basis of open Stein neighborhoods. Let d be a distance function on X induced by 

a smooth Riemannian metric on T X .  We shall use the terminology introduced in w 

Recall that  II~/-idiiy=supx~y d('~(x), x). 

LEMMA 5.1. Let K be a Stein compaetum in a complex manifold X .  Let U c X  be 

an open set containing I(, and f: U-+C q a holomorphic submersion for some q ~ d i m X .  

Then there exist constants c0>0,  M > 0  and an open set V c  X ,  with K c V c U ,  satisfying 

the following property. Given cE(O, co) and a holomorphic submersion 9: U-+C q with 

supxev ] f ( x ) -g (x ) ]<c  there is a biholomorphic map ~/:V-+X satisfying f=go~/ on V 

and i I T - i d i i v < M c .  

Proof. We may assume that  U is Stein. Hence T X l v = k e r d f ~ E  for some trivial 

rank-q holomorphic subbundle E c T X I u .  Thus E is spanned by q independent holo- 

morphic vector fields on U. Denote by O(x, tl,  ..., tq) the composition of their local flows 

(see the construction of 0 in (4.1)). The map 0 is defined in an open set ~ c U x C  q 

containing Ux{0}  q. For x E U  write ~ x = { t C c q :  (x , t )E~} .  After shrinking ~ we may 

assume that  for each xEU the fiber ~x is connected and F x : = { O ( x , t ) : t E ~ x } c X  is a 

local complex submanifold of X which intersects the level set { f = f ( x ) }  transversely 

at x (since TxFx=Ex is complementary to the kernel of dfx). By the implicit function 

theorem we may assume that  (after shrinking ~t) the map tC~x -+f (O(x , t ) )EC q maps 

f ~  biholomorphically onto a neighborhood of the point f ( x )  in C q. The same holds for 

the map tCf~x-+g(O(x,t)) provided that  g: U--+C q is sufficiently uniformly close to f 
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and we restrict x to a compact subset of U. It follows that,  if VCC U and g is suf- 

ficiently close to f on U, there is for every x E V  a unique point c(x)Ef~x such that  

g(0(x, c(x) ) )=f(x) .  Clearly c: Y-+Cq is holomorphic and the map 7(x)=O(x, c ( x ) ) e X  

(x E V) satisfies Lemma 5.1. 

Definition. An ordered pair of compact sets (A, B) in an n-dimensional complex 

manifold X is said to be a special Cartan pair if 

(i) the sets A, B, C:=AAB,  AOB are Stein compacta (see above); 

(ii) A \ B N B \ A = ~ ;  

(iii) there is an open set UDB and an injective holomorphic map r U-+C n such 

that  r  '~ is polynomially convex. 

The following is the main step in the proof of Theorem 2.1. 

PROPOSITION 5.2. Let (A, B) be a special Caftan pair in a complex manifold X and 

let f 6 0 ( A )  be a function whose critical set P is finite and does not meet C:=AAB.  

Given c>0  there exists fE(9(AOB)  with the same critical set P such that suPA ] f - - f l  <~" 

If Xo is a closed complex subvariety of X with XoAC=25 then for any t E N  we can 

choose f as above such that / - f  vanishes to order r on Xof~d. In particular, if f is 

noncritical on A then f is noncritical on A O B. 

Proof. We use the notation fl'om (iii) in the definition of a special Caftan pair. The 

function f~=for  -1 is defined and noncritical in an open set C c C  ~ containing r  

Choose a compact polynomially convex set K with g?(C) C int KC KC C. By Theorem 3.1 

we can approximate f~ uniformly on K by a noncritical holomorphic function g~EO(Cn). 

Thus g=g%r  is noncritical in a neighborhood of B, and it approximates f uniformly in 

a neighborhood of C. If the approximation is sufficiently close then by Lemma 5.1 there 

is a biholomorphic map 7, uniformly close to the identity map in a neighborhood of C, 

satisfying f=goT .  By Theorem 4.1 we have V=/3oa -1, where c~ is a biholomorphic map 

close to the identity in a neighborhood of A and/3 is a map with the analogous properties 

in a neighborhood of B. Furthermore we insure that a agrees with the identity map to 

a sufficiently high order at each point of (XoOP)NA. From f=goT=go/3oc~ 1 (which 

holds in a neighborhood of C)  we obtain foa=go/3.  The two sides define a holomorphic 

function f E O ( A U B )  with the stated properties. 

Proof of Theorem 2.1. We first consider the simplest case when f is noncritical 

on U and X o = ~ .  By Corollary 2.8 in [HL3] there is a sequence of compact O(X)-convex 

subsets A0 C A1 c . . .  c [Jk~_0 Ak = X  such that  

(i) K c i n t  AoCAoCU; 

(ii) for every/~=0, 1, 2, ... we have Ak+l=AkOBk where (A~, B~) is a special Cartan 

pair in X. 
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Fix c>0 .  Write fo=f, A_I=K. Choose a sufficiently small number c0E(0, l c )  

such that  every gEO(Ao) with sUPAolg--fol<2c o is noncritical on K.  Proposition 5.2 

gives a noncritical function flEO(A1) satisfying suPA o If1--f01 <Co < }c. Now choose clE 
0,  1 ~c0) such that  every function gEO(A1) with suPA 11g--fll<2Cl is noncritical on A0. 

1 Proposition 5.2 gives a noncritical function f2 E (9 (A2) such that  suPA 1 If2 -- f l  I < c 1 < ~ c. 

Continuing inductively we obtain a sequence of noncritical functions .[kEO(Ak) and a 

decreasing sequence ck > 0 with ~k~__0 ck < c such that  suPA k ] f k + l  - -  fk[ < ck < c2 - k -  1 for 

every k=0 ,  1, 2, .... The sequence fk converges uniformly on compacts in X to lEO(X) 
satisfying supg  [f-f[<c and suPA k If -- fk[<2Ck for every k=0 ,  1, 2, .... By the choice of 

ck this insures that  f is noncritical on Ak-1. Since this holds for every k, f is noncritical 

o n  X .  

Consider now the general ease. Let P={Pl,P2, ...} denote the (discrete) critical set 

of fcO(U). We replace X0 by XoUP. For each j E N  we choose a sufficiently large 

integer nj E N  such that  for every germ of a holomorphic function g which vanishes to 

order nj at pj, the germ of f+g still has an isolated critical point at pj. In the sequel 

we shall often use the following elementary fact. Given a pair of compact  sets KcL  in 

the domain of f ,  with K C i n t  L, we can choose ~1>0 such tha t  for every gEO(L) which 

vanishes to order nj at every point pj CPAK and satisfies SUPL [g[ <r~, the critical set of 

f+g in K equals PNK. 
Denote by `7C (-gx the coherent analytic sheaf of ideals consisting of all germs of 

holomorphic functions on X which vanish to order r on X0 and to order nj at pj EP for 

every j E N .  We can replace f by a function holomorphie on X such tha t  the difference of 

the two functions is a section of `7 near X0 and is uniformly small on K (see Lemma 8.1 

in [FP1]). The new function (which we still denote f )  may have additional critical points, 

but there is a neighborhood UDXoUK such that  Cri t ( f ;  U)=P. Choose a compact  

O(X)-convex set L c X  containing K in its interior. Fix an ~]>0. We claim that  there 

exists an f'cO(L) satisfying 

(i) Cr i t ( f ' ;  L)=PaL; 
(ii) f l _ f  is a section of ,7 over L; 

(iii) If'-fl<~] on K. 

Proof. By Lemma 8.4 in [FP3] there is a finite sequence AoCA1c...CAko=L of 

compact  (.9(X)-convex subsets such that  for each k=0 ,  1, ..., k0 - 1 we have Ak+l =Ak UBk, 

where (Ak, Bk) is a special Car tan  pair in X and 

(a) KU(XonL)CAoCCU; 
(b) BkNXo=;a for k = 0 , 1 , . . . , k 0 - 1 .  

(Our notation differs from [FP3]: the set Ak in [FP3] is denoted Bk-~ in this paper,  while 

the set Ak in this paper  is the same as U ~ 0  Al in [FP3].) Assume inductively tha t  for 
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some k < k0 we already have a function fk E (9(Ak) satisfying the above properties (i)-(iii) 

(with f l  replaced by fk). Since Bk N X0 = ~, fk is noncritical in a neighborhood of Ak N Bk, 

and hence Proposition 5.2 furnishes a function fk+lEO(Ak+l) satisfying (i)-(iii) on its 

domain. After k0 steps we obtain the desired function fIEO(L), thus proving the claim. 

In order to complete the induction step we show that  there exists h E (9 (X) such that  

h - f  is a section of J ,  h approximates f t  uniformly on L, and there is a neighborhood 

UDXoUL such that  Crit(h; U ) = P .  By Cartan's Theorem A the sheaf J is finitely 

generated on the compact set L, say by functions ~l EO(X) ( /=1,  2, ..., m). Since f ' - f  is 

a section of ,7 over a neighborhood of L, we have f'=f+Y'~-~-I ~jgj for some gj EO(L). 
Since L is O(X)-convex, we can approximate gj uniformly on a neighborhood of L by 

h "~ [~j E O(X). The function = f + ~ i = l  ~Jgi E O(X) satisfies the stated properties provided 

that  the approximation of 9j by gi was sufficiently close for every j .  

Note that h satisfies the same properties on a neighborhood of LUXo as f did on a 

neighborhood of KUXo. The proof of Theorem 2.1 is completed by an obvious induction 

over a sequence of compact O(X)-convex sets L1CL2c... exhausting X (compare with 

the noncritical case given above). 

6. Cons truc t io n  of  ho lomorphic  submers ions  

In this section we prove Theorems 2.5 and 2.6 and Corollaries 2.10 and 2.11. We begin 

with Theorems 2.5 and 2.6. Since the proof is fairly long, we first explain the outline 

and then treat  each of the main ingredients in a separate subsection. 

We are given a q-coframe 0--(01, ..., Oq) on X such that  OIu=df in an open set U D K  

where f :  U-+cq is a holomorphic submersion. Our task is to deform 0 to the differential 

d] where f :  X-+C q is a holomorphic submersion which approximates f uniformly o n / ( .  

(We shall deal with interpolation along a subvariety Xo c X in Subsection (5).) 

Let Q :X-+R be a smooth strongly plurisubharmonic Morse exhaustion function 

such that  6<0 on K and 6>0  on X\U  [H62, Theorem 5.1.6]. Each sublevel set {Q~c} 

is compact and O(X)-convex; if c E R  is a regular value of t) then {Q<c} is a smooth 

strongly pseudoconvex domain. The set of critical values of p is discrete in R and hence 

at most countable, and each critical level contains a unique critical point. 

It suffices to explain how to approximate a submersion f defined in a neighborhood of 

{p~c0} (and with df homotopic to 0 through q-coframes) by a submersion f with similar 

properties defined in neighborhood of { p~ Cl}, where co < cl is any pair of regular values 

of 6. The construction is then completed by an obvious induction as in Theorem 2.1. 

Using a smooth cut-off function in the parameter of the homotopy from df to 0 we can 

deform the q-coframe 0 at each step to insure that  O=df in a neighborhood of {p~c0}. 
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The construction of the extension breaks into two distinct arguments: 

(i) going through noncritical values of Q (mainly complex analysis); 

(ii) crossing a critical value (mainly topology and 'convex analysis'). 

If Q has no critical values ill [Co, Cl] then {Q4cl} is obtained from {~4c0} by finitely 

many attachings of small convex bumps. In each step we approximately extend f over 

the bump by Proposition 3.3, and we patch the two pieces using Theorem 4.1. In finitely 

many steps we obtain a submersion f ill a neighborhood of {O~cl} (Subsection (I)). 

Crossing a critical value of • relies on a combination of three techniques: 

smooth extension across a handle attached to {Q~c0} (Subsection (2)); 

approximation by a holomorphic submersion defined in a neighborhood of a 

handlebody (Subsection (3)); 

- -  applying the noncritical ease with a different strongly plurisubharmonic function 

to extend across the critical level of L9 (Subsection (4)). 

The proof of Theorem 2.5 is completed immediately after Lemma 6.7 in Subsec- 

tion (4), with the exception of the interpolation along a subvariety XoCX which is 

explained in Subsection (5). There we also prove Corollaries 2.10 and 2.11. 

(1) The noncritical case. A compact set A c X  in a complex manifold X is a noncrit- 

ical strongly pseudoconvex extension of a compact set AC fl if there is a smooth strongly 

plurisubharmonic function L) in an open set ~ D A \ A  which has no critical points on ft 

and satisfies 

A n f t = { x e f t : ~ ( x ) 4 0 } ,  AA~2={xe f~ :~(x )41} .  

Note that  for each tE[0,1] the set At=AU{Q<~t}cX is a smooth (closed) strongly 

pseudoconvex domain in X, and the family smoothly increases from A=Ao to A=A1. We 

say that  X is a noncritical strongly pseudoconvex extension of A if there exists a smooth 

exhaustion function 0: X--+R such that  A={O<~0} and ~ is strongly plurisubharmonic 

and without critical points on { ~ > 0 } = X \ i n t  A. 

PROPOSITION 6.1. Let X be a Stein manifold and A C X  a noncritical strongly 

pseudoconvex extension of A c A .  If f:A--+cq is a holomorphic submersion with q< 

d i m X  then for every c>0  there exists a holomorphic submersion f: ft--+cq satisfying 

supA If -/l<c. 

COROLLARY 6.2. (a) If X is a noncritical strongly pseudoconvex extension of A c X 

then every holomorphic submersion f: A--+cq (q<dim X)  can be approximated uniformly 

on A by holomorphic submersions ]: X--+C q. 

(b) Let f~cC n be a convex open set. Any holomorphic submersion f: ft--+C q (q<n)  

can be approximated uniformly on compacts by submersions C n - + C  q. 
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Proof of Proposition 6.1. Let Z=-(Z l ,  ..., Z n ) = ( X l + i y l ,  ..., x~+iyn) denote the coor- 

dinates on C n. Let 

P =  { z E C n :  ]xy I < 1, lyjl < 1, j =  1, ...,n} 

denote the open unit cube. Set P~={zCP: y,~=0}. 

Let A, B C X  be compact sets in X. We say that  B is a convex bump on A if there 

exist an open set U C X  containing B, a biholomorphic map ~b: U--+P onto P c C  ~, and 

smooth strongly concave functions h, h: P'-+[-a,  a] for some a < l  such that  h~<~t, h=?t 

near the boundary of PZ, and 

r  = { z c  P: Yn • h(Zl,..., Zn--l,Xn)}, 

r U) = {z  c P :  y,~ <~ h ( z l , . . . ,  Zn-1,  xn)}. 

Suppose now that  A c A is a noncritical strongly pseudoconvex extension in X. By 

an elementary geometric argument, using Narasimhan's lemma on local convexification 

of strongly pseudoconvex domains, there is a finite sequence A=AoCA1C.. .  c Ako=A of 

compact strongly pseudoconvex domains in X such that  for every k=0,  1, ..., k 0 - 1  we 

have Ak+I=AkUBk, where Bk is a convex bump on Ak as defined above. (For details see 

Lemma 12.3 in [HL2]. Similar 'bumping constructions' had been introduced by Grauert  

and were used in the Oka-Grauert  theory; see [Gro4], [HL3], [FP1], [FP2], [FP3].) Hence 

Proposition 6.1 follows immediately from 

LEMMA 6.3. Assume that X is a Stein manifold, A c  X is a smooth compact strongly 

pseudoconvex domain, and B c X  is a convex bump on A. Given a holomorphic sub- 

mersion f : A - + C  q (q<dimX) ,  there exists for every c > 0  a holomorphie submersion 

]: A U B-+ Cq satisfying SUPANB If--i] < C. If  Xo C X is a closed complex subvariety such 

that X o A B = Z ,  we can choose f such that it agrees with f to a given finite order along 

XoNA. 

Proof. We use the notation introduced above. Recall that  h and h have range in 

[-a,a] for some a < l .  Choose cE(a, 1) sufficiently close to 1 such that  the (compact) 

support of i t - h  is contained in cP'. Let L :=c_PCC ~ and L : = r  Increasing 

c < l  towards 1 we may assume that  B c L .  Set ~[=ANL and K = r  The pair 

of compact sets K, L c C  n satisfies the hypothesis of Proposition 3.3 with respect to the 

splitting z=(z' ,  z ' ) C C  n, with z '=(Zl ,  ..., Zn_2)cC n-2 and zH=(Zn_~, zn)EC 2. Apply- 

ing Proposition 3.3 (with r = n - 2 ,  s=2)  we obtain a holomorphic submersion g from 

a neighborhood of L to C q which approximates f uniformly in a neighborhood of K.  

Since B c L  and A N B C A N L = K ,  g is defined in a neighborhood of B and it approx- 

imates f uniformly in a neighborhood of ANB.  By Lemma 5.1 we have f = g ~  for a 
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biholomorphic map 7 close to the identity in a neighborhood of A N B in X. Splitting 

7=/~oc~ 1 by Theorem 4.1 we obtain foc~=go/3 in a neighborhood of A A B ,  and hence 

the two sides define a holomorphic submersion f :  AUB-+C q. The same proof applies 

with interpolation on X0. 

In the remainder of this section we treat  the critical case. Let p be a critical point 

of g, with Morse index k. If k = 0  then 4 has a local minimum at p, and a new connected 

component  appears  in {0<c} as c passes g(P)- We can trivially extend f to this new 

component  by taking any local submersions to C q near p. In the sequel we only t reat  

the case k~>l. It is no loss of generality to assume 0 (p )=0 .  Choose c0>0 such tha t  p 

is the only critical point of 4 in [-co, 3c0]. In the following three subsections we explain 

how to approximately extend a submersion f from {O~<-c0} to {0~<+c0}. 

(2) Smooth extension across a handle. Recall that  kE{1, ...,n} is the index of p. 

Write z = ( z ' ,  z")=(x'+iy' ,  x"+iy"),  where z ' E C  k and z"EC n-k. Denote by P c C  ~ the 

open unit polydisc. By Lemma 3 in [HW2, p. 166] (see also Lemma 2.5 in [HE]) there is 

a neighborhood U c X  of p and a biholomorphic coordinate map r U-+P, with r  

such that  the function } (z ) :=4( r  - l ( z ) )  is given by 

~(z)=Q(y',z")-Ix'l 2, Q(y',z")=(Ay',y')+(By",y")+lx"l 2. (6.1) 

Here (. ,- ) is the Euclidean inner product and A, B are positive definite symmetric  ma- 

trices such that  all eigenvalues of A are larger than  1 (thus A > I and B > 0). Furthermore 

one may diagonalize A and t3. 

We may assume that  e0<l .  Choose cE(O, co). By the noncritical case we may 

assume that  f has already been extended to { g < - � 8 9  The set E C U  defined by 

O(E) = T(x'~-iU', z"): U'=0, z"z  0, Ix'l 2 ~ c} (6.2) 

is a k-dimensional handle at tached from the outside to {4~<-c} along the (k -1 ) - sphe re  

b E c { g = - c } .  

In a neighborhood of E we may consider f as a function of z. We identify x C R  n 

with x+iO E C n. The components 0j of the q-coframe 0 are expressed in the z-coordinates 

by Oj(z)=~t~=lOj,l(z)dzt, where Oj,l are continuous functions and the (qxn) -ma t r ix  

J=(0j ,z)  has maximal  complex rank q at each point. For z E E  near bE we have Oj,t(x)= 

cgfj/Ozl (x) = Ofj/Oxl (x). 

Denote by Mq,n ~-C qx~ the set of all complex (q x n)-matrices,  and let Mq, n consist 

of all matrices of rank q in Mq,~. 
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LEMMA 6.4. There is a e'e(�89 c) such that f and all its partial derivatives Of/Ozt 

extend smoothly to {Q<~-c'}UE (without changing their values on {0~<-e'}) such that 

the Jaeobian matrix J ( f ) = (  Of j /Ozl) of the extension has complex rank q at each point 

of E, and J ( f )  can be connected to J=(0j ,z)  by a homotopy of maps from E to Mq,~ 

which is fixed on {~<.-c '}AE.  

Lemma 6.4 is obtained from a convex integration lemma due to Gromov [Gro2, 

Lemma 3.1.3]. We state the special case which is needed. Fix numbers O<r<R, 5>0, 

and let 

D={xeRn:lx'l<<.R, Ix"l<<.~}, A={xeRn:r<.lx'l<.R, ix"l<<. 5}. 

LEMMA 6.5. Assume that f = ( f l ,  ..., fq): A-+cq (q~n) is a smooth map whose Ja- 

cobian J( f )=(Ofj /Oxl)  has complex rank q at each point. If there exists a continuous 

map J: D--+Mq,~ with J[A=J( f )  then there is a smooth map f :  D--+cq such that 

(i) 
(ii) the Jaeobian J(])  has range in Z C ;  
(iii) J ( ] )  is homotopic to J through maps D--+Mq,,~ which are fixed on A. 

If  q<.n-[ lk]  then such J and f always exist. 

Proof. We have M~, n =Mq,n\E where E consists of all matrices of rank less than q. 

We claim that  E is an algebraic subvariety of complex codimension n - q + l  in 

Mq,n~-C q• Assume that  B E E  has rank q - 1 .  Choose l<<.jl<j2<...<jq_l<~n such 

that  the corresponding columns of B are linearly independent. Locally near B the set E 

is defined by vanishing of the determinants obtained by adding to the columns jl , . . . ,  jq-1 

any of the remaining n - q  + 1 columns of B. Locally this gives n - q  + 1 independent poly- 

nomial equations for E. A similar argument holds when B has rank less than q - 1 .  (See 

also Proposition 2 in [Fo2].) 

We are looking for an extension f :  D-+C q of f whose Jacobian J(f) misses E. If 

k < 2 ( n - q + l )  (which is equivalent to q<<.n-[�89 Tholn's jet transversality theorem 

([Tho] or [GG, p. 54]) gives a maximal rank extension of f and its full one-jet from A 

to the k-dimensional disc Dk={(x',O): Ix'l~<R}, and hence to an open neighborhood 

V c R  n of A UDk. Clearly there exists a diffeomorphism r  which equals 

the identity on A. Then f = f o r  has the desired properties. 

The general case of Lemma 6.5 follows from Gromov's convex integration lemma 

[Gro2, Lemma 3.1.3]. (This can also be found in w of [Gro3]; see especially (D) and 

(E) in [Gro3, 2.4.1]. Another source is w of [EM]; see especially Corollary 18.2.2.) 

To apply Gromov's lemma we consider Mq,n as the space of all one-jets of smooth maps 

D--+C q at any point xED (that is, the space of all first-order partial derivatives at x, 
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ignoring the image point). The open set ft=Mq, nCMq,n defines a differential relation 

of order one which is ample in the coordinate directions (see [Gro2] or w in [EM] for 

a definition of this notion), and the stated results follow from the convex integration 

lemma. 

Ampleness of ft in the coordinate directions means the following. Choose l E { 1, ..., n} 

and fix in an arbi trary way the entries of a (q x n)-matr ix  which do not belong to the 

column l (these represent the partial  derivatives Ofj/Oxk for kr  at some point x). Let 

~ t c C q  consist of all vectors whose insertion in t h e / t h  column gives a matr ix  of maximal  

rank q (thus belonging to ft). ~ is ample in the coordinate directions if every such set 

fY is either empty  or else the convex hull of each of its connected components equals C q. 

In our case, fY is either empty, the complement of a complex hyperplane in C q, or all 

of cq,  depending on the rank of the initial (q x (n -1 ) ) -ma t r ix .  This completes the proof 

of Lemma 6.5. 

Proof of Lemma 6.4. Let A c D  be subsets of U c X  defined by 

r  = {(x '+ i0 ' ,  x ' t + i 0 " ) :  Ix'l 2 ~< e, [x"l ~< 5}, 

r  = {z E r  r ~< Ix'l 2 < c}. 

Choosing 5>0  sufficiently small and r<c sufficiently close to c we insure that  AC 

{ & < - l c } ,  and hence IIA: d-+Cq is a well-defined smooth map with differential of max- 

imal complex rank q. Lemma 6.5 gives the desired smooth extension to D as well as a 

homotopy of q-coframes which is fixed on A. If c t < c is chosen sufficiently close to c then 

DN{Q<~-c'}cA, and hence Lemma 6.4 holds for such a e ~. 

(3) Holomorphic approximation. Let f be given by Lemma 6.4. In this subsection 

we prove 

LEMMA 6.6. For every ~/>0 there exist an open neighborhood f t c X  of the 

set K={o<-c}OE and a holomorphic submersion f :~-+C q such that If--flK<U, 

]df --d]lE<U, and df is q-coframe homotopic to O. 

Here ]f]K is the uniform norm of f on K ,  and ]df] E is the norm of its differential 

on E,  measured in a fixed Hermit ian metric on TX. 

Proof. We need an improved version of Theorem 4.1 from [HSW]. We first show 

that  K is (_9(X)-convex and hence admits a basis of Stein neighborhoods. We use the 

notation from Subsection (2). Choose LC U such that  r for some r <  1 very close 

to 1. Then r ~(z)<~-c}Or Clearly each of the sets { ~ - c } N r P  
and r  is polynomially convex in C n. The holomorphic polynomial h(z)=z21 +... +z~ 
maps r  to the interval [0, c], r  to the point c, and from (6.1) we easily see 
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that  Re h>c on { ~ < - c } \ 6 ( E ) .  Thus h separates the two sets, and hence their union is 

polynomially convex (Lemma 29.21 in [Sto]). O(X)-convexity of {g~<-c}UE follows by 

a usual patching argument, using strong plurisubharmonicity of ~ (see Lemma 1 in [Ro]). 

Choose a constant F.E(c',c). By Lemma 4.3 in [HSW] there is a smooth map 

g: X--+cq satisfying 

(i) 9 - f  o,1 {~<-~}UE; 
(ii) dgx=dfx for each x~E; 
(iii) 9 is c~-flat on E, i.e., Dr(cgg)lE=O for all t e N .  

Here D ~ denotes the total derivative of order r. The cited lemma is proved in [H5W] 

for X = C  n, but the result is local and holds for any smooth totally real submanifold E 

in a complex manifold. (One may use partitions of unity along E which are cS-flat on E; 

see Lemma 2.3 in [FLO].) If E is of class C "~ then (iii) holds for r<~m-1. 

Fix an integer rn>~n+l. Let t2~={xEX:d(x, K ) < e } .  In the proof of Theorem 4.1 

in [HSW] on pp. 15 16 the authors obtained for each sufficiently small e>0  a map 

w~:t2~--+cq satisfying Ow~=Og in ft~ and Ilw~llL2(a~)=o(c'~) as e--+0. (The proof in 

[HSW] remains valid in any Stein inanifold by applying the appropriate cS-results from 

[H51].) On ft~/2 this gives a uniform estimate Iw~t=o(c'~-n) [ n s w ,  p. 16] as well as 

ID~w~l =o(a  "~-n-r)  (Lemma 3.2 in [FLO]). By construction the map f~=g-w~: 

is holomorphic and satisfies IA-fl=o(e), Idf~-dfl=o(1) on f~ /2  as e ~ 0 .  Hence for 

sufficiently small e > 0  the map f~ is a holomorphic submersion in an open neighborhood 

ft of K,  with df~ close to df and hence homotopic to 0. This proves Lemma 6.6. 

Remark. More precise approximation results on totally real submanifolds have been 

obtained by integral kernels; see [HW1], [RS] and [FLO]. The paper [FLO] contains 

optimal results on approximation of cS-flat functions in tubes around totally real sub- 

manifolds. 

(4) Extension across the critical level. The purpose of this subsection is to approxi- 

mately extend a submersion, furnished by Lemma 6.6, across the critical level {t)=0} by 

applying the noncritical case (Proposition 6.1) with a different strongly plurisubharmonic 

function r given by Lemma 6.7 below. Once this is done, we switch back to t) (perhaps 

sacrificing some of the gained territory) and continue (by the noncritical case) to its next 

critical level. 

We shall use the notation established in Subsection (1). Let 6: U ~ P c C  n be a 

coordinate map as in the proof of Proposition 6.1 such that  }=t)o6 -1 is given by (6.1). 

Let c0>0 be the constant chosen in the paragraph preceding Subsection (2). By the 

noncritical case we can decrease co > 0 to insure that  

{(x '+iy ' ,  z " ) e  c n  : Ix'l~ < c0, Q(y', z " ) <  4c0} c P. 
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Denote by E the handle (6.2) but with c replaced by Co (thus 6 = - c 0  on bE). Let Az > 1 

denote the smallest eigenvalue of the matrix A. Choose a number I<p<A1 and set 

to=(1-1/#)2Co.  

LEMMA 6.7. There exists a smooth strongly plurisubharmonic function r on 

{ 0 < 3 c 0 } c X  which has no critical values in (0, 3c0)CR and satisfies 

(i) {9<.-Co}UEc{r<~O}c{a<~- to}UE;  

(ii) {OKco}C{rK2Co}C{p<3Co}.  

Using Lemma 6.7 we complete the crossing of the critical level {t~=0} as follows. By 

Lemma 6.6 (applied with c=t0) there are an open set ~ c X  containing the handlebody 

{t~<-t0}tJE and a holomorphic submersion f :  ~--+C q. Consider the family of sublevel 

sets {r<.c} as c increases from 0 to 2c0. Property (i) in Lemma 6.7 implies that  for 

sufficiently small c>0 we have {T~<c}C~. By Proposition 6.1 (the noncritical case) we 

can approximate f uniformly on { rKc}  by a submersion ] defined in a neighborhood of 

{r~<2c0}. By Lemma 6.7 (ii), 9 ~ is defined on {O~<c0} and d f  is q-coframe homotopic to 0. 

Since Co > 0, this completes the extension across the critical level {t~=0}. Hence Theorems 

2.5 and 2.6 are proved except for the interpolation on a subvariety (see Subsection (5)). 

In the proof of Lemma 6.7 we shall need a criterion for strong plurisubharmonicity 

of certain functions modeled on (6.1). 

LEMMA 6.8. Let A>0 be a symmetric real ( nx n ) -ma t r i x  with the smallest eigen- 

value As >0. I f  a g2-function h: I c R + - + R  satisfies 

h<Ax and 2 t h + h < A 1 ,  t E I ,  (6.3) 

then the function v ( z )=(Ay ,  y}-h(]x[  2) is strongly plurisubharmonic on { z = x  + i y e C n  : 

Ixl2eI}. 

Proof. Let A =  (ajt). A calculation gives 

n 

- %  = x j h + i  aj y , 
8 : 1  

{ 2x2]t+h--ajj ,  if j = l ,  

--2~-zjez = 2xjx th--aj l ,  if j r  

Thus the complex Hessian 

of 7 satisfies 

( 02~- "~ 
H~- = \ Ozj 02l ] 

- 2H~ = 21t.xxt + h I -  A, 
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where xx t is the matrix product of the column x E R  ~ with the row x t, and I denotes 

the identity matrix. For any v e R  n we have ((xxt)v, v )=vtxx tv=l(x ,  v}l 2, which lies 

between 0 and Ixl 2 Ivl 2. Hence O<~xx t <<. Ixl2I. (Here we write A<<.B if B - A  is nonnegative 

definite.) At points Ixl2=t where h(t)~>0 we thus get -2Hr  <<.(2th+]~)I-A<AII-A<~O 
and hence H~>0 (we used the second inequality in (6.3)). At points where it<0 we 

can omit 2hxxt<~O to get -2H~<~]~I-A~(J~-A1)I<O, so H~>0. Thus H~ is positive 

definite, which proves Lemma 6.8. 

Proof of Lemma 6.7. Recall that  I<#<A1 and to=(1-1/#)2co.  We shall find a 

smooth convex increasing function h: R-+ [0, +oc) satisfying 

(i) h( t )=0 for t<<.to; 
(ii) h ( t ) = t - t l  for t>>.co, where t t=co-h(co)~(to,co);  
(iii) for all t>>.to we have 0~<h~<l, 2th+h<A1 and t-t~<~h(t)<<.t-to. 
We first consider the function 

0, if t ~ to, 

~( t )=  ~ ( v ~ - x / ~ )  2, ifto<~t<~co, 

t - co (1 -1 /# ) ,  i fco<. t .  

On [t0, c0], ~ solves the initial-value problem 2 t~+~=# ,  ~(to)=~(to)=0. It is C 1 and 

piecewise s  with discontinuities of $ at to and Co. The value of to is chosen such that  

~(Co)=l. We have ~ ' ( t )=#v /~ /2v~3>0  for tE[to,co], ~'(t)=0 for t outside this interval, 

and ft~o~ dt=l .  
Choose a smooth function X>~0 which vanishes outside [to, co], equals {+e  on 

[to+d, co-5] for small e, 5>0, and interpolates between 0 and ~" on the intervals [to, to+5] 

and [co-5, co]. We can find 5, c>0 arbitrarily small such that  f t~~176 
The function h: R+-+R+  obtained by integrating X twice with the initial conditions 

h(to)=h(to)=O will satisfy the properties (i) (iii) provided that  e and (~ were chosen suf- 

ficiently small (since h is then CLelose to ~ and h<~'+a).  In particular, t l=co-h (co )~  
co -~(co) = (1 - 1/#) co and hence to < tl  < CO. 

By Lemma 6.8 the function 

~( z) = ( Ay', y') - h(Ix'12) + ( By '', y"} + lx"l 2 = Q(y', z" ) -h( lx ' l  2) 

is strongly plurisubharmonie on C n. Recall that  ~(z)=Q(y',  z " ) - Ix ' l  2. The properties 

of h imply 

(b) ~ + t o < ~  on tile set {Ix'12~>t0}; 
(e) ~ = ~ + t l  on {Ix'12~>co}. 
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Let V={o<3co}cX. We define T: V - + R  by T = ~ o r  on UC~V and r=O+tl on V\U. 

Proper ty  (c) implies that  both  definitions agree on UMVA{Ix']2)co}, and hence ~- is 

strongly plurisubharmonic. The stated properties of ~- follow immediately. This com- 

pletes the proof of Lemma 6.7. 

(5) Interpolation along a complex subvariety. In this subsection we prove the inter- 

polation s tatement  in Theorem 2.5. Recall the situation: 

X0 is a closed complex subvariety of a Stein manifold X; 

- -  K is a compact  O(X)-convex subset of X; 

- -  U c X  is an open set containing KUXo; 

f: U--+C q is a holomorphic submersion such that  df=OIu for some q-cofrmne 0 

defined on X.  

Let c be a regular value of O such that  L={o<.c} contains K in its interior. Our 

task is to find a holomorphic submersion f fi'om an open neighborhood of LUXo to C q 

which approximates f uniformly on K,  interpolates f along X0 to order r E N ,  and such 

that  df is q-coframe homotopic to 0. The desired submersion X-+C q is then obtained 

by the usual limiting process. For convenience of notation we take c = 0  and L={~)~<0}. 

The set K':=(KUXo)M{g<<.I} is O(X)-convex,  and hence there exists a smooth 

strongly plurisubharmonic exhaustion function 7: X--+R such that  ~-<0 on K 1 and T>0  

on X\U.  We may assume that  0 is a regular value of 7 and the hypersurfaces {L)=0} and 

{T=0} intersect transversely. The set D0={7~<0} is a smooth strongly pseudoconvex 

domain contained in the domain U of f .  The following lemma provides the main step. 

LEMMA 6.9. For each c > 0  there exists a holomorphic submersion g: L - - + C  q in an 

open set LDL such that 19-fl<c on DonL and g - f  vanishes to order r on XoML. 

Assuming Lemma 6.9 we complete the proof of Theorem 2.5 as follows. Car tan ' s  the- 

ory gives f ie  O(x)q such that  f f - f  vanishes to order r on X0, and finitely many  functions 

~j CO(X) ( j = l ,  2, ..., m) which vanish to order r on 3/o and generate the corresponding 

sheaf of ideals ffXo on L (but not necessarily on X) .  Since 9- f 'EO(L)  q vanishes to order 

r on XoAL, we have g=f '+y~_ l  ~j9j for some 9jEO(L) q. Since L is O(X)-convex,  we 

can approximate each 9j uniformly on a neighborhood of L by ~jEO(X) q. The map 
/ m ~ f = f  + ~ j - 1  ~jgj: X--+cq is holomorphic, [f-gl is small on a neighborhood of L (hence 

If-fl is small on DoNL), and f - I  vanishes to order r along 3/o. If  the approximations 

are sufficiently close then f is a submersion in a neighborhood of LUXo. This completes 

the induction step. 

Proof of Lemma 6.9. Set cot=w+t(o-'r)=(1-t)T+tg and let 

Dt={~t<~O}={'r<<.t(T--g)}, tE  [0, 1]. 
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We have D 0 = { r ~ 0 } ,  D~={0~<0}=L and DoNDICDt for all rE[0, 1]. Let 

f t = { 0 < 0 ,  r > 0 } c D l \ D 0  and f t ' = { 0 > 0 ,  r < 0 } c D 0 \ D t .  

Since T- -0>0  in ft and T--O<0 in ft' it follows that,  as t increases from 0 to 1, the sets 

Dt n L monotonically increase to D1 = L while Dr\ L c Do decrease to 2~. All hypersurfaces 

{Or = 0 } :  bDt intersect along the real codimension-two submanifold S =  {0 = 0} N {r = 0}. 

Since d 0 t = ( 1 - t ) d r  +tdo and the differentials dr, do are linearly independent along S, 

each hypersurface bDt is smooth near S. Since 0t is a convex linear combination of 

strongly plurisubharmonic functions, it is itself strongly plurisubharmonic, and hence Dt 

is strongly pseudoconvex at every smooth point of bDt. 

We investigate more closely the nonsmooth points of bDt={ot=O} inside ft. The 

defining equation of Dt N f~ can be written as ~-~<t(r-0) and, after dividing by r - 6 > 0 ,  

a s  

DrAft= x e a : h ( x ) - r ( x ) _ o ( x )  <~t . 

The equation dh=O for critical points is equivalent to 

( r -  0) d r -  r ( d r -  d0) = r a 0 -  0 d r  = 0. 

A generic choice of 0 and r insures that  there are at most finitely many solutions 

Pl, . . . ,pmEft and no solution on bft. A calculation shows that  at each critical point 

the complex Hessians satisfy (r-o)2Hh=~-He-QH~-. Since 7 > 0  and - 0 > 0  on ft, we 

conclude that  Hh>O at such points. By a small modification of h near each pj we can 

therefore assume that  it is of the form (6.1) in some local holomorphic coordinates. 

If cE [0, 1) is a regular value of hla then for c / >c  sufficiently close to c (depending only 

on h) the domain De, can be obtained from Dc a Dc, by finitely many attachings of convex 

bumps (Subsection (1)). Indeed, the boundaries bD~ and bD~, intersect transversely at 

very small angles along S and are locally convexifiable. We begin by attaching small 

convex bumps to D~ n Dc, along S in order to enlarge D~ N L to Dc, N L locally near S 

while keeping unchanged the part  of the set outside of L (which equals Dc,\L). Each 

of the bumps may be chosen disjoint from X0, and with finitely many bumps we can 

reach Dc,. By Lemma 6.3 every submersion defined in a neighborhood of D~ can be 

approximated uniformly on Dc N D~, by a submersion defined in a neighborhood of Dc, 

such that  the two maps agree to order r on X0. (We use the interpolation version of 

Theorem 4.1.) If 0~<c0<cl ~<1 are such that  hla has no critical values in [Co, q] ,  we can 

subdivide [co, cl] into finitely many subintervals on which the above procedure applies. 

This explains the noncritical case. 
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We have seen tha t  the (finitely many) critical points of h[a are of the form (6.1), 

and hence the method developed in Subsections (2) (4) can be applied to cross every 

critical level of h. Lemma 6.6 with interpolation on X0 'which does not intersect the 

handle E )  is a trivial addition. 

Together these two methods show that  we can approxinmte a holomorphic submer- 

sion f ,  defined in a neighborhood of Do, uniformly on L n D o D K  by a submersion g 

defined in a neighborhood of L such tha t  9 - f  vanishes to order r on Xo. This completes 

the proof of Lemma 6.9. 

Proof of Corollary 2.10. The hypothesis implies that  the normal bundle of V in X 

is isomorphic to Nlv and hence is trivial. By the Docquier Grauert  theorem [DG] there 

exist functions gl,..., 9q E O(U) whose common zero-set equals V and whose differentials 

@l,...,dgq are linearly independent along V. If  d9 extends to a q-coframe on X then 

Theorem 2.5 furnishes a submersion f :  X--~cq such that  f - g  vanishes to second order 

along V. This implies that  V is a union of connected components of f - i ( 0 ) .  

In general we must replace gl,.-., gq by a different set of defining functions for V 

to insure the q-coframe extendability. Choose a complex subbundle E c T X  such that  

T X = E O N  and E=kerdg in a neighborhood of V (in particular, E[v=TV ). Let O c  

T*X be the conormal bundle with fibers O x = { w E T ~ X :  co(v)=0 for all vEEx}. From @_~ 

(TX/E)*~-N* we see that  (9 is trivial. Hence there exists a q-coframe 0=  (01, ..., Oq) on X 

which spans (9 and is holomorphic near V. By construction the differentials dgl,..., dgq 

also span O near V, and hence O j = ~ = l  ayk dgk for some holomorphic functions ajk in 

a neighborhood of V. Set h j=~=laakgk  for j = l , . . . , q .  Then dhj=Oj at points of V 

(since the term obtained by differentiating ajk is multiplied by gk which vanishes on V). 

Let X be a smooth function on X which equals one in a small neighborhood of V and 

equals zero outside of a slightly larger neighborhood. If these neighborhoods are chosen 

sufficiently small then O=xdh+(1-)~)O is a q-coframe on X which equals dh near V. 

Hence we can apply Theorem 2.5 to h as explained above. 

Assume now dim V~< [�89 so that  the rank of its (trivial) normal bundle Nv is at 

most [ �89  It  suffices to show that  Nv extends to a trivial subbundle N C T X .  To 

see this, recall that  the pair (X, V) is homotopy equivalent to a relative CW-complex 

of dimension at most n [AF]. The standard topological method of extending sections 

1 then over cells gives the following: If E--+X is a complex vector bundle of rank k> ~n 

a nonvanishing section of E over V extends to a nonvanishin 9 section of E over X. 
Indeed the obstruction to extending a section from the boundary of an m-cell to its 

interior lies in the holnotopy group 7rm_ 1 (S 2~- 1), which vanishes if m < 2k. Our complex 

only contains cells of dimension ~<n, which gives the stated result. Using this inductively 

we see that  the linearly independent sections generating N v c T X l v  extend to linearly 
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independent sections over X generating a trivial subbundle N c  TX. 

Proof of Corollary 2.11. By [DG] there exists an open set U c X  containing V and 

a holomorphic submersion 7r: U--+V which retracts U onto V. Choose a holomorphic 

subbundle H c T U  such tha t  TU=H| dTr and HIv=TV. The map f0 :=four: U-+C q 

is a holomorphie submersion with f~ =f. By the assumption there is a q-coframe 

0=(01, ..., Oq) on X satisfying FOj=dfj for j = l ,  ..., q. Choose a smooth cut-off function 

x:X--+[0, 1] with support  in U such that  X = I  in a smaller open neighborhood U1cU 

of V. The (1,0)-forms Oj:=xdf~ ( j = l ,  ..., q) are well defined on X and are 

C-linearly independent, except perhaps on the set where 0 < X <  1. However, if we choose 

to be supported in a sufficiently thin neighborhood of V then these forms are also inde- 

pendent there since the H-components  of the q-coframes 0 and df ~ agree on HIv =TV, 

and hence are close to each other over an open neighborhood of V. It  remains to apply 

Theorem 2.5 to obtain a submersion F: X-+C q extending f .  If  q~  [ �89  then the 

q-coframe df ~ extends from a small neighborhood of V to all of X by the same argument 

as in the proof of Corollary 2.10, using the fact that  the pair (X, V) is homotopie to a 

relative CW-complex of dimension ~< dim X. 

7. H o l o m o r p h i c  s e c t i o n s  t r a n s v e r s e  t o  a f o l i a t i o n  

A complex vector bundle 7r: N--+X of rank q admits locally constant transition func- 

tions if there is an open covering {Ui}ieN of X and fiber-preserving homeomorphisms 

r NIv~=Zr-l(Ui) -+Ui • c q  with transition maps 

xeU nUj, zeCq, 

where hijEGLq(C) is independent of the base point xEUiNUj. The structure group 

FCGLq(C) of N, generated by all hij's, is totally disconnected but not necessarily 

discrete. (Such an N, also called a fiat bundle, is determined by a representation 

a: 7rl(X)--+GLq(C); its pull-back to the universal covering 2( of X is a trivial bundle 

over )( .  This will not be used in the sequel,) 

THEOREM 7.1. Let X be a Stein manifold. If E is a complex subbundle of the 

tangent bundle TX such that N = T X / E  admits locally constant transition functions 

then E is homotopic (through complex subbundles of TX) to the tangent bundle of a 

nonsingular holomorphic foliation of X. 

Theorem 7.1 extends Corollary 2.9 in which N = T X / E  was assumed to be trivial. 

The analogous result concerning smooth foliations on smooth open manifolds was proved 
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by Gromov [Grol] and Phillips [Ph2], [Ph3], [Ph4], and on closed manifolds by Thurston 

[Thl], [Th2]. (See also [God, pp. 65-66] and [Gro3, p. 102].) The smooth analogue of 

Theorem 7.1 applies to any smooth codimension-one subbundle E C TX (since any real 

line bundle admits a totally disconnected structure group). On the other hand, a complex 

line bundle N-+X over a Stein manifold admits such a structure group only if its first 

Chern class e l (N)E  H 2 (X; Z) is a torsion element of this group. 

Proof of Theorem 7.1. Since the transition functions hij do not depend on the base 

point, the product foliations over the sets Uj C tt define a global holomorphic foliation 

of N such that  the zero-section of N is a union of leaves (one for each connected com- 

ponent of X) .  More precisely, if UiNUj#~ and z E C  q then r ) and 
--1 Cj (Uj • {z}) belong to the same leaf of 7-/. The tangent bundle of N decomposes as 

TN=H|  where the horizontal component H:=TTI is the tangent bundle of 7-/and the 

vertical component V is the tangent bundle of the foliation Nx =Tr -1 (x) (xE X) .  Denote 

by T: TN-+V the projection onto V with kernel H. Observe that  V is just the pull-back 

of the vector bundle N-+X to the total space by the projection map 7r, and for every 

section f :  X-+N of ~ we have f*V=N.  
If f :  X-+N is a holomorphic section transverse to the foliation 7-/ (this requires 

q ~< n = dim X)  then the intersection of f (X) C N with 7-/ defines a holomorphic foliation 

7/f of X, of dimension k=n-q ,  whose tangent bundle T74 fcTX  has fibers (T~]-g/)x = 

{ ~ T x X :  Todfx(()=0}.  Transversality of f to 7 /means  that  the vector bundle map 

f '  := f*o-codf: TX--+ f*V= N 

is surjective and hence induces an isomorphism of T X / T ~ I  onto N. In particular, N is 

the normal bundle of any such foliation ~ f .  

To prove Theorem 7.1 we construct a holomorphic section f :  X--+N transverse to 7-/ 

and a complex vector bundle injection ~: N-+TX (not necessarily holomorphic) such that  

the subbundle T ~ I C T X  is homotopic to E and f~o~: N-+N is a complex vector bundle 

automorphism homotopic to the identity through complex vector bundle automorphisms 

of N. 

On every sufficiently small open set U c X  we have NIGh--U• C q, and the restriction 

of 7-/to Nu has leaves Ux{z}  (zECq).  Any such U will be called admissible. A section 

of N over such a V is of the form f(x)=(x, f(x)) where f :  U--+C q, and f is transverse 

to ~ if and only if f is a submersion to the fiber C q. This reduces every local problem in 

the construction of a transverse section to the corresponding problem for submersions. 

Choose a strongly plurisubharmonic Morse exhaustion function t~: X--+R and an 

initial embedding T: N-+TX such that  TX=E| Suppose that  f is a transverse 

holomorphic section, defined on a sublevel set of y, such that  ker(7odf) is complementary 
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to ~(N) and f'o~ is homotopic to the identity over the domain of f .  We inductively enlarge 

the domain of f as in the proof of Theorem 2.5. Whenever we change f the injection 

is changed accordingly (by a homotopy of injections N--+TX) such that fto~ remains 

homotopic to the identity on N. We must explain the following two steps. 

(a) Suppose that  (A, B) is a special Cartan pair in X such that  B is a convex bump 

on A contained in an admissible set U c X  (Subsection (1) of ~6). Given a transverse 

section f :  .~--+N in a neighborhood of A, find a transverse section F in a neighborhood of 

AUB which approximates f uniformly on A. (The homotopy conditions trivially extend 

from A to AUB.) A solution to this problem will complete the proof in the noncritical 

case (compare with Proposition 6.1). 

(b) Extend a transverse section across a critical level of 6. At this step we shall 

need the homotopy condition on flo~. 

Part  (a) is proved as in Proposition 6.1 with one minor change. On ANU we 

have f(x)=(x, f(x)) where ] is a submersion to C q. We approximate f uniformly in a 

neighborhood of ANB by a submersion ~: /~-+C q defined in a neighborhood of B, find 

a transition map 7 such that  ] = ~ o  7 in a neighborhood of ANB, and split 7=/~oa-1  by 

Theorem 4.1. This gives ]oc~ =~o~ in a neighborhood of ANB which defines a transverse 

holomorphic section F in a neighborhood of (AUB)n U (actually we have to shrink the 

domain a bit so that  the image of a remains in U). It remains to show that  F extends 

holomorphically to a neighborhood of A. From 

F(x) = (x, fi(o~(x))), f(ol(x)) = (o~(x), fi(o!(x))) 

we see that  these two points belong to the same leaf of 7/. Hence F(x) is the unique 

point of N~ obtained from f(a(x))CN~(x) by a parallel t ransport  along the leaf of 7/ 

through f(o~(x)). (More precisely, we take the nearest intersection point of the leaf with 

the fiber Nx.) Since c~ is a biholomorphism close to the identity in a neighborhood of A, 

this gives a well-defined holomorphic extension of F to a neighborhood of AUB which is 

transverse to 7/. 

Consider now the problem (b). Let p c X  be a critical point of L) and assume that  f 

is already defined on {L)~<c} for some c<o(p)  close to g(p). The crossing of the critical 

level is localized in an admissible coordinate neighborhood UC X of p, except for the last 

step (Subsection (4) of w which uses the noncritical case (a). We must explain how 

to extend f smoothly across the handle E c U  attached to {O<~c} (see Subsection (2) 

of w for the details). We identify U with an open subset of C n. Using a trivialization 

NIu ~_ Ux cq we have the following situation: 

(i) f(x)=(x, f(x)) where f is a holomorphic submersion from a neighborhood of 

Un{~<c}  to cq;  
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(ii) c: NIu-+TXIu = U x  C ~ equals ~(x, v ) = ( x ,  Axv) ( v c C  q) where Ax is a complex 

( n x  q)-matrix of rank q depending continuously on xEU; 

(iii) x-+Jf(x).AxEGLq(C) is homotopic to the constant map  x-+Iq in a neighbor- 

hood of UM{~)~<c}. (Here Iq is the identity matrix.)  

Note that  (iii) is just the condition on f'o~ expressed in local coordinates. An 

elementary consequence of (iii) is that  the 3acobian matr ix  J ]  admits  a smooth extension 

across the handle E c R  k to a map  J into the space of complex (n x q)-matrices of rank q 

such that  x--+J(x).AxEGLq(C) remains homotopic to the constant map  x-+Iq on the 

set 

Let D be a domain in R n = R ~ + i 0 c C  n containing the handle E as in Lemma 6.4. 

Let f~ denote the differential relation of order one whose holonomic sections are smooth 

maps h: D-+cq whose Jacobian satisfies the condition Jh(x).AxEGLq(C). We see as in 

Lemma 6.5 above that  fl is ample in the coordinate directions. Hence Gromov's  convex 

integration lemma from [Gro3, 2.4.1] (or [EM, w gives a smooth extension of ] across 

the handle E such that  x--+ Jr(x). Ax E GLq (C) is homotopic to the constant map x--+ Iq on 

({ p 4 c} U E)  N U, thereby insuring that  the extended section f (x) = (x, ](x)) is transverse 

to 7/ also over E and f~ot remains homotopic to the identity on N.  (See Lemma 6.5 

for the details.) The remaining steps of the proof are the same as for submersions. 

Theorem 7.1 is proved. 

COROLLARY 7.2. Let V be a closed complex submanifold of a Stein manifold X.  If 

the tangent bundle T X  admits a complex vector subbundle N with locally constant tran- 

sition functions such that TX]v =TV|  then V is a union of leaves in a nonsingular 

holomorphic foliation of X .  

Proof. Let 7-I be a foliation of N as in the proof of Theorem 7.1. By the Docquier 

Grauert  theorem [DG] there are an open neighborhood U c X  of V, a holomorphic re- 

traction 7r: U--~V and an injective holomorphic map 6: U-+N]v such that  r  

for each xCU, and r  if and only if xCV. The point r corresponds to a 

unique point f(x)Ezr*(NIv)x via the pull-back map 7r*. Shrinking U if necessary we 

have Niu~-Zr*(Niv ). Using this identification we see that  f :  U--+N[u is a holomorphic 

section which intersects the zero-section of N transversely along V. Shrinking U again 

we conclude that  f is transverse to ?-/and V is a leaf of the associated foliation ~-f of U. 

It  remains to find a global transverse section f :  X-+N which agrees with f to second 

order along V. This is done as in the proof of Theorem 2.5 (Subsection (5) of w with 

the modifications explained above. 

Remark. A closed connected complex submanifold V of a Stein manifold X is a leaf 

in a nonsingular holomorphic foliation defined in an open neighborhood of V if and only 
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if the normal bundle of V in X admits  locally constant transition flmctions. The proof is 

essentially the same as for smooth foliations: the direct part  is due to Ehresmann (see e.g. 

[God, p. 5]); for the converse part  we transfer the above foliation 7-I of the normal bundle 

N to a neighborhood of V in X by the Docquier Grauert  theorem [DG]. Corollary 7.2 

gives a sufficient condition for the existence of a global foliation of X with the same 

property. 
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