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1. Introduction

In 1967 Gunning and Narasimhan proved that every open Riemann surface admits a
holomorphic function without critical points [GN], thus giving an affirmative answer to
a long-standing question. Their proof was an ingenious application of the approximation
methods of Behnke and Stein.

A complex manifold is called Stein (after Karl Stein [Ste], 1951) if it is biholomorphic
to a closed complex submanifold of a complex Euclidean space CV. Open Riemann
surfaces are precisely Stein manifolds of complex dimension one. In this paper we prove
the following result.

THEOREM 1. Every Stein manifold admits a holomorphic function without critical
points. More precisely, an n-dimensional Stein manifold admits [%(n+1)] holomor-
phic functions with pointwise independent differentials, and this number is maximal for

every n.

For a more precise statement see Theorems 2.1 and 2.6. An example of Forster [Fol]
provides for each n€N an n-dimensional Stein manifold which does not admit more than
[3(n+1)] holomorphic functions with independent differentials (Proposition 2.12 below).

The question on the existence of noncritical holomorphic functions on a Stein mani-
fold has been open since the 1967 work of Gunning and Narasimhan [GN]; it was men-
tioned in Gromov’s monograph [Gro3, p.70]. Our proof, which also applies to Riemann
surfaces, is conceptually different from the one in [GN]. It is much easier to construct

noncritical smooth real functions on smooth open manifolds; see e.g. Lemma 1.15 in
[God, p. 9].
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The critical locus of a generically chosen holomorphic function on a Stein manifold is
discrete. Conversely, we prove that for any discrete subset P in a Stein manifold X there
exists a holomorphic function feO(X) whose critical locus equals P (Corollary 2.2).

Recall that a holomorphic map f=(fy, ..., f4): X —>C? is a submersion if its differen-
tial dfy: Tp X =T} (;)C?~C1 is surjective for every € X. Equivalently, the differentials
of its component functions must be linearly independent, i.e., dfi AdfaA... Adfq7#0. Thus
the differential of a holomorphic submersion X —C? induces a surjective complex vector
bundle map TX — X x C? of the tangent bundle of X onto the trivial bundle of rank ¢
over X. Our main result is that, for g<dim X, this necessary condition for the existence
of a submersion X —C¥? is also sufficient.

THEOREM II. (The homotopy principle for holomorphic submersions.) If X is
a Stein manifold and 1<g<dim X then every surjective complex vector bundle map
TX—XxC? is homotopic to the differential of a holomorphic submersion X —C4.

The homotopy referred to above belongs to the space of surjective complex vector
bundle maps 7T'X — X xC?. Theorem II is the holomorphic analogue of the basic ho-
motopy principle for submersions of smooth open manifolds to real Euclidean spaces,
due to A. Phillips [Phl] and M. Gromov [Grol]. A more precise statement is given
by Theorems 2.5 and 2.6 in §2. We don’t know whether the same conclusion holds for
g=dim X >1 (for open Riemann surfaces see [GN]).

By using the tools developed in this paper one can also prove the following. If
fo, fi: X—C? are holomorphic submersions {g<dim X ) whose differentials dfo,df1 are
homotopic through a family of surjective complex vector bundle maps of TX onto
the trivial bundle X xC? then there exists a homotopy of holomorphic submersions
fr: X—C? (7€[0,1]) connecting fy to fi. The details are included in the sequel to this
paper, entitled ‘Holomorphic submersions from Stein manifolds’ (to appear in Ann. Inst.
Fourier), in which we investigate the same problem for more general target manifolds.

Theorem I is a corollary of Theorem I and a result of Ramspott [Ra] to the effect that
the cotangent bundle of an n-dimensional Stein manifold admits [%(n—l—l)] independent
sections, and these define a surjective complex vector bundle map 7X — X x Cl(»+1)/2],
Ramspott’s theorem combines the Lefschetz theorem [AF] with the standard method
of constructing sections of fiber bundles over CW-complexes by stepwise extension over
the skeleta. Our proof gives both results simultaneously and does not use Ramspott’s
theorem.

We give numerous applications to the existence of nonsingular holomorphic folia-
tions on Stein manifolds. We prove that every complex vector subbundle ECTX with
trivial quotient TX/F is homotopic to the tangent bundle of a holomorphic foliation



NONCRITICAL HOLOMORPHIC FUNCTIONS ON STEIN MANIFOLDS 145

(Corollary 2.9); the same is true if TX/E admits locally constant transition functions
{Theorem 7.1). Analogous results for smooth foliations on open manifolds were proved
by Gromov [Grol] and Phillips [Ph2], [Ph3], [Ph4], and on closed manifolds by Thurston
[Thl], [Th2]. Every n-dimensional Stein manifold admits nonsingular holomorphic sub-
mersion foliations of any dimension > [%n], and if X has geometric dimension k<n then
it admits submersion foliations of any dimension > [%k] (Corollary 2.7). We construct
submersion foliations transverse to certain complex submanifolds of X (Corollaries 2.3
and 2.11) or containing it as a leaf (Corollaries 2.10 and 7.2).

Our construction depends on three main ingredients developed in this paper. We
postpone the general discussion to §2 and mention at this point only the following splitting
lemma for biholomorphic maps (Theorem 4.1): If A, BC X is a Cartan pair in a complex
manifold X then every biholomorphic map - sufficiently uniformly close to the identity

in a neighborhood of ANB admits a decomposition y=Foa !

, where a (resp. 3) is a
biholomorphic map close to the identity in a neighborhood of A (resp. of B).

This lemma is used to patch a pair of holomorphic submersions f,g to C¢, defined
in a neighborhood of A and B respectively, which are sufficiently uniformly close in a
neighborhood of AN B, into a submersion f in a neighborhood of AU B. The map <y arises
as a transition map satisfying f=goy near ANB. From y=08ca"! we obtain foa=gog,
which gives f.

Our splitting lemma plays the analogous role in our construction of submersions
as Cartan’s lemma (on product splitting of holomorphic maps with values in a complex
Lie group) does in Cartan’s theory or in the Oka—Grauert theory. A key difference is
that our lemma gives a compositional splitting of biholomorphic maps and is closer in
spirit to Kolmogorov’s work on compositions of functions [Ko]. We prove it by a rapidly
convergent Kolmogorov-Nash-Moser-type iteration (§4).

Our proof of Theorem II breaks down for g=dim X >1 due to a possible Picard-type
obstruction in the approximation problem (Lemma 3.4). Hence the following problem
remains open.

Problem 1. Does a parallelizable Stein manifold of dimension n>>1 holomorphically

immerse in C™ (i.e., is it a Riemann domain over C™)?

This well-known problem (see [BN, p. 18] or [Gro3, p. 70]) was our main motivation
for the present work. To find such an immersion it would suffice to obtain an affirmative

answer to any of the following two problems.

Problem 2. Let B be an open convex set in C" for n>1. Is every holomorphic

immersion (=submersion) B—C" a uniform limit on compacts of entire immersions
Ccr—C"?
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The analogous problem for mappings with constant Jacobian may be related to
the Jacobian problem for holomerphic polynomial maps [BN, p.21]. The situation is
much better understood for biholomorphic maps: If f is an injective holomorphic map
from a convez open set BCC™ onto a Runge set f(BYCC™ then f can be approzimated
uniformly on compacts in B by holomorphic automorphisms of C™ [AL]. No comparable

result seems to be known for noninjective immersions.

Problem 3. Let f=(fi,..., f;): X—C? be a holomorphic submersion for some g<
dim X. Given a (1,0)-form 6y such that dfiA...AdfyA0y#0 on X, find a homotopy of
(1,0)-form 6, (t€[0,1]) such that dfiA...AdfyA8:#0 for all t€[0,1] and 6;=dg for some
g€O(X). (The map (f,g): X—C9"! is then a submersion.)

Problem 1 has an affirmative answer if one can solve Problem 3 with g=n—1. Ex-
plicitly, given a holomorphic submersion f: X" —C" ! such that kerdf is a trivial line
subbundle of TX, find a g€ O(X) whose restriction to every level set { f=c} is noncritical.

2. The main results

Let X be a Stein manifold (for their general theory see [GR] and [H62]). Denote by O(X)
the algebra of all holomorphic functions on X. A compact set KC X is said to be O(X)-
convez if for any point € X\ K there exists feO(X) satistying |f(z)|>maxk|f|. An
O(C™)-convex set is called polynomially convez. A function is holomorphic on a closed
subset K X if it is holomorphic in some unspecified open neighborhood of K; the set
of all such functions (with the usual identification of functions which agree near K) is
denoted O(K'). We denote by j2(f) the r-jet of a function f at z€ X. The critical set of
feO(X) is Crit( f; X)={z€ X :df,=0}; a function without critical points will be called
noncritical. We denote by |z| the Euclidean norm of zeC™.

(1) Functions with prescribed critical locus. Our first main result is

THEOREM 2.1. Let X be a Stein manifold, XoC X a closed complex subvariety of X
and KCX a compact O(X)-convex subset. Let UC X be an open set containing XoUK
and feO(U) a holomorphic function with discrete critical set P={p1,p2,..} CXoUK.
For any €>0 and r,n1,ny,...€N there exists an fe(’)(X) satisfying Crit(f;X):P,
|f(z)— f(z)|<e for all €K, 55(f—f)=0 for all z€ Xy, and j2+(f—f)=0 (k=1,2,...).
In particular, if f is noncritical on U then f s noncritical on X.

Theorem 2.1 implies that any noncritical holomorphic function on a closed complex

submanifold Xy of a Stein manifold X extends to a noncritical holomorphic function
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on X. Furthermore, there exist noncritical functions satisfying the axioms of a Stein
manifold ([H62, p. 116, Definition 5.1.3]). Theorem 2.1 is proved in §5.
The critical locus of a generically chosen holomorphic function on a Stein manifold

is discrete. Theorem 2.1 implies the following converse.

COROLLARY 2.2. Let P={p1,p2,ps, ...} be a discrete set in a Stein manifold X and
let fi be a holomorphic function in a neighborhood of py with an isolated critical point
at py for k=1,2,.... For any choice of integers niy €N there exists an feO(X) with
Crit(f)=P such that f— fi vanishes at least to order ny at pg for every k=1,2, ...

(2) Foliations by complex hypersurfaces. We denote by TX the holomorphic tangent
bundle of X and by T*X its holomorphic cotangent bundle. For the general theory of
foliations we refer to [God].

COROLLARY 2.3. Every Stein manifold admits ¢ nonsingular holomorphic foliation
by closed complex hypersurfaces; in addition such a foliation may be chosen to be trans-

verse to a given closed complex submanifold.

Proof. A closed complex submanifold V of a Stein manifold X is itself Stein and
hence admits a noncritical function f€O(V) by Theorem 2.1. By Cartan’s theorem
f extends to a holomorphic function on X. Since the extension remains noncritical
on Xp, Theorem 2.1 gives a noncritical function fe O(X) such that f lv=f. The family
of connected components of the levels sets {f=c} (c€C) is a foliation of X by closed
complex hypersurfaces transverse to V.

COROLLARY 2.4. If V is a smooth closed complex hypersurface with trivial normal
bundle in a Stein manifold X then V is a union of leaves in a nonsingular holomorphic
foliation of X by closed complex hypersurfaces. This holds in particular if H*(V;Z)=0,
or if X=C" Any smooth connected complex curve in a Stein surface is a leaf in a
nonsingular holomorphic foliation.

Proof. Choose a holomorphic trivialization of the normal bundle N=TX]|,,/TV ~
V' x C. The projection h: N— C on the second factor is a noncritical holomorphic function
on N, and No={h=0} is the zero-section of N. The Docquier—Grauert theorem [DG] (see
also Theorem 8 in [GR, p. 257]) gives an open neighborhood QC X of V and an injective
holomorphic map ¢: Q— N with ¢(V)=N,y. Then f=ho¢ is a noncritical function on
with {f=0}=V. Applying Theorem 2.1 (with Xo=V) we obtain a noncritical function
feO(X) which vanishes on V, and the foliation {f=c} clearly satisfies Corollary 2.4.
The second statement follows from the isomorphism Pic(V)=H(V;0*)~ H?(V;Z); the
latter group vanishes if V' is an open Riemann surface. Since every divisor on C" is a

principal divisor, the normal bundle of any complex hypersurface VCC™ is trivial.
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(3) Holomorphic submersions and foliations. We now consider the existence of holo-
morphic submersions f=(fi, ..., fg): X—=C? for g<n=dim X. The components of f are
noncritical functions with pointwise independent differentials, i.e., dfiA...Adfy#0 on X.
Hence an obvious necessary condition is that there exists a g-tuple §=(61, ..., ;) of con-
tinuous differential (1,0)-forms on X satisfying 61A...A04|,#0 for all zeX. Any such
ordered ¢-tuple will be called a g-coframe on X. We may view 0 as a complex vector
bundle epimorphism 6: TX — X xC? of the tangent bundle TX onto the trivial bundle
of rank ¢ over X. Clearly we may speak of holomorphic g-coframes, homotopies of q-
coframes, etc. If 6;=df; for some f;€O(X) (j=1,...,q) we shall write §=df and call ¢
exact holomorphic. The following two theorems are our main results; they are proved
in §6.

THEOREM 2.5. Let X be a Stein manifold and 1<g<dim X . For every q-coframe 6°
on X there exists a homotopy of q-coframes 0 (t€[0, 1)) such that 0*=df where f: X-—~+C1
is @ holomorphic submersion. Furthermore, if Xo, KC X are as in Theorem 2.1, reN,
>0, and if we assume that 0°=df® is exact holomorphic in an open set UDXqUK,
the homotopy may be chosen such that 8*=df* is evact holomorphic in a neighborhood of
XoUK for every tc[0,1], f*—f° vanishes to order r on Xy, and |f*—f°|<e on K.

Theorem 2.5 also holds for g=dim X=1 and is due in this case to Gunning and
Narasimhan who proved that for every nonvanishing holomorphic one-form  on an open
Riemann surface there exists a holomorphic function w such that e*8=df is exact holo-
morphic [GN, p. 107]. The homotopy #*=e*¥§ consisting of nonvanishing one-forms con-
nects §°=0 to #'=df. We do not know whether Theorem 2.5 holds for g=dim X >1.

We state separately the case when the necessary condition on the existence of a
g-coframe is automatically fulfilled due to topological reasons. Recall that any Morse
critical point of a strongly plurisubharmonic function on an n-dimensional complex mani-
fold has Morse index at most n [AF]. If X admits a strongly plurisubharmonic Morse
exhaustion function p: X —R all of whose critical points have index <k (and k is a
minimal such), we say that X has geometric dimension k; such an X is homotopically
equivalent to a k-dimensional CW-complex [AF].

THEOREM 2.6. Let p: X =R be a strongly plurisubharmonic Morse exhaustion func-
tion on an n-dimensional Stein manifold X. Assume that ¢ is a reqular value of o
and every critical point of ¢ in {x€X:o(x)>c} has Morse index <k. If q<q(k,n):=
min{n—[1k],n—1} then every holomorphic submersion f:{z€X:o(x)<c}—C? can be
approzimated uniformly on compacts by holomorphic submersions f: X—C9. Every n-
dimensional Stein manifold X admits a holomorphic submersion to CI®*D/2: if X has

geometric dimension k then it admits a holomorphic submersion to CI*:m),
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Proposition 2.12 below shows that the submersion dimension in Theorem 2.6 is

optimal for every n. Theorem 2.6 immediately gives

COROLLARY 2.7. Ewvery Stein manifold X of geometric dimension k admits nonsin-
gular holomorphic foliations of any dimension > [%k] If X is parallelizable, it admits a
holomorphic submersion X —C"~! (n=dim X ) and nonsingular holomorphic foliations

of any dimension >1.

The foliations in Corollary 2.7 are given by submersions to Euclidean spaces; hence

all leaves are topologically closed and the normal bundle is trivial.

Remark. The Oka—Grauert principle applies to g-coframes on a Stein manifold and
shows that any g-coframe is homotopic to a holomorphic ¢g-coframe, and any homotopy
between a pair of holomorphic g-coframes can be deformed to a homotopy consisting
of holomorphic g-coframes. This is seen by viewing g-coframes as sections of the holo-
morphic fiber bundle VI(T*X)—X whose fiber V7 is the Stiefel variety of all ordered
g-tuples of C-independent elements in 7 X. Since the Lie group GL,(C) (n=dim X)
acts transitively on V2, the Oka—Grauert principle [Gra] applies to sections X =V (7%X).

(4) Exzistence of homotopies to integrable subbundles. The components of a g-coframe
on X are linearly independent sections of T*X, which therefore span a trivial complex
subbundle of rank ¢ in 7*X. Conversely, every trivial rank-¢ subbundle ©CT"X is
spanned by (the components of ) a g-coframe. Different g-coframes 8,6’ spanning the
same subbundle of T*X are related by ¢'=60-A for some A: X -GL4(C). A homotopy of
g-coframes induces a homotopy of the associated subbundles of 7*X. Hence Theorem 2.5
implies

COROLLARY 2.8. Let X be a Stein manifold. Fvery trivial complex subbundle © C
T*X of rank g<<dim X is homotopic to a subbundle generated by independent holomorphic
differentials df1,...,dfy. If © is holomorphic then the homotopy can be chosen through
holomorphic subbundles of T*X .

The last statement follows from the Oka—Grauert principle [Gra]. Corollary 2.8
admits the following dual formulation in terms of subbundles of TX (for a generalization

see Theorem 7.1).

COROLLARY 2.9. Let X be a Stein manifold of dimension n. Every complex sub-
bundle ECTX of rank k=1 with trivial quotient bundle TX/E is homotopic to an in-
tegrable holomorphic subbundle kerdf CTX, where f: X—C" % is a holomorphic sub-
mersion. If E is holomorphic then the homotopy may be chosen through holomorphic
subbundles.
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Proof. The complex subbundle ©=FE+CT*X with fibers ©,={\eT} X: A(v)=0 for
all ve E;} (the conormal bundle of E) satisfies ©~(TX/E)* and hence is trivial. Corol-
lary 2.8 gives a homotopy ©'CT*X (t€[0,1]) from ©°=6 to a subbundle O'CT*X
spanned by n—k independent holomorphic differentials dfy,...,df,—x. The homotopy
Et=(0Y)1CTX satisfies Corollary 2.9. The last statement follows from the Oka—Grauert
principle.

We conclude with a couple of results on the existence of submersion foliations which
either contain a given submanifold as a leaf, or else are transverse to it. Both depend on

Theorem 2.5 and are proved in §6.

COROLLARY 2.10. Let X be an n-dimensional Stein manifold and VC X a closed
complex submanifold. If TX admits a trivial complex subbundle N satisfying TX|, =
TV@®N|y, then there is a holomorphic submersion f: X —C? (g=n—dim V') such that V
is a union of connected components of the fiber f~1(0). If dimV >[3n] then the above

conclusion holds provided that V has a trivial normal bundle in X.

COROLLARY 2.11. Let X be a Stein manifold, .: V—X a closed complex submani-
fold, and f=(f1,..., fq): V—=C? a holomorphic submersion. If there is a g-coframe 0=
(61,...,84) on X satisfying .*0;=df; (j=1, ...,q) then there exists a holomorphic submer-
sion F: X—C with F|,=f. Such an F always ezists if g<[3(n+1)], where n=dim X.

(5) An example. The following example shows that the submersion dimension in

Theorem 2.6 is maximal for every n.

PROPOSITION 2.12. Set Y={[z:y:2)€CP?: 22 +y2+22#0} and

ym™, if n=2m,
Y™xC, if n=2m+1.

Then X is an n-dimensional Stein manifold which does not admit a holomorphic sub-
mersion to Cln+1)/2+1,

Proof. These manifolds were considered by Forster [Fol, p. 714], [Fo2, Proposition 3].
He showed that Y is a Stein surface which admits a strong deformation retraction onto the
real projective plane M ={[z:y:2]:z,y, z€ R} ~RP? contained in Y as a totally real sub-
manifold. Thus Y is a complexified RP?, and X is homotopic to (RP2)™. Using the fact
that TY |y ~TM&TM (as real bundles) Forster proved that the Stiefel-Whitney class
Wy, (TX) is the nonzero element of the group H?™(X; Zy)=H>"((RP?)™;Z3)=2Z,, and
consequently the Chern class ¢,,,(TX) is the nonzero element of H?™(X;Z)=Z,. Hence
e (T*X)=(=1)"cn (T X)#0 [MS, p. 168], which implies that T*X does not contain a
trivial complex subbundle of rank n—m+1=[1(n+1)]+1. (Proof: if T*X =E&E' where
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E’ is trivial then 0#£¢,, (T*X )=cp(E) [MS, Lemma 14.3], which means that rank E>m
and consequently rank E’<n—m.) Hence there exists no submersion X —Cl(»+1)/2l+1,
(The only essential property of X is that the Chern class of TX of order [%n] does not
vanish.)

Recall that holomorphic immersions of a Stein manifold X into Euclidean spaces
of dimension N >dim X satisfy the following homotopy principle (Eliashberg and Gro-
mov [Gro3, pp. 65-75]): FEuvery injective complex vector bundle map TX—Xx CH s
homotopic to the differential of a holomorphic immersion X —C¥. In particular, every
n-dimensional Stein manifold admits a holomorphic immersion in C[%/2) and the mani-
fold X in Proposition 2.12 does not immerse in CB%/2-1 [Fo2, p.183]. A comparison
with Theorem 2.6 shows that the submersion dimension ¢(n) and the immersion dimen-

sion N(n), respectively, are symmetric with respect to n=dim X:

gn)=[3(n+1)] =n—[in], N(n)=n+|3n].

If X has geometric dimension at most k and k>2 then X admits a submersion to C*~*/2]

and immersion in C**%/2 and both bounds are sharp (an example is the manifold
Y*/2l5 Cn=2[k/2] where Y is as in Proposition 2.12).

(6) Remarks on parallelizable Stein manifolds. By Grauert [Gra] the tangent bundle
of a Stein manifold X is holomorphically trivial if and only if it is topologically trivial
(as a complex vector bundle). The question whether every such manifold immerses in
C™ with n=dim X remains open for n>1. Every closed complex submanifold X< C¥
with trivial normal bundle is parallelizable [Fol, p. 712]. (Triviality of the normal bundle
is equivalent to X being a holomorphic complete intersection in some open neighbor-
hood.) In particular, every closed complex hypersurface in C™"*! is parallelizable [Fol,
Corollary 2], but it is unknown whether these immerse into C”. J.J. Loeb [BN, p.19]
found explicit holomorphic immersions X —C" of algebraic hypersurfaces XCC™t! of
the following type:

X ={(z0, 21, 2) zg+P1(z1)+...+Pk(zk) =1}cC crtl

where 2p€C, z;€C™, P; is a homogeneous polynomial of some degree d; on C™ for every
j=1,..,k, and n1+...+ny=n. These manifolds are even algebraically parallelizable but
do not admit algebraic immersions to C™. An example of this type is the complex
n-sphere X" ={z€C"1: 3" 22=1}.

In another direction, Y. Nishimura [N] found explicit holomorphic immersions
CP2\C—C? where C is an irreducible cuspidal cubic in CP2. Further examples and

remarks on parallelizable Stein manifolds can be found in [Fol].
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Unlike ¥", the real n-sphere S?=%"NR"*! (which is a maximal totally real sub-
manifold of ¥) is parallelizable only for n=1,3, 7. By Thurston ([Th1], [Th2]) $3 and 57
admit C>®-foliations of all dimensions. However, a simply-connected closed real-analytic

manifold (such as S™ for n>>1) does not admit, any real-analytic foliations of codimension
one (Haefliger [Hal]).

(7) Comparison with smooth immersions and submersions. The homotopy classifica-
tion of smooth immersions X —R? was discovered by Smale [Sm] and Hirsch [Hil], [Hi2].
Subsequently analogous results were proved for submersions (Phillips [Phl] and Gro-
mov [Grol]), k-mersions (Feit [Fe]), and maps of constant rank [Ph5]. Gromov’s mono-
graph [Gro3] offers a comprehensive survey; see also the more recent monographs [Sp]
and [EM]. Our Theorem 2.5 is a holomorphic analogue of the basic homotopy principle
for smooth submersions X —R? which holds for all 1<g<dimg X provided that X is a
smooth open manifold (see [Hi2], [Phl], [Grol] and [Ha2]).

The differential relation controlling smooth immersions of positive codimension is
ample in the coordinate directions, and the corresponding homotopy principle follows
from the convez integration lemma of M. Gromov (see the discussion and references in
Subsection (2) of §6 below). The smooth submersion relation is not ample in the coor-
dinate directions (Example 2 in [EM, p.168]), and the homotopy principle for smooth
submersions is obtained by exploiting the invariance of the submersion condition un-
der local diffeomorphisms and reducing the problem to a subpolyhedron in the given
manifold. On the other hand, we shall see that the complex (holomorphic) submersion
relation is ample in the coordinate directions on any totally real submanifold, and this
is exploited to obtain a maximal rank extension of the map across a totally real handle
(Lemma 6.5). The invariance under local biholomorphisms is also strongly exploited in
the approximation and patching of submersions. '

The results of homotopy principle type on Stein manifolds are traditionally referred

to as (instances of ) the Oka principle; see the recent survey [F3].

(8) Outline of proof of the main theorems. Our construction relies on three main
ingredients developed in this paper.

The first one is a new technique for approximating a noncritical holomorphic func-
tion f on a compact polynomially convex subset KCC™ by entire noncritical func-
tions (§3). We exploit the invariance of the maximal rank condition under biholomor-
phisms. Choose a preliminary approximation of f on K by a holomorphic polynomial i
with finite critical set ¥ =Crit(h) disjoint from K. When n>1, the main step is to find
an injective holomorphic map ¢: C*—C™\X (a Fatou-Bieberbach map) which is close

to the identity map on K and whose range avoids ¥. Such a ¢ can be obtained as a



NONCRITICAL HOLOMORPHIC FUNCTIONS ON STEIN MANIFOLDS 153

limit of holomorphic automorphisms of C™ using methods developed by Andersén and
Lempert [A], [AL], and Rosay and the author [FR], [F1], [F2]. Then f=hog is noncritical
on C™ and approximates f uniformly on K. For n=1 we give a different proof using
Mergelyan’s theorem. Similar methods are developed for submersions C™ —C¢? for g<n.

The second ingredient concerns patching of holomorphic submersions. Let A, BC X
be compact sets in a complex manifold X such that AUB has a basis of Stein neigh-
borhoods and A\—B OB\_A:Q. For any biholomorphic {=injective holomorphic) map
~v:V— X, sufficiently close to the identity map in a neighborhood VC X of C=ANDB, we
obtain a compositional splitting y=8oa~!, where a (resp. 8) is a biholomorphic map
close to the identity in a neighborhood of A (resp. B) (Theorem 4.1). If f (resp. g) is a
submersion to C? in a neighborhood of A (resp. B) and g is sufficiently uniformly close
to f in a neighborhood of C then f=go~y for a biholomorphic map  close to the identity;

1

splitting y=08ca~" as above we obtain fea=gef3 near C; this gives a submersion fina

neighborhood of AUB which approximates f on A.

Remark. The standard O-method for patching f and g would be to take h=
f+x(g—f) and f=h—T(8h), where T is a bounded solution operator to the J-equation
in a neighborhood of AUB and x is a smooth function which equals zero in a neighbor-
hood of A\B and one in a neighborhood of B\ A. Since dh=(g—f)dx, the correction
term T(8h) is controlled by |f—g|, and hence f is noncritical in a neighborhood of A
provided that |g— f] is sufficiently small in a neighborhood of ANB. However, to insure
that f is also noncritical in a neighborhood of B we would need the pointwise estimate
|d(T(0h))|<|dg|. Since we obtain g by a Runge approximation of f on ANB (and we

have no control on its differential on B\ 4), such an estimate is impossible.

In the construction of submersions X —C9? for ¢>1 another nontrivial problem is the
crossing of the critical levels of a strongly plurisubharmonic Morse exhaustion function
o on X. We combine three ingredients (§6):

— a convex integration lemma of Gromov, or Thom’s jet transversality theorem
when ¢<[3(n+1)], to obtain a smooth extension across a handle;

— holomorphic approximation on certain handlebodies;

— the construction of an increasing family of smooth strongly pseudoconvex neigh-
borhoods of a handlebody, passing over the critical level of g.

We globalize the construction using the ‘bumping method’ similar to the one in
[Grod], [HL3|, [FP1], [FP2], [FP3]. We exhaust X by an increasing sequence AgCA;C
AsC...CUpe; Ax=X of compact O(X)-convex sets such that the initial function (or
submersion) f=fy is defined on Ay, and for each k>0 we have Ag41=ArUB; where

(Ag, By) is a special Cartan pair. This enables us to approximate a noncritical function
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fx on Ay by a noneritical function fr11 on Agyq. The limit f =limg_, o fi is a noncritical
function on X. The details are given in §5 for functions and in §6 for submersions.

In §7 we construct holomorphic sections transverse to certain holomorphic foliations,
thus generalizing Corollaries 2.9 and 2.10.

3. Approximation of noncritical functions and submersions

This section uses the Andersén—Lempert theory of holomorphic automorphisms of C™
[A], [AL] as developed further in [FR], [F1], [F2]. The following is one of the main steps

in our construction of noncritical holomorphic functions.

THEOREM 3.1. Let K be a compact polynomially convex subset of C™. Let f be a
holomorphic function in an open set UDK satisfying df #0. Given €>0 there exists a
9€O(C™) satisfying dg#0 on C™ and supg |f—g|<e.

Proof. Choose a compact polynomially convex set LC U with smooth boundary and
containing K in the interior. Such an L may be obtained as a regular sublevel set of
a strongly plurisubharmonic exhaustion function on C™ which is negative on K and
positive on C"\U [H62, Theorem 2.6.11].

Consider first the case n=1. Since L C is smoothly bounded and polynomially con-
vex, it is a union L= Ujm=1 L; of finitely many compact, connected and simply-connected
sets L;. Since f'(2)#0 for z€U, there is a holomorphic function k in a neighborhood
of L such that f'(z)=e") for each z.

For every j=2,...,m we connect L; to L; by a simple smooth arc C; contained in
C\ L except for its endpoints a; €Ly, bj€L;. Furthermore we choose the arcs C; to be
pairwise disjoint. The sets S:=LUCU...UC,, and C\S are connected, and i can be
extended to a smooth function on C; satisfying fcj MO d¢=f(b;)— f(a;) for j=2,...,m
(where C; is oriented from a; to b;). By Mergelyan’s theorem we can approximate h
uniformly on S as close as desired by a holomorphic polynomial h. Choose a point a€ Ly
and define g(z)=f(a)+ f: eh(©) d¢. The integral does not depend on the choice of the
path, and hence g is an entire function on C satisfying g’ (z):eﬁ(z)#o for each z€C. If
z€L, we can choose the path of integration from a to z entirely contained in S and with
length bounded from above independently of z. (If ze€L; for j>1, we include the arc
C; in the path of integration.) It follows that g approximates f uniformly on L. This
completes the proof for n=1.

Assume now n>>2. Since L is polynomially convex, there exists for any £>0 a
holomorphic polynomial h on C™ satisfying supy, |f—h|<ie. If € is chosen sufficiently
small then dh#0 on K. For a generic choice of h its critical set ={2€C":dh,=0}C
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C™\K is finite (since it is given by n polynomial equations dh/8z;=0, j=1,...,n). To
complete the proof we need

PROPOSITION 3.2. Let K be a compact polynomially convezr subset of C™ (n>2).
Given a finite set XCC™\K and 6>0 there is a biholomorphic map ¢ of C™ onto a
subset QCC™M\X such that |¢(z)—z|<d for all ze K.

Recall that a biholomorphic map of C™ onto a proper subset of C™ is called a Fatou-
Bieberbach map. Thus ¢ is a Fatou—Bieberbach map whose restriction to K is close to
the identity map and whose range avoids X.

Assume for a moment that Proposition 3.2 holds. Let c=sup .y, |dh.|. Choose d<
min{dist(K, C"\L),e/2c}. Let g=hog€O(C™) where ¢ is furnished by Proposition 3.2.
Then dg.=dhy(.)-dp.#0 for every ze€C" (since ¢(z)eQCC™\E and dh#0 on C™\E).
For every z€ K we have

l9(2)—h(2)| = h((2)) ~h(2)| < clop(2) —2| < cd < e

and hence |g(z)— f(z)|<e. This proves Theorem 3.1.

Proof of Proposition 3.2. Choose £€(0,1). Let B denote the closed unit ball centered
at the origin in C™ and rB its dilation by r>0. Choose a compact set L C C™\X containing
K in its interior. Let r;>1 be chosen such that LC(r1—1)B. Set ry=ri+k—1 and
er=2"F"1¢ for k=1,2,3, ...

Consider the holomorphic flow on a neighborhood of LUY in C™ which rests near L
and moves the finite set ¥ out of the ball v B. Since the trace of this flow is polynomially
convex, the time-one map can be approximated uniformly on L by holomorphic automor-
phisms of C™ according to Theorem 1.1 in [FR]. This gives a holomorphic automorphism
¥ of C™ satisfying |¢1(z)—z|<ey for z€L and ¢ (X)Nr1B=@. (That is, we pushed
3 out of the ball r1 B by a holomorphic automorphism of C™ which is £;-close to the
identity map on L.)

Set X1=1;(X). By the same argument there is an automorphism 5 of C™ satisfying
I (2) —z|<eq for z€r B and 92(¥1)NroB=2.

Continuing inductively we obtain a sequence of automorphisms 1 of C™ such that
| (2)—z|<er, on r,_1 B and v, (Dk—1)Nry B=9 for each k=1,2, .... By Proposition 5.1
in [F2] (which is entirely elementary) the sequence of compositions o tk_10...01)1 con-
verges as k—oo to a biholomorphic map 1:2—C™ from an open set 2CC"™ onto C™.
By construction we have LCQCC™\X and |¢(z)—z|<e for zeL. The inverse map
p=1"1:C"—Q is biholomorphic onto QCC™\X and is uniformly close to the iden-
tity on K. Choosing ¢ sufficiently small we can insure that |¢(z)—z|<d for z€ K. This
proves Proposition 3.2.
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To construct holomorphic submersions X —C? for 1<g<n=dim X we need a suit-
able analogue of Theorem 3.1 for submersions f:UU—C9, where U is an open set in C"
containing a given compact polynomially convex set KCC™. The initial approximation
of f gives a polynomial map h: C"—C? for which X:={2€C":rank dh,<q} is an alge-
braic subvariety of C" of complex dimension g—1 (which is at most n—2). To conclude
the proof as above we would need a Fatou-Bieberbach map whose range contains K but
omits . Unfortunately we have been unable to construct such a map, and we even have
some doubts about its existence due to the possible linking of K and ¥. Instead we prove
a result of this kind only for very special pairs (K, %) which suffices for the application
at hand.

ProroOSITION 3.3. Let z={z,w) be complex coordinates on C"=C"xC*. Let
DcC" and KCC™ be compact polynomially convex sets such that Dx{0}*C KCDxC?®
and each fiber K,={weC?:(2,w)€ K} (z€D) is conver. Assume that s>=2 and ¢<r+1.
Let f:U—CY? be a holomorphic submersion in an open set UCC™ containing K. Given
e>0 and a compact set LC D xC?® containing K, there exists a holomorphic submersion
g:V—CY in an open set VDL satisfying supg |f—g|<e.

Remark. Proposition 3.3 is only used in the proof of Proposition 6.1 (§6) with r=
n—2, s=2; hence the only condition on ¢ is ¢g<n—1.

Proof. Denote by m: C™*—C" the projection 7(z, w)=z. We can approximate f uni-
formly on a neighborhood of K by a polynomial map h=(h1, ..., hq): C*—C9. A generic
choice of h insures that the set ¥:={z€C":rankdh,<q} is an algebraic subvariety of
dimension ¢—1<r which does not intersect K and the projection 7|5: 3 —C” is proper.
(This follows from the jet transversality theorem: ¥ is the common zero-set of all maxi-
mal minors of the complex (g% n)-matrix (Oh;/0x;); at each point at least n—(g—1) of
these equations are independent. Hence for a generic choice of h the set ¥ has dimension
g—1. For a complete proof see Proposition 2 in [Fo2]. The properness of 7|y is easily
satisfied by a small rotation of coordinates.) We may assume that L=Dx B for some
closed ball BCC®. To complete the proof we take g=ho1) where 1 is furnished by the
following lemma.

LEMMA 3.4. (Hypotheses as above.) For every §>0 there exists a holomorphic
automorphism ¢ of C™ of the form v(z,w)=(z,8(z,w)) such that Y(L)NL=2 and
sup,ex [$(z)—z] <.

Remark. If g=n then X is a hypersurface in C™. In this case Lemma 3.4 fails since

the complement C™\X may be Kobayashi hyperbolic, which would imply that any entire
map ¢: C"—C™\X is constant.
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To prove Lemma 3.4 we shall need a version of Theorem 1.1 (or Theorem 2.1)
from [FR] with a holomorphic dependence on parameters. Recall that a vector field
is complete if its flow exists for all times and all initial conditions. We shall consider

holomorphic vector fields on C™ of the form

V(z,w):Zaj(z,w)ai—_, 2eC", weC?, (3.1)

i=1 J

where the a;’s are entire (or polynomial) functions on C*=C"xC?. Its flow remains
in the level sets {z=const}, and V is complete on C™ if and only if V(z,-) is complete
on C°® for each ze C".

LEMMA 3.5. If 522 then every polynomial vector field of type (3.1) on C"xC* is
a finite sum of complete polynomial fields of the same type.

Proof. We can write a polynomial field (3.1) as a finite sum V(z,w)=>__ 2*Va(w)
where Vo, (w)=3""_, aq,;(w)d/0w; and z*=2{"...2%". By [AL] every polynomial holo-
morphic vector field on C* for s>2 is a finite sum of complete polynomial fields (see
the Appendix in [F1] for a short proof). Hence each V,(w) is a finite sum of complete
polynomial fields. The products of such fields with z* are complete on C”, which proves
the result.

Remark. For a more general result in this direction see Lemma 2.5 in [V] and the
recent preprint [Ku].

Lemma 3.5 implies that the time-¢ map of any entire holomorphic vector field (3.1)
can be approximated, uniformly on any compact set on which it exists, by holomorphic
automorphisms of C” of the form (z,w)—(z,¢(z,w)) (Lemma 1.4 in [FR]). The same
holds for time-dependent entire holomorphic vector fields of the form (3.1). From this

one obtains the following parametric version of Theorem 2.1 from [FR].

COROLLARY 3.6. Assume that ¢: Qo—8 (¢€[0,T]) is a smooth isotopy of biholo-
morphic maps between domains in C™, with ¢g the identity map on S, where n=r+s,
$22, and each ¢y is of the form ¢(z,w)=(z, p(z,w)) (z€C", weC®). If MC)y is a
compact polynomially convex set such that ¢;(M) is polynomially convex in C™ for every
te[0,T] then ¢ can be approzimated, uniformly on M, by automorphisms of C™ of the
form (z,w)->(z,¢o(z,w)).

Proof of Lemma 3.4. Let ¥, K and L be as in the lemma. The set, X' :=XN(Dx C?)
is polynomially convex, ¥'NK=¢ and M:=KUY' is also polynomially convex. Let

0:(z,w)=(z,e'w). Since the fibers K, (2€D) are convex and contain the origin, the
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subvariety ,(3)CC™ is disjoint from K and M;=KU§,(X') is polynomially convex for
every ¢0. Clearly 7(X)N L= for a sufficiently large T>0.

Consider the flow ¢; which rests on a neighborhood of K and equals 8; on a neigh-
borhood of ¥’. Since ¢+(M)=M, is polynomially convex for every ¢>0, Corollary 3.6
gives an automorphism ¢(z, w)={(z, ¢(z,w)) approximating ¢ uniformly on a neighbor-
hood of M. Thus ¢ is close to the identity on a neighborhood of K and ¢(X')NL=2.
Since ¢ maps each of the affine planes {z} x C® to itself, it follows that ¢(X)NL=2. The
inverse ¥y=¢~! clearly satisfies Lemma 3.4.

4. Compositional splitting of biholomorphic mappings

Let X be a complex manifold of dimension n. An injective holomorphic map ~v: V—=X
in an open set VC X will be called biholomorphic. Set A={¢eC:|¢|<1}. Suppose that
F is a nonsingular holomorphic foliation of X of dimension p and codimension g=n—p.
Every z€ X is contained in a distinguished chart (U, $), where UC X is an open subset
containing z and ¢: U—A"CC” is a biholomorphic map onto the open unit polydisc
in C™ such that, in the coordinates (z,w) on A"=APxA? (z€ AP, weA?), ¢(F|y) is
given by {w=c}, ce A% Fix a number 0<r<1. For any distinguished chart (U, ¢) on X
let U'CU be defined by ¢(U')=(rAP)x A?. Given any relatively compact set VCCX,
there exists a finite collection of distinguished charts U={(U;, ¢;): 1<j<N} such that
Vc U3N=1 Uj and U is F-regular in the sense of Definition 1.5 in [God, p.72] (this means
that for every U;, U; €U the set U;NU; is contained in a distinguished chart).

Definition. A biholomorphic map v: V—X is said to be an F-map if there exists U
as above such that for every (U, ¢;) €U the restriction of v to VN U has range in U; and
is of the form (z,w)—(c;(2, w), w) in the distinguished holomorphic coordinates on U;.

Thus an F-map preserves the leaves of F and does not permute the connected com-
ponents of a global leaf intersected with any of the distinguished sets U;. The definition
is good since the transition map between a pair of distinguished charts preserves this
form of the map. Any + preserving the leaves of F (in the sense that = and «y(z) belong
to the same leaf) which is close to the identity map in the fine topology on X, defined
by F, is of this form. (The restriction of the fine topology to any distinguished local
chart U~ APx A? is the product of the usual topology on AP and the discrete topology
on A% For further details see [God, pp.2-3 and pp. 71-75].)

THEOREM 4.1. Let A and B be compact sets in a complex manifold X such that
D=AUB has a basis of Stein neighborhoods in X and AA\BNB\A=@. Given an open
set CCX containing C:=ANDB there exist open sets A'DA, B'DB, C'>C, with C'C
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ANB'cC, satisfying the following. For every biholomorphic map ~:C—X which is
sufficiently uniformly close to the identity on C there exist biholomorphic maps c: A’ — X,
8: B'— X, uniformly close to the identity on their respective domains and satisfying

y=B-a"t on .

If F is a holomorphic foliation of X and ~ is an F-map on C then we can choose o
and B to be F-maps on A" and B’, respectively. If Xy is a closed complex subvariety
of X such that XoNC=2 then we can choose « and [ as above such that they are
tangent to the identity map to any given finite order along X.

Theorem 4.1, which is a key ingredient in our construction of noncritical holomorphic
functions and submersions, is proved in this section by a Kolmogorov-Nash-Moser-type
rapidly convergent iteration. (We shall only need it for the trivial foliation with X as
the only leaf, but we prove the extended version for possible future applications.) It
will be used in Propositions 5.2 and 6.1 below to patch pairs of noncritical functions or
submersions (we have already explained in the introduction why the standard d-theory
does not suffice). Similar decompositions have been used in the theory of quasiconformal
mappings and in complex dynamics. For example, a theorem of Pfluger [Pf] from 1961
asserts that every orientation-preserving quasiconformal homeomorphism «v: R—R is the
restriction to R of the composition Boa~!, where a and 3 are conformal maps of the upper
and lower half-plane, respectively, to itself which map R to R. (See also [LV, p.92].)

We begin with preparatory results. We fix once and for all a complete distance
function d: X x X - R, induced by a smooth Riemannian metric on TX. Given a subset
ACX and an r>0 we set

A(r)={zreX:d(z,y)<r for some yc A}.

If A is a (relatively) compact, smoothly bounded domain in X then for all sufficiently
small r>0 the set A(r) is a smoothly bounded open domain.
We say that the subsets A, BC X are separated if m NB\A=@.

LEMMA 4.2. Given A,BCX and r>0 then we have (AUB)(r)=A(r)UB(r) and
(ANB)(r)CA(r)NB(r). If A and B are (relatively) compact and separated in X then

for all sufficiently small 7>0 we also have (ANB)(r)=A(r)NB(r), and the sets A(r)

and B(r) are separated.

Proof. The first two properties are immediate. Now write A=(A\B)U(ANB), B=
(B\A)U(ANB) and apply the first property to get

A(r) = (A\B)(r)u(ANB)(r), B(r)=(B\A)(r)U(ANB)(r).



160 F. FORSTNERIC

If A\BNB\A=g@ then for all sufficiently small r>0 we have (A\B)(r)N(B\A)(r)=2
(in fact, even the closures of (A\B)(r) and (B\A)(r) are disjoint). Hence the previ-
ous display gives A(r)NB(r)=(ANB)(r) as well as the separation property for the pair
14—(76_)‘ %'

LEMMA 4.3. Let A,BCX be compact sets in a complexr manifold X satisfying
A\BNB\A=@. Assume that AUB has a basis of Stein neighborhoods. Given open sets
ADA, EDB, éDC:AﬂB, EDAUB, there exist compact sets A', B'C X satisfying

(a) ACA'CA, BCcB'CB, ANB'CC;

(b) A\B'nB\A'=0;

(c) the set D'=A'"UB'CD is the closure of a smoothly bounded strongly pseudocon-
vex Stein domain in X.

Proof. If r>0 is chosen sufficiently small then by Lemma 4.2 we have A(r)ccC A,
B(r)cCB, A(r)NnB(r)=C(r)ccC, and the sets A(r), B(r) are separated. By assump-
tion there is a closed strongly pseudoconvex Stein domain D'CX with AUBCD/C

A(r)UB(r). It is easily verified that the sets A’=A(r)N\D’, B'=B(r)ND’ satisfy the
stated properties.

Due to Lemma 4.3 it suffices to prove Theorem 4.1 under the assumption that X
is a Stein manifold, A, BC X is pair of separated compact subsets and D=AUB is the
closure of a smoothly bounded strongly pseudoconvex domain. We assume this to be the
case for the rest of this section.

Let F be a holomorphic foliation of X with leaves F, (z€X ). By Cartan’s Theo-
rem A the tangent bundle TF CTX of F is spanned by finitely many holomorphic vector
fields L1, Lo, ..., Ly, on X. (We may have to shrink X a bit.) Denote by 8/(z) the flow
of L; for time t€C, solving (8/8t)0{(x):Lj(0{(ac)) and 6 (z)=z. The map 67 is de-
fined and holomorphic for (z,t) in an open neighborhood of X x {0} in X xC. Their

composition

0z, 1) =0(x,t1, ..., ty) i = 0%0...093200}1(;1:) eX

is a holomorphic map on an open neighborhood UC X x C™ of the zero-section X x {0}™,
satisfying 6(z, t)eF, for all (x,t)eU and
a )
0(x,0) =z, 8—t€($,t)|t:0 =L;(z), zeX,1<j<m.
J
Hence ©:=0,0|,_, maps the trivial bundle X x C™ surjectively onto the tangent bundle
TF of F. Splitting Xx C"=Edker © we see that ©: E—TF is an isomorphism of

holomorphic vector bundles. In any holomorphic vector bundle chart on E we have a
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Taylor expansion
m

0@, t1, s tm) =T+ Y _ t;L;(z)+O([t]*) (4.1)
=1
where the remainder O(|¢|?) is uniform on any compact subset of the base set.

Choose a Hermitian metric |- |z on E. Given an open set VCX and a section
c:V—El|y, we shall write ||c|ly,=sup,cy |c(z)|g. By the construction of 6 and F,
x—0(x,c(x)) is an F-map provided that |||y is sufficiently small.

Given a map v:V—=X we define ||y—id||y =sup,cy d(vy(x),z), and we say that v
is e-close to the identity on V if ||y—id||;, <e. The following lemma follows from the
implicit function theorem.

LEMMA 4.4. For every open relatively compact set VCC X there exist constants
Mi21 and £9>0 satisfying the following property. For every F-map v:V—X with
lv—id||y <eo there is a unique holomorphic section ¢:V—E of E|,,—~V such that for
every €V we have 8(z, c(z))=~(z) and

My |e(x)] < d(y(), 2) < Mle(z)].

If F is the trivial foliation with X as the only leaf, Lemma 4.4 asserts that every
biholomorphic map «v: V—X sufficiently close to the identity map has the form ~(z)=
#(z, c(x)) for some holomorphic section ¢: V—TV.

We shall write the composition e« simply as ya. From now on all our sets in X
will be assumed contained in a fixed relatively compact set for which Lemma 4.4 holds
with a constant M;. Recall that V() denotes the open é-neighborhood of VC X with
respect to the distance function d.

LEMMA 4.5. Let VCCX. There are constants 8o>0 (small) and My>0 (large)
with the following property. Let 0<8<6y and 0<4e<4. Assume that o, 3,v:V(6)—=X
are F-maps which are e-close to the identity on V(8). Then 7:=0'va:V—=X is a
well-defined F-map on V. Write

a(r)=0(z,a(z)), B(z)="06(z,b(z)),
V(@) =0(z,¢(x)), F(x)="6(z,&(z)),

where a, b, c are sections of Elys—V(5) and ¢ is a section of El|,—V given by
Lemma 4.4. Then

[6—(cta—b)|y, < Mad™te? (4.2)
If c=b—a on V(3) then ||&|l, <M2671e? and ||¥—id|ly, <M1 Ma671e2.

Proof. The conditions imply that ya maps V biholomorphically onto a subset of
V(2¢). Since 8 is z-close to the identity map on V(§), the degree theory shows that
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its range contains V(6—¢). Hence 87! is defined on V(§—¢) and is e-close to the iden-
tity on this set. Since 4e<4, it follows that ¥=8"1vq is defined on V and maps V
biholomorphically onto a subset of V(3¢)CCV(4).

To prove the estimate (4.2) we choose a holomorphic vector bundle chart on 7: E— X
over an open set UCX and let UCCU. We shall use the expansion (4.1) for 8 on
7~} (U)CE; this suffices since T) can be covered by finitely many such sets U. We
replace the fiber variable ¢ in (4.1) by one of the functions a(x), b(z) or ¢(z). These
are bounded on V(&) by Mye where M; is the constant from Lemma 4.4. This gives for
zelUnV(s),

afz) = $+Z aj(z)Lj(z)+0(?),

Blx)=z+)_b;(z)L;(z)+0(e?),

Yz) = ”HZ ¢j(@)L;(x) +0(e?),

where the remainder term O(g?) is uniform with respect to zeUNV (§). For zeUNV
this gives

V(a(z))= a(:r)+z cj(a(@))L;(a(z)) +O(e?)

m m
—o+ 3 (a5(e) +¢; (@) Ly () + 3 (e5(0(2)) L (@(@)) — 5 (2) L (@) + O,
j=1 j=1

To estimate terms in the last sum we fix j and write g(z)=c¢;(z)L;(z) for zeUNV(4).
Since ||c;lly 5y <Mie and 4e <4, the Cauchy estimates imply ||dc;|yqy -y =0(e/8) (here
dc; denotes the differential of ¢;). Since L; is holomorphic in a neighborhood of V(3), we
may assume that its expression in the local coordinates on U is uniformly bounded and
has uniformly bounded differential. This gives [[dg|lyny () =0(¢/d). Since d(z, a(z)) <e,
there is a smooth arc A:[0,1]—U, of length comparable to &, such that A(0)=z and
A(1)=ca(z). Then

1
s(ala)) ~g(@) < | g} V() dr <O 1)
0
(the extra e is contributed by the length of A). This gives for zeUNV,

ya(@) =2+ (a5(2)+ (@) Ly(e) + 00 'e?).

J=1
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The same argument holds for the composition of several maps provided that ¢ is suffi-
ciently small in comparison to §; the error term remains of order O(§~1&2).
It remains to find the Taylor expansion of 3! on the set UNV(2¢) where U is

a local chart as above. Set B(:L')::L"—Z;":l bj(z)L;(x) for zeUNV(J). Assuming that
B(x)eUNV(2¢e) we obtain

B(B(x))=px)—=>_ b;(B(z)L;(B(x))

=1

e+ (b;(2) L; (@) ~b; (B(x)) L;(B(2))) + O(?)
j=1

We have estimated the terms in the parentheses on the middle line by O(67*¢?) in
exactly the same way as above, using the Cauchy estimates and integrating over an
arc of length comparable to . Writing 3(z)=yeUNV (2¢), z=5"1(y), the above gives
B(y)=8""(y)+0O(6 €?) and therefore

B W) =y=D_biy) L (y)+ 007",
The same argﬁment as before gives
3(0) = (8™ 10)(@) =2+ (e3() a5 (0) by (@) Ly () +O(52e2)

for zeUNV. This proves the estimate (4.2).

Remark. The proof of Lemmas 4.4 and 4.5 shows that for each fixed open set Vo CC X
the constants M, Ms, 6y may be chosen independent of V for any open set VCVj. In
this case, O(6~'e?) means <C§ 'e?, with C independent of ¢, § and V.

LEMMA 4.6. Let E—X be a holomorphic vector bundle over a Stein manifold X.
Let U, VCX be open sets such that WHV‘\U:Q and D=UUV 1is a relatively com-
pact, smoothly bounded, strongly pseudoconver domain in X. Set W=UNV. There is a
constant M3 21 such that for every bounded holomorphic section c¢: W— E|,,, there exist
bounded holomorphic sections a:U—E|,;, b: V= E|,, satisfying

c=bly ~aly, llally <Ms|cllw, |blly <Msllellw-

Such a and b are given by bounded linear operators between the spaces of bounded holo-

morphic sections of E on the respective sets. The constant Mz can be chosen uniform
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Jor all such pairs (U, V) in X close to an initial pair (Uy, Vy) provided that D=UUV
is sufficiently C2-close to Do=UgUVy. If Xy is a closed complex subvariety of X and
XoNW=g then for every sEN we can insure in addition that a and b vanish to order
s on Xp.

Proof. This is a standard application of the solvability of the J-equation. We give
a brief sketch for the sake of completeness.

Condition (b) insures that there is a smooth function x: X — [0, 1] which equals zero
in a neighborhood of _U\—V and equals one in a neighborhood of V—\—Ij Since D=UUV
is a relatively compact strongly pseudoconvex domain in X, there exists a bounded
linear solution operator T for the J-equation associated to sections of E—X over D.
Precisely, for any bounded d-closed E-valued (0,1)-form g on D we have 0g(T(g))=g
and ||T'(g)l| p <const||g|l 5, and the constant can be chosen uniform for all domains in X
which are sufficiently C2-close to an initial strongly pseudoconvex domain. (For functions
this can be found in [HL1, p. 82]; the problem for sections of a vector bundle £ can be
reduced to that for functions by embedding F as a subbundle of a trivial bundle over X.)

Observe that xc extends to a bounded smooth section of E over U, and (x—1)c¢
extends to a bounded section over V. Since supp(dx)NDCW=UNV, the bounded
(0, 1)-form g=0a(xc)=0((x—1)c)=cOx on W extends to a bounded (0,1)-form on D
which is zero outside of W. It is immediate that the pair of sections

a=-xc+T(g)ly, b={1-x)c+T(g)lv

satisfies Lemma 4.6. The last statement (regarding the interpolation on Xg) follows in
the case of functions from [FP2, Lemma 3.2}; the same proof applies to sections of F— X
by embedding F into a trivial bundle over X.

LEMMA 4.7. Let A, BCX be compact sets such that A\BNB\A=@ and D=AUB
is a closed, smoothly bounded, strongly pseudoconver domain in X. Let F be a holomor-
phic foliation of X and let Xo be a closed complex subvariety of X with XonNC=2, where
C=ANB. Then there are constants ro>0, §o>0 (small) and My, Ms>1 (large) satis-
fying the following. Let 0<r<rp, 0<8<8y and s€EN. For every F-map v:C(r+§)—>X
satisfying 4 My||y—id|| (45 <O there exist F-maps a: A(r+6)—X and §: B(r+4)—>X,
tangent to the identity map to order s along X, such that ¥:=03"'ya is an F-map on
C(r) satisfying

15 ~idllc(ry < M5 6 Hly—id[1Z 18- (4.3)

Proof. If ry and &g are chosen sufficiently small, the set D(t) is a small C2-pertur-
bation of the strongly pseudoconvex domain D=AUB for every t€[0,79+do), and hence
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we can use the same constant as a bound on the sup-norm of an operator solving the
O-problem on D(t).

Let e=|y—id||¢(r+s)- By Lemma 4.4 there is a holomorphic section ¢: C(r+4)— E,
with ||| ¢(r15) < Mg, such that v(z)=0(z,c(x)). (Here we can use the constant M; for
the set D(ro+dp).) Write c=b—a where a is a section of E over A(r+4) and b is a
section of E over B(r-+4§) furnished by Lemma 4.6. The sup-norms of ¢ and b on their
respective domains are bounded by M;Mse, where the constant M3 from Lemma 4.6 can
be chosen independent of r and 4. Set

2
&
I

O(z,a(x)), z€A(r+9),
B(z)=0{(z,b(z)), z<€B(r+d).

By Lemma 4.4 we have ||a—id|| oy 5y < MZM3e and ||3—id| p(r+8) <MPMse. Set My=
M?ZMj. If 0<4M4e<§ then by Lemma 4.5 the composition y=8"1ya is an F-map
on C(r) satisfying the estimate (4.3) with Ms=MyMZ?=M}M,MZ. This completes the
proof.

Proof of Theorem 4.1. By Lemma 4.3 we may assume that D=AUB is the closure of
a smooth strongly pseudoconvex domain in X and A\BNB\A=@. Choose a sufficiently
small number 0<ro<1 such that the initial F-map ~ is defined on the set Cy:=C(rp)
and Lemma 4.7 holds for all §,7>0 with d+r<rg. For each k=0,1,2, ... we set

k
rE=To H(1—27j), Op=rr—Trp1 =12 F 7L
j=1

The sequence 7,>0 is decreasing, r*=limy_,o x>0, Op>r*2"%"1 for all k, and
Soreo0k=ro—1* Set Ap=A(ry), By=B(r) and Cr=C(r;). We choose ro>0 suffi-
ciently small such that Cp,=A,N By for all k& (Lemma 4.2).

Let €9:=|y—id|lc,. Assuming that 4Mse9<dp=31ry, Lemma 4.7 gives F-maps
ag: Ag—X and By: Bg—X such that leﬂo_lfyao:Cl —X is an F-map defined on Ci,
satisfying

I —idlle, < Msd '3 < 2Me3,
where we have set M=M;/r*. Define e1=|y1—id||¢,, so e1<2Me§. Assuming for a
moment that 4 M, e, <41, we can apply Lemma 4.7 to obtain a pair of F-maps a1: A1 =X,
B1: B1— X such that 72:61‘171a1: Cy— X is an F-map satisfying

g2:=||y2—id||¢, < Msé; ‘e < 2°Mel.
Continuing inductively we obtain sequences of F-maps

OzkIAk—>X, ﬁk:Bk—>X, ’yk:Ck—?X
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such that 'yk+1:ﬁk_1'ykak: Cx4+1— X is an F-map satisfying
ert1 = lIyear —id|e,,, < Mg 'ef <28 Me]. (4.4)

The necessary condition for the induction step is that 4 Myex <dy holds for each k. Since
0, >r*27k=1 it suffices to have

AMye, <7 2751 k=0,1,2,.... (4.5)

In order to obtain convergence of this process we need

LEMMA 4.8. Let M, My>1. Let the sequence pr >0 be defined recursively by po=

k

e0>0 and ppr1=2"F'Mp? for k=0,1,.... If eg<r*/32MM, then Qk<(4Mso)2k<(§)2
and 4Myor<r*27%"1 for all k=0,1,2,....

Assuming Lemma 4.8 we complete the proof of Theorem 4.1 as follows. From (4.4)
we see that e, <o, where gy is the sequence from Lemma 4.8. From the assumption
c0<r*/32 MM, we obtain q:=4Meo<r*/8M, <% (since 0<r*<1 and M4>>1). Hence the
sequence e, =||vx—idl| ¢, <g¥< (%)21c converges to zero very rapidly as k—oo. The second
estimate on g in Lemma 4.8 insures that (4.5) holds, and hence the induction described
above works.

Setting A =gy ... ap: Ag—=X, Be=00S1 .- Bx: Br—X, we have 'yk+1:ﬂ~k“1'y&k on
Cy+1 for k=0,1,2,.... Our construction insures that, as k— oo, the sequences ay and
Bi, converge, uniformly on A(r*) and B(r*), respectively, to F-maps a: A(r*)—X and
[B: B{r*)—X, respectively. Furthermore, the sequence ~; converges uniformly on C(r*)
to the identity map according to (4.4) and Lemma 4.8. In the limit we obtain 8~1ya=id
on C(r*), and hence y=8a"! on a(C(r*)). If £0>0 is chosen sufficiently small (for a
fixed ) then the latter set contains a neighborhood C’ of C. This completes the proof
of Theorem 4.1, provided that Lemma 4.8 holds.

Proof of Lemma 4.8. The sequence is of the form o, =2%M bksgk where the expo-
nents satisfy the recursive relations

a1 =2ar+k+1, ag=0;
bry1=2br+1, by =0;

Ck_HZQCk, Cozl.
The solutions are aj=2% Zle G2 <2k b =2%—1, ¢, =2*. Thus

ok < 22T M2 = (4Meg)?,
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which proves the first required estimate. From the assumption eq<7*/32MM, we get
k
q::4M50<r*/8M4<%. Hence gk<q2k<(%)2 and

%)2'“—1 < (_1_7,*)2—k _ T*2—k—1

AMy0y, < (4M1q) > ' = (AMy-4Meg) ( 1

for all k>0, which proves the second estimate. Lemma, 4.8 is proved.

Remark. The above construction actually gives nonlinear operators A, BB on the set of
F-maps v which are sufficiently uniformly close to the identity on a fixed neighborhood
of C such that the pair of F-maps a=A(y), 3=B(y) satisfies y=8a~!. This yields
the analogous result for families {v,:p€ P} of F-maps which depend continuously on
a parameter p in a compact Hausdorff space P and which are sufficiently close to the

identity map on a neighborhood of C.

5. Counstruction of noncritical holomorphic functions

A compact set K in a complex manifold X is said to be a Stein compactum if it has
a basis of open Stein neighborhoods. Let d be a distance function on X induced by
a smooth Riemannian metric on T'X. We shall use the terminology introduced in §4.
Recall that {|y—id||y =sup,cy d(v(z), z).

LEMMA 5.1. Let K be a Stein compactum in a complex manifold X. Let UC X be
an open set containing K, and f:U—C? a holomorphic submersion for some ¢<dim X.
Then there exist constants £9>0, M >0 and an open set VC X, with KCVCU, satisfying
the following property. Given £€(0,¢0) and a holomorphic submersion g:U—C? with
sup,cp | f(z)—g(z)|<e there is a biholomorphic map v:V—X satisfying f=goy on V
and ||y—1id||y, < Me.

Proof. We may assume that U is Stein. Hence TX|;=kerdf ®F for some trivial
rank-¢ holomorphic subbundle ECTX]|;;. Thus E is spanned by ¢ independent holo-
morphic vector fields on U. Denote by 6(z, 1, ..., t,) the composition of their local flows
(see the construction of # in (4.1)). The map 6 is defined in an open set QCUx C?
containing Ux{0}9. For z€U write Q,={t€C?:(z,t)€Q}. After shrinking  we may
assume that for each x€U the fiber €, is connected and F,:={0(z,t):t€,}CX is a
local complex submanifold of X which intersects the level set {f=f(z)} transversely
at x (since T, F,=F, is complementary to the kernel of df,). By the implicit function
theorem we may assume that (after shrinking Q) the map t€Q,— f(f(z,t))€C? maps
{2, biholomorphically onto a neighborhood of the point f(z) in C4. The same holds for
the map t€Q, —g(f(z,t)) provided that g: U—C1 is sufficiently uniformly close to f
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and we restrict £ to a compact subset of U. It follows that, if VCCU and g is suf-
ficiently close to f on U, there is for every €V a unique point c¢(z)eS, such that
9(0(z,c(z)))=f(z). Clearly ¢: V—CY is holomorphic and the map v(z)=60(z,c(z))eX
(z€V) satisfies Lemma 5.1.

Definition. An ordered pair of compact sets (A, B) in an n-dimensional complex
manifold X is said to be a special Cartan pair if

(i) the sets A, B, C:=ANB, AUB are Stein compacta (see above};

(i) A\BNB\A=g;

(iii) there is an open set UDB and an injective holomorphic map : U—C™ such
that ¥ (C)CC™ is polynomially convex.

The following is the main step in the proof of Theorem 2.1.

PROPOSITION 5.2. Let (A, B) be a special Cartan pair in a complex manifold X and
let feO(A) be a function whose critical set P is finite and does not meet C:=ANDB.
Given £>0 there exists f€ O(AUB) with the same critical set P such that sup, |f—fl<e.
If X is a closed complex subvariety of X with XoNC=& then for any reN we can
choose f as above such that f—f vanishes to order v on XoNA. In particular, if f is
noncritical on A then f is noncritical on AUB.

Proof. We use the notation from (iii) in the definition of a special Cartan pair. The
function f'=fov ! is defined and noncritical in an open set ccecr containing ¥(C').
Choose a compact polynomially convex set K with ¢(C)Cint KCKC C. By Theorem 3.1
we can approximate f’ uniformly on K by a noncritical holomorphic function g’e O(C™).
Thus g=g¢'-% is noncritical in a neighborhood of B, and it approximates f uniformly in
a neighborhood of C. If the approximation is sufficiently close then by Lemma 5.1 there
is a biholomorphic map ~, uniformly close to the identity map in a neighborhood of C,
satisfying f=govy. By Theorem 4.1 we have y=3+a~!, where o is a biholomorphic map
close to the identity in a neighborhood of A and § is a map with the analogous properties
in a neighborhood of B. Furthermore we insure that a agrees with the identity map to
a sufficiently high order at each point of (XoUP)NA. From f=goy=gofca ! (which
holds in a neighborhood of C) we obtain foa=go83. The two sides define a holomorphic
function f€O(AUB) with the stated properties.

Proof of Theorem 2.1. We first consider the simplest case when f is noncritical
on U and Xp=@. By Corollary 2.8 in [HL3] there is a sequence of compact O(X )-convex
subsets AgC A1C...C{Jpey Ae=X such that

(i) KCint ApC Ao U,

(i) for every k=0,1,2, ... we have A=Az UBy where (A, By) is a special Cartan
pair in X.
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Fix ¢>0. Write fo=f, A_1=K. Choose a sufficiently small number 506(0, %s)
such that every geO(Ag) with sup,, |g—fo|<2eo is noncritical on K. Proposition 5.2
gives a noncritical function f;€O(A;) satisfying sup,, | f1 — fo| <€o<4e. Now choose £1€
(O, %50) such that every function g€ O(A;) with sup,, |g— f1|<2¢1 is noncritical on Ag.
Proposition 5.2 gives a noncritical function fo€O(Az) such that supy, |f2—fi1|<e1< 1€
Continuing inductively we obtain a sequence of noncritical functions fy€O(A4x) and a
decreasing sequence x>0 with Y ex <e such that supy, |fe+1— fel<er<e27*7! for
every k=0,1,2,.... The sequence fj converges uniformly on compacts in X to fe O(X)
satisfying supy | f— f|<e and Supy4, |f— fr|<2¢y for every k=0, 1,2, .... By the choice of
¢ this insures that f is noncritical on A,_;. Since this holds for every k, f is noncritical
on X.

Consider now the general case. Let P={p,po, ...} denote the (discrete) critical set
of feO(U). We replace Xy by XqUP. For each jEN we choose a sufficiently large
integer n; €N such that for every germ of a holomorphic function g which vanishes to
order n; at p;, the germ of f+4g still has an isolated critical point at p;. In the sequel
we shall often use the following elementary fact. Given a pair of compact sets KCL in
the domain of f, with KCint L, we can choose >0 such that for every ge O(L) which
vanishes to order n; at every point p; € PNK and satisfies sup;, |g| <7, the critical set of
f+gin K equals PNK.

Denote by JCOx the coherent analytic sheaf of ideals consisting of all germs of
holomorphic functions on X which vanish to order » on X, and to order n; at p; € P for
every 7€N. We can replace f by a function holomorphic on X such that the difference of
the two functions is a section of J near X, and is uniformly small on K (see Lemma 8.1
in [FP1]). The new function (which we still denote f) may have additional critical points,
but there is a neighborhood UD>XpUK such that Crit(f;U)=P. Choose a compact
O(X)-convex set LC X containing K in its interior. Fix an 7>0. We claim that there
exists an f'€ O(L) satisfying

(i) Crit(f;L)=PNL;

(if) f'—f is a section of J over L;

(i) |f'—fl<non K.

Proof. By Lemma 8.4 in [FP3] there is a finite sequence AgC A1C...C Ag,=L of
compact O(X)-convex subsets such that for each k=0, 1, ..., ko— 1 we have Ay 1=A; UDB,
where (Ayg, Bg) is a special Cartan pair in X and

(a) KU(XoNL)CAgCCU;

(b) BxNXy= for k=0,1,...,ko—1.

(Our notation differs from [FP3]: the set Ay in [FP3] is denoted By_1 in this paper, while
the set Ay in this paper is the same as Uf:o A; in [FP3].) Assume inductively that for
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some k<kq we already have a function fj, € O(Ay) satisfying the above properties (i)—(iii)
(with f’ replaced by fi). Since BxNXo=2, fx is noncritical in a neighborhood of A;N By,
and hence Proposition 5.2 furnishes a function fri1€O(Ak41) satisfying (i)-(iil) on its
domain. After ko steps we obtain the desired function f’€O(L), thus proving the claim.

In order to complete the induction step we show that there exists h€ O(X) such that
h—f is a section of J, h approximates f’ uniformly on L, and there is a neighborhood
U>XoUL such that Crit(h;ﬁ )=P. By Cartan’s Theorem A the sheaf [J is finitely
generated on the compact set L, say by functions £,€O(X) (I=1,2,...,m). Since f'—f is
a section of J over a neighborhood of L, we have f'=f+3"7", €;g; for some g;€ O(L).
Since L is O(X)-convex, we can approximate g; uniformly on a neighborhood of L by
§;€0(X). The function h=f+3""" £;9,€O(X) satisfies the stated properties provided
that the approximation of g; by g; was sufficiently close for every j.

Note that h satisfies the same properties on a neighborhood of LUXj as f did on a
neighborhood of KUXj. The proof of Theorem 2.1 is completed by an obvious induction
over a sequence of compact O(X)-convex sets L;C Lo C... exhausting X (compare with

the noncritical case given above).

6. Construction of holomorphic submersions

In this section we prove Theorems 2.5 and 2.6 and Corollaries 2.10 and 2.11. We begin
with Theorems 2.5 and 2.6. Since the proof is fairly long, we first explain the outline
and then treat each of the main ingredients in a separate subsection.

We are given a g-coframe §=(6, ...,0,) on X such that 0|;;=df in an open set UDK
where f:U—C? is a holomorphic submersion. Our task is to deform 6 to the differential
df where f : X—C17 is a holomorphic submersion which approximates f uniformly on K.
(We shall deal with interpolation along a subvariety XoCX in Subsection (5).)

Let o: X—R be a smooth strongly plurisubharmonic Morse exhaustion function
such that 9<0 on K and ¢>0 on X\U [H62, Theorem 5.1.6]. Each sublevel set {o<c}
is compact and O(X)-convex; if c€R. is a regular value of ¢ then {g<c} is a smooth
strongly pseudoconvex domain. The set of critical values of p is discrete in R and hence
at most countable, and each critical level contains a unique critical point.

Tt suffices to explain how to approximate a submersion f defined in a neighborhood of
{0<¢co} (and with df homotopic to 8 through g-coframes) by a submersion f with similar
properties defined in neighborhood of {o<c;}, where co<c; is any pair of regular values
of 9. The construction is then completed by an obvious induction as in Theorem 2.1.
Using a smooth cut-off function in the parameter of the homotopy from df to § we can
deform the g-coframe 6 at each step to insure that #=df in a neighborhood of {o<co}.
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The construction of the extension breaks into two distinct arguments:

(i) going through noncritical values of ¢ (mainly complex analysis);

(ii) crossing a critical value (mainly topology and ‘convex analysis’).

If ¢ has no critical values in [cg, ¢1] then {o<c1} is obtained from {p<co} by finitely
many attachings of small conver bumps. In each step we approximately extend f over
the bump by Proposition 3.3, and we patch the two pieces using Theorem 4.1. In finitely
many steps we obtain a submersion f in a neighborhood of {o<ec1} (Subsection (1)).

Crossing a critical value of p relies on a combination of three techniques:

— smooth extension across a handle attached to {p<co} (Subsection (2));

— approximation by a holomorphic submersion defined in a neighborhood of a
handlebody (Subsection (3));

— applying the noncritical case with a different strongly plurisubharmonic function
to extend across the critical level of g (Subsection (4)).

The proof of Theorem 2.5 is completed immediately after Lemma 6.7 in Subsec-
tion (4), with the exception of the interpolation along a subvariety XoC X which is
explained in Subsection (5). There we also prove Corollaries 2.10 and 2.11.

(1) The noncritical case. A compact set AcX ina complex manifold X is a noncrit-
ical strongly pseudoconvez extension of a compact set AC A if there is a smooth strongly
plurisubharmonic function g in an open set QDA\A which has no critical points on Q2

and satisfies

ANQ={ze0:p(z) <0}, ANQ={zeQ:p(z)<1}.

Note that for each t€[0,1] the set A,=AU{p<t}CX is a smooth (closed) strongly
pseudoconvex domain in X, and the family smoothly increases from A=Ay to A=A,. We
say that X is a noncritical strongly pseudoconvez extension of A if there exists a smooth
exhaustion function g: X >R such that A={0<0} aund g is strongly plurisubharmonic
and without critical points on {¢>0}=X\int A.

PRrRoOPOSITION 6.1. Let X be a Stein manifold and AC X a noncritical strongly
pseudoconvex extension of ACA. If f: A—C9 is a holomorphic submersion with q<
dim X then for every e>0 there exists a holomorphic submersion f: A—C9 satisfying
sups | f - fl<e.

COROLLARY 6.2. (a) If X is a noncritical strongly pseudoconvez extension of AC X
then every holomorphic submersion f: A—C? (g<dim X') can be approzimated uniformly
on A by holomorphic submersions f: X —C4,

(b) Let QCC™ be a convex open set. Any holomorphic submersion f:Q—C? (g<n)

can be approximated uniformly on compacts by submersions C*—C4,
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Proof of Proposition 6.1. Let 2=(z1, ..., 2n) =(21+1y1, ..., Zn + iy, ) denote the coor-
dinates on C™. Let

P={zeC":|z;| <1, |y;|<1,j=1,..,n}

denote the open unit cube. Set P'={zeP:y,=0}.

Let A, BC X be compact sets in X. We say that B is a convex bump on A if there
exist an open set UC X containing B, a biholomorphic map ¢:U— P onto PCC", and
smooth strongly concave functions h, h: P'—[—a, a] for some a<1 such that h<h, h=Hh
near the boundary of P/, and

P(ANU) ={2€P:yn <h(21,.0 2n-1,%n) },
S((AUBYNU)={z€ Py, <Mz, ..., Zn_1,Zn) }-

Suppose now that AC A is a noncritical strongly pseudoconvex extension in X. By
an elementary geometric argument, using Narasimhan’s lemma on local convexification
of strongly pseudoconvex domains, there is a finite sequence A=A0CA1C...CA;€0:A of
compact strongly pseudoconvex domains in X such that for every k=0,1,...,kp—1 we
have Agy1=A,UDBy, where By, is a convex bump on Ay, as defined above. (For details see
Lemma 12.3 in [HL2]. Similar ‘bumping constructions’ had been introduced by Grauert
and were used in the Oka—Grauert theory; see [Grod], [HL3], [FP1], [FP2], [FP3].) Hence

Proposition 6.1 follows immediately from

LEMMA 6.3. Assume that X is a Stein manifold, AC X 1s a smooth compact strongly
pseudoconver domain, and BC X is a conver bump on A. Given a holomorphic sub-
mersion f:A—C? (¢<dim X ), there exists for every €>0 a holomorphic submersion
f: AUB—CY satisfying supgn g |f—fl<e. If XoC X is a closed complex subvariety such
that XoNB=@, we can choose f such that it agrees with f to a given finite order along
XoNA.

Proof. We use the notation introduced above. Recall that k and A have range in
[—a,a] for some a<1l. Choose c€(a,1) sufficiently close to 1 such that the (compact)
support of h—h is contained in ¢P’. Let L:=cPCC" and L:=¢~Y(L)CU. Increasing
¢<1 towards 1 we may assume that BCL. Set K=ANL and K=¢(K)CP. The pair
of compact sets K, LCC" satisfies the hypothesis of Proposition 3.3 with respect to the
splitting z=(%/, 2" )€ C™, with 2’ =(21, ..., 2,_2)€C" 2 and 2" =(z,_1,2,)€C2 Apply-
ing Proposition 3.3 (with r=n—2, s=2) we obtain a holomorphic submersion g from
a neighborhood of L to C? which approximates f uniformly in a neighborhood of K.
Since BCL and ANBC ANL=K, g is defined in a neighborhood of B and it approx-
imates f uniformly in a neighborhood of ANB. By Lemma 5.1 we have f=govy for a
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biholomorphic map « close to the identity in a neighborhood of ANB in X. Splitting
v=Bca"! by Theorem 4.1 we obtain foa=gof in a neighborhood of ANB, and hence
the two sides define a holomorphic submersion f : AUB—C4, The same proof applies
with interpolation on Xj.

In the remainder of this section we treat the critical case. Let p be a critical point
of g, with Morse index k. If k=0 then p has a local minimum at p, and a new connected
component appears in {p<c} as c¢ passes p(p). We can trivially extend f to this new
component by taking any local submersions to C? near p. In the sequel we only treat
the case k>1. It is no loss of generality to assume o(p)=0. Choose ¢g>>0 such that p
is the only critical point of g in [—cg, 3¢p). In the following three subsections we explain

how to approximately extend a submersion f from {g<~cp} to {o<+co}-

(2) Smooth exiension across a handle. Recall that k€{1,...,n} is the index of p.
Write z=(2', 2" )= (2'+iy/, 2" +1iy"), where 2’€ C* and 2z""€ C"*. Denote by PCC" the
open unit polydisc. By Lemma 3 in [HW2, p. 166] (see also Lemma 2.5 in [HL]) there is
a neighborhood UC X of p and a biholomorphic coordinate map ¢: U— P, with ¢(p)=0,
such that the function g(z):=p(¢~1(z)) is given by

0(2)=Q(y, ") —12'1%, Q. 2")=(Ay,y')+(By" y")+|z"|>. (6.1)

Here (-,-) is the Euclidean inner product and A, B are positive definite symmetric ma-
trices such that all eigenvalues of A are larger than 1 (thus A>T and B>0). Furthermore
one may diagonalize A and B.

We may assume that c¢g<1. Choose c¢€(0,cp). By the noncritical case we may
assume that f has already been extended to {Q<—'%C}. The set ECU defined by

$(B)={(z'+iy,2"):y/=0,2"=0, |2/’ <c} (6.2)

is a k-dimensional handle attached from the outside to {g<—c} along the (k—1)-sphere
bEC{o=—c}.

In a neighborhood of E we may consider f as a function of z. We identify xeR"
with z+i0€C". The components §, of the g-coframe 6 are expressed in the z-coordinates
by 6;(z)=3",—,0;.1(z)dz, where §;; are continuous functions and the (gxmn)-matrix
J=(0;,;) has maximal complex rank q at each point. For € E near bE we have 6; ,(z)=
0f;/0z(x)=0f;/0xi(x).

Denote by M, ~C?*™ the set of all complex (¢ xn)-matrices, and let My, consist
of all matrices of rank ¢ in Mg .
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LEMMA 6.4. There is a c'€(5c,c) such that f and all its partial derivatives 8f/0z
extend smoothly to {p<—c' }UE (without changing their values on {p<—c'}) such that
the Jacobian matriz J(f)=(0f;/0z) of the extension has complex rank q at each point
of E, and J(f) can be connected to j:(ﬁj,l) by a homotopy of maps from E to My,
which is fized on {o<—c'}NE.

Lemma 6.4 is obtained from a convez integration lemma due to Gromov [Gro2,
Lemma 3.1.3]. We state the special case which is needed. Fix numbers 0<r<R, §>0,
and let

D={zeR":|2/|<R,|2"|<d}, A={zeR":r<|7'|<R,|z"| <6}

LEMMA 6.5. Assume that f=(fi,..., f): A—=C9 (¢<n) is a smooth map whose Ja-
cobian J(f)=(0f;/0x;) has complex rank q at each point. If there exists a continuous
map J: D—My,, with Ja=J(f) then there is a smooth map f: D—C? such that

M) fla=/f; )

(ii) the Jacobian J(f) has range in M3 .

R

i) J(f) is homotopic to J through maps D— My, which are fized on A.
If g<n— [%k] then such J and f always exist.

Proof. We have M, =M, ,\X where ¥ consists of all matrices of rank less than g.
We claim that ¥ is an algebraic subvariety of complex codimension n—g+1 in
M, ,~C9%". Assume that B€X has rank ¢—1. Choose 1<j1<j2<...<jq—1<n such
that the corresponding columns of B are linearly independent. Locally near B the set 3
is defined by vanishing of the determinants obtained by adding to the columns ji, ..., Jg—1
any of the remaining n—g+1 columns of B. Locally this gives n—g+1 independent poly-
nomial equations for 3. A similar argument holds when B has rank less than g—1. (See
also Proposition 2 in [Fo2].)

We are looking for an extension f: D—C? of f whose Jacobian J(f) misses . If
k<2(n—q+1) (which is equivalent to g<n—[1k]) Thom’s jet transversality theorem
([Tho] or [GG, p.54]) gives a maximal rank extension of f and its full one-jet from A
to the k-dimensional disc Dp={(2/,0):|z'|<R}, and hence to an open neighborhood
VCR™ of AUDy. Clearly there exists a diffeomorphism 1: D—(D)CV which equals
the identity on A. Then f=fot has the desired properties.

The general case of Lemma 6.5 follows from Gromov’s conver integration lemma
[Gro2, Lemma 3.1.3]. (This can also be found in §2.4 of [Gro3|; see especially (D) and
(E) in [Gro3, 2.4.1]. Another source is §18.2 of [EM]; see especially Corollary 18.2.2.)
To apply Gromov’s lemma we consider M, ,, as the space of all one-jets of smooth maps
D—C1 at any point z€D (that is, the space of all first-order partial derivatives at z,
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ignoring the image point). The open set Q=M;,CM,, defines a differential relation
of order one which is ample in the coordinate directions (see [Gro2] or §18.1 in [EM] for
a definition of this notion), and the stated results follow from the convex integration
lemma.

Ampleness of {2 in the coordinate directions means the following. Choose l€{1,...,n}
and fix in an arbitrary way the entries of a (¢xn)-matrix which do not belong to the
column [ (these represent the partial derivatives df;/0xy for k#l at some point z). Let
Q'CC? consist of all vectors whose insertion in the [th column gives a matrix of maximal
rank ¢ (thus belonging to 2). € is ample in the coordinate directions if every such set
Y is either empty or else the convex hull of each of its connected components equals C9.
In our case, V' is either empty, the complement of a complex hyperplane in C4, or all
of C4, depending ou the rank of the initial (¢ x (n—1))-matrix. This completes the proof
of Lemma 6.5.

Proof of Lemma 6.4. Let ACD be subsets of UC X defined by

¢(D) = {(z'+i0, 2" +i0") : |z' |2 < ¢, 2| < 6},
$(A)={z€9(D): r<|z'|*<c}.

Choosing 6>0 sufficiently small and r<c sufficiently close to ¢ we insure that AC
{Q< —%c}, and hence f|4: A—C1? is a well-defined smooth map with differential of max-
imal complex rank q. Lemma 6.5 gives the desired smooth extension to D as well as a
homotopy of g-coframes which is fixed on A. If ¢/<c is chosen sufficiently close to ¢ then
Dn{o<—¢' }C A, and hence Lemma 6.4 holds for such a ¢

(3) Holomorphic approzimation. Let f be given by Lemma 6.4. In this subsection
we prove

LEMMA 6.6. For every n>0 there exist an open neighborhood QCX of the
set K={p<—c}UE and a holomorphic submersion f:Q—C9 such that |f—f|x<n,
\df —df| g <n, and df is g-coframe homotopic to 6.

Here |f|x is the uniform norm of f on K, and |df|j is the norm of its differential

on E, measured in a fixed Hermitian metric on TX.

Proof. We need an improved version of Theorem 4.1 from [Ho6W]. We first show
that K is O(X)-convex and hence admits a basis of Stein neighborhoods. We use the
notation from Subsection (2). Choose LCU such that ¢(L)=rP for some r<1 very close
to 1. Then ¢(KNL)={z€rP:5(2)<—c}U¢(E). Clearly each of the sets {3<—c}NrP
and ¢(E) is polynomially convex in C™ The holomorphic polynomial h(z)=27+...+22
maps ¢(F) to the interval [0,c], ¢(bE) to the point ¢, and from (6.1) we easily see
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that Reh>c on {6<—c}\@(E). Thus h separates the two sets, and hence their union is
polynomially convex (Lemma 29.21 in [Sto]). O(X)-convexity of {o<—c}UE follows by
a usual patching argument, using strong plurisubharmonicity of ¢ (see Lemma 1 in [Ro]).

Choose a constant ¢€(c/,c). By Lemma 4.3 in [H6W] there is a smooth map
g: X = C1 satisfying

(i) g=7 on {o<—E}UE,

(i) dg,=df, for each xCE;

(ii) g is O-flat on E, i.e., D"(8g)| =0 for all r€N.

Here D" denotes the total derivative of order r. The cited lemma is proved in [HoW]
for X =C%, but the result is local and holds for any smooth totally real submanifold F
in a complex manifold. (One may use partitions of unity along E which are 0-flat on E;
see Lemma 2.3 in [FL@].) If E is of class C™ then (iii) holds for r<m—1.

Fix an integer m>2n+1. Let Q.={zeX:d(z, K)<e}. In the proof of Theorem 4.1
in [Ho6W] on pp. 15-16 the authors obtained for each sufficiently small £>0 a map
we: Qe —C9 satisfying dw.=0g in Q. and |wellp2(q,)=0(e™) as 0. (The proof in
[H6W]| remains valid in any Stein manifold by applying the appropriate J-results from
[Ho1].) On Q./, this gives a uniform estimate |wc|=0(¢™~") [HOW, p.16] as well as
|D™w.|=0(e™"""") (Lemma 3.2 in [FLQ]). By construction the map fe=g—w.: Q2 —C?
is holomorphic and satisfies |f. —f|=o(¢e), |df- —df|=0(1) on €./, as e—0. Hence for
sufficiently small e>0 the map f. is a holomorphic submersion in an open neighborhood
Q of K, with df. close to df and hence homotopic to #. This proves Lemma 6.6.

Remark. More precise approximation results on totally real submanifolds have been
obtained by integral kernels; see [HW1], [RS] and [FLO®]. The paper [FLO| contains
optimal results on approximation of d-flat functions in tubes around totally real sub-

manifolds.

(4) Extension across the critical level. The purpose of this subsection is to approxi-
mately extend a submersion, furnished by Lemma 6.6, across the critical level {p=0} by
applying the noncritical case (Proposition 6.1) with a different strongly plurisubharmonic
function 7 given by Lemma 6.7 below. Once this is done, we switch back to g (perhaps
sacrificing some of the gained territory) and continue (by the noncritical case) to its next
critical level.

We shall use the notation established in Subsection (1). Let ¢:U—=PCC"” be a
coordinate map as in the proof of Proposition 6.1 such that g=p-¢~! is given by (6.1).
Let ¢p>0 be the constant chosen in the paragraph preceding Subsection (2). By the

noncritical case we can decrease ¢o>0 to insure that

{(z'+iy, 2" e C™: |2/|? < co, QY. 2") <deg} C P
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Denote by E the handle (6.2) but with ¢ replaced by ¢ (thus p=—cp on bE). Let A;>1
denote the smallest eigenvalue of the matrix A. Choose a number 1<u<A; and set
t():(l—l/,u)260.

LEMMA 6.7. There exists a smooth strongly plurisubharmonic function T on
{0<3cp}C X which has no critical values in (0,3cy) CR and satisfies

(i) {o<—c}UEC{r<0}c{o<—t }UE;

(i) {o<cotT{r<2¢p}T{o<3co}.

Using Lemma 6.7 we complete the crossing of the critical level {p=0} as follows. By
Lemma 6.6 (applied with ¢=t%3) there are an open set 2C X containing the handlebody
{0<—to}UFE and a holomorphic submersion f:Q—C9%. Consider the family of sublevel
sets {r<c} as ¢ increases from 0 to 2cy. Property (i) in Lemma 6.7 implies that for
sufficiently small ¢>0 we have {r<c}C. By Proposition 6.1 (the noncritical case) we
can approximate f uniformly on {7<c} by a submersion f defined in a neighborhood of
{r<2¢}. By Lemma 6.7 (ii), f is defined on {0<co} and df is ¢g-coframe homotopic to 0.
Since ¢p >0, this completes the extension across the critical level {g=0}. Hence Theorems
2.5 and 2.6 are proved except for the interpolation on a subvariety (see Subsection (5)).

In the proof of Lemma 6.7 we shall need a criterion for strong plurisubharmonicity
of certain functions modeled on (6.1).

LEMMA 6.8. Let A>0 be a symmetric real (nxn)-matriz with the smallest eigen-
value A\1>0. If a C?-function h: ICR,—R satisfies

h<Ai and 2th+h<X, tel, (6.3)
then the function T(z)=(Ay,y)—h(|z|?) is strongly plurisubharmonic on {z=x+iyeC":
|z|?€T}.

Proof. Let A=(a;;). A calculation gives

n
—Tz, =xjh+1i E ajsYs,

s=1

) 202h+h—aj;, if j=1,
— LTy .5, — .
T 2zsmh—ay, i 5#£L

Thus the complex Hessian

0*r
Hr= (62] 07 )

—2H, =2h-zzt+hI—A,

of 7 satisfies
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where zz* is the matrix product of the column x€R™ with the row zf, and I denotes
the identity matrix. For any v€R™ we have ((zz')v,v)=vtzztv=|(z,v)?, which lies
between 0 and |z|%|v|?. Hence 0<zz® < |x|2]. (Here we write A< B if B~ A is nonnegative
definite.) At points |z|>=¢ where A(t)>0 we thus get —2H, <(2th+h)I~ A<\ 1—A<0
and hence H,>0 (we used the second inequality in (6.3)). At points where h<0 we
can omit 2hzz'<0 to get —2H, <hI—A<(h=X)I<0, so H;>0. Thus H, is positive

definite, which proves Lemma 6.8.

Proof of Lemma 6.7. Recall that 1<u<A; and toz(l—l/u)%o. We shall find a
smooth convex increasing function h: R-[0, +00) satisfying

(i) h(t)=0 for t<to;

(i) h(t)=t—ty for t=co, where t;=cq—h(co)E€(to, co);

(iii) for all t>t¢ we have 0<A<1, 2th+h<A; and t—t1 <h(t)<t—to.

We first consider the function

0 if ¢ <to,

£t) =3 u(vVi—v& ), if to<t<co,
t—co(1=1/p), if eo<t.

On [tg,co], € solves the initial-value problem 2t€+€=pu, £(tg)=£(t5)=0. It is C' and
piecewise C2, with discontinuities of f at tg and ¢g. The value of tg is chosen such that
&(co)=1. We have f(t):u\/t—o/2\/53>0 for t&[to, co), £(t)=0 for ¢ outside this interval,
and ftzoﬁ(t) dt=1.

Choose a smooth function x>0 which vanishes outside [to,cp], equals £+€ on
[to+8, co—6) for small £, >0, and interpolates between 0 and & on the intervals [to, to+6]
and [co—0, co]. We can find §,¢>0 arbitrarily small such that ftcoox(t) dtzftioé(t) dt=1.
The function h: R, —R, obtained by integrating x twice with the initial conditions
h(to)=h(te)=0 will satisfy the properties (1)—(iil) provided that £ and ¢ were chosen suf-
ficiently small (since h is then Cl-close to € and h<é+¢). In particular, t;=co—h(co)=
co—&(co)=(1—1/u)cgy and hence tg<ty<cp.

By Lemma 6.8 the function

F(2) = (Ay, ¢ ) —h(|z'|)+ (By", ¢/ )+ * = Q(y, 2" ) - h(|z*)

is strongly plurisubharmonic on C™ Recall that §(2)=Q(y/,z")—|2’|>. The properties
of A imply

0
(b) 9+to<T on the set {|z'|?>t0};
F=p+1t1 on {|z'|*>co}.
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Let V={0<3cp}CX. We define 7: VR by 7=7o¢ on UNV and 7=p+1¢; on V\U.
Property (c) implies that both definitions agree on UNVN{|2z'|?>¢co}, and hence 7 is
strongly plurisubharmonic. The stated properties of 7 follow immediately. This com-
pletes the proof of Lemma 6.7.

(5) Interpolation along a complex subvariety. In this subsection we prove the inter-
polation statement in Theorem 2.5. Recall the situation:

— X is a closed complex subvariety of a Stein manifold X;

— K is a compact O{X)-convex subset of X;

— UcC X is an open set containing K U Xg;

— f:U—C1 is a holomorphic submersion such that df =6|;; for some g-coframe 6
defined on X.

Let ¢ be a regular value of ¢ such that L={p<c¢} contains K in its interjor. Qur
task is to find a holomorphic submersion f from an open neighborhood of LUX, to C
which approximates f uniformly on K, interpolates f along Xy to order r&€N, and such
that df is g-coframe homotopic to §. The desired submersion X —C? is then obtained
by the usual limiting process. For convenience of notation we take ¢c=0 and L={p<0}.

The set K':=(KUXp)N{o<1} is O(X)-convex, and hence there exists a smooth
strongly plurisubharmonic exhaustion function 7: X =R such that 7<0 on K’ and 7>0
on X\U. We may assume that 0 is a regular value of 7 and the hypersurfaces {o=0} and
{r=0} intersect transversely. The set Dy={7<0} is a smooth strongly pseudoconvex
domain contained in the domain U of f. The following lemma provides the main step.

LEMMA 6.9. For each €>0 there exists a holomorphic submersion g:L—C% in an
open set LDOL such that |g— f|<e on DoNL and g—f vanishes to order r on XoNL.

Assuming Lemma 6.9 we complete the proof of Theorem 2.5 as follows. Cartan’s the-
ory gives f'e O(X)? such that f’— f vanishes to order r on Xg, and finitely many functions
&€0(X) (j=1,2,...,m) which vanish to order r on X, and generate the corresponding
sheaf of ideals J%_ on L (but not necessarily on X). Since g— f'€ O(L)? vanishes to order
r on XoNL, we have g:f’+Z;n:1§jgj for some g;€O(L)9. Since L is O(X)-convex, we
can approximate each g; uniformly on a neighborhood of L by g;€O(X)?. The map
f=f +E;n:1 £;§;: X—C4 is holomorphic, |f—g] is small on a neighborhood of L (hence
|f—f|is small on DoNL), and f—f vanishes to order r along X. If the approximations
are sufficiently close then f is a submersion in a neighborhood of LUXj. This completes
the induction step.

Proof of Lemma 6.9. Set gy=7+t(0—7)=(1—¢)7+tg and let

Di={0,<0}={r<t(r—p)}, t€[0,1].
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We have Dy={7<0}, D1={p<0}=L and DyND1CD; for all t€[0,1]. Let
Q={0<0,7>0}CcD\Dy and Q'={p>0,7<0}CDo\D;.

Since 7—p>0in Q and 7—p<0 in ' it follows that, as t increases from 0 to 1, the sets
D, L monotonically increase to D=L while D;\ L. C Dy decrease to @. All hypersurfaces
{0:=0}=0bD, intersect along the real codimension-two submanifold S={p=0}N{r=0}.
Since doy=(1—t)dr +tdp and the differentials d7,dp are linearly independent along S,
each hypersurface bD; is smooth near S. Since g; is a convex linear combination of
strongly plurisubharmonic functions, it is itself strongly plurisubharmonic, and hence D;
is strongly pseudoconvex at every smooth point of bD;.

We investigate more closely the nonsmooth points of 8D;={p;=0} inside 2. The
defining equation of D;N$? can be written as 7<t(7—p) and, after dividing by 7—g>0,
as

N PR M

The equation dh=0 for critical points is equivalent to
(r—o)dr—71(dr—do)=T1do—pdr=0.

A generic choice of g and 7 insures that there are at most finitely many solutions
P1, - P €2 and no solution on b). A calculation shows that at each critical point
the complex Hessians satisfy (r—9)?H,=7H,—oH,. Since 7>0 and —p>0 on §, we
conclude that Hy >0 at such points. By a small modification of h near each p; we can
therefore assume that it is of the form (6.1) in some local holomorphic coordinates.

If c€[0,1) is a regular value of |, then for ¢’ >c sufficiently close to ¢ {depending only
on h) the domain D, can be obtained from D.N D, by finitely many attachings of convez
bumps (Subsection (1)). Indeed, the boundaries bD, and bD.s intersect transversely at
very small angles along S and are locally convexifiable. We begin by attaching small
convex bumps to D.ND. along S in order to enlarge D.NL to DoNL locally near S
while keeping unchanged the part of the set outside of L (which equals D.AL). Each
of the bumps may be chosen disjoint from X, and with finitely many bumps we can
reach Dy. By Lemma 6.3 every submersion defined in a neighborhood of D can be
approximated uniformly on D.N D, by a submersion defined in a neighborhood of D,
such that the two maps agree to order 7 on Xp. (We use the interpolation version of
Theorem 4.1.) If 0<cy<c; <1 are such that h|g, has no critical values in [cg, ¢1], we can
subdivide [¢g, ¢1] into finitely many subintervals on which the above procedure applies.
This explains the noncritical case.
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We have seen that the (finitely many) critical points of kg, are of the form (6.1),
and hence the method developed in Subsections (2)—(4) can be applied to cross every
critical level of h. Lemma 6.6 with interpolation on X (which does not intersect the
handle E') is a trivial addition.

Together these two methods show that we can approximate a holomorphic submer-
sion f, defined in a neighborhood of Dy, uniformly on LNDyDK by a submersion g
defined in a neighborhood of L such that g— f vanishes to order r on Xy. This completes
the proof of Lemma 6.9.

Proof of Corollary 2.10. The hypothesis implies that the normal bundle of V in X
is isomorphic to N|,, and hence is trivial. By the Docquier-Grauert theorem [DG] there
exist functions g1, ..., g, €O(U) whose common zero-set equals V and whose differentials
dgi, ..., dg, are linearly independent along V. If dg extends to a g-coframe on X then
Theorem 2.5 furnishes a submersion f: X —C? such that f—g vanishes to second order
along V. This implies that V is a union of connected components of f~1(0).

In general we must replace gi,...,¢; by a different set of defining functions for V
to insure the g-coframe extendability. Choose a complex subbundle £ CTX such that
TX=E®N and E=kerdg in a neighborhood of V (in particular, E|,, =TV ). Let ©C
T™*X be the conormal bundle with fibers ©,={we T X:w(v)=0 for all vEE,}. From O~
(T'X/E)*~N* we see that © is trivial. Hence there exists a g-coframe §=(6,, ...,0,) on X
which spans © and is holomorphic near V. By construction the differentials dg, ..., dg,
also span © near V, and hence 93':22:1 a;i dg for some holomorphic functions a;; in
a neighborhood of V. Set h;=31_, a;kgx for j=1,...,q. Then dh;=0; at points of V'
(since the term obtained by differentiating a;x is multiplied by gx which vanishes on V).
Let x be a smooth function on X which equals one in a small neighborhood of V' and
equals zero outside of a slightly larger neighborhood. If these neighborhoods are chosen
sufficiently small then f=ydh+(1—x)0 is a g-coframe on X which equals dh near V.
Hence we can apply Theorem 2.5 to h as explained above.

Assume now dim V<[4n], so that the rank of its (trivial) normal bundle Ny is at
most [%(n—i— 1)]. It suffices to show that Ny extends to a trivial subbundle NCTX. To
see this, recall that the pair (X,V) is homotopy equivalent to a relative CW-complex
of dimension at most n [AF]. The standard topological method of extending sections
over cells gives the following: If E—X is a complex vector bundle of rank k>%n then
a nonvanishing section of E over V extends to a nonvanishing section of E over X.
Indeed the obstruction to extending a section from the boundary of an m-cell to its
interior lies in the homotopy group m,-1(S?*~!), which vanishes if m<2k. Our complex
only contains cells of dimension <n, which gives the stated result. Using this inductively

we see that the linearly independent sections generating Ny CTX |y, extend to linearly
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independent sections over X generating a trivial subbundle NCTX.

Proof of Corollary 2.11. By [DG] there exists an open set UC X containing V and
a holomorphic submersion 7: U—V which retracts U onto V. Choose a holomorphic
subbundle HCTU such that TU =H@ker dm and H|,=TV. The map fO:=for: U->C?
is a holomorphic submersion with f°|,,=f. By the assumption there is a g-coframe
0=(01,...,04) on X satisfying ¢*6,;=df, for j=1,...,q. Choose a smooth cut-off function
Xx: X —[0,1] with support in U such that x=1 in a smaller open neighborhood U;CU
of V. The (1,0)-forms éj::xdf]o+(l—x)9j (7=1,...,q) are well defined on X and are
C-linearly independent, except perhaps on the set where 0 <y <1. However, if we choose
X to be supported in a sufficiently thin neighborhood of V then these forms are also inde-
pendent there since the H-components of the g-coframes § and df° agree on H|, =TV,
and hence are close to each other over an open neighborhood of V. It remains to apply
Theorem 2.5 to obtain a submersion F: X~C? extending f. If ¢<[(n+1)] then the
g-coframe df°® extends from a small neighborhood of V to all of X by the same argument
as in the proof of Corollary 2.10, using the fact that the pair (X,V') is homotopic to a
relative CW-complex of dimension <dim X.

7. Holomorphic sections transverse to a foliation

A complex vector bundle m: N—X of rank ¢ admits locally constant transition func-
tions if there is an open covering {U;};en of X and fiber-preserving homeomorphisms
¢i: Ny, =771 (U;) = U; x C? with transition maps

¢ij(l', Z) :¢io¢j_1(m7z) = (Qf, h1g<z))7 ZEEUlﬂUj, ZECq,

where h;;€GL4(C) is independent of the base point z€U;NU;. The structure group
['CGL4(C) of N, generated by all h;;’s, is totally disconnected but not necessarily
discrete. (Such an N, also called a flat bundle, is determined by a representation
a: 1 (X)—=GL4(C); its pull-back to the universal covering X of X is a trivial bundle
over X. This will not be used in the sequel.)

THEOREM 7.1. Let X be o Stein manifold. If E is a complex subbundle of the
tangent bundle TX such that N=TX/E admits locally constant transition functions
then E is homotopic (through complex subbundles of TX) to the tangent bundle of a
nonsingular holomorphic foliation of X .

Theorem 7.1 extends Corollary 2.9 in which N=TX/F was assumed to be trivial.

The analogous result concerning smooth foliations on smooth open manifolds was proved
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by Gromov [Grol] and Phillips [Ph2], [Ph3], [Ph4], and on closed manifolds by Thurston
[Thl], [Th2]. (See also [God, pp.65-66] and [Gro3, p.102].) The smooth analogue of
Theorem 7.1 applies to any smooth codimension-one subbundle ECTX (since any real
line bundle admits a totally disconnected structure group). On the other hand, a complex
line bundle N—X over a Stein manifold admits such a structure group only if its first
Chern class ¢1(N)€H?(X;Z) is a torsion element of this group.

Proof of Theorem 7.1. Since the transition functions h;; do not depend on the base
point, the product foliations over the sets U; €U define a global holomorphic foliation H
of N such that the zero-section of N is a union of leaves {one for each connected com-
ponent of X). More precisely, if U;NU;#@ and z€C9 then ¢ ' (U; x{h;;(2)}) and
qﬁj_l(Uj x{z}) belong to the same leaf of #. The tangent bundle of N decomposes as
TN =H®V where the horizontal component H:=T%H is the tangent bundle of H and the
vertical component V is the tangent bundle of the foliation N,=7"1(z) (z€X ). Denote
by 7: TN —V the projection onto V with kernel H. Observe that V is just the pull-back
of the vector bundle N-+»X to the total space by the projection map =, and for every
section f: X— N of 7 we have f*V=N.

If f: X—N is a holomorphic section transverse to the foliation H (this requires
g<n=dim X ) then the intersection of f(X)C N with H defines a holomorphic foliation
Hy of X, of dimension k=n—gq, whose tangent bundle TH;CTX has fibers (T'Hy),=
{€eT, X :1odf(§)=0}. Transversality of f to H means that the vector bundle map

fi=frorodf: TX = f*V=N

is surjective and hence induces an isomorphism of TX/T#H onto N. In particular, N is
the normal bundle of any such foliation H.

To prove Theorem 7.1 we construct a holomorphic section f: X — N transverse to H
and a complex vector bundle injection t: N—TX (not necessarily holomorphic) such that
the subbundle TH;CTX is homotopic to £ and f'oi: N—N is a complex vector bundle
automorphism homotopic to the identity through complex vector bundle automorphisms
of N.

On every sufficiently small open set UC X we have N|;~U x C9, and the restriction
of H to Ny has leaves Ux{z} (z€C9). Any such U will be called admissible. A section
of N over such a U is of the form f(z)=(z, f(z)) where f:U—C9, and f is transverse
to H if and only if f is a submersion to the fiber C%. This reduces every local problem in
the construction of a transverse section to the corresponding problem for submersions.

Choose a strongly plurisubharmonic Morse exhaustion function g: X —R and an
initial embedding 7: N—=TX such that TX=E®((N). Suppose that f is a transverse

holomorphic section, defined on a sublevel set of g, such that ker(7odf) is complementary
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to ¢(N) and f’o¢ is homotopic to the identity over the domain of f. We inductively enlarge
the domain of f as in the proof of Theorem 2.5. Whenever we change f the injection ¢
is changed accordingly (by a homotopy of injections N—TX) such that f’o. remains
homotopic to the identity on N. We must explain the following two steps.

(a) Suppose that (A, B) is a special Cartan pair in X such that B is a convex bump
on A contained in an admissible set UC X (Subsection (1) of §6). Given a transverse
section f: A= N in a neighborhood of A, find a transverse section F' in a neighborhood of
AUB which approximates f uniformly on A. (The homotopy conditions trivially extend
from A to AUB.) A solution to this problem will complete the proof in the noncritical
case (compare with Proposition 6.1).

(b) Extend a transverse section across a critical level of p. At this step we shall
need the homotopy condition on f/oy.

Part (a) is proved as in Proposition 6.1 with one minor change. On ANU we
have f(z)=(x, f (2)) where f is a submersion to C?%. We approximate f uniformly in a
neighborhood of ANB by a submersion §: B—C¥ defined in a neighborhood of B, find
a transition map ~y such that f= gov in a neighborhood of ANB, and split y=8-a"! by
Theorem 4.1. This gives foa=go3 in a neighborhood of AN B which defines a transverse
holomorphic section F in a neighborhood of (AUB)NU (actually we have to shrink the
domain a bit so that the image of o remains in U). It remains to show that F extends

holomorphically to a neighborhood of A. From

F(z)=(z, f(a(2)), flal2))=(alz), f(a(e)))

we see that these two points belong to the same leaf of H. Hence F(x) is the unique
point of N, obtained from f(a(x))€ Ny(;) by a parallel transport along the leaf of H
through f(a(z)). (More precisely, we take the nearest intersection point of the leaf with
the fiber N,.) Since « is a biholomorphism close to the identity in a neighborhood of A,
this gives a well-defined holomorphic extension of F' to a neighborhood of AUB which is
transverse to H.

Consider now the problem (b). Let p€ X be a critical point of ¢ and assume that f
is already defined on {g<c} for some c<g(p) close to o(p). The crossing of the critical
level is localized in an admissible coordinate neighborhood UC X of p, except for the last
step (Subsection (4) of §6) which uses the noncritical case (a). We must explain how
to extend f smoothly across the handle ECU attached to {o<c} (see Subsection (2)
of §6 for the details). We identify U with an open subset of C™. Using a trivialization
N|;~UxC? we have the following situation:

(i) f(z)=(z, f(z)) where f is a holomorphic submersion from a neighborhood of
Un{o<c} to CY
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(i) ¢: Nly—=TX|;=UxC" equals t(z,v)=(z, Azv) (veCT) where A, is a complex
(nx g)-matrix of rank ¢ depending continuously on z€U;

(il) z—Jf(x)-A,€GL,(C) is homotopic to the constant map z -1, in a neighbor-
hood of UN{p<c}. (Here I, is the identity matrix.)

Note that (iii) is just the condition on f’o¢ expressed in local coordinates. An
elementary consequence of (iii) is that the Jacobian matrix Jf admits a smooth extension
across the handle ECRF to a map J into the space of complex (n x ¢)-matrices of rank ¢
such that z—J(z)-A;€GL,(C) remains homotopic to the constant map z—1I, on the
set ({o<c}UE)NU.

Let D be a domain in R*"=R"+30CC" containing the handle E as in Lemma 6.4.
Let € denote the differential relation of order one whose holonomic sections are smooth
maps h: D—C? whose Jacobian satisfies the condition Jh(z) Az€GL,(C). We see as in
Lemma 6.5 above that € is ample in the coordinate directions. Hence Gromov’s convex
integration lemma from [Gro3, 2.4.1] (or [EM, §18.2]) gives a smooth extension of f across
the handle E such that z— Jf(z)- A, €GL,(C) is homotopic to the constant map z— I, on
({0<c}UE)NU, thereby insuring that the extended section f(z)=(x, f(x)) is transverse
to H also over E and f’or remains homotopic to the identity on N. (See Lemma 6.5
for the details.) The remaining steps of the proof are the same as for submersions.
Theorem 7.1 is proved.

COROLLARY 7.2. Let V be a closed complex submanifold of a Stein manifold X. If
the tangent bundle TX admits a complex vector subbundle N with locally constant tran-
sition functions such that TX |, =TV@®N]|,, then V is a union of leaves in a nonsingular
holomorphic foliation of X.

Proof. Let ‘H be a foliation of N as in the proof of Theorem 7.1. By the Docquier—
Grauert theorem [DG] there are an open neighborhood UC X of V, a holomorphic re-
traction m: U—V and an injective holomorphic map ¢: U— Ny, such that ¢(z)€ Ny (o)
for each ze€U, and ¢(x)=0, if and only if z€V. The point ¢(x) corresponds to a
unique point f(z)en*(NJy ), via the pull-back map #*. Shrinking U if necessary we
have N|,~n*(N|y/). Using this identification we see that f:U— N|; is a holomorphic
section which intersects the zero-section of N transversely along V. Shrinking U again
we conclude that f is transverse to H and V is a leaf of the associated foliation F; of U.
It remains to find a global transverse section f: X—N which agrees with f to second
order along V. This is done as in the proof of Theorem 2.5 (Subsection (5) of §6), with
the modifications explained above.

Remark. A closed connected complex submanifold V' of a Stein manifold X is a leaf

in a nonsingular holomorphic foliation defined in an open neighborhood of V' if and only
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if the normal bundle of V in X admits locally constant transition functions. The proof is
essentially the same as for smooth foliations: the direct part is due to Ehresmann (see e.g.
[God, p. 5]); for the converse part we transfer the above foliation #H of the normal bundle
N to a neighborhood of V in X by the Docquier-Grauert theorem [DG]. Corollary 7.2
gives a sufficient condition for the existence of a global foliation of X with the same
property.
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