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conjecture 

In 1916, L. Bieberbach [2] conjectured that the inequality 

lanl--<.lall 
holds for every power series E~=~ a n z n with constant coefficient zero which represents 

a function with distinct values at distinct points of the unit disk. He also conjectured 

that equality holds with n > l  only for a constant multiple of the Koebe function 

Z 

( 1 + toz) 2 

where w is a constant of absolute value one. 

Bieberbach [2] verified the Bieberbach conjecture for the second coefficient. The 

Bieberbach conjecture for the third coefficient was verified by K. LOwner [9] in 1923. 

In 1955, P. R. Garabedian and M. Schiffer [7] verified the Bieberbach conjecture for the 

fourth coefficient. The Bieberbach conjecture for the sixth coefficient was verified in 

1968 by R. N. Pederson [13] and, independently, by M. Ozawa [12]. In 1972, Pederson 

and Schiffer [14] verified the Bieberbach conjecture for the fifth coefficient. No other 

case of the Bieberbach conjecture has previously been verified. 

A proof of the Bieberbach conjecture is now obtained for all remaining coeffi- 

cients. Two other conjectures are also verified. 

In 1936, M. S. Robertson [17] conjectured that the inequality 

~ml2+ ~212+... +~nl 2 ~< n~ll 2 

holds for every odd power series E | ~ z 2n-~ which represents a function with distinct n= I / Jn  

values at distinct points of the unit disk. Such a power series is obtained from any 
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power series E an z n with constant coefficient zero which represents a function with 

distinct values at distinct points of the unit disk through the identity (z )2 
~n z2n- I = ~.d O~n z2n" 

An elementary argument shows that the Robertson conjecture implies the Bieberbach 

conjecture [17]. 

The logarithmic coefficients of a power series f (z)  with constant coefficient zero 

which represents a function with distinct values at distinct points of the unit disk are 

defined by the expansion 

f ( z ) =  z f ' (O)exp 2 y~z ~ . 

I fg(z)=EflnZ 2n-I is an odd power series such that g(z)2=f(z2), then 

t. 
In 1967, N. A. Lebedev and I. M. Milin [10] obtained the inequality 

~ iflnl2 < 1fl,12ex p 1 ( r + l - n )  nlynl 2- . 
r "1"- 1 n = l  n= l  

Equality holds if, and only if, a complex number to of absolute value one exists such 

that yn=ton/n for n= 1 . . . . .  r. And in 1971, Milin [11] conjectured that the inequality 

r 

(r + l - n )  nlg',l 2 <~ ~ (r+ l - n )  1 
n = l  n= l  F/ 

holds for every positive integer r. Because of the Lebedev-Milin inequality, the Milin 

conjecture implies the Robertson conjecture and the Bieberbach conjecture. 

A proof of the first three cases of the Milin conjecture was obtained by A. ~. 

Grin~pan [8]. A proof of the remaining cases of the Milin conjecture is now obtained. 

The proof depends on a continuous application of the Riemann mapping theorem which 

is due to Lfwner  [9]. 

L6wner used the method to prove the Bieberbach conjecture for the third coefficient. 

In this approach the problem is to propagate information by means of a differential 
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equation. For this purpose information has to be coded in a convenient form and then 

carried from one end of an interval to the other. An introduction to the methods which 

are now used will eventually appear in the author's monograph on "Square summable 

power series", which culminates in the proof of the Bieberbach conjecture. 

Thanks are given to the members of the Leningrad Seminar in Geometric Function 

Theory for their confirmation of the proof of the Bieberbach conjecture during the 

author's stay at the V. A. Steklov Mathematical Institute in April, May and June of 

1984. 

For three weeks before the author's arrival, E. G. Emel'ianov prepared the 

seminar by presenting a paper [5] of the author, written in the fall of 1982 and brought 

to Leningrad by S. V. Hrug~ev, which contains an earlier form of the estimation 

theory. Emel'ianov was the first to confirm the proof of the Bieberbach conjecture, and 

he facilitated the work of the seminar by discovering a variant of the proof which 

required no knowledge of the motivating background in functional analysis. 

It was Emel'ianov's argument which I. M. Milin and A. ~.. Grin~pan accepted as a 

proof of the Bieberbach conjecture. The author then worked with the seminar leader, 

G. V. Kuz'mina, to consolidate the findings of the seminar as represented by the 

written reports of Emel'ianov and Milin. These conclusions of the seminar are present- 

ed as a proof of the Bieberbach conjecture in an Academy of Sciences preprint [6]. 

Thanks are also due to the members of the Leningrad Seminar in Functional 

Analysis, in particular to V. P. Havin, S. V. Hrug~ev, and N. K. Nikol'skii, for 

examining the theories which naturally lead to the proof of the Bieberbach conjecture 

and which will appear in "Square summable power series". 

It was the opinion of both Leningrad seminars that the proof of the Bieberbach 

conjecture should have an independent publication for the convenience of those who 

have no further interest in the theory. It was thought that such a publication, far from 

detracting from the main theory, would serve as an enticement to read a fuller 

treatment when it became available. 

The author thanks Academician L. D. Faddeev for making available the facilities 

of the Mathematical Institute under the terms of the exchange agreement between the 

Academy of Sciences of the USA and the Academy of Sciences of the USSR. 

The relevant information from the L6wner theory will first be stated. A power 

series g(z) is said to be subordinate to a power series f(z) if g(z)=f(B(z)) for a power 

series B(z) with constant coefficient zero which represents a function which is bounded 

by one in the unit disk. If f (z) and g(z) are power series which represent functions 

which have distinct values at distinct points of the unit disk, then g(z) is subordinate to 
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f(z) if, and only if, the region onto which g(z) maps the unit disk is contained in the 

region onto which f(z) maps the unit disk. 

A LOwner family is a family of power series F(t, z), indexed by a positive 

parameter t, such that each series F(t, z) has constant coefficient zero, has coefficient 

of z equal to t, and represents a function with distinct values at distinct points of the 

unit disk, and such that F(a, z) is subordinate to F(b, z) when a<b. 
Assume that f(z) and g(z) are power series with constant coefficient zero and 

coefficient of z positive which represent functions with distinct values at distinct points 

of the unit disk. If g(z) is subordinate to f(z), then f(z) and g(z) are members of a 

L6wner family of power series F(t, z). 
Assume given a L6wner family of power series F(t, z). Then the coefficients of 

F(t, z) are absolutely continuous functions of t which satisfy the L6wner differential 

equation 

t -~ F(t, z) = cp(t, z) z ~ F(t, z) 

where ~(t, z) is a power series with constant coefficient one which represents a function 

with positive real part in the unit disk for every index t, and the coefficients of cp(t, z) 

are measurable functions of t. 

Assume given a family of power series cp(t, z) with constant coefficient one, t 

positive, which represent functions with positive real part in the unit disk. If the 

coefficients of ~(t, z) are measurable functions of t, then a unique L6wner family of 

power series F(t, z) exists which satisfies the L6wner differential equation with the 

given coefficient function cp(t, z). 

The present definition of a Lfwner  family differs from that of LOwner [9] who uses 

the logarithm of t as a parameter. Thus Lfwner  regards the underlying semigroup of 

substitution transformations as additive rather than multiplicative. And he makes use 

of the family for a smaller range of the parameter. The present variant of the L6wner 

theory is developed in previous work [3]. 

Some Hilbert spaces of power series, which arise in the theory of the Grunsky 

transformation [4], are used in estimating logarithmic coefficients. Assume that on is a 

given function of positive integers n, with nonnegative numbers as values, such that 

o,+1<~0,, for every n. Define ~do to be the Hilbert space of equivalence classes of 

power series f (z)=E a,z" with constant coefficient zero such that 

IIS(z)ll o = , .ta.I 
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is finite. Equivalence of power series f(z) and g(z) with constant coefficient zero means 

that the coefficient of z" in f(z) is equal to the coefficient of z n in g(z) when a,  is 

positive. 

A family of spaces ~ t ) ,  t~> I, is said to be admissible if an(t) is a nonincreasing 

and absolutely continuous function of t and if the differential equation 

to',(t) to'.+l(t) 
o n ( t ) + - - =  o.+1(0 

n n+ l  

holds for every postive integer n. 

These conditions allow an estimate of logarithmic coefficients of bounded func- 

tions. 

THEOREM I. Assume that an admissible family o f  spaces ~o~,) is given such that 

of(t) is not identically zero but an(t) is eventually identically zero. Then the inequality 

II o g - - ~ 7 ~ l  B(z) +f(B(z))~o 2 +4 ~ o,(a)-o,(b) 
n=l n 

holds for every element f(z) o f  ~o<b) and for every power series B(z) with constant 

coefficient zero which represents a function which is bounded by one and has distinct 
values at distinct points of  the unit disk, l<.a=blB'(O) I. Equality holds with B'(O) 

positive if, and only if, a complex number w of  absolute value one exists such that 

B(z) B'(O) z 
(1 +oJB(z)) 2 (l +~oZ) 2 

and such that the coefficient o f  z" in f(z) is equal to the coefficient of  z" in 

- 2  log (1 +~oz) 

when on(t) is not identically zero. 

Proof o f  Theorem 1. Since B(z) can be replaced by B(2z) for a complex number 2 of 

absolute value one, it can be assumed that the coefficient of z in B(z) is positive. Then a 

L6wner family of power series F(t, z) exists such that the identity F(a, z)=F(b, B(z)) is 

satisfied for given numbers a and b such that l<.a=bB'(O). The L6wner family can for 

example be chosen so that F(b, z) is a constant multiple of z. 

When 0<a~<b<~,  a unique power series B(b, a, z) with constant coefficient zero 
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exists, which represents a function which is bounded by one and has distinct values at 

distinct points of the unit disk, such that 

F(a, z) = F(b, B(b, a, z)). 

The coefficients of B(b, a, z) are absolutely continuous functions of a which satisfy the 

L6wner equation 

a-~a B(b, a, z) = q~(a, z) Z-~z B(b, a, z). 

Note that the identity 

a.(a)-a.(b) a.+l(a)--a.+l(b) 
F 

n n+ l  
= f b tr.(t)-tl.+j(t)t dt 

is a consequence of the differential equations for the functions o.(t). Since o.(t) is 

eventually identically zero, it follows that 

f~ bo'(t)''-t~ d t = 2 ~  tr.(a)-a.(b) 
t n = l  /'t 

Hold b fixed. The desired inequality is now verified by showing that the expression 

]22fbO,(t)-- t tY,( t)  log B(b, a, z) +f(B(b, a, z)) dt 
--za~ ~~ t 

is a nondecreasing function of a, a<~b. This is done by showing that the expression is an 

absolutely continuous function of a whose derivative is nonnegative almost every- 

where. 

For a computation of the expression, write 

h(a, z) = log B(b, a, z) +f(B(b, a, z)) 
za/b 

for a<~b, and observe that the differential equation 

a h(a, z) = qg(a, z) Z-~zh(a, z)+qg(a, z)-  1 a aa 

is satisfied. Write 

h(a, z) = ~ h.(a) z". 
n = l  
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The function of a which is to be shown nondecreasing is 

f b~176 h.(a) h~(a) no.(a)- 2 
n=l t 

Indeed the indefinite integral and each term in the sum is absolutely continuous. 

The desired conclusion is verified by showing that the result of formally applying the 

operator a(a/aa) is nonnegative. 

The expression to be shown nonnegative is 

ah'.(a) h.(a) no.(a)+ ~ h.(a) ah.(a) ntr.(a) 
n=l  n=l  

oo 

+ Z  h.(a) h.(a) naa'.(a)+ Zal(a)--Zaa'l(a). 
n ~ l  

Use is now made of the Herglotz representation of a function which is analytic and 

has positive real part in the unit disk. For each real number a, a unique nonnegative 

measure/~(a, .) exists on the Borel subsets of the unit circle such that the identity 

q~(a, z) = f ll+W'-'---~Z w) 

is satisfied in the sense of formal power series. 

It is convenient to introduce the notation 

sn(a, co) = nh.(a)+w(n- 1) h._l(a)+... +w "-I hi(a) 

with the interpretation so(a, to)=0. An elementary calculation shows that 

f a-~a h.(a) = [2w"+s.(a, co)+ws._,(a, w)] d/u(a, co) 

and that 

h.(a) = 
s.(a, w)-ws._l(a, to) 

The expression to be shown nonnegative is the integral with respect to/~(a, .) of 

the sum 

~ [2w"+s.(a, w)+ws._l(a, o9)] [s.(a. w)-ws._,(a, w)]-o,,(a) 
n=l  
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o~ 

+ Z [s.(a, w)-ws~_,(a, w)] [2oJ"+s.(a, ~o)+ws._,(a, w)]-a.(a) 
n=l  

ao 

+ ~ Is.(a. ~o)-ws._l(a. w)l 2 aa'.(a) + 2o,(a)-2aa'l(a) 
n=l  tl  

oo 

Z 2[~ (a' ~~176 (a' w)] o.(a) 
n = l  

oo 

+ Z  2[w-"s.(a, w)-wl-"s._,(a, w)] o.(a) 
n=l 

ao 

+ Z  2[s.(a, w) g.(a, w)-s._n(a, w) g._n(a, w)] o.(a) 
, ' 1 ~ 1  

+ Z ]w-"s.(a, w)-oJl-"s._n(a, w)l 2 ao'.(a) + 2an(a)-Zao'n(a) 
n=l n 

ao 

= 2 o ,  [o. )] a, ~ - ( a ) - o . + o ( a  
n = !  

+ Z  2~ (a' ~o) [a~(a)-a.+,(a)] 
n= |  

oo 

+ Z  2s.(a, to)~.(a, co) [a.(a)-o.+,(a)] 
n~l  

oo 

+ ~'~ Im-"s.(a. co)-co'-"s._,(a, m)[ 2 aa'.(a) + 2o,(a)-2aa'n(a) 
n ~ l  rl 

= ~ 211+w-"s.(a, w)l 2 [o.(a)-o.+,(a)] 
n = l  

Oo 

+ ~ Io:"s.(a. r w)[ 2 ao'.(a) 
n=l  l'l 

_- _2ll+to_.s.(a, co)[ 2 a a) + 
n = l  

oo 

+ ~, I~~ a, ~o)_cot_.s._,(a. co)l 2 ao'.(a) 
n=l  t'! 

= ~ -211+t~ a, t~ 2 ao'.(a) 
n n=l  

oo 

+ Z -211 +tol -"s"-n (a' t~ ao'.(a) 
n=l  rl 

2ao;(a) 

2aa;(a) 
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o o  

+ ~ I~o-"s,(a, w)-w'-"s,_l(a , oJ)12, ao"(a) 
n=l  l't 

= ~ -12+w-"s.(a, w)+w|-"s._l(a, w)l 2 ao'.(a) 
n = l  /'1 

~>0. 

Note that all summations which appear are actually finite because of the hypoth- 

esis that on(t) is eventually identically zero. There is no difficulty in justifying the 

needed interchanges of summation with differentiation or integration. Note that, when 

an(t) is not identically zero, a'(t) is nonzero, except possibly at isolated points, 

because an(t) is a polynomial in 1/t, as is shown in the proof of Theorem 3. 

Equality holds if, and only if, 

f l2+og-"s,(a, ~o)+oJl-"s,_t(a, og)[2dla(a, w) = 0 

whenever o'(a) is nonzero. Since so(a, oo)=0 and st(a, w)=ht(a), the identity 

f l2+o~-Ihl(a)12dlz(a, = 0 fO) 

holds when oi(a) is not zero. It follows that Iz(a, ") is the measure with mass one 

concentrated at some point ~o(a) and that hl(a)=-2w(a). The differential equation 

satisfied by h(a, z) now implies that w(a)=w is independent of a. These conclusions do 

apply since o~(t) is not identically zero by hypothesis. Since 

1 +wz 
q0(a, z) = ~ ,  

1 - o J z  

the desired form of B(b, a, z) follows. The identity 

2+~o-"s.(a, w)+wl-"s._j(a, w) = 0 

holds when on(t) is not identically zero. An inductive argument shows that 

nh.(a) = 2( -  1)"r 

Thus, the coefficient of z n in h(z) is equal to the coefficient of z" in 

- 2  log (1 + r 
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This completes the proof of the theorem. 

An estimate of logarithmic coefficients of unbounded functions is obtained on 

passing to a limit. 

THEOREM 2. Assume that an admissible family o f  spaces (~o~t) is given such that 

Ol(t) is not identically zero but on(t) is eventually identically zero. Then the inequality 

1o F(Z) 2 on(a ) 
g - ~ - 0 ~  ~,)<~ 4 ~ 

n=l n 

holds for every power series F(z) with constant coefficient zero which represents a 

function which has distinct values at distinct points o f  the unit disk, l <~a. Equality 

holds if, and only if, a complex number w o f  absolute value one exists such that 

F(z)= F'(O)z 
( I  +tOZ) 2" 

Proof o f  Theorem 2. Since F(z) can be replaced by F(2z) for a complex number ~. of 

absolute value one, it can be assumed that the coefficient of z in F(z) is positive. Then a 

L6wner family of power series F(t, z) exists which contains F(z). Define the series 

B(b, a, z) as in the proof of Theorem 1. Apply the estimate of Theorem 1 with 

f(z) = log F(b, z) 
bz 

and B(z)=B(b, a, z). The inequality reads 

F(a,z) 2 <~ F(b,z) 2 , ~  on(a)-on(b ) 
l ~  ,~o~j +4 log 

a z  ~o~ n= I n 

If F(z) represents a function which is bounded in the unit disk, then the choice of 

F(b, z) can be made equal to a constant multiple of z and with F(z)=F(a, z). The desired 

estimate of logarithmic coefficients follows immediately. If F(z) represents an unbound- 

ed function in the disk, then 

F(z) = lim F(tz) 

is a limit of power series which represent bounded functions. The desired estimate of 

logarithmic coefficients now follows generally. 



A PROOF OF THE BIEBERBACH CONJECTURE 147 

To determine the cases of equality, return to the L6wner family of functions 

F(t, z). The identity 

lim log F(t,z____~) = 0 

now follows because 

lim on(t) = 0 

for every positive integer n. (See the proof of Theorem 3 for the form of the functions 

on(t) as polynomials in 1/t with constant coefficient zero.) 

Another derivation of the inequality 

logF(a 'z)  l 2 < . 4 ~  ~ 
- az ~o) n=l n 

is obtained from the inequality at the start of the proof by the arbitrariness of b. If 

equality holds, it holds in that previous inequality whenever a<.b. By Theorem I, a 

complex number to of absolute value one exists such that 

B(b, a, z) za/b 
(l+toB(b, a, z)) 2 (l+toz) 2' 

a condition which implies that the coefficient ~p(t, z) in the L6wner equation is equal to 

l+toz 
I - toz  

for a<<.t<~b. The number to is clearly independent of b. 

By Theorem 1, it also follows that the coefficient of z n in 

log F( b,  z)  
bz 

is equal  to  the coe f f i c i en t  o f  z n in 

- 2  log (1 +toz) 

when on(t) is not identically zero. Because of the identity 

log F(a, z) = log F(B(b, a, z)) I-log B(b, a, z) 
az bB(b, a, z) az/b 
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where F(a, z)=F(z), the coefficient of z n in 

log F(z) 
zF'(0) 

is equal to the coefficient of z n in 

- 2  log (1 +wz) 

when on(t) is not identically zero. It follows that the coefficient of z n+l in F(z) is equal 

to the coefficient of z n+~ in 

zF'(O) 
(1 +wZ) 2 

when on(t) is not identically zero. Since or(t) is not identically zero by hypothesis, F(z) 

gives a case of equality in the Bieberbach conjecture for the second coefficient. As 

Bieberbach [2] shows, it follows that 

F ( z )  = 

This completes the proof of the theorem. 

zF'(O) 
(I + wz) 2" 

An inequality which is due to Richard Askey and George Gasper [1] is used to 

construct admissible families of spaces ~do~,) such that on(t) is eventually identically 

zero. The notation 

I+ a .b . c  a(a+l)b(b+l)c(c+l)  
F (a ,b , c ;d , e ; z )=  ~ z §  1.2.d(d+l)e(e+l)  z2+"" 

is used for the generalized hypergeometric series. 

THEOREM 3. Assume that ~a is a given space such that the inequality 

On--~Tn+ I >~ On+ I --On+ 2 

holds for every positive integer n and such that on is eventually zero. Then an 

admissible family o f  spaces ~oo) exists such that an(O is eventually identically zero 

and such that 

cr . (1 )  = a .  

for every positive integer n. 
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Proof  o f  Theorem 3. Note that the hypotheses on the numbers on are equivalent to 

the existence of nonnegative numbers Pr, all but a finite number of which are zero, for 

positive integers r such that the identity 

0 o  

o n = X p r m a x ( r + l - n , O )  
r f f i  I 

holds for every positive integer n. Since the identity can be written 

it implies that 

O n = ~ Pr(r+ l - - n ) ,  
r = n  

o o  

Un--On+l = X Pr" 

The required numbers Pr are unique and are given by 

The solution of the system of differential equations is obtained in the form 

on(t)~ n = An(t)+ (2n+2) An+l(t)+ (2n+3)(2n+4) An+2(/) 
(--1) (-1)(--2) 

+ (2n+4)(2n+5)(2n+6) An+3(t)+.." 
( - 1 ) ( - 2 ) ( - 3 )  

where An(t) satisfies the elementary differential equation 

tA~,(t) = -nAn(t) 

with solution 

An(t) = An( l )  t -n .  

There is no difficulty about convergence because An(t) is eventually zero. 

It is possible to solve for the functions nAn(t) in terms of the functions on(t) 

because a square matrix with zeros below the diagonal and ones on the diagonal has an 

inverse of the same form. Thus, each function nAn(t) is expressible as a linear 

combination of the functions Ok(t) with k>.n, and the coefficient of on(t) is one. The 
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coefficient of  ak(t) when k>n is determined inductively in the unique way such that the 

differential equation for An(t) is satisfied. The resulting identity is 

nAn(t) = on(t)+ (__21n) On+l(t)a r (2n) (2n+ 1) o.+2(0 
1"2 

4 (2n) (2n+ I) (2n+2) 0.+3(0 + . . . .  
1.2.3 

It is applied when t=  1 to determine An(t). 

By the remarks at the start of  the proof, it is sufficient to give a proof  of  the 

theorem in the case that some positive integer r exists such that the identity 

on = max (r+ I - n ,  0) 

holds for every positive integer n. Then on(t) and An(t) are identically zero when n>r. 

When n= I . . . . .  r, the identity 

nA.(t) = (r+ l - n )  F(n-r ,  2n; n - r -  1 ; 1) t-" 

= F( r+n+2)  t-" 
F(r+ 1 - n )  F(2n +2) 

is satisfied. It follows that the identity 

o.(t)/n= F(r+n+2)  X~s_k_._l ds 
F(r+ 1 - n )  F(2n +2) k=0 

is satisfied, where 

_F(r+n+2) )t - (2n+k+ 1) ... (2n+2k) 
F(r+l-n)F(2n+2) k -  ( - 1 ) . . .  ( - k )  

F(r+n+k+2) 
F(r+ l - n - k )  F(2n+2k+2)  

Then 20 = I and, when k>0,  

2k 

/]'k- | 

( n - r + k -  1) (r+n+k+ l) (n+k-�89 

k(2n+k) (n+k+�89 

This obtains the identity 

o.(t)/n = F( r+n+2)  
F(r+ l - n )  F(2n+2) f | F(n-r ,  r+n +2, n+�89 2n+ I, n+�89 s -I) s-"-I ds 

when n= 1 . . . . .  r. The theorem now follows because  Askey and Gasper  (in the proof  of  

their third theorem) show that the integrand is nonnegative. 
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The Milin conjecture is a consequence of Theorems 2 and 3. Equality holds in the 

inequality of the conjecture only for a constant multiple of the Koebe function. Not 

only is the inequality conjectured by Bieberbach generally true, but equality holds only 

for a constant multiple of the Koebe function, as he conjectured. 

The proof of the Milin conjecture here given differs from the argument verified by 

the Leningrad Seminar in Geometric Function Theory [6] in that it avoids approxima- 

tion by the mapping functions of special slit regions and determines when equality 

holds in the inequality conjectured by Milin. The cases of equality were determined by 

Emel'ianov using the methods of the Leningrad Seminar [6], but this result was not 

included in the preprint because it is more easily obtained by the present method, 

which was known to the author in June 1984 but which could not have been included in 

the preprint without excessive delay. 

A similar improvement of the preprint argument was discovered independently by 

C. H. FitzGerald and Ch. Pommerenke (informal communication). This variant of the 

proof was widely distributed in July and August of 1984 and was instrumental in 

obtaining general acceptance of it. Their argument removes some of the approximation 

required by the preprint argument by using a linear form of the L6wner equation, rather 

than the nonlinear form of the preprint. But their argument applies directly only to slit 

regions and relies on an approximation theorem, due to LOwner [9], for the general 

validity of the estimates. This complicates the determination of when equality holds. 

The present technique for avoiding approximation uses a general form of the 

Lfwner  equation which is a speciality of Pommerenke [15] and which appears in his 

monograph on univalent functions [16]. The author takes this opportunity to thank him 

for having written this stimulating introduction to the theory. 

The author thanks Walter Gautschi for supplying him with information about the 

work of Askey and Gasper which concluded the proof of the Bieberbach conjecture at 

the end of February 1984. The proof of the Bieberbach conjecture had otherwise been 

completed at the end of January. The Purdue computer was used by Gautschi in 

February to verify the remaining inequalities up to the thirtieth coefficient. This 

information served as an encouragement for further work as the Bieberbach conjecture 

had previously been generally doubted for odd coefficients, starting with the nine- 

teenth. 

The confirmation of the proof of the Bieberbach conjecture by the Leningrad 

Seminar in Geometric Function Theory took place in the middle of May 1984. 

The events connected with the verification of the Bieberbach conjecture demon- 

strate the value of interdisciplinary and international cooperation! 
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