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w 0. Introduction and summary of results 

0.1. Let F be a finitely generated non-elementary Kleinian group with region of 

discontinuity f2=Q(F) and limit set A=A(F). Let 2(z)Idzl be the Poincar6 metric on 

(normalized to have constant negative curvature - I ) .  Fix q E Z, q~>2. A cusp form for,F 
of  weight (-2q) is a holomorphic function q0 on f2 that satisfies 

cp(Tz) 7' (z) q = ~v(z), all z6f2,  all 76F ,  (0.1.1) 

and 

f f ~  ~'(z)2-qlq~(z)dz^dZl<~176 (0.1.2) 

Condition (0.1.2) is equivalent to 

sup {~(z)--qI~9(Z)['~ Z E ~'~) ( oo (0.1.3) 

Denote by Aq(Q, F) the space of cusp forms for F of weight (-2q). 

If ~ 6 [2, then for tp 6 Aq(~ ,  r ) ,  

q~(z) = O([zl-2q), z ~ ~. 

We will be studying spaces of rational functions. A rational function f will be consid- 

ered to be holomorphic at ~ if 

f ( z )  = O([zl--2q),  Z ""-> 00. 

We will consider it to have a simple pole at oo if 

(1) Research partially supported by NSF grant MCS 8102621. 



4 8  I. KRA 

lim z2q-lf(z) 
Z .--~ o0 

is finite and non zero. 

It will be convenient to work with the following set that contains the limit set. Let 

Aq=Aq(F) denote the union of the limit set A with the set of fixed points Zo ~. Q of 

elliptic elements whose stabilizers in F are subgroups of order v not a factor of q -  1; 
that is, with v satisfying 

q -  1 ~ 0 (mod v). (0.1.4) 

Note that A2 contains all elliptic fixed points in ~2; while A3, for example, does not 

contain the elliptic fixed points in fl whose stabilizers are of order 2. 

We let ~q(Aq) denote the space of rational functions f that satisfy the following 

conditions: 

(i) f is holomorphic on C U (oo) \ A q ,  

(ii) all the poles o f f  at finite points in Aq are simple, 

(iii) f (z)=O(Izl-2q),  z-->oo if oo ~Aq, and 
(iv) f ( z )  = O([zl-(2q-l)), z--> oo if 0o ~Aq. 

In view of the convention introduced earlier, we can reformulate the definition of 

~q(Aq). A rational function f E  ~q(Aq) if and only if all the poles are simple and are 

located in Aq. 

To simplify notation, we introduce an operator on functions as follows. If A is a 

M6bius transformation and 2n, 2m E Z with n + m  E Z, then for every function f on a 

domain D, we define 

(An, m f ) ( z ) = f ( A z ) A  (z) A'(Z) m , Z C: A-~(D). (0,1.5) 

Abbreviate A* by A*. 
n ,  0 

We note that ~q(Aq) is invariant under the set of linear operators {A~;A E F}. 

We can hence define for f E  ~q(Aq), 

f(oo) = (-1)q lim zEqf(z). (0.1.6) 
Z ---~ o0 

This is a well defined concept; the limit takes values in the extended plane. 

If S is a subset of Aq, we let 

~q(S)  = ( f E  ~q(Aq); f is holomorphic on A q \ S ) .  
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If f 6  ~q(Aq), the then Poincar~ series 

E f(~'z) ~'(z) q, z 6 t2, (0.1.7) 
),6 F 

converges absolutely and uniformly on compact subsets of t2, and yields a cusp form 

O q f 6  Aq(~), F)  (see Proposition 1.5). Bers [4] has shown that 

Oq: ~i~q(A) --~ Aq(• ,  F)  

is surjective. The starting point of this investigation was the following quantitative 

improvement of Bers' result. 

THEOREM 1. Let  a~,. . . ,a2q-~ 

~1 . . . . .  ~N be generators for  F. Let  

Then 

Note that 

be (2q- l )  distinct points in Aq. Let ~0=L 

S = {Tj(ak); k =  1 .. . . .  2 q ,  l , j = 0 ,  ...,N}. (0.1.8) 

Oq(~q(S)) --- Aq(~"~, F).  

dim ~q(S) <~ (2q-  1) N. (0.1.9) 

We will see that in many instances it is possible, as a consequence of Theorem 1, 

to choose from a presentation for F, a set S consisting of precisely ( 2 q - l ) +  

dim Aq(Q, F) points, the points in S depending on only finitely many choices (see w 7 

and w 8) so that 

Oq" ~q(S)  ----> Aq(~"~, F)  

is an isomorphism. The points of S will depend holomorphically on moduli and will give 

a global trivialization of the vector bundle of cusp forms of weight (-2q)  over the 

deformation space of F (see w I 1). 

In [17] bases for A2(f2, F) were obtained by different methods for F geometrically 

finite function groups. Hejhal [11] has obtained spanning sets for Poincar6 series for 

Fuchsian groups, also by different methods. Bases for Schottky groups were found by 

Bers [5], for arbitrary q, and Hejhal [10], for low values of q. Wolpert [27] obtained 

bases for q=2 and F Fuchsian, by studying deformations of conformal structures. The 

methods of this paper are cohomological (see w 0.2). The idea for Theorem 1 is already 

4-848282 Acta Mathematica 153. Imprim6 le 8 aoQt 1984 
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present in Bets [4], where cohomological ideas were used but not pushed to the limit, 

and Hejhal [11, p. 357, example 2], where an explicit basis is constructed for q=2 and F 

a generic Fuchsian group of type (2,0). The reader is referred to [17] for more 

bibliographical remarks about this and some other problems considered in this paper. 

Remark. Using the notation introduced in (0.1.5), we can rewrite (0.1.7) as 

O q f =  E Y*f' f E  ~q(Aq). 
yE F 

0.2. We turn now to the more interesting vanishing problem raised by Poincar6 

[24, p. 249] (see also Petersson [23] and Hejhal [11]): Let A be a F-invariant union of 

components of the Kleinian group F. Find necessary and sufficient conditions for 

Oqf] A to vanish (identically) for a given f E  ~q(Aq). 

To begin the discussion of the vanishing problem, we introduce the subspace 

Aq(A, F) = {q0 E Aq(Q, [ '); q9 = 0 on g2\A}, 

and proceed to describe the Eichler cohomology groups. 

Let D be an arbitrary F-invariant subset of CU {0o}. We let F act on the right on 

functions F on D by the formula 

F . y =  y~_qF, y E  I ' . (1 )  (0.2.1) 

The vector space II2q_ 2 of polynomials in one complex variable of degree at most 

2 q - 2  is invariant under this action; that is, 

p 'yEH2q_ 2 wheneverpEH2q_ 2 and 7EF. (0.2.2) 

Of course, formula (0.2.2) is valid on C U {oo}. A mapping Z: I'-">l-I2q-2 is a cocycle 

provided 

/~(Yl Oy2) =X(Yl)'Y2+Z(Y2), Yl, y 2 E F .  

Such a cocycle is a coboundary if 

Z ( y ) = p . y - p ,  yEF,  

for some fixed p E II2q_ 2. The cohomology space HI(F, I-I2q_2) is defined as the 

(J) The action ofF on 1-12q_ 2 and on Eichler integrals (defined below) will be denoted by a dot (.). This 
should not be confused with composition of mappings denoted by the usual symbol (o). 
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vector space of cocycles modulo the vector space of coboundaries. We remark that if F 

is generated by N elements, then 

dim HI(F, l"I2q_2) ~ (2q -  I) ( N -  1), (0.2.3) 

and equality holds in (0.2.3) whenever F is a free group on N generators. Inequality 

(0.2.3) should be compared with (0.1.9). 

Let A E F be a parabolic element. A cocycle Z is parabolic with respect to A 

provided there is a v E I-I2q_ 2 such that 

z(A) = v . A - v .  (0.2.4) 

A cocycle is called parabolic if it is parabolic with respect to all parabolic elements of 

F; while it is called A-parabolic if it is parabolic with respect to every parabolic element 

in F determined by a puncture on Aft' (here A is, as before, an invariant union of 

components of F). The image in Hi(F, 1-I2q-2) of the set of parabolic (respectively, A- 

parabolic) cocycles is denoted by PHI(F, I-I2q_2) (respectively, PHla(F, 1-I2q_2)). 

A function F on D (a F-invariant subset of C U {~}) will be called an Eichler 

integral (for F, with support on D, o f  order 1-q) provided that for each 7 E F, there is a 

polynomial %(7) E I-I2q_ 2 so that 

F . y - F  = ;r lD. (0.2.5) 

In this case Z is a cocycle for F and we will call it, the period o f  the Eichler integral F, 

pd F. Every cocycle is the period of some smooth Eichler integral supported on fl (see 

[14, pp. 180-186]).(2) We will be mostly interested in Eichler integrals supported on 

Aq.  

We note that every p ErI2q_ 2 is an Eichler integral (supported on C U {oo}) and 

that the value of an Eichler integral at oo is given by 

IV(~176 = ( - - l )  l -q  l im  z2-2qF(z), (0 .2 .6)  
Z----~ oe  

provided that this limit exists. 

For q9 E Aq(~'-~, 1"), ~=A2-2qt~ is called canonical generalized Beltrami differential 

for F.(3) A continuous function F on C is called a potential for/~ provided 

(2) In [14], the term Eichler integral was reserved for holomorphic and meromorphic functions F that 
satisfy (0.2.5). It seems appropriate to consider more general functions under the same title. 

(3) In [14], generalized Beltrami differentials were called generalized Beltrami coefficients. It is 
traditional for q=2 to call a Beltrami differential, a Beltrami coefficient, if and only if its norm is less than 
one. 
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and 

F(z) = O(JZj2q-2), z---* co, (0.2.7) 

aF  
=/~ (0.2.8) 

0s 

in the sense of generalized derivatives. Such a potential F is said to vanish at ~ if 

(0.2.7) is strengthened to 

V ( z )  = o(Izl2q-~),  z ~ ~ .  

Let al . . . . .  a2q- ~ be (2q-  1) distinct points in Aq (as in Theorem 1). Then for z E C, 

F ( z ) -  (z -aO"" (z--a2q-') f ffl /,l(~) d~ ^ d (  
2 a t e  (~_z)(-~_a-~.~-~_a2q_ 0 (0.2.9) 

defines the unique potential F=F~o for /~ that vanishes at ak, k=l  ... . .  2q-1.  We 

introduce the convention that if ak=~ for some k, then the terms (Z--ak) and (r 

are dropped from the formula (0.2.9). 

We define fl*(q~) to be the cohomology class of pd F~. We obtain this way the Bers 
map 

fl*: Aq(A, F) ~ pHi(F, H2q_2). (4) (0.2.10) 

The map fl* is conjugate linear, and injective. The injectivity of fl* is the crucial fact 

that will yield (among other things) Theorem 1. This deep result is due to Ahlfors [1] for 

q--2 and to Bers [3] for q>2. A reference for most of the material of this section is the 

monograph [14]. 

Having fixed (2q - l )  distinct points al .. . . .  a2q-I in Aq, we define 

~l_q(A, F)= {restrictions to Aq of potentials F~, that vanish 

at a k, k= 1 .. . . .  2 q -  l, with 7: E Aq(A, F)}. 

We construct next a basis for ~q(Aq) adapted to the (2q- l )  distinct points 

al ..... a2q-l. For zEAq, z4=aj, z~=~, ~Ef2, set 

--1 I 2~i~ z--aj 
f ( z , ~ ) =  ~ ~-Z j=l "~-aj' 

(with the usual convention if aj= oo for some j) and if ~ E Aq, oo =k aj, 

(0.2.11) 

(4) It is shown in [12], [13] that fl* is the splitting map for a map fl: Hi(F, l-I2q_2)--~Aq(A, F). 
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1 
f (m,  ~) = ( -  1)q I I  (0.2.12) j=~ r 

I f f ~  ~q(Aq) ,  then we can find m~> 1 distinct points 

bl . . . . .  bm E A q ~ { a l  . . . .  , a2q - l}  

and complex numbers fll ..... tim SO that 

ra 

f(~) = Z fljf(bj, ~), ~E C. (0.2.13) 
j = l  

The points b~ .. . . .  bm and the constants fll . . . . .  tim are uniquely determined by f. We 

define a surjective linear map 

if{: ~q(Aq)  ~ ~ _ q ( ~ ,  IV')* 

from ~q(Aq) to the dual space ~l-q(f l ,  F)* of ~l-q(f~, F) by the formula 

~ ( f  )(F) = ~ fljF(bj), FE ~I_q(Q,F), 
j=l 

wherefE~q(Aq) is given by (0.2.13). 

(0.2.14) 

Remark. In defining ~ we must insist that the same (2q-1) distinct points be used 

for normalization of the functions in ~l-q(f2, F) (that is, all the potentials must vanish 

at these points) and for the basis for ~q(Aq)  (that is, all functions appearing in the basis 

must have poles at these points). 

THEOREM 2. Given fE ~q(Aq), then 

O q f l A = 0  <=> ~(f)l~,_q(A,r)=0. 

Since ~ is such a simple algebraic operator, the solution to the vanishing problem 

is hence reduced to describing a basis for the space ~l-q(A, F). The above theorem is 

a little more than an exercise in definition chasing. However, when combined with 
Theorems 3 and 4, it will turn out to be a powerful tool in attacking the vanishing 

problem (see, for example, w 0.7). 

0.3. In many cases, the spaces o~t*l_q(~'~, F) can be determined by essentially 

algebraic data. 
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T H E O R E M  3. I f  the Bers map 

fl*: Aq(~'), F)  --~ PHI(F, Y12q-2) (0 .3 .1)  

is surjectioe, then ,~l-q(g2, F) can be determined algebraically f rom the parabolic 

cocycles for  F. 

We must explain the content of the theorem. Let al .. . . .  a2q_ 1 be fixed points of 

loxodromic elements of F. Given a basis for the parabolic cocycles for F, we can from 

this basis construct the values, at the loxodromic fixed points (and certain other 

points), of functions that form a basis for ~ _ q ( f l ,  F). (See w 4.1 .) 

In many cases (for Schottky groups, w 7, and quasi-Fuchsian groups, w 8, for 

example), the description of PHi(F, I-I2q_2) involves only linear algebra--the evalua- 

tion of kernels of linear operators, mostly. Thus, for groups with rather simple 

algebraic presentations, and for rational functions with poles only at (loxodromic) fixed 

points, PoincarCs vanishing problem has a purely algebraic solution. 

0.4. The Bers map fl* of (0.3.1) is surjective whenever F is a Fuchsian, quasi- 

Fuchsian, or Schottky group [14, p. 215]. Nakada [22] has shown that for q=2, the map 

fl* is surjective for every geometrically finite function group. (5) Thus in principle, 

given such a group F, one should be able to construct a finite algorithm to decide 

whether or not Oqf=0 for a given f E  ~q(Aq). We state the most explicit construction 

of such an algorithm in 

THEOREM 4. Let F be a Schottky group or a finitely generated Fuchsian or quasi- 

Fuchsian group o f  the first kind given by a standard presentation on a canonical set o f  

generators. Let  f E  ~q(Aq) have poles only at f ixed points. Then there exists a finite 

algebraic algorithm that determines whether or not Oqf=0.  

Theorem 4 contains a solution to Poincar6's vanishing problem. The first algebraic 

decision procedure for the solution of the vanishing problem was obtained by Hejhal 

[10], [11]. His methods apply to a more limited class of groups (covering groups of 

compact Riemann surfaces of genus g > l  and Schottky groups) and low values of q. 

Our approach has the advantage of greater algebraic simplicity (see w 0.7). Transcen- 

dental methods involving information about Weierstrass point can lead to vanishing 

theorems (see Petersson [23]). There are also formal reasons why a Poincar6 series 

vanishes. See Ljan [18] and Metzger [20], as well as w 6. 

(z) The results of [21] should yield the same result for all q. 



ON THE VANISHING OF AND SPANNING SETS FOR POINCARI~ SERIES FOR CUSP FORMS 55 

0.5. Let F be a finitely generated Fuchsian group of the first kind acting on the unit 

disk A. Then A=0A,  the unit circle, and f l={z E C 0 {oo}; Izl:4:l}. It is of interest to 

determine when a Poincar6 series vanishes only on A. This involves determining 

~ 1 - q ( A ,  U) from ~l-q(Q, r) .  

THEOREM 5. Let F be a finitely generated Fuchsian group o f  the first kind acting 

on the unit disk A. Then there exists a positive integer m=m(F,q)  such that for 

FE ,~l-q(Q, F), we have 

F E ~ t _ q ( A , F  ) <:> --f0Z~ei(1-k-Eq)~176 f o r k = O ,  1 .. . . .  m. 

0.6. Combining Theorems 1 and 2 can lead to interesting consequences. An 

example is the theorem below. 

Definition. A point a E A a will be called a q-uniqueness point (or a uniqueness 

point) if either 

(a) a is a fixed point of a loxodromic element of F, or 

(b) a E Q, or 

(c) the maximal finite cyclic subgroup stabilizing a has order v satisfying (0.1.4). 

The set of q-uniqueness points for F will be denoted by A~ Note that A~ is a dense 

subset of Aq. 

Remarks. (1) Non fixed points are never uniqueness points. We shall call them 

non-uniqueness points. 

(2) Parabolic and elliptic fixed points may or may not be uniqueness points. 

THEOREM 6. Let F be a finitely generated non-elementary Kleinian group. As- 

sume that 

fl*: Aq(~'), F)  ~ HI(F, II2q_2) 

is surjective. Let  AocAq be a non-emIlty F-invariant set consisting only o f  q-unique- 

ness points. Then 

Oq: ~q(aO) ~ Aq(Q, 13 

is surjective and its kernel is spanned by 

{ f - A ' f ;  f E  ~q(Ao), AE F}. 
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0.7. In this paragraph we illustrate the main ideas in the proofs of Theorems 3 and 

4, and outline the algebraic procedure for determining whether or not a Poincar6 series 

of a rational function vanishes. Let F be a non-elementary finitely generated Kleinian 

group with the following two properties. 

(i) the map fl* of (0.3.1) is surjective, and 

(ii) one can construct algebraically a basis for PHI(F, H2q_2). 

Fix (2q- l )  distinct points al . . . . .  a2q-l in A. Assume there are loxodromic 

elements Lj in F with Lj(aj)=aj, j =  1 . . . . .  2q-1.  Let f E  ~q(A) be given by (0.2.13) and 

assume that there are loxodromic elements TjE F with Tj(bj)=bj, j =  1 . . . . .  m. How do 

we determine whether or not tp, the Poincar6 series off ,  vanishes on f~? Note that (see 

(2.4.1)) 
m 

qg(~)= E fljqo(bj,~) , ~E~"2, 
j=l 

where q0(by, .) is the Poincar6 series of f (b j ,  .). Let {~pk}d=1 be any convenient basis for 

Aq(~"], 1"). This basis is needed in the p r o o f  o f  the theorems; not in the algorithm for  

deciding whether q0=0 or cp4:0. Let F~ be a potential for ).2-2q~ok that vanishes at aj, 

j =  1 . . . . .  2q -  1, and use the Petersson scalar product (2.4.2) to conclude that (see (2.4.3)) 

Thus 

F (bj) = ( qJ(bj, . ) ,  

9 = 0  ~, ~ f l j F k ( b ) = O  , k = l  . . . . .  d. 
j=l 

Let Pk = p d F  k, k = l  . . . . .  d. Let {Qk}d=l be any explicit basis for PHI(F,I-I2q_2); 

that is, the cohomology classes of these cocycles project to a basis for PHi(F,  H2q-2). 

It involves no loss of generality to assume that fl*(V/k)=Qk, k= 1 . . . . .  d. To complete the 

algorithm we must compute Fk(bj) algebraically. 

To evaluate Pk, observe that for k= 1 . . . . .  d, there is an Rk E H2q-2, such that 

Qk(T) (z) = Pk(T) (z) +Rk(Tz) T'(z) l -q -Rk(z ) ,  

for all T E F, all z E C. Hence 

Qk( Lj) ( aj) = O + R k( aj) [ Lj( aj) ' - q -  1], 

for j = l  . . . . .  2q-1.  Knowledge of Rk(aj) for l~<j~<2q-1, determines Rk. We can now 
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compute Pk(T)(z), hence in particular Pk(T2)(bj). This computation can be quite 

lengthy if Tj. is a long word in the generators of F. In any event, we are almost home: 

Fk( Tj Z) Tj(Z) 1 - q_  Fk(z) = P k( Tj) (z ) ,  

Fk(bj) [Tj(bj) l - q -  11 = Pk(Tj) (bj.), 

Pk(Tj) (bj) 1 <~j, k <~ d. 
Fk(bJ)=,  l - q  ' r (b/ 1 

Remark. If F is Fuchsian and FcPSL(2, R), then for symmetric rational functions 

(those f E  ~ q ( A q )  w i t h  f(s =f(z), all z E C), the vanishing of e q f  o n  ~-~ is equivalent 

to its vanishing on the upper half plane (because Oqf(s a l l  z E ~')). Hence 

for such functions Theorem 5 is not needed. 

Bibliographical remarks. This work is based on the development of the Eichler 

cohomology machinery in the fundamental papers of Ahlfors [1], [2], and Bers [3], as 

well as in the author's papers [12], [13]. The main results of these five papers are the 

principal subjects of the author's mostly expository monograph [14]. For the conven- 

ience of the reader, references will most often cite [14] rather than the original sources. 

Slightly weaker versions of most of the above results were announced in [15]. 

For Fuchsian groups an essential difference between our methods and those of [11] 

is that we workwith Poincar6 series while Hejhal uses relative Poincar6 series. Readers 

interested in pursuing the precise relationships between these methods and those of 

Hejhal should consult [11] equations (65), (77), (11 I) and page 373 lines 19-25. Addi- 

tional remarks on the comparison of the two approaches will appear in Hejhal's 

forthcoming elaboration of [11]. It should be pointed out that both approaches are 

powerful tools for effectively 

(i) deciding when a Poincar6 series of a rational function vanishes (identically), 

and 

(ii) constructing explicit bases for the spaces of cusp form consisting (respectively) 

of Poincar6 series and relative Poincar6 series. 

I am happy to thank Dennis Hejhal and the referee for many helpful suggestions. 

w 1. Some preliminaries (computations involving rational functions) 

1.1. If F is a finitely generated non-elementary Kleinian group with region of disconti- 

nuity f2=g2(F) and limit set A=A(F),  then for any Mrbius transformation A, AFA -l  is 
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a finitely generated non-elementary Kleinian group with region of discontinuity A(f~) 

and limit set A(A). Furthermore, A(Aq)=A(Aq(F))=Aq(AFA-I). The operators 

A*: Aq(m(~"~), AFA-l)__> Aq(~, F) 

and 

A,~: ~?~q(A ( Aq) ) ~ ~q(Aq) 

are (surjective) C-linear isomorphisms. 

If we denote the Poincar6 series operator Oq for the group G by Oq, G, then the 

following is a commutative diagram: 

~?~q(A(mq)) , ~q(mq) 

Oq'A FA-I i loq, r. 

Aq(A(Q),AFA_J) A~ ~ Aq(~,F) 

The above considerations show that it suffices to prove Theorem 1 under the 

hypothesis that oo ~Aq. Furthermore, the definition of f(oo) for fE  ~q(Aq) given by 

(0.1.6) makes the equation 

( A ' f )  (z) =f(Az)A'(z) q 

valid even at z= oo. 

1.2. Let D be a Foinvariant set (for example, f2, A or Aq). A function F defined on 

A(D) is an Eichler integral for AFA -l that vanishes at a ED, if and only if A~_qF=F.A 

is an Eichler integral for F supported on D that vanishes at a. Furthermore, if A is a F- 

invariant union of components of F, then 

A~_q: ~1 _q(A(A), AFA -l) ~ ~l_q(A, F) 

is an isomorphism. Here the Eichler integrals in ~I_q(A(A),AFA -l) are normalized 

to vanish at Aaj, while those in ~l-q(A, F) vanish at aj, j = l  . . . . .  2q-1.  Let us 

introduce the pairing 

~q(mq) x ,-~1 -q(~~, F) ~ C (1.2.1) 

defined by 
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( f  , F)r X ( f )  (F), 

where 8/is  defined by (0.2.14). 

PROPOSITION. For fE  ~ q ( A ( A q ) )  and F E ~;I_q(A(ff2),AFA-I), we have 

(f, F) ArA_, = (A'f ,  A~{_qF)r . 

(I .2.2) 

(1.2.3) 

The above proposition will be proven in w 1.4, after we derive some useful 

relations between rational functions in w 1.3. 

1.3. Let us rewrite the functions f in t roduced in w 0.2 in the following form: 

(1.3.1) 
a - - a j  

f~(a, ~ ) -  I I 2~t ~-a  j=l ~-aj '  

where a=(al . . . . .  a2q_l)EC 2q-l has distinct entries and a4:aj, j = l  . . . . .  2q-1 .  Let A 

be a M6bius transformation and write 

a=Ab,  aj=Abj, fl=(bl . . . . .  b 2 q - l ) .  (I.3.2) 

Using the fundamental identity 

(1.3.3) 

we conclude that 

(Az-A~)2=(z-~)2A'(z)A'(~), 

(1.3.4) 

or equivalently 

-1 1 2 ~  a-aj  , q 
- -  - - A  (~) fa(a'A~)A'(~)q- 2:r A~-a  j=1 A~-aj 

_ - l  1 ~ Ab-Abj  , 
2~r A~-Ab  . ~ A  (~)q 

_ - 1  A'(b) q-l ~ b-bj .  
2zc ~-b  . ~-bj '  

(1.3.5) fmt~(Ab, A~) A'(b) l-qA t(~)q =J~(b, ~). 

We introduce the convention (which agrees with earlier usage) that f=fa.  Thus the last 

equation can be rewritten as 

f(a, A~)A'(~) q =f~(b, ~)A'(b) q-l . (1.3.6) 
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Comparing residues we see that 

f(a,a~)a,(~)q=a,(b)q_l[f(b,~)_2~=l(j~, k b---k~-bJ) f (  b , r  (1.3.7) 

Remark. If b=al for some l, then the term f(b, ~) is to be dropped from formula 

(1.3.7). Similarly, if bk=at for some pair of  indices k, l, then the f(bk, ~) term is to be 

dropped. 

To verify (1.3.7), we define the function 

h(~) = f~(b, ~ )_fa(b, ~ )+2~' ( y~.k b-bj \ 

following the convention in the above remark (only for the index a). We observe that h 

is a rational function with simple poles, and note further that it has zero residue at ~=b  

and ~=bk provided b~:al and bk*al, l<-k, i<-2q-l. Thus h has at most simple poles at 

r j =  1 . . . . .  2 q - 1  and vanishes to at least order 2q at infinity. Thus h is identically 

zero. 

1.4. We are now ready to prove Proposition 1.2. Fix FE ~;i_q(A(ff~),AFA-I). By 

linearity, it suffices to verify (1.2.3) for a basis for ~q(A(Aq)). We assume that Eichler 

integrals in ~I_q(A(Q),AFA -1) vanish at ajEA(Aq), j =  1 . . . . .  2 q - 1 .  Thus for f given 

by (1.3.1) with a EA(Aq)~{al . . . . .  a2q-l} 

(f, F )ArA_~ = F(a), 

and using (1.3.5), we see that 

(A'f, A*l_qF)r = a'(b) q-! (a~_qF) (b) 

= A'(b) q- IF(Ab) A'(b) 1-q = F (Ab) = F(a). 

Remarks. (1) As a consequence  of  Proposition 1.2, it suffices to prove Theorem 2 

under the assumption that ~ t$ Aq. 

(2) The pairing (1.2.1) can be extended to a bigger space of  Eichler integrals. Let  D 

be a F-invariant subset  of  C U { oo }. Let  al,..., a2q- 1 be ( 2 q -  1) distinct points in D. We 

define 

F l _ q ( O  , F )  = ( F  is an Eichler integral on D; F(aj) = 0, j = 1 . . . . .  2 q -  1}. 

Clearly,  Fl_q(Aq, I")~;l_q(~'-~ , ]") and formula (I .2.2) defines a pairing 
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~q( mq) • F l _q( Aq, F) ---> C. 

Proposition 1.2 remains valid under the assumption that F E FI_q(A(Aq), AFA-1). 

1.5. 

PROPOSITION. The PoincarO series operator Oq maps ~q(Aq) o n t o  Aq(Q, F). 

Proof. Bers [4] has shown that Oq maps ~ q ( A )  o n t o  Aq(g~, F).  Hence it remains to 

show that O q f  converges uniformly on compact subsets of f~ for fE  ~i~q(Aq) with a 

pole in [2, that Oqfis regular everywhere, and satisfies the cusp condition (see [14, p. 

117] for a definition and proof) at each puncture. Since ~i~q(Aq) is a subspace of the 

Banach space of integrable functions on Q with respect to the measure 2(z) 2-q Idz ̂  ds I, 

Oqfconverges uniformly on compact subsets of g2 (see [14, pp. 121-123]) and satisfies 

( f~ g(z)2-ql(Oqf)(z)dz ̂ dgl <" f fo;t(z)Z-qlf(z)dz AdZl" 

To show that O q f  is regular on f~, we may assume that f is given by (1.3.1) with 

a=0 E Aq~A and aj E A for j =  1 . . . . .  2q -  1. Furthermore, we normalize F so that the 

stabilizer of 0 is generated by 

where 

and v satisfies (0.1.4). 

E(z) = Kz, all z E C U { ~ }, 

K = e 2~i/v, 

Let G be a subgroup of F; the Poincar6 series operator O q = O q ,  F for the group F 

can always be factored as 

~)q,r = Oq, FiG OOq, G , 

where Oq, G is the Poincar6 series operator for the group G, and Oq, I'/G is the relative 

Poincar6 series operator defined on G-invariant functions (functions f such that A ~ f = f  

for all A E G) by the formula 

~,E FIG 

where the sum runs over left coset representatives for F modulo G. 
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If we let G be the cyclic subgroup generated by E, it suffices, in order to finish the 

proof of the proposition, to show that Oq, Gf i s  regular at zero. We start with 

and observe that 

1 1 g q -  12]LT aj 
f(E~)E'(~)q = 2----~ --( j=l K~-aj" 

This function is holomorphic on Q \ { 0 )  (because K-~aj=E-I(aj)EA, for j =  

1 . . . . .  2q-1) .  Thus we must show that the residue at 0 of 

v - I  

(Oq, G f )  (~) = Z f ( E J ~ )  (E J) ' (~)q, 
j=0 

is equal to 0. We note that the residue of (EJ)~f at 0 is 

I (_l)2q_l(gq_l)]=--1 2~ ~ (gq-I)J" 

Thus the residue of Oq,6 fa t  0 is 

v--I --1 Z(Kq_I)j= - 1  | - g  (q-I)v 

2z~ y=0 2~ 1 - K  q-~ 
- 0  

by (0.1.4). 

Remark. If f is given by (1.3.1) with aj~ A, j =  1 .. . . .  2q-1 ,  and a r Aq, then Oqf 
is holomorphic on f ~ \ F a ,  satisfies the cusp condition at each puncture on Q/F, and has 

a simple pole at a with residue - v  (v=order of stabilizer of a in F). The q-differential 

obtained by projecting Oqf tO Q/l-" is regular everywhere except the image of a (where 

it has a pole of order q), the images of the other elliptic fixed points (if the stabilizer of 

such a point has order/z, then the pole has order <-[q-q/Iz]), and the punctures (where 

it has a pole of order ~<q-1).(6) 

(6) The symbol [x], defined for x E R, stands for the greatest integer ~<x. It should be noted that 
q - l = l i m ~  [q-q/~]. Hence, we define [q-q/o~]=q-1. 
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w 2. Spanning sets for Poincar6 series (proof of Theorem 1) 

2.1. We begin the proof of Theorem 1. By the results of w 1.1, we may assume, without 

loss of generality, that S~_C. 

We start with the injectivity of the Bers map fl* of (0.3.1) and conclude that 

dim o%1 --q(Q, F) ~-- dim Aq(~, 1") = d. 

We assume that d>0,  since otherwise the conclusion of Theorem I is satisfied. 

Proposition 1.5 showed that Oq(~q(S))cAq(Q,F), and thus we must show that 

Oq(~q(S)) contains d linearly independent cusp forms. 

It was shown in [14, Lemma 2.5 of Chapter V] that for tpEAq(Q,[ ') ,  fl*(qg)=0 if 

and only if the potential F~ for/~=AZ-2qq~ constructed by formula (0.2.9) vanishes 

identically on A. We need 

LEMMA. For q~ EAq(Q, F), 

q0=0 ,r fl*q0=0 ~r F~vIAq=0. 

Proof. For the convenience of the reader we repeat the arguments of [14] that yield 

the above result. Assume that fl*q~=0. Thus there exists a p E F12q-2 so that 

Z~(Y) = F~. y-F~o = p "y-p,  all Y E F 

(abbreviate ;~  by g and F~o by F). Thus 

(F-p) .  y = (F-p) ,  all 7 E F. (2.1,1) 

For z o E A q ~ A ,  let E be the generator of the stabilizer of z0. Then E'(zo)l-q~=l by 

(0.1.4). Thus from (2.1.1), we see that 

(F-p)  (Zo) = O. 

The same conclusion holds (by the same argument) at the loxodromic fixed points; and 

thus by the continuity of F - p ,  and the density of the loxodromic fixed points in A, for 

all Zo E A. Thus F - p  vanishes on Aq. But F(aj)=O for j--1, ..., 2q -1 ,  and thus p--0 and 

F]Aq=0.  

The converse is, of course, obvious. The first equivalence is a restatement of the 

injectivity of fl*. 

2.2. We continue with the proof of (and notation introduced by) Theorem 1. 

LEMMA. For ~0 E Aq(Q, F), 

~ = 0  ~ 3*q0=O ~ Fr 
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Proof.  It suffices to show that Z=x~=O whenever FIS=0 (F=F~0). We compute for 

the generator yj, j =  1 . . . . .  N of F, 

Z(Yj) (ak) = F(yy a k) z}(ak) 1 - q - F ( a  k) -- 0 

for k= 1 . . . . .  2q -  1. Hence the polynomial Z(Yj) fi H2q-2 vanishes at 2q -  1 distinct 

points, and must be the zero polynomial. We conclude that Z vanishes on the gener- 

ators. Hence X=0, and the injectivity of fl* shows that q0=0. 

COROLLARY. The restriction o f  funct ions  in :TI-q(Q, F) to S is an isomorphism. 

2.3. We now select d distinct points bl . . . . .  bd in S \ { a l  . . . . .  a2q-l} and d func- 

tions F1 . . . . .  Fa fi ~;l-q(g2, F) so that 

Fj(b,)=Ojk, l <-j, k<~d. (2.3.1) 

(Here 6ja is the Kronecker delta function.) For the convenience of the reader, we 

reproduce a standard argument. 

Choose any point b~f iS  such that not every F 6 ~ l - q ( ~ , F )  vanishes at b~. 

Choose F~ 6~rI_q(Q,F) so that F~(bDar Without loss of generality Fl(bl)=l .  By 

induction we show that having chosen F~ . . . . .  F , , f i~_q(Q,F)  and b~ . . . . .  b,,~.S, 

l<_n<d so that the n x n  matrix 

(Fs(bk)), 1 <~j, k <~ n, 

is the identity matrix, then we can select b,+~, Pl . . . . .  f ,+~ so that 

(~(bk)), l~<j, k<~n+l ,  

is the identity matrix and the linear span of F, . . . . .  f , ,+, is the same as the linear span 

of F, , . . . ,F , , ,  f',,+~. Let B=.,~,_q(Q,F) be the linear span of F~ . . . . .  F, .  Then 

dimB=n. Let 

e: ~l-q(g2, F) --~ C n 

be defined by e(F)=(F(bO, ...,F(b,,)). By the induction hypothesis e is surjective. 

Hence 

dim Ker e = d - n  > O, 

and there is a point b,,+l~-S and a function P ,+~6Kere  such that P ,+~(b,+0=l .  

Finally we define 
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Fj=Fj-Fs(bn+l)Fn+,, j =  1 ..... n. 

Definition. Given a finite set S with {a~ ... . .  a2q_l}~Sr-Aq, we let b~ .. . . .  b~ be 

the distinct points in S \ { a ~  ..... a2q-~}. We define the evaluation map 

es: o~1 --q(~'~, F)  ~ C n 

by 

es(F) = (F(b,) ..... F(bn)), F ~. &_q(s r). 

2.4. The next step is to consider the rational functions f(z, ~) defined by (0.2.11) 

and (0.2.12) for z*a:, j= 1 ..... 2q-  1, z E Aq and ~ E C, and to study the Poincar6 series 

tp(z, ~ )=  Ef(z,),?~)),'(~) q, ~ .  f]. (2.4.1) 
yE F 

We claim that the cusp forms 

cp(bl, "),..., q)(bd, �9 ) 

form a basis for Aq(~'), F) .  

To verify this claim, we introduce the final ingredient in the proof. The Petersson 
scalar product on Aq(~, 1") is given by 

(q0, ~p)r = i ( ( ,J.(Z)2-2qq~(z) ?~(Z) dz A dL (2.4.2) 
J Jt~ IF 

ties 

A calculation shows that the potential F=F w for ~/=/~2--2qr ~ ~ Aq(~"2, F ) ,  satis- 

F~(bk) = (bk-aO "'" (bk-a2q-O f l u  2(~)2-2q ~p(~) dr ^d~  
2:ti (~ - b k) (~-  a 1)... (~ -  a2q- 1) 

=if f  ffbk,r162 2-2q Ad~ 

=i f ~(bk,~)~,(~) 2-2q lpO' ) d~ A d~ 

= �9 ) ,   0)r, k = 1 . . . . .  d .  

(2.4.3) 

Thus every point bk, k= 1 ... . .  d, defines a conjugate linear functional o n  A q ( • ,  F )  by 

the formula 

5-848282 Acta Mathematica 153. Imprim~ le 8 aoftt 1984 
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Aq(Q, F) 9 ~, ~ fv,(bk) 6 C. 

Choose the basis F1 . . . . .  Fa of  ~ l - q ( f l , F )  that satisfies (2.3.1), and write 

Fj=f~j ,  ~ j6  Aq(ff2, F), j = l  . . . . .  d. We see that ~Pl . . . . .  %Od is a basis for Aq(Q,I-') and 

(q0(bk, -), ~pj> r = Fj(bk) = 6jk, 1 ~<j, k <~ d, 

which shows that q~(bk, "), k= 1 . . . . .  d, is also a basis for Aq(f2, F). This completes the 

proof  of  Theorem 1. 

2.5. We will need a converse to Theorem 1. 

THEOREM. Let  F be a finitely generated non-elementary Kleinian group. Let  

al . . . . .  azq-1 be ( 2 q - l )  distinct points in Aq. Let  bl . . . . .  bd be d>0  distinct points in 

m q ~  {a 1 . . . . .  a2q- 1 }. Then qD(bl, �9 ) . . . . .  qg(bd, ") forms a basis for  Aq(ff2, F) tf  and only 

if 

F ~-~ (F(bl) . . . . .  F(ba)) 6 C a (2.5.1) 

is an isomorphism o f  ffl--q(~-~, 1") onto C a. 

Proof. The proof  of  Theorem 1 showed sufficiency, and we need only establish 

necessity. Thus assume that q~(bl, ") . . . . .  q~(bd, ") forms a basis for Aq(Q,F). Let  

~pj=q~(bj, �9 ) and F F F ~ /  j=  1 . . . . .  d. Then F l . . . . .  F d forms a basis for :Tl_q(t), F), Fur- 

ther, the matrix 

((q0j, tPk)r), l<~j, k<-d, 

is non-singular. But as we saw earlier 

(qDj, rpk)r=Fk(bj), l <~j, k<.d. 

Hence  the vectors (Fk(bl) . . . . .  Fk(ba)) 6 C a, k= 1,. . . ,  d form a basis for C d. 

Remarks.  (1) The Petersson scalar product  also exhibits an invariance similar to 

(1.2.3). For  any MObius transformation A, and q0, q, fi Aq(A(~), A F A -  1), 

<~,~>AFA_I = ( A ~ ,  A ~ > r .  

(2) The map (2.5.1) is es for 

S =  {bl . . . . .  ba, a , , . . . , a z o - , } .  
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w 3. Cusp forms belonging to a character (a generalization of Theorem 1) 

3.1. Let p be a character on F; that is, Q is a homomorphism of F into the unit circle 

{z E C; ]z] = 1 }. To define the space Aq(g2, F, Q) of cusp forms of  weight ( -  2q) belonging 

to the character O, we substitute for (0.1.1), the condition 

~lg(~/Z)y'(z)qo(~/) = ~i~(Z), all z E g), all 7EF. (3.1.1) 

The Petersson scalar product (2.4.2) gives Aq(g'2, F, Q) a Hilbert space structure, since 

once again (0.1.2) and (0.1.3) are equivalent. The group F now acts on II2q-2 by 

(P" ~2) (Z) = p(~Z) ~'(Z) ! --q~)(~), p 61-I2q_2, ~/E F, z ~ C. (3.1.2) 

The above formula generalizes (0.2.1). The corresponding cohomology group will be 

denoted by HI(F, H2q-2, ~). 

For q~ E Aq(g'2,1", Q), formula (0.2.9) again defines a potential for/Z-----22-2qtp, and if 

(0.2.5) is modified to 

)~(~/) (Z) = F(~/Z) ~/(Z) l -q  ~)(~/) - F ( z ) ,  ~/~ l ' ,  z ~ C,  (3.1.3) 

then we obtain a map 

fl*: Aq(~"], F ,  0)  ~ Hi(F, I12q-2,  ~)" 

The proof that fl* is injective follows the one given, for example, in [14, pp. 186-191] 

for the trivial character. 

3.2. The Poincar6 series operator must be modified to (compare with (0.1.7)) 

( O q f ) ( z )  = ~ f (~ /Z)y ' ( z )qQ() ' ) ,  Z6 g). (3.2.1) 
),E F 

With these modifications Theorem 1 is valid for an arbitrary character Q, provided 

S e A .  

THEOREM. Let al . . . . .  a2q-1 be ( 2 q - l )  distinct points in A. Let y0=I, ~l . . . . .  ~'N 

be generators for F. Define S by (0.1.8). Then Oq(~q(S))=Aq(~-~, F, ~). 

Remarks. (1) It is interesting to note that as long as S e A ,  then the set of rational 

functions whose Poincar6 series span the space of cusp forms does not involve the 

character Q. 
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(2) Were we to consider sets S that contain elliptic fixed points, then we would 

have to take into account the character 0 in defining the sets Aq, o that would replace 

%. 
(3) We will henceforth ignore characters. Most of the subsequent analysis carries 

over for an arbitrary character 0. We can also work with forms of weight ( -2q) ,  q~>2, 

with 2q E Z, provided we can choose square roots of the derivatives of the elements of 

F so that 

~(72 z)l/2 72(Z) I/2 = (71 O 72)' ( z)l/2' all 71' 72 ~ F, all z E C. 

w 4. On the vanishing of Poincar6 series (proof of Theorem 2) 

4.1. Let F be a finitely generated non-elementary Kleinian group. In w 0.2 and w 1.4, 

we considered various classes of Eichler integrals. Two Eichler integrals F~, F2 (de- 

fined on a common set D) are called equivalent or cohomologous if their difference 

F 1 - F  2 is (the restriction to D of) a polynomial in I]2q_ 2. Thus, if FI is equivalent to 

F2 then Zl=pdF1 differs from Z2=pdF2 by a coboundary. (Here pd is the period map 

introduced in w 0.2.) Note further that for El, f 2 E Fl-q(O, F), as defined in w 1.4, F1 

is equivalent to F2 if and only if F~=F2; and an arbitrary Eichler integral on D is 

equivalent to a unique element of Fl_q(O, F). The following result will motivate the 

remainder of this section and will be useful in w 5. 

We introduce at this point more notation: 

ZI(F, I'I2q_2) = the vector space of II2q_E-cocycles for F, 

PZJA(F, I-IEq_2) = the vector space of A-parabolic cocycles, 

PZ1(F, I'I2q_2)= the vector space of parabolic cocycles. 

As usual, A is a F-invariant union of components of ft. 

PROPOSITION. Let Ao be the set o f  q-uniqueness points for F (as defined in w 0.6) 

that are not parabolic fixed points. Then the period map 

is an isomorphism. 

Proof. The injectivity 

pd: Fl-q(mo, 1-')---~ Hi(F, I'I2q--2) 

of the period map is proven as in w 2.1. To establish 

surjectivity, let X EZI( F, H2q-2). We shall construct an Eichler integral F on Ao with 

p d F =  X. Once F is obtained, we choose p E H2q-2 so that 
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F(aj) = p(ay), y = 1 ... . .  2q -  1. 

Then F - p  E F I _ q ( A o ,  l"), and since F - p  is equivalent to F, pd (F-p)  and Z represent 

the same cohomology class in HI(F, II2q_z). It remains to construct F from the 

cocycle •. 

Let b E A0. The stabilizer F0 of b in F is the commutative group generated by 

M6bius transformations A, B, where B is trivial or loxodromic, and A is trivial or 

elliptic. (See w 12.) f i b  is trivial, then the order v of A satisfies (0.1.4). Let Pl =:t(A) and 

p2=x(B). Since A and B commute, )c(AoB)=)c(BoA) and we conclude that 

pl(BZ) B'(Z) l-q+p2(z) = p2(Az) a'(z) l-q+p I(Z), all z E C. (4.1.1) 

In particular, for the common fixed point b of A and B, 

pl(b) [B'(b) l - q -  1] -- pz(b) [A'(b) l - q -  1]. (4.1.2) 

Note that formulae (4.1.1) and (4.1.2) are valid for arbitrary A, BE F with common 

fixed point b E Ao. We will draw several conclusions. 

Assume that B is non-trivial. Since ]B'(b)]=4=l, we can define F at b by the formula 

F(b) = pE(b) [B ' (b )  l - q -  1 ] -  1. 

Let y E F be an arbitrary loxodromic element fixing b E Ao. We claim that 

F(b) = X(3/) (b) [3/'(b) l - q -  I] -1. (4.1.3) 

Formula (4.1.3) follows from (4.1.2) since 3/commutes with B and 13/'(b)]=l= 1. Next, if3/is 

elliptic and fixes b, then (4.1.3) holds whenever 3/'(b)1-q:4=l. 

We claim that for arbitrary 3/E I" with fixed point b E Ao, we have 

F(b) [3/'(b) l - q -  11 = X(3/) (b). (4.1.4) 

We have verified the above formula for all 3/with 3/'(b)l-q=l=l. To show that formula 

(4.1.4) continues to hold even when 3/'(b) l-q-- 1, we show that in this case )~(3/)(b)=0. 

This fact follows from (4.1.2) with B loxodromic and A=3/. 

I f B  is trivial, then A'(b) l -q~l  by (0.1.4); it follows that if we define 

F(b) = pl(b) [A'(b) l - q -  1] -!, 

then (4.1.4) holds for every y E F  that fixes b, since such a 3/must be a power of A. This 

observation follows as in the case of non-trivial B by examining (4.1.2). 
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We assert  next that 

F(Tz) 7 ' ( z ) ' - q - F ( z )  = Z(}') ( z), 

Since z EA0, there is a g EF with g z = z  and 

arguments above). It follows that 

and 

The cocycle condition yields 

all 7EF ,  all zEA0. (4.1.5) 

g'(z)'-q~=l (as was shown by the 

( ~ o g o T - ' )  (Tz) = ~z, 

(},o g o },- ') '  (TZ) = g'(z). 

Z(Y o g o },- ') = LY()')" g +z(g) - z (7 )]  �9 }'- ' .  

Hence  we conclude from (4.1.4) that 

F(z) [g'(z) ~-'1- I] = z(g) (z), 

and 

(4.1.6) 

(4.1.7) 

F(Tz) [g'(z) l - q _  1 ] = )~(y o g o 7 -  i) (Tz). (4.1.8) 

Formula (4.1.5) follows from (4.1.8), (4.1.6), and (4.1.7) by a routine calculation, using 

once again the fact that gz=z .  This completes the proof  of  Proposition 4.1. 

Remarks .  (1) In the above arguments we have assumed that AocC.  This can 

always be achieved by conjugation. In the remainder of  this paper, we shall whenever  

convenient assume without further comment  that we have replaced the group by a 

conjugate so that all calculations are at finite points. 

(2) Assume that for j =  1 . . . . .  2 q -  1, aj E Ao is a fixed point of  a loxodromic element 

7j@F. Let  z = p d F  with FEFI_q(A0,F) .  Then 

Z(Tj) (aj) = F(aj) 7j(aj)'-q-F(aj) = O. 

Thus we see that under our assumption 

H' (F, 1-12q _ 2) ---- {Z e Z' (F, II2q _ 2); Z(Tj) (a j) = 0, for all j = I ..... 2q- I }. 

4.2. Before proceeding to the proof of Theorem 2, we verify that functions 

(0.2.11), (0.2.12) with zEAq\{a ,  ..... a2q-,} form a basis of ~q(Aq). It is obvious 

that these functions are linearly independent. Let f@ ~q(Aq) and let b, ..... bm be the 
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poles of f not in {al . . . . .  a2q-l) .  (Recall the convention about poles at oo introduced in 

the introduction.) The dimension of the subspace of ~q(Aq) consisting of functions 

holomorphic except at the points in {bl .. . . .  bm, al . . . . .  aEq-1) is precisely m. The 

space spanned by the linear combinations in (0.2.13) also has dimension m. 

4.3. We are now ready to complete the proof of Theorem 2. Let fE  ~q(Aq). Then 

OqfEAq(g2,F)~Aq(A,['). Using the duality of the Petersson scalar product, it suf- 

fices to show that 

if and only if 

(Oqf ,~0) r=0  all~0EAq(A,F) 

~ ( f )  (F) = 0 all FE ~l-q(A, r) .  

Now every FE ~l -q(A,  F) is an F,p for some ~/, E Aq(A, F). For f given by (0.2.13), we 

have by (0.2.14) and (2.4.3), 

fir(f) (F~,) = ~ flj F~(bj) 
j= l  

= ~flj<cp(bj, '),~P)r. 
j= l  

= (oqf ,  w)r .  

Remark. The importance of Theorem 2 is that it allows effective computation to 

determine whether or not a Poincar6 series of a rational function vanishes identically on 

Q. This topic will be pursued further in w167 5, 7, 8, and 10. 

4.4. The operators ~( and Oq allow us to introduce a pairing {., �9 } on ~q(Aq) as 

follows: Let fj E ~q(Aq) and let ~t,j=Oqf~, j= 1,2. Define 

{f~, f2} = JT(f.)(Fw2) = ( O q  fl,  ~P2)r = (~'l, ~P2)r. 

It follows that the pairing is Hermetian in the sense that 

{fl, f~} = {f2,fl}, 

and 

{ f , f } = 0  <:*, Oqf=O. 
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The Hilbert space obtained by factoring ~q(Aq) by the subspace of vectors f of 

length zero (those f E  ~q(Aq) with {f, f}  =0) is canonically isomorphic to Aq(Q, F). 

4.5. We will find it more useful to consider another pairing between subspaces of 

~q(Aq) and those of , ~ l - q ( ~ ' ~ , F ) .  Let us fix (2q - l )  distinct points al . . . . .  aEq-l~Aq. 
Let bl ..... bm be m>0 distinct points in Aq~{al . . . . .  a 2 q - 1 } ,  and let 

S =  {al . . . . .  a2q-l,bl ..... bm). 

Define 

A = {Oqf;fE ~q(S)}, 

~= {FIS;F~ ,~l-q(~, F)). 

Let fE  ~q(S) be given by (0.2.13). Introduce the pairing 

A x ~--)  C, (4.5.1) 

by 
m 

(q~,F)= E fljF(bj), q~E A, FE ~, (4.5.2) 
j=l 

where q~ = Oqf. 

THEOREM. The pairing (4.5.1) given by (4.5.2) is well defined and non-singular. In 
particular, 

dim A -- dim ~. 

Proof. Linearity in both variables of the pairing is clear. It is a consequence of 

Theorem 2 that (4.5.1) depends only on q~EA and not on the particularfE ~q(S) with 

Oqf=~ .  

Let r=d im~ .  If r=0, then we must show that A={0}.  If not, there is a j  with 

l<~j<~m and q~(bj,. )~=0. Thus for F=F,(b~ ' .)E :~I_q(Q,A), we have 

F(b ) = (  o(bj, . ),   (bj, . ) )  1- * O. 

Thus F is a non-zero element of ~.  This contradiction shows that A= (0}. 

Assume now that r>0. 

Assume that FE  ~l-q(g2, F) and that (q~, F)=0,  all q~EA. Let k= l  .. . . .  m, and set 

~=r "). Then 
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0 -- (cp, F) = F(bk); 

showing that F = 0  in o~. 

Conversely, if for fixed q~ E A, (q~, F)=0 all FE ~, then we must show q~=0. Now q~ 

can be written as Ekm~flkq)(bk, �9 ). As in the proof of Theorem l, we find r=dim ~points  

bl . . . . .  br (after relabelling) so that a basis F1 . . . . .  Fr for ~ satisfies 

Fj(bk)=(~jk , l <.j, k<.r<.m.  

The functions q~(bl,  ") . . . . .  qg(br, ") are linearly independent. We have shown that 

the pairing (4.5.2) is well defined. Thus it suffices to establish the independence of 

these r functions. We compute 

(q)(bj, .), Fk) = 5jk, 1 <.j, k <. r. 

Thus the independence of tp(bl, ") . . . . .  ~(br, -) follows. If  r=m,  there is nothing more to 

prove. 

Assume O<r<k<.m. We claim that q)(bk, ") is a linear combination of 

tP(bl ,  ") . . . . .  qJ(br, "). If not q~(bk, "), q~(bl, ") . . . . .  cp(br, ") can be made part of basis of 

Aq(f~,F). By Theorem 2.5, this means that there is an F ~ I - q ( Q , F )  such that 

F(bD= 1 and F(bj)=0, j =  1 . . . . .  r. Now F is a linear combination 

F-- ~t~kfk; 
k=l 

and F(bj)=0 implies ay=0, for j = l  . . . . .  r. Hence F=0  on S, and we have obtained a 

contradiction to F(bk)--1. Thus q~ can be written as 

= ~ fl, ~ (bk, �9 ), 
k=l 

and 0=(q~, F2)=fl J, f o r j = l  .. . .  , r; showing that q~=0. 

4.6. A sufficient condition for the vanishing of the Poincar6 series of certain 

rational functions can be expressed in purely algebraic terms. 

THEOREM. Let  F be a finitely generated non-elementary Kleinian group. Let  

fE~q(AO),  with Ao as defined in Proposition 4.1. Define :~ffEFl-q(Ao, F)* by 

(0.2.14). I f  Yff=O, then Oqf=0.  

Proof. The space F1_q(A0, F) contains the restrictions to A 0 of functions in 
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~ ; l _ q ( ~ - ' ~ , F ) ,  and thus Xf vanishes on ~l -q(fLF)  whenever it vanishes on 

e I _q(Ao, r ) .  

Remark. Proposition 4.1 showed that Fl_q(A0, F) is determined algebraically 

from Hi(F, 1-I2q_2). Hence the sufficient condition for the vanishing of a Poincar6 

series given by the above theorem involves only algebraic data. 

4.7. A generalized Beltrami differential g is an equivalence class of measurable 

functions on Q satisfying 

and 

n Yl_q,l,a--~, all yE F, 

xq-2Lu [ CL~(Q), 

where 2(z) Idzl is the Poincar6 metric on f~. A potential for/~ is a continuous function F 

on C such that (0.2.7) and (0.2.8) hold, For 9 E Aq(f2, F), 22-2*~ is called a canonical 
generalized Beltrami differential. As we saw earlier the restriction of a potential to Aq 

is an Eichler integral. The space of Eichler integrals obtained by restricting potentials 

of (arbitrary) generalized Beltrami differentials is not larger than the space of restric- 

tions of potentials of canonical generalized Beltrami differentials ([14, p. 170]), and if 

we fix (2q- l )  distinct points al . . . . .  a2q-i in Aq, then each such Eichler integral is 

equivalent to a function in ~_q(~-~, F ) .  

A generalized Beltrami differential/~ induces a linear functional I on Aq(g~, F) by 

 -iffo  qD(z)g(z)dzAd~. 

Let/*1 and/~2 be two generalized Beltrami differentials, with potentials F1 and F2 
(respectively) and induced linear functionals 11 and 12 (respectively). Then ll=12 if and 

only if F~ is equivalent to F2 as Eichler integrals on Aq (see [14, pp. 170-171]). The 

above observations will be useful in computing the values of potentials at parabolic 

fixed points corresponding to punctures. (See w 5.3.) 

w 5. The structure of the cohomology groups pHI(U, II2q_2) (proof of Theorem 3) 

5.1. Let A be a F-invariant union of components of the non-elementary finitely 

generated Kleinian group F. Let F be a holomorphic Eichler integral defined on A. We 

call F a bounded (holomorphic) Eichler integral provided 
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qg= d : 7 ' F  E A~(A, F). 
dzZq , 

(5.1.1) 

If F is a bounded Eichler integral, then the projection of q0 to A/F has a pole of 

order ~<q-1 at each puncture of A/F. If instead of (5.1.1), we require that q9 have a pole 

of order ~<q at each puncture of A/F, then F is called a quasi-bounded (holomorphic) 

Eichler integral. 

The space of equivalence classes (modulo II2q_ 2) of bounded (respectively, 

quasi,bounded) holomophic Eichler integrals supported on A is denoted by Eb,q(A, 1") 

(respectively, E~_q(A, 1-')). If we choose (2q-1) distinct points al . . . . .  a2q-l in A (such 

points can not usually be used to normalize potentials in o~_q(A, F)), then  the space 

Eb_q(A, F) (respectively, E~_q(A, F)) can be identified with the space of bounded 

(respectively, quasi-bounded) holomorphic Eichler integrals for the group F with 

support on A that vanish at aj, j--1 . . . . .  2q-1.  The main structure theorem for the 

Eichler cohomology groups [14, Chapter V] can be formulated as follows. We define 

for F~ E E~_q(A, F), F 2 E o~_q(A, F), 

pd (F1, F2) = pd F~ +pd F2 

(where pd is the period map on Eichler integrals). Then we have C-linear isomorphisms 

pd: Eb_q(A, F ) { ~ !  _q(A, r)%PH~(r, H2q_2), 

pd: E~_q(A, I-') @l,.~i_q(A , I") % HI(F, I-I2q_2). 

5.2. The spaces Aq(A, F) and ~rl_q(A, F) are conjugate linear isomorphic. In 

many cases Eb_q(~"2, F) = {0}. This condition is equivalent to the surjectivity of the Bers 

map 

fl*: aq(~'~, 1") ~ PH~fF, F12q_2). (5.2.1) 

Since PH1(F, II2q_2)cPH~(F, Flzq_2), the surjectivity offl* in (5.2. I) implies the surjec- 

tivity of fl* in (0.3.1). These elementary remarks are extremely important for  applica- 

tions (see for example w167 8 and 10). There are groups F with dimE~_q(g2, F)>0, and fl* 

of (0.3.1) surjective. If for such a group F, we know which elements are parabolic (this 

hypothesis is satisfied by geometrically finite function groups by Maskit's [19] decom- 

position theorems--see also the presentation in w 9 of [16]), then we can construct 

algebraically the parabolic cocycles for F. From the parabolic cocycles, the values at 
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points in A~ of functions in ~_q(~"~, I") can be constructed. We state our next result in 

the following form. 

THEOREM, (a) Let F be a finitely generated non-elementary Kleinian group. 

Assume that the map fl* of  (0.3.1) is surjective. Let al ..... a2q-i by (2q- l )  distinct 

points in A~. The space ~Tl-q(~, F) is then completely determined from the parabolic 

cocyles for F. 

(b) Assume that for j= I .. . . .  2q-1,  ajEA~ is a fixed point o f  a loxodromic 

element ~jEF or an elliptic element ~j o f  order v that satisfies (0.1.4). Then the 

cohomology space PHi(F, F12q_2) is canonically isomorphic to 

Z = {Z E PZ ! (F, I-[2q -2); Z(~j) (a  j)  -~- 0 for j = 1 .. . . .  2q-- 1 }. 

(C) The values o f  functions in ~;i-q(s F) at points in A~ and at parabolic f ixed 

points corresponding to punctures on ~/F can be constructed algebraically from the 

space o f  cocycles Z. 

Proof. If zEPZI(F,  FI2q_2), then by Proposition 4.1 (see also Theorem 6.10), 

there is a unique F E F1_q(A ~ F) so that pd F is cohomologous to Z. The construction 

of F from Z is completely algebraic. Since X is a parabolic cocycle, F is the restriction 

to A~ of a unique function in ~l-q(G, F) because of (i) the surjectivity of fl*, and (ii) 

the continuity of functions in 3~_q(f~, F). This establishes part (a) of the theorem. 

Claim (b) follows from Remark 2 of w 4.1. We have already verified most of (c). It 

remains to show that if F E 3~1-q(~, F) and A E F is parabolic with fixed point a E A 

corresponding to a puncture on Q/F, then F(a) can be computed from p=x(A), where 

z=pd  F. We start with 

F(Az)A'(z) l -q-F(z)  = p(z), z E Aq. (5.2.2) 

As a matter of fact, since F is a potential, equation (5.2.2) holds for all zECU (oo}. 

Assume that a E C. Since A ' (a )= l ,  (5.2.2) does not immediately determine F(a) from 

p(a). If F were analytic at a, then we would conclude that 

F' (Az) A ' (z)E-q + (1 - q )  F(Az) A ' (z)-qA"(z)- F' (z) = p'(z) 

for z near a. It would hence follow that 

F(a) = 
p'(a) 

(1-q)A"(a)" 
(5.2.3) 

Note that A"(a)4:0. Thus we must verify (5.2.3). This will be done in the next section. 
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5.3. Let F be a potential for the group F that vanishes at (2q-  I) points in A~. We 

let C(z)--z+ 1 be a parabolic element of F generating the stabilizer of the fixed point 

corresponding to a puncture on fl/F. We may, without loss of generality, assume that 

for some c>0, the domain Ur {z E C; Im z>c} is precisely invariant under the cyclic 

group (C) in F. The potential F satisfies (0.2.7), and, without loss of generality, we 

may assume, by the remarks in w 4.7, that F is holomorphic in Uc (because every linear 

functional o n  Aq(~'), 1-') can be induced by a Beltrami differential with support in the 

image under F of a small ball in f~). Write 

F(z+I)-F(z) =p(z), zE Uc, (5.3.1) 

where degp<~2q-3 because p d F  is a parabolic cocycle (see w 6.7 or below). Let 
fp=d2q- l F/dz 2q-1. Then 

q0(z+ 1) = q0(z), zEUc. 

Hence q0 has a Fourier series expansion 

qg(Z)= ~ t~ n e 2ninz, Z~ U c. 
t l  = - -  o o  

It follows that F can be written as 

F(z)-- ~ fl, eZ~i"z+v(z), zE U c, (5.3.2) 

n~0 

where v is a polynomial of degree ~<2q- 1. But the growth condition (0.2.7) on F implies 

that fin=0 for n<0 and that v is of degree of most 2q-2 .  Thus 

F(z) = ~ f l ,  e2~'inz+v(z), zE U c, 
n=l 

With v E I-I2q_ 2. The value 

F(oo) : ( -  1)l-qa2q_2 = v(oo), 

is computed in accordance with (0.2.6), where 

2 - 2  

v(z) = ' ~  aj z j, 
j=0 

z E C .  

(5.3.3) 
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From (5.3.2) and (5.3.1), it follows that 

Writing 

v ( z + l ) - v ( z ) = p ( z ) .  

p(z) = ~,~ bj zL 
j=O 

(5.3.4) 

we see that 

b2q_ 3 = 2 ( q -  1) a2q_ 2 = ( - -  I )  l - q  (2q-2)  F(oo). (5.3.5) 

W e  claim that the translation (5.3.5) to the finite point a E C will yield (5.2.3). With 

a (and A) given, we choose a M6bius transformation B with B - l  o C o B = A .  It follows 

that B(a)= oo, and hence that 

bz+c  
B(z) = - -  

z--a 

The function F .  B is a potential for B -  1FB with (pd F.  B) (A) =p .  B, and we must show 

that (5.2.3) holds; that is, 

(F. B) (a) = (p' B)' (a) 
( 1 - q )  A"(a)" (5.3.6) 

We compute 

A(z) = (ab+a+c)  z - a  2 
z + ( a b - a + c )  ' 

- 2  
A"(a) - ab+c '  

(note that ab+c+O) 

(F 'B)  (z) = F(Bz)B ' ( z )  1-q = ( -1 ) l -q (ab+c) l -q (z - -a )  2q-2 

• fin e2ninB(z)+ aj(bz+c)  j ( z - a )  -j , 
n=l  j=0 

ze B-~(u~), 

(FOB)  (a) = ( -  1)l-q(ab+c)q-l a2q_2, 

2 - 3  

(p "B) (Z) = ( -  1)l-q(ab+c) I-q ' ~  b j (bz+c)J(z -a)  2q-2-j, 
j=o 

and 
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(p .B) '  (a) = ( -  1)l-q(ab+c)q-2b2q_3. 

Comparison with (5.3.5) yields (5.3.6). 

Remarks .  (I) If the parabolic transformation corresponding to a puncture is given 

by 

C(Z) = z + a ,  

and p = p d F  is given by (5.3.4), then 

F(  oo ) ---- ( -o t ) l -qb2q_3"  

The above equality generalizes (5.3.5). 

(2) Theorem 5.2 is a strengthened version of Theorem 3. 

(3) Parabolic fixed points corresponding to punctures on f~/F can also be used as 

points at which we normalize the functions in ~_q(f~, F). For example, in part (a) of 

Theorem 5.2, we may take one of the aj to be a fixed point of a parabolic element ),j 

corresponding to a puncture on f2/F. The condition X(Tj) (aj)=0 in the definition of the 

space Z is now replaced by g(Tj)'(aj)=0. In actual computations (see, for example, 

w 8.5), this observation will yield significant simplifications. 

w 6. The r-invariant linear functionals on ~q(Aq) and Aq(~'~) (proof of Theorem 6) 

6.1. We begin with the continuous analogue of a discrete problem that we will investi- 

gate. 

If f~ is the region of discontinuity of a finitely generated non-elementary Kleinian 

group F, we define the Banach space Aq(f~) to consist of holomorphic functions q0 on f~ 

that Satisfy 

cp(z) = O(Izl-2q), z---> oo, if  oo E g2, (6.1.1) 

and 

f fo (z). ^... 
(6.1.2) 

where 2(z)Jdz] is, as before, the Poincar~ metric on ~.  The space Bq(Q) is the Banach 

space of holomorphic functions ~ on ~ that satisfy (6.1.1) and 

[l 0lloo = sup {2(z)-qJcp(z)l; z E ~} < oo. (6.1.3) 
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The Petersson scalar product  

(q0, ~p) = i f fu;t(z) 2-~q0(z) ~p(z)dz^d~ 

is well defined for q0 E Aq(Q), /p E Bq(Q), and establishes, by a theorem of  Bers (see, 

for example, [ 14, Chapter III]), a conjugate linear topological isomorphism between the 

topological dual space Aq(~'~)* of Aq(~"2) and Bq(~"~). 

6.2. We observe that Aq(ff2,1")cBq(Q). For A E F, the operator A* is a linear 

invertible isometry of Aq(~'2) and Bq(~"~). The operator A~ is trivial on Aq(Q, 17"). Let 

IEAq(ff2)*. We say that I is F-invariant if 

l(A~q)) = l(q0), all A E F, all q9 E Aq(~'2). (6.2.1) 

PROPOSITION. Let  IEAq(Q)* be given by l(q0)=(qg,~0), for  all q0EAq(Q), and 

f ixed  ~ 6 Bq(Q). Then ! is F-invariant i f  and only i f  V 2 E Aq(Q, F). 

Proof. A simple change of variable calculation shows that 

(rp, ~ ) = (A~q),A*~p ), 

for all q) E Aq(~')), lp E Bq(~"~), A E F. Hence for ~p E Aq(ff], F), 1 is F-invariant. Con- 

versely assume that I is F-invariant. Thus for q0 E Aq(~'~), A E F, 

= = ((A )qOAqq~, (A- ' )*~)  l(Aqq)) (Aqq~, ~p) - '  * * 

= (q~, ( A - ' ) * V / ) ,  

and 

l(a* o) = l(w) = w ) .  

By the Bers' isomorphism theorem referred to earlier 

(A-l)~0 = ~p, all A EF. 

Hence ~0 E Aq(f~, F). 

6.3. The Poincar~ series operator O a is defined on Aq(f~) and maps it onto 

Aq(f~, F). The norm of this operator is at most one. (We use the Ll-norm on Aa(f~, F) 

given by (0.1.2).) 

It is easy to check that 
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OqOA*=Oq, all A EF, (6.3.1) 

and 

(q0,~p) = (Oqqg,%/,)r, all q0E Aq(ff~), all ~pE Aq(Q,F). (6.3.2) 

THEOREM (Metzger [20]). The kernel of 

Oq:  A q ( Q )  --o A q ( Q ,  F)  

is the closure Y, in Aq(~'~) of  the linear span of  

{q~-A~o; q~ E Aq(~), A E F). 

Proof. Formula (6.3.1) shows that 

tp-A~ tp E Ker Oq, 

for all ~0 6 Aq(f~) and all A s F. By linearity of Oq, the span of such functions lies in the 

kernel of Oq, and by the continuity of Oq so does the closure of the span; that is 
Z c Ker Oq. 

Conversely, by Hahn-Banach,  it suffices to show that every I EAq(Q)* that 
vanishes on Y also vanishes on KerOq; that is, if ~p E Bq(f~) and 

(tp-A*q~, %0) = 0, all q~ E Aq(f~), all A E F, (6.3.3) 

then 

(q~,~p> =0 ,  all q0EKerOq. (6.3.4) 

Equation (6.3.3) shows, by Proportion 6.2, that %0 6Aq(Q,F). Hence by (6.3.2), we 

have (6.3.4). 

Remark. Metzger's theorem [20] is a formal consequence of properties of the 

spaces Aq(f~) and Bq(fl) and the operator Oq. Another formal description of Ker Oq 

was given by Ljan [18]. 

6.4. The space ~q(A) is a subspace of Aq(~); see, for example, Bers [4]. For q=2,  

~2(A) is dense in A2(~), Ahlfors [1]; see also [14, Chapter IV]. We will for the moment  

consider ~q(A) and ~q(Aq) as vector spacesmwithout  a topology. When we speak of 

continuous functionals on ~q(A), we will view ~i~q(A) as  a subspace of the Banach 

space Aq(~). 

6-848282 Acta Mathematica 153. Imprim~ le 8 ao[lt 1984 
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Let Ao be a non-empty F-invariant subset of Aq. By ~q(Ao)* we will denote the 

space of linear functionals (not necessarily continuous) on ~q(Ao). A linear functional 

IE~q(Ao)* will be called F-invariant if it satisfies (6.2.1) for all q0E~q(Ao) and all 

AEF.  

PROPOSITION. Fix (2q-1)-distinct points in Ao:al,a2 . . . . .  a2q-l. The vector 

space ~q(Ao)* is canonically isomorphic to the vector space o f  functions on Ao that 

vanish at aj, j= 1,... ,  2 q -  1. 

Proof. By conjugation, we may assume AocC. For b E A o \ { a l  . . . . .  a2q-1} and 

IE ~q(Ao)*, set 

F(b) = l(f(b, ")), (6.4.1) 

for f defined by (0.2.11). Conversely, given F, a function on Ao that vanishes at aj, 

j = l  .. . . .  2 q - l ,  we use (6.4.1) to define the values of IE~q(mo)* on the basis for 

~q(Ao), specified by (0.2.11). 

6.5. 

THEOREM. Let F be a function on Ao that vanishes at aj, j= 1 . . . . .  2 q -  I and let l 

be the corresponding linear functional on ~tr given by (6.4.1). The ! is F-invariant 

i f  and only i f  A ~ _ q F - F  is the restriction to Ao o f  a polynomial p(m)EI-I2q_2, for  all 

A E F (that is, i f  and only i f  F E Fl-q(Ao, F)). 

Proof. We compute using formula (1.3.7), and the notation introduced in w167 1.3 

and 0.2. Fix A E F. Choose P E H2q-2 such that (recall the definition (1.3.2) and the 

convention about the index fl for the funciton ft~) 

P(bk) = -F(bk), k = 1 . . . . .  2q-1 .  

Then for a E A o \  {al . . . . .  a2q- 1 } ,  

l(f(a, �9 )) = F(a), 

l ( A ~ ( f ( a " ) ) ) = A ' ( b ) q - I ( f ( b ) - ~ ( j ~ . k  bk_bj ]b-bj~f(bk )} 

-- A'(b) q-I {F(b)+P(b)}. 

Assume that ! E ~q(Ao)* is F-invariant. Then 

F(Ab)A'(b)~-q-F(b) =P(b),  all bEAo. 
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Since P depends only on l, A, and a and not the point b, we see that FEFl_q(Ao,  F). 

Conversely, if FEF1_q(Ao, F), then for k= l  . . . . .  2 q - l ,  AEF,  p ( A ) = ( p d F ) ( A ) ,  

we have 

F(Abk) A'(bk) l -q -F(bk)  = p(A) (bk). 

But F(Abk) = F ( a k ) = 0 ;  hence p(A)=P and I is F-invariant. 

Remarks.  (1) The proof also shows how to determine the value of p(A). 

(2) Given a F-invariant linear functional l on ~q(Ao), then we have constructed an 

Eichler integral F on Ao that vanishes at al, .... a2q_l, and from it the cocycle g=pdF .  

If the points ~1 . . . . .  d2q-~ are used to construct an Eichler integral F from l, then we 

obtain a new cocycle ;~=pdP. Now 

and 

o r  

f'(a) = l(fa(a, �9 )), 

, , - - a  ' ' 

fa( a, . )=fa(  a, . )_ ~.jl24_ ~ Pk(a) f~(ak, . ), 
k=l 

where Pk is the unique polynomial in YI2q_2 with Pk(aj)=Sik, j, k= 1 . . . . .  2q-2.  Hence 

F(a) = f ( a ) -  Pk(a) f(gik). 
j=l 

Let p E 1-I2q_2 be defined by 

p(a) = ~ 1  Pk(a) F(gtk), a E A 0. 
j=l 

Thus p E l12q_ 2 satisfies, p(aD=F(~D, k= 1 . . . . .  2q -  1. We conclude that 

je=F-p; 

which shows that the cohomology class determined by I is independent of the basis for 

~q(Ao) used. Also note that even though we assumed that the ~k's differed from the 

ass, the formula we derived is valid in general. 
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6.6. Let us define Y[q(Ao) to be ~q(Ao) factored by the linear span of 

{ f - A ~ f ;  f E  ~q(Ao), A e F). 

The F-invariant linear functionals on ~q(Ao) are in one to one canonical correspond- 

ence with the linear functionals on ~q(Ao), ~q(Ao)*. Further, the Poincar6 series 

operator Oq is well defined on ~q(Ao): 

Oq'- ~q(Ao) ~ Aq(~"~, I'). (6.6.1) 

By Theorem 1, Oq of (6.6.1) is surjective, and hence 

dim ~q(Ao) t> dim Aq(fL F). 

6.7. 

LEMMA. Let Z be a Fl2q_2-cocycle. Let A E F be parabolic with f ixed point a. 

Then Z is parabolic with respect to A if  and only if  z(A)(a)=O. 

Proof. Assume that there is a v E H2q-2 such that (0.2.4) holds. Then 

z(A ) (a) = v(Aa) A '(a) l -q_  v(a), 

and since Aa=a and A'(a)= 1, we conclude that z(A) (a)=0. Conversely we must show 

that if x(A)=p E Ylzq-2 and p(a)=0, then there is a v E IIzq-2 so that (0.2.4) holds. 

Consider the map 

l'~ 2q_ 2 ~ O ~--~13 " m --  O ~ l'I 2q_ 2 . 

This map is linear and its image consists of functions vanishing at a, by the first part of 

our argument. Let o be in the kernel of  this operator. If v vanishes at x~:a, then v also 

vanishes at Anx, all n E Z, and such a v must be identically zero. Thus for v:l:0 in the 

kernel of the above operator, we must have 

v(z )=(z -a)  k, 0~<k~<2q-2. 

Now the condition 

along with the formula for A 

u ( A z ) A ' ( z )  l - q =  v(z), z E C ,  

1 1 
. . . .  VK, 
A z - a  z - a  
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shows that k=2q-2 .  It is also easy to see that this o is in the kernel of the operator. 

The kernel of the operator thus has dimension one, and the image has dimension 

2q-2,  and must hence consist of all polynomials in H2q-2 that vanish at a. 

We have assumed that a is finite. If a=  oo, then by conjugation we can reduce this 

case to the one considered above. 

Remark. See [14, Chapter V] for a direct proof of the lemma in case a=oo. 

6.8. We need one more fact concerning parabolic cocycles. 

LEMMA. Let Fo be a rank 2 parabolic discrete group o f  M6bius transformations. 

Let A and B generate Fo, Let Z be a cocycle for Fo. Then Z is parabolic with respect to 

A if  and only if  it is parabolic with respect to B. 

Proof. It is most convenient to conjugate F0 so that the common fixed point of A 

and B is at infinity. Without loss of generality we assume that A(z)=z+ 1, B(z)=z+r, 

Imr>0.  We now let pt=z(A), p2=z(B). Assume that g is parabolic with respect to A. 

This means that degpl<~2q-3. The commutativity of Fo implies that )~(A oB)=z(BoA) 

or that 

pl(z+~)-pl(z) =p2(z+ 1)-p2(z), z • C. 

Now pl(z+r)-pl(z)  is a polynomial in z of degree ~<2q-4; hence so is p2(Z+ 1)-p2(z). 

We conclude that P2 is at most of degree 2q-3;  showing that X is parabolic with respect 

to B. 

6.9. Let Ao be a non-empty F-invariant subset of Aq.  Let b E A q ~ A  0 and set 

A1 = A0U {yb; ?E F} = Ao u rb. 

LEMMA. Let IE ~q(Ao)*. Then l extends to an element o f  ~q(Al)* whenever b is 

not a parabolic f x e d  point o f  F. I f  b is a parabolic f ixed point, the l extends to an 

element Of ~q(Al)* i f  and only i f  the period o f  the Eichler integral F on Ao correspond- 

ing to l is parabolic with respect to some parabolic A E F that fixes b. 

Proof. Fix 2q-1 distinct points al . . . . .  a2q-! in Ao. Let F be the unique Eichler 

integral supported on A o that vanishes at ak, k= 1 . . . . .  2 q - I  corresponding to the F- 

invariant linear functional I on ~q(Ao). Let X =pd F. The linear functional l extends to a 

F-invariant linear functional o n  ~ q ( A 1 )  if and only if Z is determined by an extension of 

F to an Eichler integral supported on Ai. 
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Assume that the stabilizer Fo of b in F is cyclic of order n (l~<n<~). Let A 

generate Fo. There are two possibilities depending on whether or not n divides 1-q .  

If n does not divide 1 - q ,  then b is a point of q-uniqueness and F extends uniquely 

to Fb. If n divides l - q ,  then A'(b) l-q=l and hence z(A)(b)=O. The last assertion 

follows from the fact that x(An)=0 and 

Hence 

x (A  n) = x(A)"  [A n-  1 + A n - 2 + . . .  + 1]. (7) 

nz(A) (b) = O. 

Thus we may arbitrarily define F(b) and observe that (4.1.4) holds for all y E Fo. The 

extension of F to Fb is accomplished by 

F(Tb) y'(b) ~-q-F(b) = X0')  (b),  V E r .  (6.9.1) 

If Fo contains a loxodromic element, then b is again a q-uniqueness point and the 

extension of F to Fb is provided by Proposition 4.1, as above. 

By the Lemma in w 12, it remains to consider the case where Fo contains a 

parabolic element. If F extends to Fb then for every parabolic 7 E Fo, we have 

F(yb) ),'(b)l-q-F(b) = Z(~') (b). 

Since yb=b and y ' (b)=l ,  Z(y)(b)=0. By Lemma 6.7, X is parabolic with respect to 

every parabolic element fixing b. Conversely, if Z is parabolic with respect to some 

parabolic element fixing b, it is parabolic with respect to every parabolic element fixing 

b by Lemma 6.8. The stabilizer Fo of b in F is a group generated by a rank 1 or rank 2 

parabolic group Fl and an elliptic element A (of order n=2, 3, 4, or 6). We use (4.1.4) 

with y=A to define F(b) if n does not divide l - q ,  and we let F(b) be arbitrary if n 

divides 1 -q .  We need to show that (6.9.1) holds for all ~,EF o. Now an arbitrary VEFo 

can be written as 

Hence 

~,=AkoB, kEZ,  B parabolicEFo. 

Z(Y) (b) = z(A k) (Bb) B'(b)'-q+ Z(B) (b) 

= x(A5 (b). 

(7) Not only does F act on I]2q_2, but F generates an algebra of operators on n2q_ 2. Addition is 
operator sum. 
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The previous arguments now complete the analysis. 

Remarks. (1) The extension o f F  to A 1 is unique if and only if b is a q-uniqueness 

point. If b is a non-uniqueness point, then F has a one-parameter family of extensions. 

(2) If A0 is empty and if we are given a cocycle, Z, then the above procedure 

shows whether or not X is the period of an Eichler integral F supported on A~=Fb, and 

how to construct F whenever it exists. 

6.10. Let AI be a non-empty F-invariant subset of A. We will establish the 

following 

THEOREM. (a)There is a canonical linear map 

e: ~q(A0*-* HI(F, H2q_2). 

(b) Let PHil(F, Flzq_z) be the cohomology classes that are represented by cocycles 

that are parabolic with respect to all parabolic elements whose fixed points are in AI. 

There exists a linear map 

e*: pHIl(F, II2q_ 2) ~ ~q(Al)*, 

such that e o e* is the identity. In particular, 

e(~q(A0*) = PHI(r ,  nz~_z). 

(c) Let N be the number o f  F-equioalence classes o f  non-uniqueness points in A1. 

T h e n  

dim Ker e = N. 

Proof. (a) Choose ( 2 q - l )  distinct points in A1; call them al . . . . .  a2q_ 1 . If 

lE~q(A0*,  then by Theorem 6.5, l is represented by a unique Eichler integral F 

supported on A 1 that vanishes at aj, j =  1 .. . . .  2q-1 .  We set e(/)=pd F. 

(b) If b E A~ is fixed by the parabolic element B E F and x = p d F ,  then 

z(B) (b) = F(Bb) B'(b) ~ -q -F(b )  = O, 

since Bb=b, and B ' (b)=l .  Thus, by Lemma 6.7, )C is parabolic with respect to B. 

Conversely, let X be a cocycle representing a cohomology class of PHIl(F, 1-lzq_2). Thus 

jr(B) (b)=0 for every fixed point b E A1 of a parabolic element B E F. Proposition 4.1 and 

Lemma 6.9 show how to define an Eichler integral F supported on A~ that vanishes at 

al, . . . ,  a2q-i and that represents a cocycle cohomologous to X. 
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To be specific, assume that there are uniqueness points in A 1 . Then we may 

assume that aj, j =  1 . . . . .  2q -  I, is a uniqueness point. By Proposition 4.1 and Lemma 

6.9, we can find an Eichler integral F supported on the set of uniqueness points and 

vanishing at a i, for j =  I . . . . .  2q-1 such that p d F  is cohomologous to g. We next choose 

a maximal set of inequivalent non-uniqueness points in A1 (independently of X) and set 

F to be zero at these points. The period of F extends F (by formula (6.9.1) with X 

replaced by pdF) to the F-orbit of this maximal set of inequivalent non-uniqueness 

points. 

It remains to consider the case where every point of A1 is a non-uniqueness point. 

We choose b E Al, and let aj E Fb for j =  1 . . . . .  2q -  1. Choose a cocycle g representing a 

class in PHI(F, H2q_2). Set Ft(b)=0 and construct an Eichler integral F1 on Fb by 

(6.9.1). Next let p ElIEq_ 2 be such that p(aj)=Fl(aj), j= l , . . . , 2 q - 1  and define 

F = F ~ - p .  We now proceed as before to extend F to A t \ F b .  However, in this case the 

Eichler integral F depends on the cocycle X and not just on its cohomology class 

pHIl(F, I-I2q_2) , thus we must first choose a splitting map for the projection of cocycles 

onto cohomology classes. 

In each case, the Eichler integral F defines a unique F-invariant linear functional 

e*(z) on ~q(A1). Linearity of e* is obvious, as is the fact that e o e* .is the identity map. 

(c) Let l E ~q(Al)* and assume that e(/)=0. Let F be the Eichler integral vanishing 

at aj, j = l  . . . . .  2 q - l ,  that represents the linear functional l. Then there exists a 

p E ['[2q--2 such that 

F(yz) y' (Z) l -q_F(z)  = p(yZ) y'(Z) 1 -q_p(z) ,  

all yEF,  all zEAj,  In particular, ( F - p ) . y = ( F - p )  for all yEF.  Thus F - p  vanishes at 

the set of uniqueness points. If AI contains uniqueness points, then we may assume 

that the aj, j = l  . . . . .  2q-1 are uniqueness points. It follows that p--0, and that F 

vanishes at the set of uniqueness points. Since the value of F at a set of inequivalent 

non-uniqueness points is arbitrary, the kernel of e has the same dimension as the 

number of equivalence classes of non-uniqueness points in AI. 

Once again, it remains to consider the case where every point in A1 is a non- 

uniqueness point. Again, we may assume that a~ . . . . .  a2q-i are in a single F-equiv- 

alence class. Every coboundary Z can be represented by an N-dimensional affine space 

of Eichler integrals supported on A1. (These need not vanish at the points aj, 

j =  1 . . . . .  2q-1.)  The dimension of the vector space of Eichler integrals representing 

coboundaries is hence N+(2q-1) .  The subspace of these Eichler integrals vanishing at 

aj, j =  1 . . . . .  2q -  1 thus has dimension N. 
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6.11. Since a vector space and its dual have the same dimension, we have the 

following 

THEOREM. Let AI be a non-empty F-invariant subset of  Aq consisting of non- 

parabolic uniqueness points and all the parabolic fixed points corresponding to the 
punctures on f2/F. Then 

dim Aq(Q, F) ~< dim pHi (F ,  lI2q_2) ~< dim ~q(Ai). 

Furthermore, 

dim ~q(A l) = dim pHi(F, I-I2q_2)+N, 

where N is ;he number ofF-equivalence classes of parabolic fixed points in Al (=the 

number ofF-equivalence classes of  parabolic fixed points corresponding to punctures 
on ~/F). 

Proof. In the case under consideration, PHi (F ,  I-I2q_2)=pHII(F , I-I2q_2). 

Remarks. (1) The number N, above, may be smaller than the number of punctures 

on f2/F since a parabolic fixed point may correspond to two punctures. 

(2) The above theorem can be strengthened as follows to generalize Theorem 6. 

COROLLARY. Let A 1 consist of  uniqueness points and all the parabolic fixed 

points. A s s u m e  fl*:Aq(~),F)--->pHI(F,I-IEq_2) is surjective. Then the kernel of  

Oq: ~q(AI)--->Aq(Q , F) has dimension N, where N is the number of F-equivalence 

classes of  non-uniqueness points in AI (<~ the number of F-equivalence classes of  
parabolic fixed points). 

w 7. Schottky groups (proof of Theorem 4, first part) 

7.1. Let F be a Schottky group on g > l  free generators AI . . . . .  Ag. Let al . . . . .  a2q_ 1 be 

(2q - l )  distinct fixed points of elements of F. The space of cocycles for F, 

Z I ( F ,  F I 2 q _ 2 )  , has dimension (2q-1)g .  The map that sends a cocycle Z to 

(~(A 1) . . . .  , ) ~ (Ag ) )  E (I-I2q_ 2) g 

is an isomorphism. The dimension of the space of coboundaries is 2 q -  1, and hence 

dim Hi(F, I-I2q_2) = (2q-  l) ( g -  1) = dim Aq(ff2, F). 
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Thus the hypothesis of  the Theorem 3 is satisfied. We obtain a basis for the space of 

cocycles by assigning arbitrary polynomials to each of the generators, and thus we 

obtain (2q-1)g  functions 161 . . . . .  16(2q-l)g defined at first only at the loxodromic fixed 

points by formulae similar to (4.1.3). Subtracting appropriate polynomials from these 

functions, we get d=(2q-1)(g-1) functions F1 ..... Fa that can be extended by con- 

tinuity to A and form a basis for the space ~:l-q(f~, F). 

It follows that for f E  ~q(A), with poles only at (loxodromic) fixed points of 

elements of F, there is a finite algebraic algorithm for determining whether or not 

Oqf=0. Theorem 4 is proven for Schottky groups. 

7.2. Before proceeding to a more detailed study of Schottky groups we introduce 

the following general 

Definition. A set  ScAq will be called a q-stratification of F provided: 

(a) each point of S is a fixed point of an element of F, 

(b) Oq m a p s  ~q(S) isomorphically onto Aq(Q,  1"), and 

(c) the set S depends only on a presentation of F and at most finitely many 

(arbitrary) choices. 

Remarks. (1) If F possesses a q-stratification, then we shall say that F is q- 

stratifiable. 
(2) Every geometrically fintite non-elementary function group is 2-stratifiable by 

the results of [16], [17]. We will in some cases reprove this fact and provide 2- 

stratifications that are more useful for our purposes: the construction of a basis for the 

cohomology groups Hi(F, H2) and PHi(F, H2) defined in w 0.2. 

(3) A q-stratification of F always contains dim Aq(Q, F)+(2q-1)  points. If ScAq 
contains (2q - l )  or more points, then S is a q-stratification for F if and only if 

es: ~l-q(Q,[')--~C Isl-(Eq-l) is an isomorphism, where we normalize the functions in 

~l-q(f~, F) to vanish at (2q-1) points in S.(8) 

(4) The stratifications of [16] are 2-stratifications in our sense. It is not known 

whether 2-stratifications always are stratifications. Stratifications provide global holo- 

morphic coordinates for deformation spaces of Kleinian groups, while 2-stratifications 

define global holomorphic functions that yield only local coordinates for the deforma- 

tion spaces. 

(s) The evaluation map es was defined in w 2.3. We denote by IS[ the cardinality of the set S. 
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7.3. We return to the hypothesis of w 7.1 and assume that aj is a fixed point of 

BjE F for j =  l . . . . .  2 q -  I. Then if we consider the set of cocycles 

Z = {X E ZI(F, H2q_2); x(Bj) (aj) = 0 f o r j  = 1 .. . . .  2 q -  l }, 

then Z=HI(F,  I-I2q_2). Thus from Z we construct more directly the space ~l-q(Q,  F). 

7.4. Let us assume for the moment that q<.g. In this case, we shall take aEj-1 and 

a~. to be the fixed points of Aj for j =  1,..., q. A polynomial p E I ] 2 q -  2 is uniquely 

determined by the vector 

( p ( a l )  . . . . .  p(a2q-1)) ~ c E q -  1 

To simplify notation, we let ej be the vector 

(0 . . . . .  O, 1 , 0  . . . . .  0) .  

t 
j th spot 

Thus ej corresponds to the polynomial 

z - - a  k 

p(z) = ]-[ a j -a  k. k . j  

We shall use the above correspondence to describe the values for cocycles that will 

lead to a basis of ~ l -q (~ ,  F). It suffices to consider only cocycles Z that satisfy 

~2j-1 ,  2j, i f j < q ,  
z(Aj)(ak)=O f o r j = l  ... .  ,q ,  and k =  [ 2 j - l ,  i f j = q .  

We consider the set 

(A,(aj); 1 <-i<~g, 1 <~j<~2q-1}\{aj; 1 ~<j~<Eq-1}; (7.4.1) 

it consists of d = ( 2 q -  1) ( g -  1) distinct points bj . . . . .  b d. By Theorem 1, Oq maps ~q(S) 
onto Aq(~,F), where S={ai .. . . .  a2q-l,bl, . . . ,bd}. By Theorem 2.5, there exists a 

basis F1 . . . . .  Fd for $;l-q(~, F) such that F2(bk)=6jk. We now compute the cocycle 

)b.=pdFi. Assume bj=Ai(ak). Then 

)b(Am) = A~(ak) l - q  e k 6 i t  a. 

From the knowledge of (zj(Am); l<-j~d, l~m~<g}, we can compute (;G(7); l<<-J <~d} for 

arbitrary ),E F, and hence the values of {F~; l<~j<~d) at the fixed points of  7. 
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Example. For the convenience of the reader, we present the most useful example: 

q=2 and g~>2. Here, we can let al, a2 be the fixed points of A1, and a3 one of the fixed 

points of A2, We set 

bj = Aj+t(al) , j =  l . . . . .  g - I ,  

= Aj_g+E(a2) , j = g . . . . .  2q-2,  

= Al(a3), j = 2 g - l ,  

= Aj_2g+3(a3),  j =  2g . . . . .  3g-3.  

For m =  1 . . . . .  g ,  we have 

zj(Am) = Aj+l(al)l-qel 6j+l,m, j = I . . . . .  g - l ,  

= A;_g+2(a2) l -qe26j_g+2,m , j = g  . . . . .  2g-2,  

= A'l(a3)l-qe361,m, j =  2g--1, 

= A:-Eg+3(a3) l -qe3  ~j-Eg+3, m, J = 2g . . . . .  3g-3.  

7.5. The key aspect of the computations of the previous section is finding 2q-1 

distinct points al . . . . .  aEq-1 in A with the property that the set 

S = {Aj(ak);j=O . . . . .  g, k =  1 . . . . .  2 q - l }  (7.5.1) 

consists of ( 2 q - l ) g  points (where Ao is the identity). 

LEMMA. For any 2 q - l  distinct points al . . . . .  aEq-! in A,  the set S o f  (7.5.1) 

consists o f  at least (2q-1)g points. 

Proof. The Poincar6 series map Oq maps ~q(S) o n t o  Aq(~-~, F )  by Theorem 1. 

Hence we have 

dim ~q(S) >I Aq(Q, F) = (2q- I) ( g -  1). 

It follows that S has at least (2q-1)g points. 

Thus we must show how to construct the set S with at most (2q-  1) g points. We fix 

the group F with generators AI . . . . .  A g  (and thus g is fixed) and use induction on q. We 

have seen in w 7.4 how to select S for q=2. Assume by induction that we have selected 

the set S for a fixed q~>2. Assume that we are using the points at . . . . .  a2q_ 1. The set S 

of (7.5.1) hence consists, by induction, of (2q-1)g points. Let us fix a j, l<~j<-g, and 
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look at the points {Af l(a); a E S}. This set consists of (2q -1 )g  points, and since g~>2, 

we can choose points a2q, a2q+l in this set so that {al . . . . .  a 2 q + l }  consists of  distinct 

points. The set 

{Aj(ak); j=O . . . . .  g, k =  1 . . . . .  2q+l}  

consists of  at most (2q+ l )g  points. 

We summarize our results in the next 

THEOREM. Every Schottky group is q-stratifiable, for  all q>-2. 

w 8. Fuchsian and quasi-Fuchsian groups (proof of Theorem 4, conclusion) 

8.1. Let  F be a finitely generated quasi-Fuchsian group of  the first kind. We can find 

canonical generators A t , B !  . . . . .  Ag, Bg, EI . . . . .  En for F. The Aj, Bj are loxodromic; 

the Ek are parabolic (set Vk = oo) or elliptic (set vk=the order of Ek). The signature of F 

is (g ,n ;v l  . . . . .  v,,) and its type is (g,n).  We write C = [ A , B ] = A o B o A - I o B  -1. The 

defining relations for F are: 

cjo [-I l, (8.1.1) 
j = l  k=l 

E: k = I ,  all k = 1 . . . . .  n with v~ < oo. (8.1.2) 

Every elliptic or parabolic element in F is conjugate to a power of  Ek, for some 

k = l  . . . . .  n. 

For  the group F, we have 

d i m A q ( ~ , F ) = 2  ( 2 q - 1 ) ( g - 1 ) +  [ q - q / v  k , 
k=l 

and 

dim P H i ( F ,  1-I2q_2) = dim PHI(F ,  II2q_ 2) 

= dim PHI(F, l"I2q_2) = dim Aq(f~, F), 

here A is one of  the two invariant components  of F. (For details, see [ 14, Chapter VII].) 

8.2. If  X is a cocycle and E E F is elliptic of order v, then 

x ( E  ~) = O. 
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It follows that (see Ahlfors [.2], Eichler [7], or Weil [26] and w 8.4) ;t(E) is an element of 

(l"I2q-2)E = {O ~1"I2q-2; U = p ' E - p  for s o m e  p E I-I2q_2}. 

An easy computation shows that 

dim (H2q-z)e = 2 [q -  q/v]. (8.2.1) 

Note that if Z is parabolic with respect to the parabolic element E, then we also have 

that z(E)E (1-I2q_2) E. 

We see that the space of  parabolic cocycles Z can be identified with elements 

~ ( A  t), ~.(B1) . . . . .  z(Ae),  z(Be), z(E,) ,  ..., z(E,,)) 

in 

V = (l-lzq_2)2gx (l-I2q_2)E ' X . . .  • (l'I2q_2)E n 

subject to the relation forced on Z by (8.1.1). That is, if we define a map 

h: V-~ I-I2q_ 2 

by 

then 

h(Pl ,  P2 . . . . .  P2g- 1, P2g, P2g+ 1 . . . . .  P2g+n) 

= Pl" (BI-- 1)'A~ - l 'B~ -l" (C 2 o. . .  o Cg). (E 1 o. . .  o E.) 

+P2"  (A1-1-1) " B / I  �9 (C2 o . . .  O Cg)'(E~ 0. . .  oE,)  

+p2g_l"(Be- 1) ' ag  I .B~l . (E10. . .  oEn) 

+p2g. (A~ -1-1) .Bff I. (E 1 0 ... oE, )  

-k-pzg+ I �9 (E 2 o. . .  o E,)+. . .  "+'P2g+n, 

h(pl . . . . .  P2g+n) = 0 

if and only if there is a parabolic cocycle Z with 

z(A0 = P l ,  z(B0 = p2 . . . . .  Z(Bg) = pzg, 

z (E0  = P2g+I . . . . .  z(E,) = P2g+n" 
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Since 

dim V = 2g(2q- 1)+2 ~ [q--q/vk], 
k=l 

it follows that the linear map h is surjective. 

We have reduced the problem of constructing the values at fixed points in Aq of a 

basis for ,,~l-q(g2, F) to a problem in linear algebra (evaluating the kernel of a linear 

map). This completes the proof of Theorem 4 for quasi-Fuchsian groups. 

8.3. If E is parabolic, then the space (l"I2q_2) E consists of those polynomials 

p EI-I2q_ 2 that vanish at the fixed point a of E. The kernel of the operator 

(g-1):I-I2q_2---->H2q_ 2 consists of polynomials p that vanish to order 2q-2  at a. 

Assume that a E C, then the polynomials 

pj(z) = ( z - a )  j, j = 0 . . . . .  2q-2,  

form a basis for II2q-2. It is easy to see that (as a consequence of 1.3.3) 

(pj. E) (z) = (Ez-a)JE'(z)  l"q = (z-a)JE'(z) l-q+j/2 _ ( Ez - a )  2-2q+j 
(z_a)2-2q ' 

and thus 

P2q-2 ~ Ker (E -  1). 

An easy calculation shows that 

ordapj" ( E -  1) = j +  1, 

Hence we conclude that 

for j = 0  . . . . .  2q-3.  

Image (E -  1) = {/9 E I-I2q_2; p(a) 4: 0}. 

We have previously used this observation (see w 6.7 and [14, p. 173]). 

8.4. We now carry over the above analysis to the case of loxodromic or elliptic E 

with fixed points at finite points a and b. Thus E can be written as 

z - -a  E ( z ) - a  = K K ~ O, I 
E ( z ) - b  z - ~ '  " 

If follows that 

E ' ( a ) = K ,  E ' ( b ) = K  ~ .  



9 6  L KRA 

The functions 

pj(z) = ( z - a ) J ( z - b )  2 q - 2 - j ,  j = 0 .. . . .  2q -2 ,  

form a basis for H2q_ 2. A calculation using (1.3.3) shows that 

pj'E = Kl-q+Jpj. 

Hence the pj are eigenfunctions for the action of E on H2q-2. If E is loxodromic 

(or elliptic of infinite order), then K e r ( E - l )  is one-dimensional and is spanned by 

Pq-l. The image of ( E - I )  is spanned by the functions Po ..... Pq-2, Pq . . . . .  P2q-2. If E 

is elliptic of order v, and K=e 2~i/v, then the kernel of ( E - I )  is spanned by the 

functions pj wi th in-q-  1 (mod v) and has dimension 2[(q-  1)/v] + 1; the image of ( E -  1) is 

spanned by the functions pj w i t h j ~ q - 1  (mod v) and has dimension 

(2q-  1 ) -2 [ (q -  1)/v]- 1 = -2[(1 - q )  (1 - l/v)] = 2[q(1 - I/v)]. 

8.5. 

Example. The group F=PSL(2, Z) is of considerable interest to number theorists. 

Its signature is (0, 3; 2, 3, w) and it is generated by A(z)=-z  -~, B(z )=-(z -1)  -1. Note 

that C(z)=A oB(z)=z-1.  The defining relations for F are 

A 2 = I = B 3, 

A oB is parabolic; 

1 1 " zri/3 and the fixed points of A are at +i, and those of B at to and o), where to=~+~tVr'3-=e . 

The first q~>2 for which PHi(F, H2q-2) (or, equivalently, Aq(s is non-trivial is 

q=6. 

Assume that q=6. Then 

dimPHl(f l ,  Hio) = 2. 

We must find 2 linearly independent parabolic cocycles that are periods of potentials. 

One notes that 

dim HI(F, H10) = 3. 

The 14-dimensional space ZI(F, Fllo) of cocycles is obtained by assigning to A a 

polynomial in the linear span of 

{(z-i)J(z+i)l~ j = 0, 2, 4, 6, 8, 10}, 

and to B a polynomial in the linear span of 
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{(z-w)i(z-~b)l~ j = 0, 1,3,4, 6, 7, 9, 10}. 

We notice that all the elliptic fixed points are 6-uniqueness points. We shall hence be 

able to choose some elliptic fixed points to be among the I 1 points at which the Eichler 

integrals in F_5(A6 ~ F) are required to vanish. Every cocycle for F is cohomologous to 

one that assigns the zero polynomial to B. For p E Hlo, p E Ker (B -  1) if and only if 

p ( z )  = '~ 
j=2,5,8 

Note that the values at +i  of such polynomials are arbitrary, and conclude that every 

Eichler integral on A ~ is equivalent to an F with (pdF)(B)=0 and F (+0=0 .  It follows 

that (pdF)(A)(+i)=0.  Letting z = p d F ,  we see that we may assume that 

z(A)(z)= E ay (z-i)j(z+i)l~ 
j=2,4,6,8 

Since x(A) ( + 0 = 0  and z(B)=O, it follows that 

x(BkoAoB-k)(B*(+_i))=O, k= 1,2, 

because Bk(+i) are the fixed points of BkoA oB -k and 

x(B k o A o B -k) = x(A). B -k . 

Thus all the Z constructed as above are represented by Eichler integrals that vanish at 

the eight points: 

++_i,w, 69,B ( + . i ) = - l  + i B2(+z)= l+i. 
2 2 '  - 

Since C=A o B, it follows that 

z(C) = z(A)" B. (8.5.1) 

We are interested only in parabolic cocycles; hence we require that 

From (8.5.1) we see that 

x(cO (z) = 

degx(C) ~< 9. 

E % [- iz+(- l+i)] j[ iz+(-1- i )] l~ 
j=2,4,6,8 

7-848282 Acta Mathematica 153. Imprim6 le 8 aofit 1984 



9 8  I. KRA 

and thus X is a parabolic cocycle if and only if 

a2+a4+a6+as = O. 

We must select 3 more points at which to normalize potentials. We choose 

oo = fixed point of C, 

O = f i x e d p o i n t o f B ~ 1 7 6 1 7 6  ~), 

1 = fixed point of B 2 0 C o B  -2 = B 2 oA oB -I = 

(8.5.2) 

The condition that F vanish at oo is equivalent to degz(C)~<8. This condition is 

equivalent to the additional equation 

(10--60 a2+(10--20 a4+(10+2i) a6+(10+60 as = O, 

which, in view of (8.5.2), is equivalent to 

- 3 a 2 - - a 4 + a 6 +  3ot 8 = O. (8.5.3) 

Since x(BoA)=z(A),  the condition that F vanish at 0 is equivalent to x(A)' (0)=0, or to 

6ia2 + 2ia4- 2ia6- 6ia8 = 0. 

This last equation is equivalent to equation (8.5.3) and hence may be ignored. Finally, 

z ( B 2 ~ 1 7 6  E aJ [(1-i)z-1]j[(l+i)z-1]l~ 
j=2,4,6,8 

The condition that F vanishes at 1 is equivalent to z(B z oA o B- l )  ' (I)=0, or to 

( - 8 + 6 0  a2+( -6+2 i )  a 4 + ( - 4 - 2 i )  a6+ ( - 2 - 6 i )  as = 0, 

which in view of (8.5.3) can be replaced by 

4a2+ 3a4+ 2a6+as = O. (8.5.4) 

The three equations (8.5.2), (8.5.3), and (8.5.4) have a 2-dimensional solution space 

with a basis given by 

(a2, ct4, a6, as) = (2, --3, 0, l) and (1, - 2 ,  l, 0). 

Thus the periods ~1,~2 of two linearly independent functions in ~-5(g2, F) satisfy 
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f~ l (A ) (Z) = 2(Z--/)2 (z + i)8-- 3(Z--/)4 (Z + /)6 + (z--i)8 (z + i) 2, 

~2(A) (Z) = (Z - / ) 2  (Z + / ) 8 _  2(Z - / ) 4  (Z-I-/)6..1_ ( z - / ) 6  (Z --t-/)4, 

s = 0 = s 

It is more convenient to choose 

99 

with the injectivity of the period map yield 

Fl(z)=Fl(z) ,  zEA6,  (8 .5 .5)  

F2(z)=-F2(z) ,  zEA6.  (8.5.6) 

The set {aj, A(ai),B(aj); j = l  . . . . .  11} contains in addition to {a, . . . . .  a l l  ) only three 

points: -1,-~+�89 T h e s e  are the fixed points of A o B 2 o A o B - 1 o A  -* and 

A o B o A  -l, respectively. Le tb=- �89189  2~il3. To show that b,/3 may be used as b, 

b~ and b2, we note that in view of (8.5.5) and (8.5.6), 

Fl(b) F2(b) -2ReFl (b)  F2(b) 
det Fl(/3) F2(b ) = 

We must compute for j =  1,2, 

Zl = : f l - ~ 2 ,  

Z2 =,~1-3,~2. 

For these cocycles 

z I ( A )  (Z) = (Z--/)2(Z]-/)8--(Z--/)4(Z+/)6--(z-i)6(Z-I-/)4+(Z--/)8(z-Fi) 2, 

x2(A) (Z) - -  - (Z - / ) 2  (Z +/ )8  + 3(z- 0 4 (z + i) 6 - 3(z - / ) 6  (z +/)4  + (z - i)s (z + i)2, 

zl(B) = 0 = ZE(B). 

We now let 

{a I .. . .  a l l } = { 0 , 1  o ~ + i , l +  V'~-. _ l + l  i 1_+i} 
. . . . .  2 t' 2 - 2 '  " 

Among the points in {A(aj),B(ai); j - - l  . . . . .  l l} ,  we must be able to find two: bt,b2, 
such that o%_s(f2, F)[S has dimension 2, where S={al  . . . . .  all ,bl ,b2}.  Let 

FjE ~T_s(g2, F) with pdFj=ya, j =  1,2. Symmetry of the cocycles under study together 
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F~(b) = Xj(}') (b) D,'(b) -5-1]-1,  

where ~=A o B o A - I = A  o B o A .  The cocycle condition shows that 

We note that 

Zj(y) = 7~(A ) " (B o A + I ). 

. o a  

and that it suffices to show that Re [~l(7)(b))(X2(~)(b))]4=0. This follows by direct 

computation. (9) As a matter of fact 

Z~(Y) (b) = 48(-  1 +i), 

~r (b) = 32(V-3-3i).  

It follows that the Poincar6 series of the two rational functions 

1 1 
f (~) ,  f(~), 

~+ �89 - �89 ~+ �89 + �89 

where 

f ( O  = ~(~- 1) (~2+ 1) (~2_~+ 1) (~2+~+/) (~2_2~+2)' 

form a basis for A6(Q, F). Similarly, the vanishing problem (for q=6) for this group is 

handled via the two cocycles Z~ and Z2 that we constructed above. The calculations are 

tedious, but the point to be emphasized is that as long as fE  ~6(A6) has poles only at 

fixed points, then we can determine (in af ini te  amount o f  time) whether or not O6f=0, 

by calculations over fields such as Q[i, x / -~ .  

Remark.  The basis {qol, q02} for A6(Q, F) produced above satisfies tpiff)= tp2(z), all 

z 6 f~. Set ~pl=qgl +q02 and ~flE=qOl-qo 2. Then {~fll, ~f12} is also a basis for A6(fl, F) with 

~P~ff) = ~Pl(Z), z E Q, 

W2ff) = - ~02(z), z E Q. 

(9) Using a micro-computer, of course, to save time. 
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Letting U be the upper half plane, we see that both ~Pl and ~P2 span the one-dimensional 

space A6(U, F). The classical discriminant from elliptic function theory 

00 

A(Z) = (2at) 12 Z r(k) e 2zakz, z E U, 
k=l  

where r(k) E Z is the value at the positive integer k of the Ramanujan tau function, also 

spans A6(U, I"). It follows that there are constants cfl=0 such that 

A ( z ) =  cj~/j(z), all z E  U, j =  1,2. (8.5.7) 

Since it is known that r(1)= 1, the evaluation of cj involves computing the Fourier series 

expansion of the cusp form ~0j. It is not clear whether the formula for A as a Poincar6 

series of a specific rational function (given by (8.5.7), for example) will help in studying 

the number theoretic properties of A and r. 

8.6. Let us assume that F is of type (g,0), g~>2, and let 2~<q~<2g-1. Let 

al ,  a2 . . . . .  a2q-1 be selected from among the fixed points of the generators 

A1 . . . . .  Ag, B1 . . . . .  Be-1 .  

The set (Ao=l, as usual) 

So = {A j (ak ) ; j  = 0 . . . . .  g, k =  1 . . . . .  2 q - l }  U {Bj (ak) ; j  = 1 . . . . .  g - l ,  k =  1 .. . . .  2 q - l }  

consists of (2q-  I) (2g -  l) distinct points. If F is a potential for F that vanishes at each 

point of So, then the cocycle X determined by F satisfies 

z (Aj )  = O, j =  1 . . . . .  g,  

z(Bj)=0,  j = l  . . . . .  g - 1 .  

From these two equations, we see that the defining relation (8.1.1) for F implies that 

p=;~(Bg) satisfies 

p . ( A g - 1 ) = O .  

It follows from the discussion of w 8.4, that 

p(z)  = c ( z - a )  q -  1 ( z_ f l )q -  |, 

where c E C, and a, fl are the fixed points of A e. Thus if we define 
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S = SoU {Bg(al)}, 

and require that F vanish at all the points of S, we see that p(al)=0, and since ct4=al =l:fl, 

we conclude that p=0.  

THEOREM. For a finitely generated quasi-Fuchsian group F o f  type (g, 0), g>~2, 

we can always choose a set S c A  consisting o f  ( 2 q - 1 ) ( 2 g - l ) + l  points so that the 

restriction map f rom A to S on ~l_q(ff2, F) is an isomorphism. In particular, 

Oq" ~q(S) ---> Aq(~'-2, F) 

is surjective with one dimensional kernel. The set S can be determined from the 

canonical generators o f F  and finitely many choices. 

Proof. For q~<2g-1, in particular q=2,  the theorem has been established above. 

Induction on q allows us to construct the set So for q + l  from the one for q as in w 7.5. 

8.7. We would, of course, like to specify a set S, as above, with precisely 

(2q-1) (2g - I )  points. We need the following 

LEMMA. Let A be a loxodromic transformation with fixed points al, a2. Let B be 

a transformation with f ixed point ill. Assume that al and az are distinct from fll and 

the other f ixed point o r b  (if  any). Let 

V 1 = {p E I-I2q_2; p(a 0 = 0 = p(a2), 

V2 = LoE rI2q_2; pq3 0 =o}. 

Consider the linear operator 

a n d / f q > 2 ,  p(Akfll)=O for k = 0  .. . . .  2q -5} ,  

L: Vl X V2---~ I-i2q_2 

defined by 

L(pl,p2) = PI" ( B -  1)+p2" ( I -A) .  (8.7. I) 

Then either (a) L is an isomorphism, or (b) L has a one-dimensional kernel. Case (a) 

always holds for  q=2, and is equivalent to the condition that L(p, O) have a non-zero 

projection onto the kernel o f ( l - A ) ,  where p is a non-zero element in VI. 

Proof. Note that dim(V~xV2)=dimHzq_2--2q-1.  Further, L is injective on 

{0}xV2 since the kernel of ( l - A )  is spanned by the function Pq-l(Z)  = 

(Z--6tl) q- l (z- t /2)  q-I that does not vanish at ill. It follows that L({0} x V2) is spanned 
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by the functions pj(z)=(Z--Otl)J(z--a2) 2q-2-j, j=0  . . . . .  2q-2,  j # : q - 1 .  It remains to 

verify that for q=2, L is an isomorphism. In this case, we normalize so that a l=0,  

a2 =0o, f l l = l . . T h u s  the space V1 consists of multiples of p ( z )=z .  Write B(z)-- 

(az+b)  ( c z+d)  - l ,  a d - b c =  1. We compute 

(Bz) B '  ( z ) -  l -  z = aczZ + ( ad  + bc - 1) z + bd. 

The kernel of ( l - A )  is spanned by p, and hence L fails to be an isomorphism only if 

a d + b c =  1. This implies that bc=O,  and hence B fixes either 0 or oo. This contradiction 

finishes the proof of the lemma. 

8.8. As a consequence of the last lemma, we can strengthen Theorem 8.6. Select 

as before 2q-1 distinct points a~ . . . . .  a2q-i  so that 

So = (As(ak), Bs(ak); j = 0 . . . . .  g--  1, k = 1 . . . . .  2 q -  1 } 

consists of (2q- 1) (2g-2) points. Let a l ,  a2 be the fixed points of Ag and let fll be a 

fixed point of Bg. Let 

S =  S 00{a,, * " o~2,Agfll , k = 0  . . . . .  2q-4}.  

Then S consists of (2q- 1) (2g- 1) points, and if F is an Eichler integral vanishing on S, 
then z = p d F  satisfies 

z(Aj)  = O = z(Bj) ,  j =  1 . . . . .  g - l ,  

z(Ag) (ak) = 0, k = 1,2, 

z (Ag) (Akg f lO=O,  k = 0  . . . . .  2q-5 ,  i f q > 2 ,  

Z(B) q30 = O. 

The defining relation for F shows that 

Hence 

Letting p l = g ( A g )  and p2=X(Bg), 
o~-q(Q,I') to S has a zero or 

isomorphic to ~_~(~, F). 

x(C1 o. . .  o C~_ 1) = O. 

0 = Z(Cg) = X ( A g ) . ( B g -  1)-(Ag I OBgl )+Z(Bg) . (A~  ' -  1).B~ 1. 

we see that the map that restricts 

one-dimensional kernel, and that 

(8.8.1) 

functions in 

~-l(f~, F)IS is 
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z1(C2) = -XI (C0"  C2. Finally, 
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Example. We consider g = 2 = q .  The 9 points in S are: 

a~, a2, the fixed points of A~, 

a3 a fixed point of  B1, 

bl = Al(a3), b2 = Bt(aO, b3 = Bl(a2), 

b4, bs, the fixed points of A2, 

b6, a fixed point of B2. 

It follows that the 6 functions defined on S by 

Ffibk) = ~jk, 1 <-j, k <- 6, 

Ffiak)=0,  j = l  . . . . .  6, k = 1 , 2 , 3 ,  

extend to a basis for 3:_~(fl, F). The corresponding periods ZI . . . . .  Z6 can now be 

computed, and from these, the values of  the functions F1, . . . ,  F6 at an arbitrary fixed 

point. For  example: 

zI(A1)(al) = 0 =zI(AI)(a2),  zI(AI)(a3) =A~(a3) -1, 

zI(B0 = O, 

zI(A2) (b4) -- 0 --- ,~l(A2) (bs), 

zI(B2) (b6) = 0. 

and zl(B1) allow us to compute zI(CI) and hence 

we compute p=zl(C2).(B2oA2), and by formulae 

(8.8. l) and (8.7. l) conclude that 

(zI(A2),z1(B2)) = L-~P. 

Similarly (the other extreme case): 

x6(A1) = 0 -- x6(B1), 

z6(A2) (b4) = 0 --- z6(A2) (b5), 

~6(B2) (b6) = B~(b6)- 1 _ 1 --- ct =1 = 0. 

As above, we see that z6(C2)=0; we conclude that Pl=~6(A2) and pE=~6(B2) satisfy 
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pl(b4) = 0 = pl(bs), (8.8.2) 

p2(b6) = ct, (8.8.3) 

and 

PI" (B2-1)+p2" (l-A2) = 0. (8.8.4) 

We know by Lemma 8.7 that 

Pl" (B2-1)+(p2-a)" (1 -A2) = - a .  (1 -A2) 

has a unique solution that satisfies (8.8.2) and (p2-a)(b6)=0. Hence (Pl,P2) solves 

(8.8.4) and satisfies both (8.8.2) and (8.8.3). 

8.9. I f F  is an Eichler integral defined at a fixed point b E f2 of an elliptic element ~, 

of order v, then F(zo) can be recovered from the period Z of F by formula (4.1.4) as long 

as b is a q-uniqueness point or equivalently 1 - q ~ 0  (modv); in particular, whenever 

q=2. 

To show that every finitely generated quasi-Fuchsian group of the first kind is 2- 

stratifiable, we consider various cases (compare with w 5 of [16]). 

Case I. F has signature (0, 3; vl, v2, Va). As remarked earlier, there is nothing to 

prove here since AE(Q, F)= {0}. 

Case II. F has signature (0, n; Vl . . . . .  vn), n>3. 

Let aj be a fixed point ofEj f o r j = l  . . . . .  n - l .  F o r j = l  . . . . .  n - 2 ,  let bj be the other 

fixed point of Ej if Ej is elliptic; while bj=Ej(aO if j * l  and Ej is parabolic and 

bl=El(a2) if El is parabolic. The set 

S = {al . . . . .  an-l,  bi . . . . .  bn-2} 

consists of 2n-3  distinct points. We consider o~_l(fl, l") to be normalized at a l ,  a2 ,  a3. 

Let FE ~- l (Q,  F) and assume that F vanishes on S. Let 

pj=(pdF)(Ej)=F.Ej-F,  j =  1 ..... n. 

Then for j - - l  . . . . .  n - 2 ,  pj vanishes at the two elliptic fixed points of Ej if Ej is elliptic. 

Such a pj must be zero by w 8.4. For j-- 1 .. . .  , n - 2 ,  and Ej parabolic, pj vanishes at the 

fixed point of Ej to order two (by the parabolicity of p d F  and by (5.2.3)) and at one 

other point (al if j >  1, and a2 if j =  |). Again pj must be identically zero. Finally Pn-l 

vanishes at an-i (to order two if En-1 is parabolic). The cocycle condition reads 
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P,-1" E,, = - p , .  (8.9.1) 

We consider cases. If both E._~ and E.  are parabolic, then p._~ vanishes also at the 

fixed point of E.  by (8.9.1). Hence p ._~=0=p. .  If E.-1 is elliptic and E.  is parabolic, 

then we normalize E,,-1 to have fixed points at 0, oo (with a._i  =oo) and E.  to have 

fixed point at 1. It follows that 

Pn-l(Z) = a, 

and hence that 

p,,(z) = b(z -  1)+c(z-  1) 2, 

-aE ' ( z ) - l  = b ( z -  1)+c(z-  1) 2. 

Setting z= l ,  we see that a=0.  We conclude that b=0=c ,  also. 

Case III. F has signature (g, 0), g~>2. This case was treated in w 8.8. 

Case IV. F has signature (g, n;vi .. . . .  v.), n>0 and g~>l. Let al, a2 be the fixed 

points of Ag, and let a3 be a fixed point of Bg. Let xk, Yk be the fixed points of Ek if Ek 

is elliptic, and let xk be the fixed point of Ek and yk=Ek(aO if Ek is parabolic, 

k= 1 .. . . .  n. Consider 

S = {aft j = 1,2, 3 ) U {Ak(aj), Bk(aj); j = 1,2, 3, k = 1 .. . . .  g -  1 (provided g > 1)} 

U {x k, Yk; k =  1, . . . ,n) .  

The set S consists of 6g-3+2n=dimA2([2, F)+3 points. We claim that the restriction 

of functions in ~_~(f~, F) to S is an isomorphism. The argument combines Case II and 

Case III ideas, and may be left to the reader. 

We have obtained the following 

THEOREM (Kra--aMaskit [16]). Every finitely generated quasi-Fuchsian group o f  

the first kind is 2-stratifiable. 

Remark. In [16], the stronger result, that every geometrically finite function group 

is stratifiable, was established. We have reproven a weaker result for quasi-Fuchsian 

groups, not only because the algorithm (to obtain a 2-stratification) is simpler, but also 

because in proving the above theorem, we have established an algorithm for construct- 

ing the values of Eichler integrals that form a basis for ~_~(f2, F) at fixed points of 

elements of F, that is easier to use than the general method of w 8.2. The methods of 

[16] could be simplified to yield 2-stratifications and hence algorithms for the vanishing 

problem for q=2, for all geometrically finite function groups. 
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8.10. We consider next torsion free quasi-Fuchsian groups F of type (0, n) with 

n>2. A q-stratification for F must have ( n - 1 ) ( 2 q - 1 ) - n  points. For q=2, we define S 

to consist of: 

a l, a 2 the fixed points of E~ -1 oE 2, 

bl = El(al) = EE(a0, Cl = El(a2) = E2(a2), 

b3 = E3(a0, c3--E3(a2), 

b,,-2 = E n - 2 ( a l ) ,  Cn--2 = E n - 2 ( a 2 ) ,  

b, - i  = En-l(a0. 

In the above formulation we have assumed that n~>4. If n=3, bl is the last term to be 

defined. We claim that for all q~>2, we can construct a set S consisting of loxodromic 

fixed points with the following properties: 

(a) [ S [ = ( n - l ) ( Z q - 1 ) - n ,  

(b) there exist points al . . . . .  a2q-2~.S so that S~{Ej(aD; j = l , . . . , n - l ,  

k= 1 . . . . .  2q-2 ,  (j, k) :~(n-  1,2q-2)}. 

For q=2, we have constructed such a set $2, above. Assume Sq exists for some 

q~>2. The set E(~(Sq) has (n-1)(2q-1)-n~>2q points, provided n>3 or q>2. In this 

case we select two points azq_ l, a2q in E-~l(Sq)\{al . . . . .  a2q_2}. If n=3 and q=2, we let 

a3=E{l(aO, a4=E(l(az). We define 

Sq+ 1 = Sq U {a2q_l, a2q } U {En_l(azq_2) } U {Ej(a2q_l); j = I . . . . .  n - 1 }  

U {Ej(a2q); j = 1 .. . .  , n-2} .  

We note that Sq+ ! contains at most 

(n -  I) (2q- 1 ) - n + 2 +  1 + (n -2 )+  (n-3) = (n -  I) (2q+ 1)-n 

points. We show next that property (b) implies that S is a q-stratification for F; hence 

ISq+ll=(n - 1) (2q+ 1)-n.  

Let FE o~l_q(g2, F) and let 

pj =(pd F) (Ej), j = 1 . . . . .  n. 
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For j =  1 .. . . .  n - 2 ,  pj vanishes at ak, k= 1 . . . . .  2q -2 ,  and the fixed point of Ej (recall that 

all the ak are loxodromic fixed points). Hence pj=0, j = l  . . . . .  n - 2 .  Similarly P,,-i 

vanishes at the fixed point of En-~ and at a~ . . . . .  a2q_3; while Pn vanishes at the fixed 

point of E,,. The cocycle condition (Pn_l'gn+Pn=O) shows, as in w 8.9, that 

P,,- 1 = O=p~. 

We have established the 

THEOREM. Let F be a quasi-Fuchsian torsion free group of type (0, n), n>-3. Then 
F is q-stratifiable for all q>~2. 

w 9. Beltrami coefficients supported on the invariant component (proof of Theorem 5) 

9.1. Let F be a finitely generated Fuchsian group of the first kind operating on the unit 

disk A. To prove Theorem 5, we must characterize ~l_q(A, F) in ~l--q(~"~, F). We 

assume that 2d=dim ~l-q(f~, F)>0, and note that dim ~l-q(A, F)=d. Let 

FE~;l_q(f2, F), then FE~I_q(A,F)  if and only if FIA* is holomorphic, where 

A* = {z E C U { ~ }; Iz[> l }. Here we identify F with its extension to C as a potential of a 

generalized canonical Beltrami differential. Consider the M6bius transformation 

A(z)=z -~, and the group F*=A-IFA.  The group F* is also a finitely generated 

Fuchsian group of the first kind operating on the unit disk. For FE$~1_q(f2, F), 

F*=A*F is a potential for F*. Furthermore, FE  ~l-q(A, F) if and only if F* is 

holomorphic on A. Thus F E  ~; l_q (A,  F)  if and only if 

flz zkF*(z) dz = 0, k = 0, 1 (9.1.1) 
I=1 

(See, for example, [25, p. 361].) Simple change of argument calculations lead to the 

equivalence of (9.1.1) with 

fo E~ei(l-k-Eq)~176 = 0, = 0, . . . . .  (9.1.2) k 1 

It remains to show that for FE  ~l_q(f2, F) condition (9.1.2) need be satisfied only for a 

finite set of k to guarantee that FE ~ l _ q ( A ,  F).  This is a consequence of the finite 

dimensionality of ~;l_q(f2,F). Given FE~;I_q(Q,F)~I_q(A,F),  there is a ~>0 
such that the integral Ik(F) in (9.1.2) does not vanish for k=k. 

Thus for FE  ~l-q(f2, F ) \ ~ I - q ( A ,  F) we define 

a(F) = min (k E Z; k I> O, Ik(F) ~= 0). 
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The space ~--q(~"], F) is a direct sum 

'~l--q(~'~, r )  = ~l-q(A, r )  (~ ~;l-q(A*, r), 

Every F E  ,~l-a(A*, F) is holomorphic on A. If we let for such an F, 

F(z) = ~ aj z J 

j=O 

be the Taylor series expansion of F at the origin, then for k=O, 1 . . . . .  

We conclude that 

where 

lk(F) = 2etCt2q+k- 1. 

#(F) =ordo qo, 

d2q-I F 

cp= dZ2q_l. 

The operator dZq-1/dz zq-l maps ~I-q(A*,F) isomorphically onto Aq(A,F); see [14, 

pp. 210-219]. Thus the non-negative integers 

~u(F); FE  ~l_q(ff2, r ) \ ~ l _ q ( A ,  V)) 

are restricted to the finite set of possible orders of zeros at the origin of elements in the 

vector space Aq(A, F). 

9.2. We can hence obtain estimates on the number m(F, q) appearing in Theo- 

rem 5. 

COROLLARY. Assume that F has signature (g, n;v 1 . . . . .  Vn). Let  v= l  i f  n=0 or 

vj= oo for  j=  1 . . . . .  n; let v be the maximum o f  the finite vj otherwise. Then 

m(F, q) ~ qv (2q-2)+  E (1-  l/v i) , 
I. j=l 

and 
n 

m(r, q) = (2q-  1) ( g -  1)+ E [q -q /v j ] -  1, 
j=l 

i f  0 is not a Weierstrass point for  Aq(A, r).  
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Proof. The first estimate is the highest possible order of zeros of elements of 

Aq(A, F); see [14, p. 114]. The hypothesis that 0 is not a Weierstrass point for Aq(A, F) 

means precisely that the possible orders of vanishing at the origin for functions in 

Aq(A, F) are 

0,1 . . . . .  d -1  

(recall that dim Aq(A, F)=d). 

Remarks. (1) We can always choose a Mfbius transformation A that fixes A so that 

zero is not a Weierstrass point for Aq(A, AFA-1). 
(2) In the second of the above formulae for m(F, q), we have assumed, of course, 

that d>0. 

w 10. Kleinian groups with two components (neither invariant) 

10.1. Let G be a non-elementary finitely generated Kleinian group with s consisting of 

two components, neither of them invariant. It was shown in [17], that there is a 

(unique) finitely generated quasi-Fuchsian group F of the first kind so that G is a Z2-  

extension of F. Further 

G = F O F A ,  

where A E G \ F ,  A 2 E 1", and A is either elliptic of order 2 or loxodromic. It follows that 

every parabolic element in G is in F, and comes from a puncture on ~/G~A/F, where A 

is one of the components of f~. Since 

E~_q(~, G) ~ E~_q(Q, r) ,  (lO. I. I) 

it follows that E~_q(f~, G)= {0}, and hence 

PHI(G, I-I2q-2) ~ ~;1 -q(~"~, G). 

It follows also that 

n 

dimPHl(G, Fl2q_ 2) = dim Aq(f2, G) = dim Aq(A, F) = (2q-  1)+ E [q-q/vk], 
k=l 

where (g, n; vl . . . . .  lPn) is the signature of F. 

10.2. To show that the vanishing problem for G has an algebraic solution, we will 

show how to construct via linear algebra PZI(G, I-I2q_2) from PZ1(F, I-IEq-2). We saw 
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in w 8.2 that the space PZI(F,I-I2q_2) is determined from a presentation of F by 

algebraic operations. We have an obvious restriction map 

PZi(G, I 'IEq_2) --~ pZ1(F, 112q-2).  

We must find necessary and sufficient conditions for a cocycle Z EPZ~( F, l'I2q-2) to 

extend to a cocycle for G. 

For 7EF,  we let y a = A o T o A - =  and observe that 7AEF (since F is a normal 

subgroup of G). Let z EPZI(F,112q_2), and let p E112q_ 2. If A is elliptic (of order 2) 

we assume that p E (1-I2q_2) A (recall the definition of this subspace in w 8.2). We would 

like to set p -- z(A). A necessary and sufficient condition for the existence of a cocycle 

EpZI(G, I-I2q-2) with ;~(A)=p and ~(7)=Z(7) for all 7 E F, is that the equation 

)~(),a) =p . ( yoA- l )+X(7 ) .A - l_p .A -1  (10.2.1) 

be satisfied for all 7 E F. Equation (10.2.1) can be rewritten as 

X(y a ) -A-Z(7) -p -  (7 -  l) = 0, 7 E F. (10.2.2) 

Routine calculations show that equation (10.2.2) is satisfied for 71 ~ and 711 when- 

ever it is satisfied by 71 and 722F. Hence in order for (10.2.1) to hold for all 7EF,  it is 

necessary and sufficient that (10.2.2) be satisfied for generators of F. Let V--1-I2q_ 2 if 

A is loxodromic, and let V=([I2q_2) A if A is elliptic. Let 71 . . . . .  7N be any set of 

generators for F. Define 

by 

h: PZI(F, 1"I2q_2) X V--.~ lI~q_ 2 

htx,  p)  = (pl . . . . .  PN), 

where 

p/ = Z (~j ) " A - x ( y j ) - p  " (TF I ), 

Then h is a C-linear map, and 

(X, P) E Ker h 

if and only if there exists a ~ EpZI(G, H2q-2) with 

j =  1 .. . . .  N. 

;~[F=z and ~(A)=p.  
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We have obtained the following 

THEOREM. Let G be a non-elementary finitely generated Kleinian group with two 

components, neither invariant. Let f E  ~q(Aq) have poles only at q-uniqueness points 

and parabolic f ixed points. There exists an algebraic algorithm for  determining wheth- 

er or not o q f = 0 .  

Remarks. (I) If A is elliptic, then the fixed points of A may or may not be q- 

uniqueness points. 

(2) The results of [17] imply the existence of 2-stratifications for G. 

w 11. Vector bundles over deformation spaces of Kleinian groups 

11.1. Let F be a finitely generated non-elementary Kleinian group. We normalize F so 

that 0, 1, o0 EA. Let M(F) be the space of Beltrami coefficients for F; that is, the space 

of generalized Beltrami differentials for q=2 of L=-norm less than one. For/a E M(F), 

let u/' be the unique normalized (fixing 0, 1, oo)/~-conformal automorphism of C O {oo}. 

The deformation space of F, T(F), may be defined (see, for example, [16]) as the set of 

restrictions to A of {w";/~EM(F)). It is known to be a domain of  holomorphy in C a, 

d=dim A2(ff~, F), [16]. 

LEMMA. For z E Aq, 

/~ ~-~ w"(z) (11.1.I) 

is a holomorphic mapping from T(F) into C, except possibly i f  zE Q is stabilized by a 

group of  order 2 with the second f ixed point in the same component as z. 

Proof. See [16] or [17]. In [17], a point z for which (11.1.1) is a well defined 

function on T(F) was called sturdy. 

In addition to the trivial fiber space T(F)x C over T(F), we will need the Bers f b e r  

space 

F(r )  = {(Lu], z); ~u] e 7(r) ,  z e w"(~)) ,  

where [/z] is the equivalence class in T(F) of/~ EM(F). The group F operates on F(F) in 

a fiber preserving way by 

~,(tu], z) = (tu], r z e w- (~ ) ,  y ~ r ,  ~ E M(r) ,  
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where 

= u / ' o y o  (u/') - l ,  

as a group of complex analytic homeomorphisms. 

The natural projection of F(F) onto T(F) will be denoted by n; that is, 

~(Lu], z) = Lu], ~ e M(F), z e ue(Q).  

11.2. Let  f be  a meromorphic function on F(F) with the property that for each 

/~ E M(F), flzc - l(Lu]) E ~q(W"(Aq)). It follows that the Poincar6 series 

(Oqf)  (L/t], z) = X f([/2], #*~) (~u), (z)q 
yE F 

converges uniformly and absolutely on compact subsets of F(F) and defines a holomor- 

phic function--an automorphic form of weight ( -2q)  for the action of F on F(F); that is, 

O q f satisfies 

(Oaf )  (Lu], r (r (z) q = (Oqf)  (Lu], z), all # ~ M(F), all z 6 tou(~), all 7 E F. 

Let us choose al . . . . .  a2q-1 to be distinct sturdy points for F (located in Aq), and 

assume that a l=0,  a2=l ,  a3 =oo (by replacing F by a conjugate group, if necessary). 

Let ~,0=L y~ .... , y~v be generators for F, and consider 

~q(S, T(F)) = { f  meromorphic on F(F); fl:~-'(Lu]) E ~q(Wa(S)), all/, E M(F)), 

where S is defined by (0.1.8). We note that if b E S ~ { a l  . . . . .  a2q-l}, then 

g(Lu], z) 
1 )2~IlwU(b)-u)U(aj) 

: 

Z- 1 j=4 Z-  te~(aj) 
, / ,  E M (F), z E u/'(fl) ,  

defines a function in ~q(S, T(F)). Note that the product in the above formula is to be 

ignored if q=2. As b varies in S \ {a l  ..... a2q-l}, we obtain functions which on each 

fiber form a basis for the restrictions of ~q(S, T(F)) to that fiber. Hence ~q(S, T(F)) is a 

trivial rank s fiber bundle over T(F), where 

s = [ s [ - ( 2 q -  1). (11.2.1) 

Let Aq(T(I")) be the rank d vector bundle of cusp forms of weight ( -2q)  over T(F); 

8-848282 Acta Mathematica 153. Imprim~ le 8 ao0t 1984 
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that is, the fiber over [g], /~EM(F), consists of Aq(Wa(Q),wUF(/tru)-l), and 

d=dim Aq(Q, F). 

THEOREM. The Poincar~ series map 

Oq: ~q(S, T(F)) ~ Aq(T(I")) (11.2.2) 

is a surjective bundle map. The kernel Of Oq has constant dimension s - d  (over all the 

fibers). The bundle map Oq splits. Hence there is a rank o f  d subbundle Of ~q(S, T(F)) 

with the property that Oq is an isomorphism between this bundle and Aq(T(F)). 

Proof. The first part of the theorem is a direct consequence of Theorem 1 and the 

remarks in this paragraph. The existence of a splitting map follows from the general 

theory of vector bundles (or equivalently, locally free sheaves) over Stein manifolds, 

see, for example [9, p. 256]. 

Remarks. (1) It would be interesting to exhibit directly the splitting matt--without 

relying on deep results from several complex variable theory. 

(2) Many times, we can choose S so that (11.2.2) is an isomorphism. 

(3) It is not known whether Aa(T(F)) is always a trivial bundle over T(F). If T(F) is 

contractable, then every vector bundle over T(F) is topologically trivial, and because 

T(F) is Stein, analytically trivial by a general theorem of Grauert [8] (see also the 

exposition in [6]). 

11.3. 

THEOREM. I f  S is a q-stratification for F, then Oq o f  (11.2.2) is a bundle 

isomorphism. Such q-stratifications exist whenever: 

(a) F is a geometrically finite non-elementary function group and q=2, 

(b) F is a finitely generated Kleinian group with two components, neither invar- 

iant, and q=2, 

(c) F is a Schottky group (and q is arbitrary), or 

(d) F is a torsion free quasi-Fuchsian group o f  type (0, n) n>-3 (and q is arbitrary). 

Proof. Parts (a) and (b) follow from the results of [17]. (In w 8 we have also 

constructed 2-stratifications for finitely generated quasi-Fuchsian groups of the first 

kind.) Part (c) follows from w 7.5 and part (d) from w 8.10. 

COROLLARY. The vector bundle Aq(T(I")) over T(F) is analytically trivial when- 

ever 
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(a) each component of  f~ is simply connected, or 

(b) q=2, or 

(c) F is a Schottky group. 

Proof. If each component of • is simply connected, then T(F) is contractible (see, 

for example, [16]) and the result follows by Grauert's theorem [8], as remarked above. 

Recall [16] that T(F) is a domain in number space, and Az(T(F)) is isomorphic to the 

cotangent bundle of T(F). The cotangent bundle of a domain in C d is always analytical- 

ly trivial. The result for Schottky groups follows from the theorem. 

w 12. Appendix: Stabilizers of limit points 

We have used several times the following well known result about the limit set A of a 

Kleinian group F. A proof is supplied for the convenience of the reader. 

LEMMA. Let x E A. Then the stabilizer F 0 of  x in F is always an elementary group. 

There are three possibilities: 

(i) Fo is a finite cyclic group of  order n, l~<n<~, 

(ii) F o is a finite cyclic extension of  a rank 1 or rank 2 parabolic group, or 

(iii) F 0 is an abelian finite cyclic extension of  a purely loxodromic cyclic group. 

Proof. Assume first that every element of Fo is elliptic and fixes x= ~. Thus the 

elements of Fo are of the form 

z~-->az+b. 

If A and BEFo have only ~ as a common fixed point, then A - l o B o A o B  -1 is 

parabolic and fixes ~.  Thus every element of Fo also fixes another point which may be 

assumed to be z=0. Hence Fo is a discrete subgroup of the group of rotations. We must 

be in case (i). 

If Fo contains a parabolic element A, then Fo cannot contain a loxodromic element 

B. For i fA(z)=z+ 1 and B(z)=Az, IA[~ = 1 (without loss of generality), then Fo contains the 

element 

B-noAoBn:z~-->Z+A-n, n =  1,2 . . . . .  

and F0 cannot be discrete. 

Assume hence that Fo contains a parabolic element that fixes x = ~ .  Then Fo 

contains only parabolic and elliptic elements and F0 acts discontinuously on C. Such a 

group gives us case (ii). Similarly, if Fo contains a loxodromic element, then we have 

case (iii). 
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