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L u n d  

Marcel Riesz was born in GySr, Hungary,  November  16, 1886 and died in Lund, 

Sweden, on September 4, 1969. He studied in Budapest, GSttingen and Paris. In  1911 

Mittag-Leffler invited him to come to Sweden where he taught  at  Stockholms HSgskola. 

In  1926 he was appointed professor of mathematics  at  the university of Lund. After retiring 

from this position in 1952 he went to the United States where he was visiting research pro- 

fessor at  the universities of MaryIand and Chicago and other places. He  returned to Lund 

in 1962. He was a member  of the Swedish Academy of Sciences, the Physiographical 

Society in Lund, Videnskabernes Selskab in Copenhagen, had honorary degrees from the 

universities of Copenhagen and Lund and was an honorary member  of the Swedish mathe- 

matical  society. 

Marcel Riesz was the youngest member  of a generation of brilliant Hungarian mathe- 

maticians tha t  included among others Leopold Fejdr, Riesz's elder brother Frederick 

Riesz and Alfred Haar .  His first paper  ([1], 1906) is an exposition in Hungarian of a subject 

of current interest at  the time, namely various summation methods for Taylor series of 

analytic functions. One of these methods, due to Mittag-Leffler, sums the series in a star- 

shaped region bounded by singular points, the Mittag-Leffler star. Common interest in 
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these matters was the beginning of the association with Mittag-Leffler. They seem to 

have met for the first time in Stockholm in 1908. 

In  the period from 1908 to 1916, Riesz did very successful work in the summability 

theory of power series, trigonometric series and Dirichlet series. The starting point was 

Fejdr's discovery that  the Fourier series of a function / is summable by arithmetic means 

to/(x) at every point of continuity. Lcbesgue had shown that  the same holds at all Lebesgue 

points. The current scales of summation methods were those of HOlder and Ces~ro, recently 

shown to be equivalent. The Ceshro mean s(n ~) of order ~ > - 1 of a sequence {s~)~ ~ s o = 0, 

or a series with partial sums s~ is by definition the quotient of the coefficients of the nth 

terms in the formal power series for ( 1 -  x) -~ ~ o  s~x n and ( 1 -  x) -~-I. The Ceshro limit 

is lira s(= ~) for n-~ oo. When ~ = 1, this procedure sums the series by arithmetic means and 

the result of Lebesgue applies. One of the classical results in Fourier series, namely that  

Fej4r's (and Lebesgue's) theorem holds for summatioll of order ~ > 0  is essentially due to 

Riesz. He announced it in 1909 [7] and published his proof much later [25]. In  the meantime 

there were proofs by Chapman in 1910-11 and by Hardy in 1913. Riesz's main contribution, 

however, was in another direction. He observed that Ces~ro's summation is equivalent to 

another one which has the advantage of being applicable also to functions s(x) of locally 

bounded variation for x ~> 0 such that  s(0)=s(0 + )=  0. I ts  means are 

sa(x) = x  -~ (x - t ) ads ( t )  (1) 

and the limit is defined accordingly. In  case of a series we put s (x )=s~  when n < ~ x < n + l .  

The right-hand side of (1) appears also in the classical l~iemann-Liouville integral of a 

funct ion/ ,  

I~ / ( x )  = ~ (x - t)~-l/(t)  dr. (2) 

The semi-group properties of the operator a-+ I~, namely that I ~ IZ = I ~+~ and I ~ = identity 

has immediate application to the means (1). The corresponding summation method applies 

to generalized Dirichlet series 

f(z) = f /  e - ~  ds(t), 

where z is a complex number. The means are 

f x -~ e - ~ t ( x - t F d s ( t )  
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and the a-sum of /(z) is obtained by letting x-+ ~ .  These integrals were introduced by 

Riesz in 1909 [7] under the name of typical means. They had an instant success and 

led to a Cambridge Tract on Dirichlet series 1915 written jointly by Hardy and Riesz 

and reprinted in 1952. 

Some ten years later, Riesz had established himself as an expert in the theory of trigo- 

nometric series and together with E. Hilb wrote the article Neuere Untersuchungen fiber 

trigonometrische Reihen in Eneyklop/~die der Mathematischen Wissenschaften. I t  would 

carry us too far to penetrate in detail Riesz's contributions to this intricate and much studied 

subject, but  at  least three more things s tandout .  His interpolation formula [14] for trigo- 

nometric polynomials has a permanent place in interpolation theory and provides simple 

proofs of, e.g., the well-known inequalities of Bernstein and Markoff with the best constants. 

One recurrent theme in Riesz's work is a theorem by Fatou that says that  the power- 

series of an analytic function converges at every point of the boundary of the circle of 

convergence where the function is regular and the coefficients of the series tend to zero. 

Riesz gave a beautiful proof [17] of this result that  also showed that  the convergence is 

locally uniform on every are of regularity. This proof is available in Landau's little booklet 

Darstellung und Begriindung einiger neuerer Ergebnisse der Funktionentheorie. Riesz also 

extended Fatou's  theorem to Dirichlet series and to summability situations. His best 

known result in Fourier series, however, lies in another direction. Every trigonometric 

series with real coefficients can be written as 

u(e ~~ = ~ Re c~e ~n~ . (3) 
0 

Formally, this is the real part of the power series 

I (~ )  = >1 c,,~", z = , -~ '  
0 

for r = 1. Its imaginary part 

v(e i~ = ~. Im c~ e ~~ 
0 

is called the conjugate series to (3). By Parseval's formula 

f ;~ u( e'O)2 dO = ~r ~ , cn ,2 = f ~  v( e'~ dO , (4) 

provided we normalize so that  c o =0. Hence u--->v is an isometry L ~ L  ~ where L 2 refers to 

the interval 0,2•. The connection between conjugate series was an early subject of study. 

In particular, as early as 1912, W. H. and G. C. Young had considered the question whether 

the map u-+v might be, if not an isometry, then at least a homeomorphism LV~L ~, 
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1 < p < co, but they had some indirect evidence for a negative answer. Here was an outstand- 

ing unsolved problem and when Riesz wrote to Hardy in 1923 that  he had found a proof 

(see [33]), Hardy  wrote back "some months ago you said ' j 'ai d~montrd que 2 s~r. trig. 

conjugu4es sont toujours en m~me temps les s~ries de F de fonctions de la classeLP(p > 1)... ' .  

I want the proo[. Both I and my pupil Titchmarsh have tried in vain to prove i t . . . " .  And 

in the next letter "Very many thanks- -you  supply all that  is essential, I have sent on your 

letter to Titchmarsh. Most elegant and beautiful. Of course p. 2 is the real point. I t  is 

amazing that  none of us should have seen it before (even for p = 4!)". What Hardy is refering 

to is Riesz's use of Cauehy's formula which gives ~ "  ](e~a)~dO =0 when p is an integer. 

Taking the real part and putting p = 2 proves (4) while, if p = 4, 

~ (u 4 - 6 u~v ~ + v 4) dO = O. 

This identity and a moment's reflection show that  ~0 ~" vPdO <~ c~,~ "~ u~dO when p = 4 and, more 

generally, when p is an even integer. The remaining arguments of the proof were more 

technical but they eventually lead Riesz to a basic result in analysis, his convexity theorem 

[32]. I t  combines elementary form with great power and runs as follows: the logarithm of 

the maximum 2~I~ of the absolute value of a bilinear form 

under the conditions 

J= l  k = l  

j ~ l  k = l  

is a convex function of ~, fl in the triangle 

A little later, Riesz's student Olof Thorin proved convexity when a ~>0, fl >~0 provided the 

variables x and y are allowed to be complex. The convexity has many applications, one of 

them to Riesz's theorem about conjugate functions. Let cp be the best constant in the 

inequality [[vll s ~< %[lull ~ where I1[[1 ~ = (S~l/(e'~)[ ~dO)I/p" Then, by H61der's inequality, % is 

the supremum of the absolute value of the bilinear form A(u, w) = . ~  u(e~O)w(etO)dO when 

Iluil~<l and ilwllo~<l where p-1 + q - l = l .  Further, c~=%. Hence, since c2=1 and, by the 

argument given above, c~ < oo when p is an even integer, it follows that  % < oo when 

1 < p  < ~ .  Riesz's convexity theorem has been the model for similar results, in recent times 

also for the theory of interpolation spaces. 
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Before Riesz moved to Lund he also worked with the moment  problem ([24]), in 

particular the Hamburger  moment  problem: find a real measure d#>~0 on the real line 

with given moments  

c~ = x~ d~u( x). 

Hans Hamburger ' s  almost complete analysis of this problem in 1920 at t racted the at tent ion 

of many  mathematicians,  among them Riesz and Torsten Carleman. Here Carleman, who 

could fit the problem into his theory of singular integral equations, was perhaps more suc- 

cessful. Riesz was prepared for the subject through his friend Erik Stridsberg who took a 

lively interest in Stieltjes's classical paper from 1894 about  the moment  problem on the 

ha/f-axis x >/0. 

The meat  of the moment  problem is the analysis of the set of solutions and the problem 

of uniqueness. Existence of a solution # is a relatively simple matter .  I t  is obviously neces- 

sary that ,  for every real polynomial P, 

P(z) =~a,~x'*>~O ~ ~a,~cn>~O (5) 

and it is easy to see tha t  this is equivalent to the condition tha t  all the quadratic forms 

~'~ ~ Cj+kyjyk are ~> 0.  To prove tha t  (5) is also sufficient one extends the non-negative 

linear functional ~0(P)=F~anc,~ from polynomials to the space of real continuous functions 

of at most  polynomial growth. This procedure is now familiar to every student of analysis 

who knows the Hahn-Banach  theorem, but it is interesting to note tha t  Riesz used it in 

1918 (see [24], the third note p. 2) in a lecture to the Stockholm Mathematical Society, 

well before Banach (1923, 1929) and Hahn  (1926). 

Riesz's work after he moved to Lund marks a break with the past. He acquired new 

interests, starting work in potential theory and wave propagation including Dirac's equa- 

t ion of the electron and relativity theory. He also took a continuing interest in elementary 

number  theory. His most important  contributions are in potential theory and wave propa- 

gation. In  both cases he invented new multi-dimensional analogues of the Riemann- 

Liouville integral (2). The one used in potential theory is the fractional potential  of order 

of a mass distr ibution/dx,  

I~l(x) = Hm ((z)-l f l x - y I ~ ' -  ~ t(Y) dy. (6) 

Here I x - y ] is the euclidean distance in R m, 0 < a < m, and 
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iS chosen so that  I~]  ~ = ]~+~ when a > O, ~ >0, a +~ <m. By a passage to the limit, I ~ is 

the identity. In  particular, if 

U~ f ( x )  = Hm (a) - l  f l x - y [~-'n dff(x) 

is the a-potential of a mass distribution ff one has 

whcrt a >  0 , ~ > 0 , 0 r  ~ < m .  Hence 

f u~ ff(x) df(x) = HAa) f ( u~'*ff(~))* dx (6) 

is non-negative. When a = 2  <m,  this represents the self-energy of the mass distribution # 

with respect to the Newtonian potential. In this case the equilibrium distribution ffF on 

a compact set F had been characterized by Gauss as having minimal energy in the class 

of mass distributions # supported by F and having a given total mass. After his student 

Otto Frostman had put this principle on a strict basis, Riesz noted that  the formula (6) 

indicates that  the equilibrium distribution with respect to an a-potential could be defined 

by this principle of Gauss. In  the case 0<a--<2, which is the condition for the kernel 

I x - y l  ~-"  to be subharmonic, this program met with complete success in Frostman's 

well-known thesis. The equilibrium distribution ffF exists, it is unique, its potential on F 

is essentially constant, there is a notion of a-capacity and there are generalizations of the 

balayage process and Green's function. After Frostman, Riesz himself wrote on the subject 

[42]. Viewed in perspective, these contributions opened the way to the present-day variety 

of generalizations and refinements of classical potential theory. 

At some points in his work on a-potentials, Riesz uses the fact that  if ] is smooth 

enough, (6) is a regular analytic function of a when c < R e  a < m  with a given c and that  

A1 ~= I ~-2 where A = (~/~xl)2+ .... + (~/~xm) ~ is Laplace's operator. Analyticity properties 

became very important in the integral 

= Hm ( a ) -  l _ y ) ~ -  ,~ ] ( y )  d y  (7) 

associated with the wave operator 

A = ( ~ l ~ x ~ )  ~ - . . .  - ( ~ /~x ,~ )  ~. 

Here r ~ ( x ) = x ~ -  ... - x ~  is the square of the Lorentz distance and C:r~(x)>70, x I >0  is the 
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forward light-cone so tha t  x -  C is the retrograde light-cone with its vertex at x. Finally, 

(8) 

Clearly, (7) is an analytic function of ~ when the integral converges, i.e. when Re ~ > m  - 2 .  

The factor H a is chosen so tha t  

A I  ~ =  I ~-2, I ~ I  ~ = I ~+~ (9) 

for large ~ and ft. The main point is now that ,  if / is smooth enough, the right side of (7) 

is analytic in the halfplane Re zr > - c  with any  given c, tha t  (9) holds under corresponding 

circumstances and tha t  I ~ = 1. The real explanation for this is perhaps the following. Let i t 

have compact support and let 

d x  

be the Fourier-Laplace transform of it. Then 

i it(x) = (2  u)-m f e=("'" ) + + 

where the integral is independent of the choice of ~ ~ C and the right side is indeed entire 

analytic in ~ when it is infinitely differentiable. Although Riesz was conscious of this, 

he always preferred direct proofs avoiding the use of the Fourier-Laplace transform. In  his 

last published paper  [59] he gives a variant  of an earlier direct proof tha t  I ~ is the identity. 

This point of view is connected with his intense interest in special relativity and questions 

of invariance under the Lorentz group. 

I t  is probable tha t  Riesz conceived the integral (7) during a series of seminars in the 

beginning of the thirties conducted by  his colleague Nils Zeilon. The subject was Hada-  

mard 's  theory of finite parts of integrals as exposed in his well-known book on the Cauchy 

problem. Hadamard  gives explicit formulas for the solution of Cauchy's problem with data 

on a space-like surface for the wave equation with variable coefficients. In  1938 Riesz was 

ready with a beautiful variant  of these formulas based on an operation I ~ analogous to 

(7) and with similar properties relative to the wave operator with variable coefficients. 

He published an account in a note added to a lecture [43] given a ),ear earlier where he 

treats the case of constant coefficients. In  the lecture he remarked among other things that  

the fact tha t  1/Hm(2)=0 when m >2  is even reflects Huygens '  principle and he finished by  

giving an invariant  formula for the solution of Cauehy's problem when m = 4  and analyzing 

it geometrically. In  the fifties, during his s tay in the United States, Riesz devoted much 
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thought  to this formula and ex tended  it to characteristic surfaces in an intriguing pa- 

per [55]. 

The short paper  [43] contains the main body of Riesz's work on the wave equation 

and it  still makes impressive reading. The detailed account came in 1949 in a massive 

paper  [47] in the Acta Mathematica. Considering that  Riesz was a natural  perfectionist 

and, in his later years, a slow worker, this paper  is the result of an enormous effort on his 

part.  I t  was made possible only through collaboration with his friend K. G. Hagstroem 

who graciously offered his hospitality and his services as a secretary during many  summers 

in the forties. 

Riesz's work on the wave equation did not contribute to the existence theory of 

Cauchy's problem and one of its main goals, the proper interpretation of divergent inte- 

grals, has since been attained in a much larger framework through Laurent  Schwartz's 

theory of distributions. But  the method of analytical continuation which makes sense 

also in this theory, is a lasting contribution. 

Around 1930, the teaching of quantum mechanics and relativity theory became a 

necessity a t  every self-respecting university, but  at  the t ime not  many  physicists had the 

mathematical  training necessary for these subjects. For many  years Riesz lectured periodi- 

cally on tensors and matrices to a motley crew of physicists and mathematicians.  He also 

star ted research of his own and published his first paper  in relativistic quantum theory in 

1946. His main interest was the Dirac equation and the Clifford algebra. In  [53] he intro- 

duced what  amounts  to a Clifford structure on a Lorentz manifold. Riesz also applied 

his work on the wave equation to the classical relativistic theory of the electron [49, 50]. 

The popular  lecture [44] on the models of non-euclidean geometry, a masterpiece in its 

kind, is a byproduct  of his interest in the geometry of relativity. 

Riesz ~rote  clearly and well and paid much attention to form. His favourite language 

was French and his style, steeped in the classical tradition, sometimes borders on the pre- 

cious. Mathematical research always involves competition for fame and a place in the 

hierarchy, but  he made it seem a gentleman's game. He was of course no stranger to ambi- 

tiort and had to assert himself both in Sweden and in the cosmopolitan world he came 

from. He admired his illustrious brother Frederick and they had cordial relations. They 

wrote one paper  [22] together, but  otherwise there is a clear distance in content between 

their work, perhaps a result of a conscious effort on Marcel's part .  Seen together they had 

much physical resemblance but  very different temperaments ,  Frederick calm with great  

poise and Marcel quick and restless in comparison. Marcel Riesz knew an astonishing num- 

ber of mathematicians and over the years made and kept many  friends among them. 

Mittag-Leffler had made Stockholms tt6gskola a center of mathematical  research. 

I t  had a peak of act ivi ty before and around the turn of the century and its other mathe- 
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maticians, Bendixson, yon Koch and Fredholm were famous names. Some ten years later, 

however, their scientific activity was on the wane for ~arious reasons. Riesz filled a mathe- 

matical vacuum. IIe learnt Swedish quickly and he was very active in the local mathe- 

matical society where he soon became the dominating figure. He was lively, accessible, an 

enthusiastic teacher and a good lecturer with a thorough knowledge of his field. His charm- 

ing expository lecture [15] from 1913, written in Swedish, has a distinct personal touch 

reflecting these qualities. In  1923, Riesz lost a competition for a chair in Lund to Carleman. 

Shortly afterwards yon Koch died and Bendixson, Fredholm and Phragmdn made a move 

to appoint Riesz as yon Koch's successor. The move failed and the call went to Carleman. 

Shortly afterwards, Riesz got a position in Lund. At least in the beginning, he must have 

felt his stay in Lund as an exile. He had been very successful in Stockholm where, among 

others, t tarald Cramdr and Einar Hille had been his personal students. 

Lund did not have much of a mathematical tradition but Riesz's arrival meant a 

change of atmosphere. He was now an international star, active with his own research 

and he also had the time and incentive to broaden his interests. Frostman's  thesis was a 

success and there were others after him. Lars H6rmander was one of Riesz's last personal 

students in Sweden. Riesz's work on fractional potentials was the origin of the contribu- 

tions from Lund to the theory of partial differential operators. 

I met Marcel Riesz in 1937, my first year at the university. He then had a small circle 

of graduate students. Each one got personal attention. Riesz loved to talk about mathe- 

matics and he appreciated having listeners. He could go on for hours and when he was in 

good form, his grip on the listener never slackened. Riesz lived alone and these personal 

lectures took place sometimes in his home, sometimes in his favourite car@ and sometimes 

over the telphone. The subjects were mostly those that  occupied him at the time, fractional 

potentials, relativity theory and the Clifford algebra. He was not inclined to give away 

thesis subjects, but if somebody had a promising idea he was a very stimulating partner 

and spared no effort. He worked constantly, often at late hours and periodically with great 

intensity. These habits did not change much with advancing age and eventually took their 

toll. After about ten years in the United States he had a breakdown that  forced him to 

return to Sweden and begin a more sedate life. 

Although Riesz's interest in administrative matters was strictly limited to those 

concerning his own subject, he had great influence in the faculty merely by his good sense, 

his wit and his charm. He was a shrewd judge of personalities and human affairs and had 

an uncanny knack for the right word at the right moment. His memory was extraordinary 

and he was a fascinating teller of stories. Unfortunately he never wrote his memoirs. He 

had a long and active life and bore the burden of his last illness with great courage. 
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