
ON A PROBLEM IN THE THEORY OF

MECHANICAL QUADRATURES

PHILIP DAVIS

1. Introduction. In the present note we study a scheme of
mechanical quadratures of the form

- l
f(x)dx~ Σ ankf{λnk) = Qn(f),

l J O

as applied to certain distinguished classes of analytic functions on
[ — 1, -hi]. The question of the convergence of Qn{f) to the integral
in (1) has been solved completely by Pόlya [4] when / is selected from
the class of continuous functions. There seems to be less discussion
of the problem when / is selected from the class of analytic functions
on [ — 1, +1] or from certain of its subclasses.

Let B designate a region in the complex z=x + ίy plane which we
shall assume contains [ — 1, -hi] in its interior. By U{B) we designate
the class of functions which are analytic and single valued in B and
are such that

(2)

With

(3)

as an inner product, and | | / | | 2 = ( / , /) as a norm, the space U(B) be-
comes a well-known and very useful Hubert space of functions, pos-
sessing a reproducing kernel KB(z, w) which is generally referred to as
the Bergman kernel for B [1].

Let E be a bounded linear functional over U{B) its norm (over
the conjugate space of all linear functionals) may be obtained in the
following way. Let φn(z) (w=0, 1, •) be a complete orthonormal sys-
tem for L\B). Then it may be shown that

( 4 )

This may be expressed in the alternate but equivalent form,

(5) \\E\\*=E,EJtB(z,w),
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where the subscripts on the E mean that the functional operation is
to be carried out on the variable indicated. We have, then, for all
feU{B)y

(6) \E{f)\<\\E\\\\f\\,

with the equality sign being attained for some / e L\B). If now, the
abscissas λnΊc lie in the interior of B, and the segment [—1, +1] lies in
the interior of B, then the linear functional

is bounded (cf. [2]) over D(B), so that we have, for all / e L\B),

(8) \En{f)\<\\En\\

2 Uniform convergence* We shall say that the quadrature scheme
(1) converges uniformly in L\B) if, having been given an ε>0, there
is an nQ=nύ(ε) such that, for all / e U(B) and ri>n0, we have

( 9 )

THEOREM 1. A necessary and sufficient condition that the quad-
rature scheme (1) converges uniformly in U{B) is that

(10) lim \\En\\*

Proof Suppose that (10) holds. Then given an ε>0 we can find
an ô(e) such that ||2ίn||<Ie for all n>no(ε). Hence, by (6), the inequality
(9) must hold. Conversely, suppose that (9) holds. For each n, it is
possible to find a nontrivial function fn(z)eL2(B) such that

(11) \En(fn)\ = \\En\\ HΛH .

By (9), given an ε>0 we may find an n=nL(ε) such that for all n
>nQ(ε) and for all / e D(B) we have \En(f)\< e | |/ | | . Hence, in parti-
cular, for the fn of (11),

(12) II^IMI/n|| = l^n(Λ)i<ε| |ΛI|.

Therefore (10) must follow.

We note that, in view of (4), the condition (10) can, in principle,
be converted into a necessary and sufficient condition on the weights
ank and abscissas λn]c.
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The following special case is of considerable interest. Let iζ, £ >
1, designate an ellipse with foci at ( — 1, 0) and (1,0) and with semi-
major and semiminor axes a and b respectively, and where p is given
by

(13) P=(a + bf, a=(p+ΐ)l2p»\ δ=φ-l)/2^\

Observe that as ^-+1, % collapses to [—1, -f 1], \ίVn{z) (n=0, 1, • •)
designates the Tschebysheίf polynomials of the second kind defined by

(14) ί7w(z)=(l-z2)-1/2 sin ((n+1) arc cos z) ,

then it is well known that the system of polynomials

(15) Ψn(z)=2J9ϊ±A(pn+i-.p-n-ί)-^Un(z) (rc=0, 1, 2, ... .)
r π

will be complete and orthonormal over L2(£ζ). Thus we have:

THEOREM 2. A necessary and sufficient condition in order that the
quadrature scheme (1) converge uniformly in L2(S^) is that

(16) limit A Σ(fc+1)

3. Interpolatory quadrature* An important class of quadrature
schemes is formed by those which are of interpolatory type. For such
quadratures we have

(17)

whenever / is a polynomial of degree not larger than n. If the
scheme is of interpolatory type then (16) becomes

(18)

In view of the inequalities

(19) p-ι.p-*<(pk+i-p-

condition (18) is equivalent to

(20) Km J

If we now define
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f 0 (k odd) ,
(21) ok=\ 2

I (k even) ,

then (20) becomes

(22) lim

The following sufficient condition for the uniform convergence in

D( %) of an interpolatory quadrature scheme can now be obtained.

Set

(23) Mn^% \anj\,

and observe that for real absissas λ in [ — 1, 4-1] we have

(24) \Uk{λ)\<k+l .

Then, using (21) and (23), for fixed p^>l we get

(25) f

< 4 Σ ((k+l)pk)-' + 4Mn Σ (A:+1)/O-J: + MB

3 Σ

where Cx and C2 are two positive constants which may depend upon p
but are independent of n. Thus, we have the following result.

THEOREM 3. Let

(26) lim Mnn
3l*p-n'2=0 .

T%e?2 an interpolatory quadrature scheme converges uniformly in L2( c£9)

Pόlya [4, p. 285] has remarked that if

(27) lim (Mnγin=l
W-K5O

then an interpolatory quadrature scheme converges for all functions
which are analytic in the closed basic interval. Under hypothesis (27),
we have

ilί n=(l + ew)Λ, εn-0,

so that (26) holds with all /o>l. Thus, under Pόlya's hypothesis, we
see that the convergence is also uniform in every L'(g^), /cΓ>l.
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4. Newton-Cotes quadrature. We turn now to a specific quad-
rature scheme on [—1, +1], namely, the Newton-Cotes scheme. In
this scheme, we have

(28) Q.(/)=<W(
(w=l, 2, •),

where the Cotes numbers ank have been determined so that

holds for an arbitrary polynomial of degree <jn. We have now the
following estimate due to J. Ouspensky [3] (Ouspensky's basic interval
is [0, 1]):

(29) β β - -
n k n — k

where 7n>fc-*0 as 92->oo uniformly for fc=l, 2, , n— 1, while

2

(30) α n 0 = : α n w = (l + e n ) , en->0 .
92 l o g 92

Thus,

(31) Aί.- Σ M
^ log 92

where Λve have wri t ten ηnk<Cdn (k = l, 2, , rc —1), dn-+0. Hence,

A(32) Mn<^^+
^ ( l θ g 92)̂  92 l o g 72

Condition (26) now holds with pιl'zy>2. We have therefore arrived at
the following result:

THEOREM 4. The Newton-Cotes quadrature scheme converges uniform-
ly in L2( %) whenever

Investigation of the convergence of the Newton-Cotes quadrature
scheme has an interesting history which is worth retelling here. T.
Stieltjes in 1884 first proved the convergence of the Gauss mechanical
quadrature for the class of Riemann integrable functions, and in a let-
ter to Hermite raised the question of the convergence of the Newton-
Cotes scheme. In 1925 J. Ouspensky [3] arrived at the asymptotic
result (29), and from the growth of Cotes numbers concluded only
that the Newton-Cotes scheme is devoid of practical value. In 1933



674 PHILIP DAVIS

G. Pόlya [4] showed that this scheme is not valid for all continuous
functions, and, indeed, is not valid for the class of analytic functions.
Pόlya's counterexample, referred to the interval [ —1, +1] is

(33) Λt0)=-±a

for which the Newton-Cotes scheme diverges. The functions f(w) is
regular in the strip

(34) \^(w)\<~2Λoga

and has a natural boundary along the sides of the strip. The widest
such strip must be less than

The function (33) cannot, therefore, be continued analytically to 8^=4,
for which the semiminor axis is δ=.7500. Theorem 4, therefore, re-
habilitates the Newton-Cotes quadrature scheme for functions which
are regular over a sufficiently large portion of the complex plane.
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