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l Introduction. Many results have been obtained for W*-algebras
of bounded operators on a Hubert space. However one of the most
unsatisfactory parts of the present theory of TF*-algebras is the de-
pendence on the underlying Hubert space.

I. Kaplansky [5] has given important developments for the removal
of this difficulty, but it is now known that his AW*-algebra is not
necessarily a TF*-algebra [cf. 4].

On the other hand, J. Dixmier [3] showed that a TF*-algebra is
an adjoint space, and Z. Takeda has given a kind of characterization
of W*-algebras in [10].

The purpose of this paper is to give a space-free characterization
in the following theorem:

THEOREM. A C*-algebra is a W*-algebra if and only if it is an
adjoint space, when considered as a Banach space.

The author wishes to express his hearty thanks to the referee for
his many valuable suggestions in the presentation of this paper.

2 Preliminaries* In this paper, we shall always deal with a C*-
algebra with unit /. Let M be a C*-algebra, φ a linear functional.
If ?>(α*α);>0 for all aeM, it is said to be positive. Any positive
linear functional on a C*-algebra M is bounded and satisfies Schwarz's
inequality; that is,

for all a,beM; see [8].
An -ATF*-algebra [5] is a C*-algebra satisfying the following con-

ditions: (a) In the set of projections, any collection of orthogonal
projections has a least upper bound, (b) Any maximal commutative
self-adjoint subalgebra is generated by its projections.

The notion of a Stonean space was introduced by M. H. Stone [9]
as follows: a compact space Ω is said to be Stonean if it has the pro-
perty that the closure of any open set is open and closed. Moreover,
he showed that this property is equivalent to the following property:
a uniformly bounded, increasing directed set of real valued continuous
functions on Ω has a continuous function as a least upper bound.
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From these results, one can prove easily that in order that a C*-
algebra C(Ω) composed of all continuous functions on a compact space
Ω be an A W*-algebra, it is necessary and sufficient that Ω be a Stonean
space.

We notice that the employment of the notion of A IF ^-algebra in
our course of proof is not essential because the A ̂ "-properties of
the C*-algebra in question which are employed are not difficult to
derive directly.

Also, we shall deal with locally convex topological linear spaces.
For this, we shall refer in particular to [1] and [2]. The following
statements are fairly well known.

Let E be a locally convex space, A a non-void closed convex set in
E, K a compact convex set in E which has void intersection with A.
Then there exists a hyper-plane which separates A and K strictly [1,
p. 73, prop. 4].

Let F be a Banach space, F * the adjoint space of F, σ(F*y F) the
topology of point-wise convergence on F*, S the unit sphere of F*, C
a convex set in F*. Then in order that C be σ(F*, F)-closed, it is
necessary and sufficient that C f\ λS be σ(F*, F)-closed for all positive
numbers λ [2, th. 23].

The proof of this last statement is given by J. Dieudonne for the
case that C is a vector subspace. However we observe that it is easy
to extend his proof to any convex set.

3 Lemmas, Let M be a C*-algebra which is the adjoint space
of a Banach space F, S the unit sphere of M, A the self-adjoint por-
tion of M, P the positive portion of A. Henceforward we shall always
use the topology σ{M, F) on M; it is well known that S is a(My in-
compact.

LEMMA 1. A and P are σ(M, F)-closed.

Proof. First, we shall show that A Γ\ S is closed. If it is not
closed, there is a directed set {xΛ} in A f\ S such that it converges to
an element a + ib φφO), where a and b are self-ad joint. Suppose that
there exists a positive number λ > 0 in the spectrum of b (otherwise
consider { — xΛ}). Then,

for a large number n, where || || denotes the uniform norm.
Since {xΛ + inI} converges to a + ib±ίnl and belongs to (14- n2)ιl2S,

the compactness of (1-f %2)1/2$ means that a + ϊbΛ-inl belongs also to
(l-\-n2)ll2S. This contradicts the above inequality; hence A Γ\ S is clos-
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ed, so that A is closed [3, th. 23].
Moreover, since P f\S C(A f\S)+I C.P, we have P f\S = (A f\S)

Γ\ {(A Γ\S)±I}; hence P Γ\ S is closed, so that P is closed. This com-
pletes the proof of Lemma 1.

LEMMA 2. Let T be the totality of σ(M, FYcontinuous positive linear
functionals on M. Then for any self-adjoint element α e"P, there is an
element φ of T such that ψ{a) <C0; in particular, ψ(b)=O for all ψeT
implies b=0 .

This follows immediately from Lemma 1 and the theorem in the
preliminaries [1, p. 73, prop. 4].

We call a directed set {xΛ} in A increasing if

Xa I> xβ whenever a ;> β .

LEMMA 3. Every uniformly bounded, increasing directed set con-
verges to its least upper bound. If x=\.u.b. {xa} then a*xa=\.u.b. {a*xaa}

cύ cύ

for any ae M .

Proof. Let E be the set of all finite linear combinations of ele-
ments of T. It is clear that the topology σ{M, E) is weaker than the
topology o{My F). Moreover σ(M, E) is a Hausdorff topology by Lem-
ma 2; since £ is σ(M, F)-compact, σ(M, E) is equivalent to σ(M, F)
on λS {λ > 0). Therefore, to show that a uniformly bounded directed
set {xa} is a Cauchy directed set in σ(M, F) topology, it is enough to
show that for any ψ e T and positive number e there is an index a0

such that \(p(xa — xp)\<* e for α, β^>aQ.
Let {xa} be uniformly bounded and increasing. Then {φ{x<*)} is so

for every φeT; hence {xΛ} is σ(M, F)-Cauchy, so that by the com-
pactness of S, it converges to some element x. Moreover, it is clear
by Lemma 2 that #=l.u.b. {xΛ}.

cύ

If u is an invertible element, then clearly

l.u.b. {u*xΛu} =u* {l.u.b. (xΛ)} u=u*xu .
cύ cύ

Finally, if a is an arbitrary element of M, then there is a suitable
number /I > 0 such that λl+a is invertible. Then

xΛ(λI+a)) = λ2φ{Xa) 4- λφ(a*xa) + λφ(xaa) + φ{a*xΛa)

-+φ((λl-ha)*x(λl+a)) for any φeT.

On the other hand,
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I ? ( α * f e - Xβ)) I - I φ{a*{xΛ - xβf\^ - xβ)
112) I

^ψ(μ*(xΛ--xβ)a)ιli)φ(xΛ -xβ)
llΆ for a^β,

and analogously,

I φ{(x« - xβ)o) I <, φ{x« - a^)1'V(α*(a?Λ - xβ)a)112 for α ^ β

hence

λ2φ(%*) + ̂ (α*α?Λ) 4- ^(a?Λα) -> ΛV(#) 4- λφ(a*x) + λφ(xa) ,

so that l.u.b. {α*α?Λα} =a*#a . This completes the proof of Lemma 3.
as

LEMMA 4. M is an AW*-algebra.

Proof. Let C be any maximal commutative self-ad joint subalgebra,
Ω the spectrum space of C. Then C may be regarded as the algebra
of all continuous functions on Ω.

Let {/αj be a uniformly bounded, increasing directed set and xo^=
l.u.b. {/αj. For any unitary element u of C, u*fΛu=u-1foύu=f(ύ con-

verges to IC1XQU=XQ) as C is maximal, x0 belongs to C and so Ω is
Stonean.

Let {eJaeQ} be an orthogonal family of projections, J any finite
subset of Q and put pj= Σ e Λ . Then the set {p }̂ is directed by set-

inclusion and is uniformly bounded and increasing, and so admits a
least upper bound p. Moreover, any maximal commutative self-adjoint
subalgebra including {ea\aeQ} contains p; it follows that p is a pro-
jection. This completes the proof of Lemma 4.

LEMMA 5. Let e be any projection of M. Then the subalgebra eMe is
o{M, F)-closed> and moreover the mapping x —• exe is a{M, F)-continuous.

Proof. e(P f\ S)e consists clearly of those elements of P f\ S which
are <I e. If {xΛ} is a directed set in e(P (\ S)e converging to an ele-
ment x0 2> 0, then e — xΛ ̂  0, so that e — xQ ̂  0 hence e(P f\ S)e is
closed. Since e(A Γ\ S)e=e(P Γ\S)e — e(P f\ S)e, the compactness of
e(P Γ\S)e implies that e(A Γ\S)e is closed; hence eMe is closed [2, th.
23].

Next, we shall show the continuity of the mapping. For this, it
is enough to show that the kernel (I-e)M-t-M(I-e) of the mapping is
closed, because M is an algebraic direct sum of eMe and (I—e)M+
M(I-e).

Now, we shall show that if {eaa{I—e)} (aae A Γ\ S) converges to α,
then eae=(I—e)a(I—e) = 0. For any integer n and complex number
c ( |c |=l),
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\\eaa(I-e) + cwe||=|| {eaJJ— e) -f one] {(/-e)αΛe + cne) ||1/2

Now suppose that eae φ 0 and there is a positive number λ > 0

in the spectrum of e α e + β α . . β (otherwise consider ( — aa)), then

—e)α(J—e)||^| |e(α

Therefore.

for a large number This is a contradiction; hence

eae *

and analogously

g — %eae__

so that eae=0 .

Similarly, suppose that (I—e)a(I—e)φO. Then

IIeαΛ(I- e) + cw(/- e)\H\(I- e)aae + crc(I-e)} {eαΛ(/-e - e)} f'2

hence we shall obtain an analogous contradiction, so that a=ea(I— e) +
(I—e)ae; hence the closure of (I—e)Se is contained in eM(I—e) + (I—e)Me.

By symmetry, the closure of eS(I—e) is contained in eM(I—e)-\-
(I—e)Me. From the above discussion and the compactness of S, we
easily conclude that eS(I—e)-h(I—e)Se is closed, so that eM(I—e)Λ-
(I—e)Me is closed; hence

(I-e)M+M(I-e)=(I-e

is closed. This completes the proof of Lemma 5.
Now, define

V(φ, e)={x\χeP, φ(x)^e, ε>0 and
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and

Vll\φ, e)={xιl2\xeV(φ, e)} .

LEMMA 6. The σ(M, F)-dosure of

{VV*(φ, e)-V^{Ψy ε)} f\ λS

is contained in

2V(Ψ, Ψ(iyι^η r\ λS-2V(φ, φ(iyw) r\

for any positive number λ .

Proof. For any ueS and he V(φ, ε),

\φ(uhll2)\<L φ(uu*)l!2φ(h)ll% <I \\uu*

Now, if a=b — c, where δ, ceVll2(φ, ε), then a is uniquely expressed
as follows: a=a1 — a2 (at e P) where α1 αS!=0. Since the spectrum space
of any maximal commutative self-ad joint subalgebra of M is Stonean,
there is a projection e such that ea=aλ and (e—I)a=a2. Since e and
(e—I) belong to S, we have, by the above inequality,

\φ(ea)\ = \φ(eb)-φ(ec)\< φ(Iγ»εW + φ(If»eλ» ,

so that eα=α x belongs to 2V(φ, φ(l)ιl2ε112). Analogously (e—I)a=a2 be-
longs to 2V(φ, φ(I)ιl2ε112) hence α belongs to 2V(φ,

On the other hand, aeλS means al9 a.ze λS. Therefore,

{Vll2(φ, ε)-Vit2(φ, e)} Γ\ *S(Z2V(<p, φ(I)^e^) f\ λS-2V(φ, <p(IγW*) f\ λS.

Since V(φ, e) is closed, 2V(φ, e) .f\ ϊ̂S is compact, so that

2V(φ, φ(I)ll2ε^)f\iS-2V(φ9 φ(I)ll2e112) f\ λS

is compact. This completes the proof of Lemma 6.

LEMMA 7. Let {xa} be a directed set in A f\ S such that for any
ε^>0 and φeT there is an index aQ such that φ((xa — %βY)^Lε for all
<x, β^iaQ. Then, (a) xa converges to a unique element xQ; (b) The dif-
ference xQ — xa may be expressed as follows: Xo — xa=y*~-Zc*, where yΛJ

zΛe2(P (\S), and {ya} and {zΛ} converge to 0.

Proof. Let us write xa — xβ as follows: a?Λ —a?β=2/Λ>β —2 r t ι β, where

ya^, zΛ,βe2(P Γ\S) and yΛ^zΰύφ=0. Then (xΛ — xβy=yl,β + z2

Λtβ. From
the assumptions, for any εQ>0) and ψeT there is an index aQ such
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that φ({xΛ — xβY)<Le for a, β^aQ\ hence φ(yl,β)<Lε and φ(zltβ)<Le, so
that we have xΛ-xβe {Vll2(φ, e)-VΦ(φ, e)} f\ 2S for a, β^aQ. Since
\φ(xΛ — %β)\^Lφ(I)ll2φ((%a — %βYy12 and {xΛ} is the directed set in question,
{xa} is Cauchy and lies in S, so that it has a unique adherent point
xQ e S. Hence by Lemma 6 and the above relation we have

xQ-xβe {2V(φ, φ(ir^) Γ\ 2S-2V(Ψ, φ(iy^η Γ\ 2S}

for β^>a0. This completes the proof of Lemma 7.

LEMMA 8. Let (xΛ) be a directed set in A Γ\ S satisfying the assump-
tion of Lemma 7, and x0 be its limit. Then {φ(axjή} converges to
φ(axob) for any a, b e M and ψeT.

Proof. Because of the usual polarisation identity, it is enough to
show that {φ(a*xaa)} converges to φ(a*xQa). Let e be a projection, ψ
an element of T such that φ(a*ea)<Lψ(e). Suppose that for all non-
zero projections / <C e, there exists a nonzero projection g <Lf such
that <p(a*ga) > ψ{g). Then, let {ga} be a maximal family of mutually
orthogonal projections such that φ(a*gaa) > ψ(ga). If J is the set of
indices a, K the set of all finite sets of J, then K is a directed set
by the set-inclusion. For γeK, put ay= *Σi9<*', then {αγ} is uniformly

bounded and increasing, so by Lemma 3 and our assumption l imα v =β

and lim a*aya=a*ea . Hence,

y ocey

> lim Σ Ψ(g»)=Ψ{e)

This is a contradiction; hence there is a nonzero projection f <Le such
that φ{a>*ga)^Lψ{g) for all projections g^Lf. By Lemma 4 and Lemma
5, fMf is an A"FP*-algebra, so that any positive element is a uniform
limit of finite positive linear combinations of mutually orthogonal pro-
jections . Therefore,

<p(a*ba) <^ ψ(b) for any b e fMf f\ P .

Now, let {Xoc} be a directed set satisfying the assumption of
Lemma 7, and suppose that {xa} converges to x0. Then by Lemma 7,
xQ — xΛ may be expressed as ya—za, where ya, zΰύe2(P Γ\S), and {yΛ}
and {zΛ} converge to 0,

Then by Schwarz's inequality,

ί \l/2
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By Lemma 5 the mapping x -> fxf is continuous, so Φι(x) = Φ(fxf) is
continuous; hence from the above inequality {φ(<i*yΛfa)} converges to
0. If {fβ\βeJ} is a maximal family of mutually orthogonal nonzero
projections such that lim φ(ct>*yafβ(i) = O, then, from the preceding dis-

cύ

cussion, Σ fβ—I where the sum Σ fβ *s the limit of the uniformly
β€J β e j

bounded, increasing directed set { Σ /«} (Jγ is any finite subset of J).
β£Jy

Put kj = Σ fa for all subsets JΛ of J. Then for all ε > 0 there

is a finite set Jλ such that φ(a*hj a) <I e for J2=J—Jly because lim α*/^ α
2 γ 7

=a*Ia by Lemma 3. Therefore,

On the other hand, there is an index aQ such that a ^> a0 means
l ̂  e . Hence,

^(α) 1 / 2ε 1 / 2 for a :> α 0 .

This means that

and analogously

lim

hence

lim ^(α%Λα)=^(α*ίroα) .

This completes the proof of Lemma 8.

4. Proof of Theorem. We shall prove the Theorem in this section.
Since it was shown by J. Dixmier [3, prop. 1] that a TF*-algebra is
an adjoint space, it is enough to show the converse.

Let Tλ be the totality of σ(M, ^-continuous positive linear func-
tionals such that <ρ(I)=l. Let {πφ, φ j be the C*-representation of M
on a Hubert space !gφ, constructed via the element φ of Tλ [cf. 11].
Let § be the direct sum of the ξ?φ: Φ = Σ Θ £ V W e shall consider a

representation π of M on ξ) defined as follows: π{x)= Σ πφ(x). Then
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it is easily seen from Lemma 2 that π is a faithful C*-representation
of M. Let B be the algebra composed of all bounded operators on ξ>.
In order to avoid confusion, we shall call the usual weak topology
(strong topology) on B the weak operator topology (strong operator
topology).

Let {x*} (xae A Γ\ S) be a uniformly bounded Cauchy directed set
with the strong operator topology. Then,

\(π(xΛ)-π(xβ))IφT = φ{(xΛ-XβY) - 0 ,

where Iφ is the image of / in tQφ and || || is the norm of ξ>; hence {xΛ}
satisfies the assumption of Lemma 7, therefore by Lemma 8,

converges to

φ(a*xQb)= <C

for any a, beM, where <[, > denotes the inner product in £> and aφj

bψ are the images of α, 6 in $φ.
Since linear combinations of the images Mφ of M in fQφ are dense

in <Q, the uniform boundedness and the above relation mean that
{π(χ<*)} converges to π(xQ) in the weak operator topology [cf. 10].

On the other hand, {π(xa)} converges to an element a of B in the
strong operator topology; hence a=π(χQ) and so π(Af\S) is strongly
closed. Finally by the result of J. Dixmier [3, prop. 1], π(A f\ S) is
weakly closed, so that π(M) is weakly closed. This completes the proof
of the Theorem.

REMARK 1. We notice that σ(M, F) is equivalent to the weak opera-
tor topology on S.

REMARK 2. It would be desirable to find a proof of the Theorem
which does not make use of projections. If we use projections fully, the
discussions of Lemmas 6-8 can be replaced by the shorter ones outlined
in the following: Suppose that {ea^I— e)} (aΛeS) converges to a and
(/— e)aeφΰ. Since by Lemma 5,

a=ea(I— e) + (J— e)ae ,

1 a 4- n(I- e)ae | |=| | ea(I- e) + (n +1)(/~ e)ae \\

=max {|M/-e)||, (

hence
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\\a + n(I-e)ae\\=(n + l)\\(I-e)ae\\

for a large number n. On the other hand,

\\eaa(I-e)Jrn(I—e)ae\\<Lmax {1, n\\(I-e)ae\\} =n\\(I—e)ae\\

for a large number n, and this contradicts the above equality;
hence eM(I-e) is closed. Therefore, the mappings x -> ex(I-e) and
(I—e)xe, and so ex and a e are σ(M, ί>continuous finally we can easily
conclude that the mappings x -> ax and xα, and so α*α;α are α(ikf, 2*1)-
continuous for all ae M.

On the other hand, it is easily seen that Lemma 7 can be proved
without the use of projections, and moreover, by a slight modification
of the proof of Lemma 8, we can immediately show that the use of
projections is unnecessary in the commutative case. From these facts
it seems that a suitable proof for the demand can be found, when the
strong operator topology used.

APPENDIX. We proved the Theorem under the assumption that the
C*-algebra has a unit. But this assumption is unnecessary, since we
can prove the following result.

THEOREM. Let N be a C*-algebra, S its unit sphere and suppose
that S has an extreme point. Then N has a unit.

The proof is obtained by a suitable modification of the discussion
of R. Kadison [Isometries of operator algebras, the proof of Theorem
1, Ann. of Math 54 (1951)].

Proof. Let x be an extreme point of S, A the commutative C*-
subalgebra generated by x*x and CQ(Ω) the function-representation of
A, where Ω is a locally compact space.

Then one can easily take a sequence (yn) of positive elements of
CQ(Ω) such that \\yn\\<*l for all n, ||{x*x)yn - (x*x)|| -> 0 (rc->co) and
\\(x*x)yl-(x*x)\\->0 (rc->oo).

Suppose that at some point p of Ω, x*x takes a nonzero value less
than one. Then we can take a positive element c of A, nonzero at p,
such that if rn=yn + c, sn=yn — c, then \\(x*x)r2

n\\<ίl and ||(α*a?)s£|| <I1.
Hence xrn and xsn are in S.

On the other hand, \\(xyn — x)^xyn—x)\\=\\x*xyn—%*Wn — x*3Wn +
x*x\ ~-> 0 (n -+ oo). Hence xyn -> x, so that xrn -^x + xc, and xsn ->x — xc.
Since xrn and xsΛ are in S, so are x + xc and x—xc. Therefore, by the
discussion of Kadison, x is partially isometric.

Now let us represent an operator algebra N on a Hubert space ξ>,
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and let N be the weak closure of N on ξ>. By the discussion of Kadi-

son, iVΞ2 (/—xx*)N(I— #*α?)=(0), where / is the unit of N, so that

(/— xx*)N(I—x*x)=0. Hence I=xx*-\-x*x — xx*x*x belongs to N. This

completes the proof.
If a C*-algebra is an adjoint space, by the theorem of Krein-

Milman the unit sphere has an extreme point. Hence the algebra has
a unit by the above theorem.
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