NOTE ON NORMAL NUMBERS

CALVIN T. LONG

Introduction. Let α be a real number with fractional part $a_1a_2a_3\cdots$ when written to base r. Let Y_n denote the block of the first n digits in this representation and let $N(d, Y_n)$ denote the number of occurrences of the digit d in Y_n . The number α is said to be *simply normal* to base r if

$$\lim_{n\to\infty}\frac{N(d, Y_n)}{n} = \frac{1}{r}$$

for each of the r distinct choices of d. α is said to be normal to base r if each of the numbers α , $r\alpha$, $r^2\alpha$, \cdots are simply normal to each of the bases r, r^2, r^3, \cdots . These definitions, due to Emile Borel [1], were introduced in 1909. In 1940 S. S. Pillai [3] showed that a necessary and sufficient condition that α be normal to base r is that it be simply normal to each of the bases r, r^2, r^3, \cdots , thus considerably reducing the number of conditions needed to imply normality. The purpose of the present note is to show that α is normal to base r if and only if there exists a set of positive integers $m_1 < m_2 < m_3 < \cdots$ such that α is simply normal to base r^{m_i} for each $i \ge 1$, and also to show that no finite set of m's will suffice.

Notation. We make use of the following additional conventions.

If B_k is any block of k digits to base r, $N(B_k, Y_n)$ will denote the number of occurrences of B_k in Y_n and $N_i(B_k, Y_n)$ will denote the number of occurrences of B_k starting in positions congruent to i modulo k in Y_n .

The term "relative frequency" will denote the asymptotic frequency with which an event occurs. For example, B_k occurs in (α), the fractional part of α , with relative frequency r^{-k} if $\lim_{n \to \infty} N(B_k, Y_n)/n = r^{-k}$.

Proof of the theorems. The following lemmas are easily proved.

LEMMA 1. If $\lim_{n\to\infty} \sum_{i=1}^{m} f_i(n) = 1$ and if $\liminf_{n\to\infty} f_i(n) \ge 1/m$ for $i=1, 2, \dots, m$; then $\lim_{n\to\infty} f_i(n) = 1/m$ for each i.

LEMMA 2. The real number α is simply normal to base r^{k} if and

Received July 5, 1956. Results in this paper were included in a doctoral dissertation written under the direction of Professor Ivan Niven at the University of Oregon. 1955.

only if $\lim_{n \to \infty} N_1(B_k, Y_n)/n = 1/kr^k$ for every block B_k of k digits to base r.

THEOREM 1. The real number α is normal to base r if and only if there exist positive integers $m_1 < m_2 < m_3 < \cdots$ such that α is simply normal to each of the bases $r^{m_1}, r^{m_2}, r^{m_3}, \cdots$.

Proof. The necessity of the condition follows immediately from the definition of normality.

Now suppose the condition of the theorem prevails. Let ν be an arbitrary positive integer and let B_{ν} be an arbitrary block of ν digits to base r. Choose k so large that $m_k > \nu$. It follows from Lemma 2 that

$$\lim_{n \to \infty} \frac{N_1(A_{m_k}, Y_n)}{n} = \frac{1}{m_k r^{m_k}}$$

for each block A_{m_k} of m_k digits to base r. If B_{ν} occurs exactly $t=t(A_{m_k})$ times in each A_{m_k} , then it follows that

$$\liminf_{n \to \infty} \frac{N(B_{\nu}, Y_n)}{n} \ge \frac{T}{m_k r^{m_k}}$$

where $T=\sum t(A_{m_k})$ with the sum running over all blocks of m_k digits to base r. Now there are $r^{m_k-\nu}$ distinct blocks A_{m_k} which contain B. starting in position i for $i=1, 2, \dots, m_k-\nu+1$ so that $T=(m_k-\nu+1)r^{m_k-\nu}$. Thus it follows that

$$\liminf_{n\to\infty}\frac{N(B_{\nu}, Y_n)}{n} \ge \frac{(m_k-\nu+1)r^{m_k-\nu}}{m_kr^{m_k}} = \frac{1}{r^{\nu}} - \frac{\nu-1}{m_kr^{\nu}}.$$

But, since this argument can be made for arbitrarily large values of k and $m_k \geq k$, this implies that

$$\liminf_{n\to\infty}\frac{N(B_{\nu}, Y_n)}{n} \ge \frac{1}{r^{\nu}}.$$

With Lemma 1 this implies that

$$\lim_{n\to\infty}\frac{N(B_{\nu}, Y_n)}{n} = \frac{1}{r^{\nu}}$$

so that α is normal to base r by a result of Niven and Zuckerman [2].

The next theorem implies that no finite set of m's will suffice in Theorem 1.

THEOREM 2. If m_1, m_2, \dots, m_s is an arbitrary collection of distinct

positive integers, then there exists at least one real number α simply normal to each of the bases $r^{m_1}, r^{m_2}, \dots, r^{m_s}$ but not normal to base r.

Proof. Writing to base r^m form the periodic decimal

$$\alpha = .012...(r^m - 1)$$

where *m* is the least common multiple of m_1, m_2, \dots, m_s . It is clear that α is simply normal to base r^m and that it is not normal to base *r*. To show that it is simply normal to base r^{m_i} for $i=1, 2, \dots, s$ we prove that if *d* divides *m* then α is simply normal to base r^a .

Let m=qd and let B_a be an arbitrary but fixed block of d digits to base r. In view of Lemma 2 it suffices to show that

$$\lim_{n\to\infty}\frac{N_1(B_a, Y_n)}{n} = \frac{1}{dr^d}$$

A simple counting process shows that there are precisely $\binom{q}{i}(r^d-1)^{q-i}$ distinct blocks A_m of m digits to base r which contain B_a exactly i times starting in a position congruent to one modulo d. Therefore, since

$$\lim_{n\to\infty}\frac{N_1(A_m, Y_n)}{n} = \frac{1}{mr^m}$$

for each A_m , it follows that

$$\lim_{n \to \infty} \frac{N_{i}(B_{d}, Y_{n})}{n} = \frac{1}{mr^{m}} \sum_{i=1}^{q} i\binom{q}{i} (r^{d} - 1)^{q-i} = \frac{1}{dr^{d}}$$

as required.

References

1. Émile Borel, Les probabilités dénombrablés et leurs applications arithmétiques, Rend. Circ. Mat. Palmero **27** (1909), 247-271.

2. Ivan Niven and H. S. Zuckerman, On the definition of normal numbers, Pacific J. Math., 1 (1951), 103-109.

3. S. S. Pillai, On normal numbers, Proc. Indian Acad. Sci., Sect. A, 12 (1940), 179-184.

UNIVERSITY OF OREGON AND NATIONAL SECURITY AGENCY