NOTE ON NORMAL NUMBERS

Calvin T. Long

Introduction. Let α be a real number with fractional part . $a_{1} a_{2} a_{3} \ldots$ when written to base r. Let Y_{n} denote the block of the first n digits in this representation and let $N\left(d, Y_{n}\right)$ denote the number of occurrences of the digit d in Y_{n}. The number α is said to be simply normal to base r if

$$
\lim _{n \rightarrow \infty} \frac{N\left(d, Y_{n}\right)}{n}=\frac{1}{r}
$$

for each of the r distinct choices of $d . \quad \alpha$ is said to be normal to base r if each of the numbers $\alpha, r \alpha, r^{2} \alpha, \cdots$ are simply normal to each of the bases r, r^{2}, r^{3}, \cdots. These definitions, due to Emile Borel [1], were introduced in 1909. In 1940 S. S. Pillai [3] showed that a necessary and sufficient condition that α be normal to base r is that it be simply normal to each of the bases r, r^{2}, r^{3}, \cdots, thus considerably reducing the number of conditions needed to imply normality. The purpose of the present note is to show that α is normal to base r if and only if there exists a set of positive integers $m_{1}<m_{2}<m_{3}<\cdots$ such that α is simply normal to base $r^{m_{i}}$ for each $i \geqq 1$, and also to show that no finite set of m 's will suffice.

Notation. We make use of the following additional conventions.
If B_{k} is any block of k digits to base $r, N\left(B_{k}, Y_{n}\right)$ will denote the number of occurrences of B_{k} in Y_{n} and $N_{i}\left(B_{k}, Y_{n}\right)$ will denote the number of occurrences of B_{k} starting in positions congruent to i modulo k in Y_{n}.

The term " relative frequency" will denote the asymptotic frequency with which an event occurs. For example, B_{k} occurs in (α), the fractional part of α, with relative frequency r^{-k} if $\lim _{n \rightarrow \infty} N\left(B_{k}, Y_{n}\right) / n=r^{-k}$.

Proof of the theorems. The following lemmas are easily proved.

LEMMA 1. If $\lim _{n \rightarrow \infty}^{m} \sum_{i=1} f_{i}(n)=1$ and if $\lim _{n \rightarrow \infty} \inf f_{i}(n) \geq \mathbf{1} / m$ for $i=1,2, \cdots, m$; then $\lim _{n \rightarrow \infty} f_{i}(n)=1 / m$ for each i.

Lemma 2. The real number α is simply normal to base r^{k} if and

[^0]only if $\lim _{n \rightarrow \infty} N_{1}\left(B_{k}, Y_{n}\right) / n=1 / k r^{k}$ for every block B_{k} of k digits to base r.
Theorem 1. The real number α is normal to base r if and only if there exist positive integers $m_{1}<m_{2}<m_{3}<\cdots$ such that α is simply normal to each of the bases $r^{m_{1}}, r^{m_{2}}, r^{m_{3}}, \cdots$.

Proof. The necessity of the condition follows immediately from the definition of normality.

Now suppose the condition of the theorem prevails. Let ν be an arbitrary positive integer and let B_{ν} be an arbitrary block of ν digits to base r. Choose k so large that $m_{k}>\nu$. It follows from Lemma 2 that

$$
\lim _{n \rightarrow \infty} \frac{N_{1}\left(A_{m_{k}}, Y_{n}\right)}{n}=\frac{1}{m_{k} r^{m_{k}}}
$$

for each block $A_{m_{k}}$ of m_{k} digits to base r. If B_{γ} occurs exactly $t=t\left(A_{m_{k}}\right)$ times in each $A_{m_{k}}$, then it follows that

$$
\liminf _{n \rightarrow \infty} \frac{N\left(B_{\nu}, Y_{n}\right)}{n} \geqq \frac{T}{m_{k} r^{m_{k}}}
$$

where $T=\sum t\left(A_{m_{k}}\right)$ with the sum running over all blocks of m_{k} digits to base r. Now there are $r^{m_{k}-\nu}$ distinct blocks $A_{m_{k}}$ which contain B. starting in position i for $i=1,2, \cdots, m_{k}-\nu+1$ so that $T=\left(m_{k}-\nu+1\right) r^{m_{k}-\nu}{ }_{\nu}$ Thus it follows that

$$
\liminf _{n \rightarrow \infty} \frac{N\left(B_{\nu}, Y_{n}\right)}{n} \geqq \frac{\left(m_{k}-\nu+1\right) r^{m_{k}-\nu}}{m_{k} r^{m_{k}}}=\frac{1}{r^{\nu}}-\frac{\nu-1}{m_{k} r^{\nu}} .
$$

But, since this argument can be made for arbitrarily large values of k and $m_{k} \geqq k$, this implies that

$$
\liminf _{n \rightarrow \infty} \frac{N\left(B_{v}, Y_{n}\right)}{n} \geq \frac{1}{r^{2}}
$$

With Lemma 1 this implies that

$$
\lim _{n \rightarrow \infty} \frac{N\left(B_{v}, \quad Y_{n}\right)}{n}=\frac{1}{r^{\nu}}
$$

so that α is normal to base r by a result of Niven and Zuckerman [2].
The next theorem implies that no finite set of m 's will suffice in Theorem 1.

THEOREM 2. If $m_{1}, m_{2}, \cdots, m_{s}$ is an arbitrary collection of distinct
positive integers, then there exists at least one real number α simply normal to each of the bases $r^{m_{1}}, r^{m_{2}}, \cdots, r^{m_{s}}$ but not normal to base r.

Proof. Writing to base r^{m} form the periodic decimal

$$
\alpha=. \dot{0} 12 \ldots\left(r^{\dot{m}}-1\right)
$$

where m is the least common multiple of $m_{1}, m_{2}, \cdots, m_{s}$. It is clear that α is simply normal to base r^{m} and that it is not normal to base r. To show that it is simply normal to base $r^{m_{i}}$ for $i=1,2, \cdots, s$ we prove that if d divides m then α is simply normal to base r^{a}.

Let $m=q d$ and let B_{d} be an arbitrary but fixed block of d digits to base r. In view of Lemma 2 it suffices to show that

$$
\lim _{n \rightarrow \infty} \frac{N_{1}\left(B_{a}, Y_{n}\right)}{n}=\frac{1}{d r^{d}} .
$$

A simple counting process shows that there are precisely $\binom{q}{i}\left(r^{d}-1\right)^{q-i}$ distinct blocks A_{m} of m digits to base r which contain B_{a} exactly i times starting in a position congruent to one modulo d. Therefore, since

$$
\lim _{n \rightarrow \infty} \frac{N_{1}\left(A_{m}, Y_{n}\right)}{n}=\frac{1}{m r^{m}}
$$

for each A_{m}, it follows that

$$
\lim _{n \rightarrow \infty} \frac{N_{1}\left(B_{d}, Y_{n}\right)}{n}=\frac{1}{m r^{m}} \sum_{i=1}^{q} i\binom{q}{i}\left(r^{d}-1\right)^{q-i}=\frac{1}{d r^{d}}
$$

as required.

References

1. Émile Borel, Les probabilités dénombrablés et leurs applications arithmétiques, Rend. Circ. Mat. Palmero 27 (1909), 247-271.
2. Ivan Niven and H. S. Zuckerman, On the definition of normal numbers, Pacific J. Math., 1 (1951), 103-109.
3. S. S. Pillai, On normal numbers, Proc. Indian Acad. Sci., Sect. A, 12 (1940), 179-184.

[^0]: Received July 5, 1956. Results in this paper were included in a doctoral dissertation written under the direction of Professor Ivan Niven at the University of Oregon. 1955.

