
ON THE ISOMETRIES OF CERTAIN FUNCTION-SPACES

JOHN LAMPERTI

1. Introduction* In Chapter 11 of his well-known book [1], S.
Banach has given theorems characterizing the linear, norm-preserving
operators on the spaces Lp and lp, where 1 g p < oo and p Φ 2. The
proofs are not given completely and the theorems are stated in less than
full generality. The first purpose of this paper is to supply a new proof
for a somewhat more general theorem besides being set in an arbitrary
(σ-finite) measure space, this theorem applies to values of p < 1. The
preliminaries in § 2 turn up one interesting fact (Theorem 2.2) as a
bonus.

The second purpose is generalization there are other spaces besides
Lp where a norm, metric, or something like it is defined in terms of an
integral

(1.1)

and the method we use on Lp spaces can be applied to some of these
others as well. The conclusions are that like the Lp case, isometries
come from non-singular transformations of the underlying measure space,
but unlike Lp, not all such transformations give isometries.

2, Some inequalities* The first lemma and theorem serve as
preparation for the generalization, as well as the Lp theorem.

LEMMA 2.1. Let Φ(t) be a continuous, strictly increasing function
defined for t ^ 0, with 0(0) = 0, and let z and w be complex numbers.

If Φ(\/Ύ) is a convex function of t, then

(2.1) Φ(\z + w\) + Φ(\z - w\) ^ 2Φ(\z\) + 2Φ(\w\) ,

while if Φ{λ/Ύ) is concave the reverse inequality is true. Provided the
convexity or concavity is strict, equality holds if and only if zw — 0.

Proof. Since Φ(V t ) is convex, Theorem 92 of [7] gives

(2.2) Φ-A Φ(ls + wl) + Φ ( l s - w l ) I ^ i lz + ^ P + l z - ^ l 2 11 / 2

= { | z | 2 + M 2 } 1 / 2 .

But the convexity of Φ(V t) implies that i?\Φ(t) is decreasing, strictly if
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the convexity is strict. This is the hypothesis of Theorem 105 of [7],
which asserts that

(2.3) {|z|2 + M 2} ] / 2 ^ Φ-HΦ(\z\) + Φ(\w\)} .

Combining (2.2) and (2.3) yields (2.1), since Φ"1 is an increasing function.

In case Φ{V t ) is strictly convex, we also obtain from Theorem 105 the
fact that (2.3) (and hence (2.1)) is strict, unless z or w is zero. The

case where Φ(V t) is concave may be treated similarly using the same
two theorems inequalities (2.2) and (2.3) are both reversed.

Let (X, F, μ) be a measure space we will always assume that XeF
and that μ is σ-finite. Given Φ(t), a functional I on measurable func-
tions is defined by (1.1). The set of functions f(x) such that I[f] < oo
will be denoted Lφ in general, Lφ need not be a linear space. In case
φ(t) = tp for some p > 0, LΦ in the space Lp and /[/] = ||/||».

THEOREM 2.1. Let Φ(t) be a continuous, strictly increasing function

(for t ^ 0) with 0(0) = 0 and Φ{V t) convex, and suppose thatf(x) + g(x)

and f(x) — g(x) belong to Lφ. Then

(2.4) / [ / +g] + I[f -g]^ 2I[f] + 2I[g] .

If ΦW t) is concave and f(x) and g(x) belong to Lφ, the reverse inequal-

ity to (2.4) is true. If the convexity or concavity of Φ{V t ) is strict,

equality holds in (2.4) if, and only if, f(x)g(x) = 0 almost everywhere.

Proof. (2.4) may be written

( {Φ(\f(x) + g(x)\) + Φ(\f(x) - g(x)\) - 2Φ(\f(x)\) - 2Φ(\g(x)\)}dμ ̂  0.
Jx

This holds if Φ{V t ) is convex, because by the lemma the integrand is

non-negative. Equality can occur only when the integrand is zero almost

everywhere if Φ(V t ) is strictly convex this means that for almost all

x either f(x) = 0 or g(χ) = 0. The case where Φ(vΓt) is concave is
similar.

REMARK. Theorem 2.1 is equally true for spaces at real or com-
plex functions this will also be the case for the main Theorems 3.1
and 4.1, but won't be mentioned explicitly.

COROLLARY 2.1.1 If f{x) and g(x) belong to Lp, p^2, then
1 Inequality (2.5) was used by Clarkson in [4]. He did not discuss the condition for

equality, which was not needed for his application (but is for ours). [3] is also closely
related



ON THE ISOMETRIES OF CERTAIN FUNCTION-SPACES 461

(2.5) 11/+ 0115 + \\f-g\\l ^ 2II/H5 + 2 | M | ; .

If 0 < p g 2, ίΛβ reverse inequality holds. In either case, if p φ 2,
equality occurs if, and only if, f(x) g(x) = 0 almost everywhere.

This corollary has an immediate application to a question raised by
Boas, who showed in [2] that the spaces Lp and Hp are isomorphic for
1 < p < oo ,2 The question is whether an isometric mapping of Hp onto
Lp is possible when p Φ 2.

THEOREM 2.2. Provided 0 < p < oo cmcZ p ^ 2, ίftere is no isometric
linear mapping of Hp onto Lp.

Proof. In Hp, a function not identically zero must be different
from zero almost everywhere. Hence by Corollary 2.1, the equality
can never hold in (2.5) unless | | / | | p = 0 or \\g\\p — 0. But in Lp there
are pairs of nonnull functions for which equality holds. Since the oc-
currence of equality must be preserved by a linear isometric mapping,
no such mapping can take Hp onto Lp.

3, The isometries of Lp spaces. A " regular set isomorphism " of
the measure space (X, F, μ) will mean a mapping T of F into itself,
defined modulo sets of measure zero, satisfying

(3.1) T(X-A) = TX- TA

(3.2) τ( u An) = U TAn for disjoint An

(3.3) μ(TA) = 0 if, and only if, μ(A) = 0

for all sets A, A^ belonging to F. A regular set isomorphism induces
a linear transformation (also to be denoted T) on the set of measurable
functions, which is characterized by TψA = <pTA, where <pA is the charac-
teristic function of the set A.3

THEOREM 3.1. Let U be a linear operator on a space Lp for some
positive p Φ 2, such that

(3.4) IIRfll, = ll/llp for all f(x) e Lp .

Then there exists a regular set-isomorphism T and a function h(x) such
that U is given by

2 Here Lp is formed with X the circumference of the unit circle and μ normalized
Lebesgue measure; see for instance [10] for background on the Hp spaces. Only one fact
is needed in the proof of Theorem 2.2.

3 This process is described in detail in [5], pp. 453 and 454; the assumption made
there that the set mapping is measure-preserving can be replaced by (3.3).
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(3.5) Uf(x) = h(x)Tf(x)

if a measure μ* is defined by μ*(A) — μ(T~ιA), then

(3.6) \h(x)\p = ^— a.e. on TX .
dμ

Conversely, for any regular set-isomorphism T and any h{x) satisfying
(3.6), the operator U defined by (3.5) satisfies (3.4).

Proof. We will carry out the proof under the assumption that
μ(X) < oo the extension to the σ-finite case is straightforward. Suppose
that (3.4) holds, and define a set mapping by

(3.7) TA = {x : UφA(x) Φ 0} .

Now if A and B are disjoint sets,

\\ΨA + φ*\\% + \\ΨΛ - φB\\l =

By (3.4) the same relation holds for UφA and UφB, and so by Corollary
2.1 we conclude that UφΛ and UφB have almost disjoint support, or that
μ(TA Π TB) = 0. Consequently T(A U B) = TA U TB to within a set of
measure zero, and the extension to denumerable sums follows from the
continuity of U. In particular, except for sets of measure zero, TX =
TA U T(X - A) and the latter are disjoint, so that T(X - A) = TX- TA.
Thus the mapping T satisfies (3.1) and (3.2) (3.3) is obvious in view
of (3.4) so that T is a regular set-isomorphism.

Since μ(X) < oo, ψx e Lp and we can let h(x) — Uψx{x). (In the σ-
finite case h(x) would have to be defined piecemeal.) For any set A e F,
h(x) — UφA(x) + Uψx.A{x). But the two functions on the right have
(almost) disjoint support, so that UφA(x) agrees with h(x) almost every-
where that the former is not zero. Hence

(3.8) UψE(x) = h{x)φTE{x) = h(x)TφE(x) a.e.

By (3.8) and the linearity of Z7, (3.5) holds for any simple function, and
since such functions are dense in Lp and U is continuous, (3.5) is valid
in general.

It remains to identify \h(x)\p. From (3.4) and (3.5) we have

(3.9) μ(A) = \\φΛ\\* = \\UφΛ\\l = \ \Hx)\pφUΦμ = \ \h(x)\*dμ .

But by (3.3) the measure μ*(A) — μ{T~ιA), (defined for sets in the range
of the mapping T), is absolutely continuous with respect to μ, and so

(3.10) μ(A) = μ*(TA) = ί
dμ
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Comparison of (3.9) and (3.10) together with the uniqueness of the
Radon-Nikodym derivative proves (3.6). The converse statement can
easily be verified.

COROLLARY 3.1. Suppose that U is a linear transformation of func-
tions measurable on (X, F, μ) which preserves the Lp norm for tiυo dif-
ferent positive values of p. Then there exists a measure-preserving set-
isomorphism T such that

Uf{x) = h(x)Tf(x) ,

where | h(x) \ = 1 almost everywhere on TX. It follows that U is a norm-
preserving operator on Lp for all p.

Proof One of the two values of p, say p19 is different from 2, so
the theorem applies. It follows that (whether pt — 2 or not)

\h(x)\Ί =-*£^-= \h(x)\** a.e. ,
dμ

and so \h(x)\ = 1 or 0. By (3.3), \h{x)\ = 1 a.e. on TX, which implies
that T is measure-preserving.

REMARK. Presumably it most often happens in cases of interest that
an invertible '' regular set-isomorphism '' is generated by an essentially
one-to-one onto, measurability-preserving, non-singular point mapping.
It is easy to see that if the measure space is discrete, this is always
so much wider conditions on the measure-space are known under which
it is so for all measure-preserving transformations.4 If such a theorem
were available which applied to all regular set-isomorphisms, Theorem
3.1 could be sharpened. As it is, the corollary can be improved if (X, F, μ)
has " sufficiently many measure-preserving transformations " (see [6])
by replacing the set mapping T by a point mapping. Similar remarks
apply to the results of the next section.

4* Generalization. In this section we shall consider functionals
I[f] defined by (1.1) with various functions Φ(t) other than tp. We
assume hereafter that Φ(t) is continuous and strictly increasing, with
0(0) = 0 and 0(1) = 1.

DEFINITION. A positive number a will be called a "multiplier" of
Φ(t) provided Φ(at) = Φ(a)Φ(t) for all t ^ 0. The set of all multipliers

4 In particular, von Neumann showed in [9] that if X is a closed region in Rn and μ
is equivalent to Lebesgue measure, a measure-preserving set transformation can be ob-
tained from a point mapping. Further results on this problem are contained in [6].
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will be denoted by M.
It is not hard to show that M is a group under multiplication which

contains all its non-zero limit points with the aid of this and some
well known facts we obtain

LEMMA 4.1. M contains all positive numbers if, and only if, Φ(t) = tp

for some p otherwise M consists of all the integral powers of some
positive number a0 Φ 1, or else of the identity above.

As an example of a well-behaved function with a discrete set of
multipliers we mention Φ(t) = tp exp sin logt aQ = e2ic and the function
is convex for large p. There is, however, a quite general sufficient
condition ensuring that M — {1} :

LEMMA 4.2. Suppose that Φ(t) is of regular variation5 at t = 0 or
t = oo. Then either Φ(t) = tp or M = {1}.

Proof If a number a Φ 1 is a muliplier of 0, it follows from the
definition that

Φ(an) = 0w(α) for all integers n .

Suppose Φ(t) = £*L(£) where lim L(ct)/L(t) = 1 for all c > 0. (The case
t->oo

of regular variation at t = 0 is entirely similar.) Combining these things
gives

It follows from this and the defining property of a slowly-varying func-
tion that Φ(a) — ap and that L(an) = 1 for all n. Now for any value
of ί,

α») = tpanpL(tan) .

But using the fact that αw is a multiplier and the value of Φ{an),

φ(tan) = Φ{t)Φ{an) = anptpL{t) .

Hence L(ίαw) = L(ί) for all w, and together with the fact that L(αw) = 1
this implies L(t) = 1, and so

THEOREM 4.1. Suppose that Φ(V t) is either strictly convex or
strictly concave, and that U is a linear operator on the space Lφ over

5 φ(t) is of regular variation at °° if lim φ(ct)jφ(t) exists for all c > 0 ; this implies
ί-»oβ

that φ(t) — tvL(t) for some p, where Lit) is a slowly-varying function (i.e., L{d)jL{t) -» 1
for all c > 0). The case I = 0 is defined similarly. These ideas are due to Karamata [7].
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(X, F, μ) such that

(4.1) I[Uf] - I[f] for all f(x) e Lφ .

Then there exists a regular set-isomorphism T and a function h(x) such
that U is given by

(4.2) Uf(x) = h{x)Tf{x)

if μ* is the measure μ(T~λA), h{x) must satisfy

(4.3) Φ(\h{x)\) = - ^ - and \h{x)\ e M a.e. on TX .
dμ

Conversely, if T is a regular set-isomorphism such that there exist func-
tions satisfying (4.3), and h(x) is such a function, then U defined by (4.2)
is an isometry. If in addition to the other hypotheses Φ(t) is of regular
variation at either t = 0 or t = oo, but is not a power of t, then T must
be measure-preserving and \h(x)\ — 1 a.e. on TX.

Proof. As before we assume for simplicity that μ(X) < oo. Suppose
that (4.1) holds, and define

(4.4) TA = {x : UΨA{X) ψ 0} .

The fact that T maps disjoint sets into almost disjoint sets follows from
(4.1) and Theorem 2.1 thereafter the proof of (4.2) is the same as that
of the corresponding part of Theorem 3.1.

From (4.1) and (4.2) we have (since Φ(l) = 1)

(4.4) μ(A) = I[ΨA] = I[UφA] = ί Φ(\h(x)φTA(x)\)dμ = ί Φ(\h(x)\)dμ .

But (as before)

(4.5) μ(A)=μ*(TA)= \ df dμ,
J TA dμ

and comparison proves the first part of (4.3). Replacing φΛ(x) in (4.4)
by tφA(x), t > 0, we obtain

Φ(t)μ(A)= \ Φ(t\h{x)\)dμ.
JTA

Comparing this with (4.5) gives

Φ(t) dμ

and the second part of (4.3) follows. Conversely, provided (4.3) holds,
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it is easy to verify that (4.2) gives an isometry. The last assertion of
the theorem follows immediately from Lemma 4.2.

EXAMPLES. If Φ(t) — £/(l + t) and the measure space is chosen ap-
propriately, Lφ becomes the space S or s [1, pp. 9-10] for any measure
space and this choice of Φ(t), p(f, g) — I[f— g] is a metric. From the
above theorem,6 the only isometries of these spaces are those induced
by measure-preserving transformations of the underlying measure space.
Somewhat more generally, any function Φ{t) satisfying our other as-
sumptions which is concave must also be subadditive, so that p{f, g) —

/[/— g] is a metric since Φ(t) concave implies Φ(V t) strictly concave,
Theorem 4.1 applies.
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