
THE PRIME DIVISORS OF FIBONACCI NUMBERS

MORGAN WARD

1* Introduction* Let

(U):U0,U19 U2,.--,Un,-.-

be a linear integral recurrence of order two; that is,

P, Q integers, Q Φ 0; Uo, U19 integers. It is an important arithmetical
problem to decide whether or not a given number m is a divisor of
(U); that is, to find out whether the diophantine equation

(1.1) Ux = my , m ^ 2

has a solution in integers x and y. Our information about this problem
is scanty except in the cases when it is trivial; that is when the char-
acteristic polynomial of the recursion has repeated roots, or when some
term of (U) is known to vanish.

If we exclude these trivial cases, there is no loss in generality in
assuming that m in (1.1) is a prime power. It may further be shown
by p-adic methods [7] that we may assume that m is a prime. Thus
the problem reduces to characterizing the set Sβ of all the prime divisors
of (U). 3̂ is known to be infinite [6], and there is also a criterion to
decide a priori whether or not a given prime is a member of Sβ, [2],
[6], [7]. But this criterion is local in character and tells little about
φ itself.

I propose in this paper to study in detail a special case of the
problem in the hope of throwing light on what happens in general. I
shall discuss the prime divisors of the Fibonacci numbers of the second
kind:

(G):2,l,3,4,7, . . . , G n , .-.

These and the Fibonacci numbers of the first kind

are probably the most familiar of all second order integral recurrences;
(F) and (G) have been tabulated out to one hundred and twenty terms
by C. A. Laisant [3].

2. Preliminary classification of primes. Let R denote the rational
field and & — R(VW) the root field of the characteristic polynomial
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(2.1) f { x ) = X 2 - X - 1

of (F) and (G). Then if a and β are the roots of f(x) in ^ ,

Fn= ^-P" , Q an+βn y ( ^ = 0 , 1 , 2 , . . . ) .
a — β

If p is any rational prime, by its rank of apparition in (F) or rank,
we mean the smallest positive index x such that p divides Fx. We
denote the rank of p by pp or p. Its most important properties are:
Fn = o (mod p) if and only if n = o (mod p); p — (5/j>) = o (mod /?). Here
(5/p) is the usual Legendre symbol.

The following consequence of (2.1) and the formula F2n — FnGn is
well known.

LEMMA 2.1. p is a divisor of (G) if and only if the rank of ap-
parition of p in (F) is even.

The formula

(2.2) Gl - 5FI = ( - 1)»4

gives more information. For if p = 1 (mod 4), and p divides (G), (2.2)
implies that (5/p) — 1. On the other hand if p = 3 (mod 4), p must
divide ((?). For otherwise Lemma 2.1 and formula (2.2) with n—pp

imply (-1/p) = 1.

On classifying the primes according to the quadratic characters of
5 and —1 modulo p, they are distributed into eight arithmetical pro-
gressions 20n + 1, 20w + 3, 20w + 7, 20w + 9, 20w + 11, 20w + 13, 20w + 17,
20n + 19. By the remarks above, only primes of the form 20n + 1 and
20n + 9 for which both — 1 and 5 are quadratic residues need be con-
sidered; the following lemma disposes of all others.

LEMMA 2.2. p is a divisor of (G) if p = 3 (mod 4); that is if
p == 3, 7,11, 19 (mod 20). p is a non-divisor of (G) if p — 1 (mod 4) and
p = 2 or 3 (mod 5); that is if p = 13,17 (mod 20).

3* Further classification criteria. Let Q denote the set of all
primes having both 5 and — 1 as quadratic residues; that is primes of
the 20^+1 or 20^+9. For the remainder of the paper all primes considered
belong to £X Let 3̂ denote the subset of divisors of (G) and ^3* =
O — ̂ 3 the complementary set of non-divisors of (G). We shall derive
criteria to decide whether p belongs to β̂ or to ^3*.

If p is any element of O, we may write

(3.1) p = 2* + 1 (mod 2*+1), p - 1 = 2*ί, q odd; k ^ 2 .
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We shall call k the (dyadic) order of p. Thus primes of order two
are of the forms AOn + 21 and 40w + 29, primes of order three, of the
form 80n + 9 and 8(bι + 41 and so on. The difficulty of classifying p
as a divisor or non-divisor of (G) increases rapidly with its order.

Let Rp denote the finite field or p elements. For every peΏ,, the
characteristic polynomial (2.2) splits in Rp:

(3.2) x2 - x - 1 = (x = a)(x - 6), α, bεRp .

If we represent the elements of Rp by the least positive residues
of p, then by a classical theorem of Dedekind's, the factorization of p
in the root-field & of f(x) is given by

(3.3) p = qq', q = (p, a - a), q' = (p, a - b) .

Here q and q' are conjugate prime ideals of & of norm p.
Now assume pε^3*; then rank p of p divides q in (3.1). Consequently

Fq = o (mod p), so that α* = /3«(mod q) in ^ . But then α23 = aqβq =
( - l)α = - 1 (mod q) so that α23 = - 1 (mod q). But then an = - 1 (mod p>
in i2. Conversely, assume that a2q = — 1 (mod p). Then in ^ ? , α2α =
- 1 (mod q) or α2 3 = (α/3)g(mod q), (α - /5)α3i^ = 0 (mod q). But (α — β, q) =
(α, q) = (1) in ^ . Hence Fq = O (mod q) so that Fq = O (mod p) in R.
Thus the rank of p in (F) must divide q and is consequently odd. Hence
pεψ.

It follows that peψ if and only if a2q = - 1 in i?p. Since (α&)23 =
(— lfq = + 1 in Rp, it is irrelevant which root of f(x) = 0 in i?^ we
choose for α. An equivalent way of stating this result is that pεφ* if
and only if aiq = 1 (mod p) but α2g ^ 1 (mod p).

For ease of printing, let

[ujp]n == (tt/fc)2«

denote the 2wic character of u modulo p. Thus [u/p^ is an ordinary
quadratic character, [u/p]2 or (^/p)4 a biquadratic character and so on.
The result we have obtained may be stated as follows:

THEOREM 3.1. Let p be any prime of order k ^ 2. Then if a is
a root of x2 — x — 1 in the finite field RP1 a necessary and sufficient
condition that p belong to ^β* is

(3.3) [alp]^ = - 1 .

There is another useful way of stating this result. Let

(3.4) g(χ) = f{x2k~2) = x2*-1 - x2k~2 - 1 .

Assume that pε^β. Then each of the equations
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x2*-2 = a, x2*-2 = b

where α, b are the roots of f(x) in Rp, has 2k~2 roots in j?p. If c is any-
one of these roots, it follows from (3.4) that c is a root of g(x). Hence
the polynomial g(x) splits completely in Rp. On the other hand since
neither of the equations

x*-1 = a, x*-1 = b

has a root in Rp, g(x2) has no roots in Rp. Evidently, by Theorem 3.1,
these splitting conditions imply conversely that pε^β*. Hence

THEOREM 3.2. Necessary and sufficient conditions that p belong to
φ * are that the polynomial g(x) defined by (3.4) splits completely into
linear factors modulo p, but the polynomial g(x2) has no linear factor
"modulo p.

For example, assume that p = 5 (mod 8) so that k = 2. Then
ϋ(%) — /(#) so the first condition of Theorem 3.2 is always satisfied.
Since g(x2) = x4 — x2 — 1 we may state the following corollary.

COROLLARY 3.1. / / p is of order two, pε^β if and only if the
polynomial x4 — x2 — 1 is completely reducible modulo p.

In like manner if p = 1 (mod 8) so that k ^ 2, we may state the
following corollary

COROLLARY 3.2. If p is of order three or more, a sufficient condi-
tion that pe^S is that the polynomial x4 — x2 — 1 is not completely
reducible modulo p.

Now let

(3.5) p=: u2 + ίv2

be the representation of p as a sum of two squares. Either u or v is
divisible by 5.

LEMMA. The polynomial z4 — z2 — 1 splits completely in Rpif and
only if in the representation (3.5) either u^±l (mod 5) or v=±l (mod 5).

Proof. Since z-4 - 22 - 1 = ((2z2 - 1 ) 2 - 5)/4, z 4 - z 2 - l always splits
into quadratic factors in Rp. But if i denotes an element of Rp whose
square is p — 1, then z4 — z2 — 1 = (z2 + if — (1 + 2i)z2. Hence a neces-
sary and sufficient condition that z4 — z2 — 1 split completely in Rp is
that 1 + 2i = ( ( - 1 ) ( - 1 - 2i)) be a square in Rp.

Now let £ denote the ring of the Gaussian integers, and let p =
(u + 2iv)(u — 2iv) be the decomposition of p into primary factors in X.
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(Bachmann [1]). Then u — 2iv is a prime ideal of norm p so that the
residue class ring %\{u — 2ίv) is isomorphic to Rp. Now — 1 — 2% is
primary in X. Also since p = 1 (mod 4), — 1 is a quadratic residue of
u — 2ίv. Hence 1 + 2ΐ is a square in Rp if and only if — 1 — 2ί is a
quadratic residue of u — 2iv in Z. By the quadratic reciprocity law in
% (Bachmann [1])

/ - 1 - 2ί \ = / u - 2ίv \ _ / u + v \
\u-2iv) \-2-2i) \ - l - 2 i ) '

Now either u or v must be divisible by — 1 — 2i. But (— 1 — 2%)
ϊs a prime ideal in % of norm five. Therefore — 1 — 2% is a quadratic
residue of u — 2ίv if and only if u = 0, v = 1, 4 (mod 5) or V Ξ 0,
u = 1, 4 (mod 5). This completes the proof of the lemma.

On combining the results of Corollaries 3.1 and 3.2 into the lemma,
we obtain

THEOREM 3.3. Let p be congruent to 5 modulo 8. Then a neces-
sary and sufficient condition that pεψ is that in the representation
(3.5) of p as a sum of two squares, either u == + 1 (mod 5) or v =
± 1 mod 5. If p is congruent to 1 modulo 8, a sufficient condition
that pέty is that u = ± 2 (mod 5) or v Ξ= ± 2 mod 5.

4. Applications of the criteria. The theorems of § 3 classify un-
ambiguously all primes of £1 either into 5̂ or into ^β*. But in the
absence of workable reciprocity laws beyond the biquadratic case, they
tell us little more than Lemma 2.1 for primes of order greater than
three; that is, primes of the forms 160% + 9 or 160% + 81. However
the theorems may be extended so as to give useful information about
primes of any order by utilizing the following elementary properties of
the character symbol [u/p]fc:

[uv/p]k = [UIPIJ&VIP]*

{4.1) [uηp], - [u/p]l - [u/p]^

[UIP]JC = 1 implies [u/p]n = 1 for l ^ w ^ ί - 1 .

From (4.1) (iii) and Theorem 3.1 we immediately obtain.

THEOREM 4.1. If p is of order k ^ 3, then a necessary condition
that p belong to ^β* is that

(4.2) [a/p]n = 1 (n - 1, 2, . . , k - 2) .

COROLLARY 4.1. A sufficient condition that p belong to 5̂ is that
(4.2) be false for some n ^ k — 2.



384 MORGAN WARD

Now suppose that a solution x = c of the congruence c2 = a (mod p)
is known, p of order four or more. Then by (4.1) (ii) and the theorem
just proved we obtain.

THEOREM 4.2. // p is of order k ^ 4, then a necessary condition
that p belong to ^β* is that

(4.4) [clp]n = 1 , (n - 1, 2, . . . , k - 3).

A necessary and sufficient condition that p belong to ^β* is that

(4.5) [c/p],_2 = - 1 .

There is a method for obtaining α, the root of (2.1) modulo p, which
leads to another useful criterion for primes of low order. For every
prime p of D there exists a unique representation in the form

(4.6) p = r2 — 5s2, 0 < r, 0 < s < τ/4p/5 .

(Uspensky [5]). If this representation is known, a is easily shown to
be the least positive solution of the congruence

(4.7) 2sa = (r + s) (mod p.) .

By using property (4.1) (i) of the character symbol and Theorem
3.1, we see that

[2slp]k^ = - [(r + s)lp]k^

is a necessary and sufficient condition that p belong to ^3*.
If k = 2, the criterion becomes (2sIp) = — ((r + s)/p). But since

P Ξ 5 (mod 8) and p = r2 — 5s2, r is odd and s = 2s' where s' is odd.
Hence by the reciprocity law for the Jacobi symbol, (2s/p) = (s'/p) =
(pis') = (r2/s') = + 1. Hence psψ if and only ((r + s)/p) = - 1. But
((*• + β)/2>) = ((r1 - 5s2)/(r + s)) = ( - 4s2/(r + s)) - ( - l/(r + s)) - ( - l) ( ί +1)/2

since s = 2 (mod 4). We have thus proved

THEOREM 4.3. If p is of order two, so that p is of the form
AOn + 21 or AOn + 29, then p belongs to 3̂ or to ^β* according as r in
the representation (4.6) is congruent to three or one modulo 4.

Now if k > 2, p = 1 (mod 8) so that r in the representation (4.6) is
odd. Hence using the corollary to Theorem 4.1 with n = 1 and the
results established in the proof of Theorem 4.3, we obtain

THEOREM 4.4. If p is of order greater than two, p belongs to β̂
if r in the representation (4.6) is congruent to one modulo 4.

To illustrate, suppose that p = 101. Then p = 5 (mod 8) so that
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Theorem 3.3 is applicable. Since 101 = Γ + 4 52, lOlεφ. Also 101 =
I P - 5 22 and 11 = 3 (mod 4). Hence 101ε$β by Theorem 4.3. In fact
we find from Laisant's table that G50 = 12586269025 = 101 x 124616525.

Again, there are seven primes in £} less than one thousand of order
greater than three; namely 241, 401, 449, 641, 769, 881 and 929. But
only two of these need be discussed; Theorem 3.3 assigns 241, 449, 641,
881 and 929 to 5β. For 241 = 152 + 4.22, 449 = 72 + 4.102, 641 = 252 + 4.22,
881 = 252 + 4.82 and 929 = 232 + 4.102. There remain 401 and 729. Now
401 = 17 (mod 32). Hence k == 4. Since 1122 - 112 - 1 = 31 x 401,
a = 112. Hence by Theorem 3.1, 401εφ* if and only if [112/401]8 = - 1.
Now using the idea in Theorem 4.2, 112 = 24 x 7 and 852 Ξ= 7 (mod 401).
Hence [112/401]8 = [85/401]2. But (85/401) = - 1. Hence 401εφ. This
conclusion is easily checked. For 401 — 1 = 25.16 and by Laisant's table,
F25 = 75025 =£ 0 (mod 401). Hence 401εφ by Lemma 2.1.

Finally 769 = 257 (mod 512) so that k = 8. Using Jacobi's Canon,
a - 43, ind a = 500 m 0 (mod 64) so that 769εφ. Indeed 769 - 1 = 3-256
and F3 = 2. Hence 769ε*β by Lemma 2.1.

We have shown incidentally that every prime p < 1000 in Q of
order greater that three is a divisor of (G).

5 Conclusion* The methods of this paper may be easily extended
to obtain information about the prime divisors of the Lucas or Lehmer
[4] numbers of the second kind an + βn where a and β now are the
roots of any quadratic polynomial x2 — VPx + Q with P, Q integers,
Q(P — 4Q) φ 0. It is worth noting that just as in the special case
P = 1 Q = — l investigated here, there will be arithmetical progressions
whose primes cannot be characterized as divisors or non-divisors by their
quadratic or biquadratic characters alone.

In the absence of any criterion like Lemma 2.1 for a prime divisor
of an arbitrarily selected recurrence (Z7), it seems difficult to characterize
the divisor of (U) in any general way. It would be interesting to make
a numerical study of several recurrences (U) to endeavor to find out
whether the two Lucas sequences 0,1, P, and 2, P, P 2 — 2Q, and
their translates are essentially the only ones for which a global charac-
terization of the divisors is possible.
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