SIMPLE PATHS ON POLYHEDRA

J. W. Moon and L. Moser

In Euclidean d-space ($d \geqq 3$) consider a convex polytope whose $n(n \geqq d+1)$ vertices do not lie in a $(d-1)$-space. By the "path length" of such a polytope is meant the maximum number of its vertices which can be included in any single simple path, i.e., a path along its edges which does not pass through any given vertex more than once. Let $p(n, d)$ denote the minimum path length of all such polytopes of n vertices in d-space. Brown [1] has shown that $p(n, 3) \leqq(2 n+13) / 3$ and Grünbaum and Motzkin [3] have shown that $p(n, d)<2(d-2) n^{\alpha}$ for some $\alpha<1$, e.g., $\alpha=1-2^{-19}$ and they have indicated how this last value may be improved to $\alpha=1-2^{-16}$. The main object of this note is to derive the following result which, for sufficiently large values of n, represents an improvement upon the previously published bounds.

Theorem.

$$
p(n, d)<(2 d+3)((1-2 /(d+1)) n-(d-2))^{\log 2 / \log a}-1<3 d n^{\log 2 / \log d} .
$$

When $d=3$ the example we construct to imply our bound is built upon a tetrahedron which we denote by G_{0}. Its 4 vertices, which will be called the 0th stage vertices, can all be included in a single simple path. Upon each of the 4 triangular faces of G_{0} erect a pyramid in such a way that the resulting solid, G_{1}, is a convex polyhedron with 12 triangular faces. This introduces 4 more vertices, the 1st stage vertices, which can be included in a single simple path involving all 8 vertices of G_{1}. We may observe that it is impossible for a path to go from a 1st stage vertex to another 1st stage vertex without first passing through a 0th stage vertex.

The convex polyhedron G_{2} is formed by erecting pyramids upon all the faces of G_{1}. Of the 122 nd stage vertices thus introduced at most 9 can be included in any single simple path since, as before, no path can join two 2nd stage vertices without passing through an intermediate vertex of a lower stage and there are only 8 such vertices available.

The procedure continues as follows: the convex polyhedron G_{k}, $k \geqq 2$, is formed by erecting pyramids upon the 4.3^{k-1} triangular faces of G_{k-1}. Making repeated use of the fact that the method of construction makes it impossible for a path to join two vertices of the j th stage, $j \geqq 2$, without first passing through at least one vertex of a lower stage we find that at most 9.2^{j-2} of the 4.3^{j-1} vertices of the

[^0]j th stage, $j=2,3, \cdots, k$, can be included in a single simple path along the edges of G_{k}. This and the earlier remarks imply that $G_{k}, k \geqq 1$, has $2 \cdot 3^{k}+2$ vertices and at most $9 \cdot 2^{k-1}-1$ of these can be included in a single simple path.

For any integer $n>4$ let k be the unique integer such that

$$
\begin{equation*}
2 \cdot 3^{k}+2<n \leqq 2 \cdot 3^{k+1}+2 \tag{1}
\end{equation*}
$$

Next consider the convex polyhedron with n vertices which can be obtained by erecting pyramids upon $n-\left(2 \cdot 3^{k}+2\right)$ faces of G_{k}. Then, from considerations similar to those given before, it follows, using (1), that

$$
\begin{equation*}
p(n, 3) \leqq 9 \cdot 2^{k}-1<9((n-2) / 2)^{\log 2 / \log 3}-1 \tag{2}
\end{equation*}
$$

This suffices to complete the proof of the theorem when $d=3$ since the result is trivially true when $n=4$.

In the general case the construction starts with a d-dimensional simplex. Upon each of its $(d-1)$-dimensional faces is formed another d-dimensional simplex by the introduction of a new vertex on the side of the face opposite to the rest of the original simplex in such a way that the resulting polytope is convex. This process is repeated and the rest of the argument is completely analogous to that given for the case $d=3$. It should be pointed out that the result of Grünbaum and Motzkin holds even for graphs all of whose vertices, but for a bounded number are incident with 3 edges, while in the polytopes described above the distribution of valences is quite different.

In closing we remark that the path length of any 3 -dimensional convex polyhedron with n vertices is certainly greater than

$$
\left(\log _{2} n / \log _{2} \log _{2} n\right)-1
$$

Suppose that there exists a vertex, q say, upon which at least $\log _{2} n / \log _{2} \log _{2} n$ edges are incident. Let the vertices at the other ends of these edges be $p_{1}, p_{2}, \cdots, p_{t}$, arranged in counterclockwise order. Each pair, $\left(p_{i}, p_{i+1}\right), i=1, \cdots, t-1$, of successive vertices in this sequence determines a unique polygonal face containing the edges $\overline{p_{i+1} q}$ and $\overline{q p_{i}}$. Traversing this face in a counterclockwise sense gives a path from p_{i} to p_{i+1} involving at least one edge. Since these faces all lie in different planes it is not difficult to see that these paths may be combined to give a simple path from q to p_{1} to p_{t} whose length is at least $t \geqq \log _{2} n / \log _{2} \log _{2} n$. If there is no vertex upon which this many edges are incident then the required result follows from the type of argument used by Dirac [2; Theorem 5] in showing that the path length is at least of the magnitude of $\log n$ if only a bounded number of edges are incident upon any vertex.

Bibliography

1. T. A. Brown, Simple paths on convex polyhedra, Pacific J. Math., 11 (1961), 12111214.
2. G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., (3) 2 (1952), 69-81.
3. B. Grünbaum and T. S. Motzkin, Longest simple paths in polyhedral graphs, J. London Math. Soc., 37 (1962), 152-160.

University of Alberta

[^0]: Received July 20, 1962.

