## SIMPLE PATHS ON POLYHEDRA

## J. W. MOON and L. MOSER

In Euclidean d-space  $(d \ge 3)$  consider a convex polytope whose  $n \ (n \ge d+1)$  vertices do not lie in a (d-1)-space. By the "path length" of such a polytope is meant the maximum number of its vertices which can be included in any single simple path, i.e., a path along its edges which does not pass through any given vertex more than once. Let p(n, d) denote the minimum path length of all such polytopes of n vertices in d-space. Brown [1] has shown that  $p(n, 3) \le (2n + 13)/3$  and Grünbaum and Motzkin [3] have shown that  $p(n, d) < 2(d-2)n^{\alpha}$  for some  $\alpha < 1$ , e.g.,  $\alpha = 1 - 2^{-19}$  and they have indicated how this last value may be improved to  $\alpha = 1 - 2^{-16}$ . The main object of this note is to derive the following result which, for sufficiently large values of n, represents an improvement upon the previously published bounds.

THEOREM.

 $p(n, d) < (2d + 3)((1 - 2/(d + 1))n - (d - 2))^{\log 2/\log d} - 1 < 3d n^{\log 2/\log d}.$ 

When d = 3 the example we construct to imply our bound is built upon a tetrahedron which we denote by  $G_0$ . Its 4 vertices, which will be called the 0th stage vertices, can all be included in a single simple path. Upon each of the 4 triangular faces of  $G_0$  erect a pyramid in such a way that the resulting solid,  $G_1$ , is a convex polyhedron with 12 triangular faces. This introduces 4 more vertices, the 1st stage vertices, which can be included in a single simple path involving all 8 vertices of  $G_1$ . We may observe that it is impossible for a path to go from a 1st stage vertex to another 1st stage vertex without first passing through a 0th stage vertex.

The convex polyhedron  $G_2$  is formed by erecting pyramids upon all the faces of  $G_1$ . Of the 12 2nd stage vertices thus introduced at most 9 can be included in any single simple path since, as before, no path can join two 2nd stage vertices without passing through an intermediate vertex of a lower stage and there are only 8 such vertices available.

The procedure continues as follows: the convex polyhedron  $G_k$ ,  $k \ge 2$ , is formed by erecting pyramids upon the  $4.3^{k-1}$  triangular faces of  $G_{k-1}$ . Making repeated use of the fact that the method of construction makes it impossible for a path to join two vertices of the *j*th stage,  $j \ge 2$ , without first passing through at least one vertex of a lower stage we find that at most  $9.2^{j-2}$  of the  $4.3^{j-1}$  vertices of the

Received July 20, 1962.

jth stage,  $j = 2, 3, \dots, k$ , can be included in a single simple path along the edges of  $G_k$ . This and the earlier remarks imply that  $G_k, k \ge 1$ , has  $2 \cdot 3^k + 2$  vertices and at most  $9 \cdot 2^{k-1} - 1$  of these can be included in a single simple path.

For any integer n > 4 let k be the unique integer such that

$$(\,1\,) \qquad \qquad 2\!\cdot\! 3^k + 2 < n \leqq 2\!\cdot\! 3^{k+1} + 2\,.$$

Next consider the convex polyhedron with n vertices which can be obtained by erecting pyramids upon  $n - (2 \cdot 3^k + 2)$  faces of  $G_k$ . Then, from considerations similar to those given before, it follows, using (1), that

$$(\,2\,) \qquad \qquad p(n,\,3) \leq 9 \cdot 2^k - 1 < 9((n-2)/2)^{\log 2/\log 3} - 1 \;.$$

This suffices to complete the proof of the theorem when d = 3 since the result is trivially true when n = 4.

In the general case the construction starts with a d-dimensional simplex. Upon each of its (d - 1)-dimensional faces is formed another d-dimensional simplex by the introduction of a new vertex on the side of the face opposite to the rest of the original simplex in such a way that the resulting polytope is convex. This process is repeated and the rest of the argument is completely analogous to that given for the case d = 3. It should be pointed out that the result of Grünbaum and Motzkin holds even for graphs all of whose vertices, but for a bounded number are incident with 3 edges, while in the polytopes described above the distribution of valences is quite different.

In closing we remark that the path length of any 3-dimensional convex polyhedron with n vertices is certainly greater than

$$(\log_2 n/\log_2 \log_2 n) - 1$$
.

Suppose that there exists a vertex, q say, upon which at least  $\log_2 n/\log_2 \log_2 n$  edges are incident. Let the vertices at the other ends of these edges be  $p_1, p_2, \dots, p_t$ , arranged in counterclockwise order. Each pair,  $(p_i, p_{i+1})$ ,  $i = 1, \dots, t-1$ , of successive vertices in this sequence determines a unique polygonal face containing the edges  $\overline{p_{i+1}q}$  and  $\overline{qp_i}$ . Traversing this face in a counterclockwise sense gives a path from  $p_i$  to  $p_{i+1}$  involving at least one edge. Since these faces all lie in different planes it is not difficult to see that these paths may be combined to give a simple path from q to  $p_1$  to  $p_t$  whose length is at least  $t \ge \log_2 n/\log_2 \log_2 n$ . If there is no vertex upon which this many edges are incident then the required result follows from the type of argument used by Dirac [2; Theorem 5] in showing that the path length is at least of the magnitude of  $\log n$  if only a bounded number of edges are incident upon any vertex.

## BIBLIOGRAPHY

1. T. A. Brown, Simple paths on convex polyhedra, Pacific J. Math., 11 (1961), 1211-1214.

2. G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., (3) 2 (1952), 69-81.

3. B. Grünbaum and T. S. Motzkin, Longest simple paths in polyhedral graphs, J. London Math. Soc., **37** (1962), 152-160.

UNIVERSITY OF ALBERTA