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INVARIANT SUBSPACES OF POLYNOMIALLY
COMPACT OPERATORS

P. R. HaLMOS

This paper is a comment on the solution of an invariant
subspace problem by A. R. Bernstein and A. Robinson [2].
The theorem they prove can be stated as follows: if A is an
operator on a Hilbert space H of dimension greater than 1,
and if p is a nonzero polynomial such that p(A) is compact,
then there exists a nontrivial subspace of H invariant under
A. (“Operator’’ means bounded linear transformation; ‘‘Hilbert
space’’ means complete complex inner product space; ‘‘compact’’
means completely continuous; ‘‘subspace’’ means closed linear
manifold; ‘““nontrivial’”’, for subspaces, means distinct from {0}
and from H.) The Bernstein-Robinson proof has two aspects:
it is an ingenious adaptation of the proof by N. Aronszajn
and K. T. Smith of the corresponding theorem for compact
operators [1], and it makes strong use of metamathematical
concepts such as nonstandard models of higher order predicate
languages. The purpose of this paper is to show that by appro-
priate small modifications the Bernstein-Robinson proof can be
converted (and shortened) into one that- is expressible in the
standard framework of classical analysis.

A quick glance at the problem is sufficient to show that there is
no loss of generality in assuming the existence of a unit vector e such
that the vectors e, Ae, A%, --- are linearly independent and have H
for their (closed linear) span. (This comment appears in both [1] and
[2].) The Gram-Schmidt orthogonalization process applied to the se-
quence {e, Ae, A’, ---} yields an orthonormal basis {¢,, ¢., ¢,, - - -} with the
property that the span of {e, ---, A" '¢} is the same as the span of
{es, ++-, e,} for each positive integer n. It follows that if a,,, = (4e,, ¢,),
then @,, = 0 unless m < n + 1; in other words, in the matrix of 4
all entries more than one step below the main diagonal must vanish.
The matrix entries of the kth power of A are given by a¥), = (4*e,, e,,).
A straightforward induction argument, based on matrix multiplication,
yields the result that alf, = 0 unless m < n + k, and

(k) —
ey = Hlsjgkan+]', n+j—1e

(With the usual understanding about an empty product having the value
1, the result is true for k¥ = 0 also.) This result for powers has an

implication for polynomials. If the degree of p» (the only polynomial
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needed) is k£ (= 1), and if the matrix entries of p(A) are given by
a'h = (p(A)e,, €.), then a'?), ., is a constant multiple (by the leading coeffi-
cient of p) of al¥,, .. Since || p(A)e,||— 0 as n — <= (because of the com-
pactness of p(A)), there exists an increasing sequence {k(n)} of positive
integers (in fact a sequence with no gaps of length greater than the
degree of p) such that the corresponding subdiagonal terms a1,z tend
to 0 as » tends to <=. (This very useful conclusion is one of the analytic
tools used in [2], where it is described in terms of “infinite positive
integers”.)

If H, is the span of {e, ---, e}, then {H,} is an increasing se-
quence of finite-dimensional subspaces of H whose span is H. If P, is the
projection with range H,, then P, — 1 (the identity operator) strongly.
Since, for each n, the operator P,AP, leaves H, invariant, it follows that,
for each n, there exists a chain of subspaces invariant under P,AP,,

0 =H"cC H"C --- Cc H*» = H,

with dim H® =14, t+=0,1, ---,k(n). (The consideration of such
chains is essential in both [1] and [2].)

If {f.} and {g,} are sequences of vectors in H, it is convenient to
write f, ~ ¢, to mean that ||f, — g.||—0 as n— c>. Assertion: if
{f.} is a bounded sequence of vectors in H, then

(1) AP,f, ~ P,AP,f, .

(Intuitively: H, is approximately invariant under A.) The proof is a
straightforward computation, based on the fact that P,f = 3% (f, e;)e;
whenever fe H. Since AP,f, — P,AP,f, = 3% (fa, €5) ik +:0ii€s,
since the largest j here is k(n) and the smallest 7 is k(n) + 1, and
since a;; = 0 unless ¢+ =<7 + 1, it follows that ||AP,f, — P,AP,f.|| =
[ fall * | @rimysrsiecm |

The conclusion (1) can be generalized to higher exponents:
(2) AkPnan(PnAPn)kfny k:1!2’3’°";

the proof is by induction on %k and is omitted. For k = 0, (2) says
that || P.f. — f.|l— 0, which is a stringent condition on the bounded
sequence {f,}; if that condition is satisfied, then (2) implies that

(3) p(A)P,f, ~ o(P,AP,)f, .

Return now to the unit vector e. Since P,e = ¢ for each =, it
follows that p(P,AP,)e ~ p(A)e. Since p(A)e # 0 (because the vectors
e, Ae, A’e, --+ are linearly independent), it follows that

¢ = lim, || p(P,AP,)e|| = || p(A)e]| > 0.

Consider, for each n, the numbers
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” p(PnAPn)e - p(PﬂAPﬂ)P’/E.O)e H ’
| o(P,AP,)e — p(P,AP, )P e || ,

| p(P,AP,)e — p(P,AP,)P,*"e | ,

where P,” is the projection with range H, Since P.” is the zero
projection, the first of these numbers tends to €. Since, on the other
hand, P/* = P,, the last of these numbers is always 0. In view of
these facts it is possible to choose for each » (with possibly a finite
number of exceptions) a positive integer i(n), 1 < i(n) < k(n), such
that

(4) | p(P,AP,)e — p(P,AP,)P)im Vg | = _Z_ ’
and
(5) !ip(PnAPn)e" p(P,,AP,,)P,E“””eH <—;- s

the simplest way to do it is to let ¢(n) be the smallest positive integer
for which these inequalities are true. (The construction of this particu-
lar “infinite positive integer” ¢ is the second major analytic insight
in [2].)

Since both {P/*™-"} and {P,'™"} are bounded sequences of operators,
there exists an increasing sequence {rn;} of positive integers such that
both {Pi"/~"} and {P,;""} are weakly convergent. Write, for typo-
graphical convenience, Q7 = P,/ and Qf = P,’"". Let M~ be the
set of all those vectors f in H for which Q;f— f (strongly), and,
similarly, let M+ be the set of those vectors f for which Qff—f
(strongly). The purpose of what follows is to prove that both M-
and M+ are subspaces of H, that both are invariant under A, and
that at least one of them is nontrivial.

Since linear combinations are continuous, it follows that M~ is a
linear manifold. To prove that M~ is closed, suppose that g is in the
closure of M~; it is to be proved that ge M-, i.e., that Q;9g —g.
Given a positive number 4, find f in M~ so that ||f— g|| < 8/3, and
then find j, so that ||Q;f — f]| < 6/3 whenever 7 = j,. It follows that
if j = j,, then | Q79— gl = |1Q7g — @ Fll + | Q5f — FIl+ 1 F—gll <.
This proves that M~ is closed; the proof for M+ is the same.

To prove that M~ is invariant under A, suppose that fe M-, so
that Q;f— f, and infer, first, that AQjf— Af, just because A is
bounded, and, second, that Q;AQ7f ~ Q7Af, because Q; is uniformly
bounded. Then reason as follows: Q7Af~ Q;AQ;f = Q;P, AP, Q7 f
(because Q; =< P, ) = P, AP, Q7 f (because the range of Q; is invariant
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under P, AP,)~ AP, Q;f (by (1)) = AQ;f— Af. This proves that
M- is invariant; the proof for M+ is the same.

The next step is to prove that M- s H; this is done by proving
that e does not belong to M~. For this purpose observe first that
the operators p(P,AP,) are uniformly bounded. (Observe that

(P, AP || = || P,AP,|I" = [| Allf

and use the polynomial whose coefficients are the absolute values of
the coefficients of p.) Now use (4):

% < |p(P,, AP, )|l - e — Q5el; .

Since ||p(P,,AP,)|| is bounded from abkove, its reciprocal is bounded
away from zero, and, consequently, |le — Q;e|| is bounded away from
zero, which makes the convergence Qje — e impossible.

The corresponding step for M+ says that M+ == {0}; the proof is
quite different. The choice of the sequence {n;} implies that the se-
quence {Q;e} is weakly convergent; the compactness of p(A) implies,
therefore, that the sequence {p(A)Qje} is strongly convergent to, say,
f. The proof that follows consists of two parts:. (i) f = 0, (il) fe M- .
Part (i): p(A)Q;e~p(P,,IAP,,j)Q;’e (by (3)), which is within ¢/2 of
p(P,, AP, )e (by (5)), whose norm tends to ¢; it follows that || p(4)Qjel:
cannot tend to 0, and hence that f= 0. Part (ii): Q;f ~ Q;p(4)Q7e
(since Q7 is uniformly bounded) ~ Q;p(P, AP, J)Q je (by (3), and, again,
uniform boundedness) = p(P, AP, )Q;je (because the range of Q; is
invariant under p(P, AP,))) ~ p(A)Q;e (by (3))— f (by definition).

If M+ = H, all is well; it remains to be proved that if M+ = H,
then M~ {0}. If M+ = H, then Q,f— f for all f, and, a fortiori,
Qff— f weakly. At the same time the sequence {Q;} is known to
be weakly convergent to, say, Q. The operators Q; and Q; are
projections such that Q; < @Q; and such that Q; — Q; has rank 1. It
follows that, for each j, there exists a unit vector f; such that
@F — Q7)) = (f, f,)f; for all f. Observe now that Q;e cannot tend
weakly to e, for, if it did, then it would tend strongly to e (an
elementary property of projections), and that was proved to be not so.
This implies that @ ¢ 5= e, or, equivalently, that (1 — @ )e = 0. Can
the numbers |(e, f;)| be arbitrarily small? Since |(Q;7 — Q7)e, 9)| =
(e, f)|-llgll for all g, an affirmative answer would imply that
(1 —Q)e, g) = 0 for all g, so that (1 — @ )e = 0—a contradiction. The
fact so obtained (that the numbers | (e, f;)| are bounded away from
zero) makes it possible to prove that M— s {0}; it turns out that if
91 (1—Q)e, then ge M-, Indeed, since (e, f;)(f5, 9)— (1 —Q)e, g) =
0, it follows that (f;, g) — 0, and hence that (f, f;)(f;, 9)— 0 for all
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f- This implies that (1 —Q7)f, 9) =0 for all f, and hence that
(1 —Q)g =0. In other words, @79 — g weakly, and therefore strongly
(the same property of projections that was alluded to above); from
this it follows, finally, that ge M~.

I am grateful to Professor Robinson for a prepublication copy of
[2] and for a kind letter helping me over some metamathematical
difficulties.
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