
PACIFIC JOURNAL OF MATHEMATICS
Vol. 48, No. 2, 1973

NONSOLVABLE FINITE GROUPS ALL OF WHOSE

LOCAL SUBGROUPS ARE SOLVABLE, IV

JOHN G. THOMPSON

In this paper, the simple N-groups are classified for which
e ^ 3 and 2eττ4. This latter condition means that a Sylow
2-subgroup contains a normal elementary abelian subgroup of
order 8 and does not normalize any nonidentity odd order
subgroup.

As in III, the proofs rely heavily on the fact that many sub-
groups of odd order are contained in just one maximal subgroup.
The numbering of the sections is a continuation of III. The biblio-
graphical references are to be found at the end of I. The predecessors
to this paper are: Nonsolvable Finite Groups all of whose Local
Subgroups are solvable, I, II, III: Bull A. M. S., 74 (1968), 383-437;
Pacific J. Math., 33 (1970), 451-536; Pacific J. Math., 39 (1971),
483-534.

13* The case 2εττ4; first reduction*

THEOREM 13.1.

( a ) If peπs, then s^(p) S ~ /f*(®) (s^(p) is defined in Defini-
tion 2.10, and ^f*(®) is defined in Definition 2.7.)

(b) If pz π3, β̂ is a Sp-suhgτoup of © and Tt is the unique ele-
ment of ^-/fS^(®) which contains ^3, then

(i) φg9K',
(ii) for each G in @ — SK, Sp-subgroups of 2K Π ffllG are of order

1 or p.

Proof. Theorem 10.7 implies (a); (b)(i) is a consequence of (a)
and a standard transfer theorem; (b)(ii) can be established by imitating
the proof of Theorem 0.25.6.

LEMMA 13.1. If 36 is non identity 2-suhgroup of ®, then

O2,(N@)) = 1.

Proof. Set ϊfl = N(£) and let Z be a £2-subgroup of 9Ϊ. Suppose
by way of contradiction that O2/(9ί) Φ 1. First, suppose \H\ — 2. Let
$ be a minimal normal subgroup of 5Ji of odd order. Thus, 3̂ is a
p-group for some odd prime p. Let § be a maximal 2, p-subgroup
of © which contains 2^3. Let ξ>2, &p be a Sylow system of φ with

First, suppose Op(§) = 1. Let B = O2(φ). By the φ x Π-lemma,
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5β is faithfully represented on CΛ(X). But [φ, C%(%)] s [*β, 9ΐ] s 5β, so
5β centralizes CΛ(3L).

We may assume that Op(φ) =£ 1. Suppose O2(£>) ̂  1. By Lemma
6.6, we get 2 g 7Γ4, against our basic assumption of this section. So
we may assume that O2(φ) — 1. Since £ is a S2-subgroup of 31, Lemma
5.38 (a)(ii) implies that Z contains an element tt of ^ ( 2 ) . By Lemma
6.1 (b), ΐt centralizes every element of M(tt; 2'). In particular, IX
centralizes Op(φ). This is also impossible, since Op(φ) = F(φ)

We may assume that |3£| > 2. Let 2) be a subgroup of order 2
in 3c Π Z(S). By the first part of the proof, O2,(%) = 1, where
% = JV(2)). Hence, O2,(9fc) is faithfully represented on O2(%) n C(X), by
the 5β x G-lemma. Since

[OM, o2(%) n c ( ϊ ) ] g o 2 w n o2,(3ί) = 1,

we get O2,(9ΐ) - 1.

THEOREM 13.2 Let 2K be a solvable subgroup of © and let 2K2

be a S2-subgroup of 5DΪ. ΓΛew eΐ£Λ,er iV(2K2) g 3K or SK2 contains an

involution I such that C(I) §£ 9ft.

Proof. Suppose false. Then M2 is a S2-subgroup of © and 3ft
contains the centralizer of each of its involutions. By Lemma 5.35,
3ft has just one class of involutions. By Lemma 5 40, 3ft has 2-length
1. Since 2 e τr4, we get 3ft2 <] 3ft. Thus, 3ft contains exactly 1 S2-
subgroup of ©, and every involution of 3ft2 is central. This implies
that 3ft2 is a T.I. set in ®. By a fundamental result of Suzuki [36],
we have © ^ Uz{q), Sz(q), L2(q), for some q = 2n > 2. Since Uz(q) is
not an iV-group, we get that © satisfies the conclusions of the main
theorem. The proof is complete.

The next lemma begins to pinpoint some of the difficulties of this
section.

LEMMA 13.2. Let Z be a S2-subgroup of ©. Suppose £ e ^C*(@).
Let 3ft be the unique element of ^fS^(®) which contains X. Then
there is a 2, 3-subgroup !Q of © such that

(a) £g3ft.
( b) 4? Π 3ft contains a S2subgroup $2 of φ.
( c ) O,(φ) = l .
( d ) § 2 contains an involution I such that

( i ) Cϋ2(I) is a S2-subgroup of Cm(I).
(ii) Cϋ2(I) contains an element of fS (2).
(iii) C(I) g 3ft.
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(e) 1/ >̂2 S 3ft0 ε 3ft, and φ2 is not a S2-subgroup of 3ft0

,e^*(<8).

Proof. Let ^ be the set of all U in ^ (2) with IX g 3ft. Let
be the set of all involutions / of 3ft such that

(ex) Cm(I) contains an element of ^/ .

We first show that ^ό Φ 0 . Suppose false. Choose 1XO6 ̂ ( 2 ) , and
set So = CΪOIO). Since Uo e ̂ , it follows that C(/) S 3ft for all Ie £*.
On the other hand, since 5Ee.^*(©), we have JV(£)gi3ft, so by
Theorem 13.2, there is an involution Jo of 3ft such that C(J0) <g 3ft.
Let 3ft2 be a S2-subgroup of (^(Jo). Choose ikfin 3ft such that SRfgϊ,
and set J = Jf. Thus, 2 ^ = 3ftf is a S2-subgroup of (^(J) and C(J) g
9ft. Hence, J £ £ o and 2JΪ2 contains no element of ^ , since Ji^.
By Lemma 5.38 (a)(ii), C(J) contains an element of ^/ (2). Hence,
3K2 is not a S2-subgroup of C(J). Let 3ft3 be a 2-subgroup of C(J)
with |3ft3: §Ϊ2 | = 2. Choose Xe 3ft3 - 2R2, so that X ί 3ft. Hence, C(X)
contains no element of £J. On the other hand, Ẑ SOΐs) S ί£0> so D(§Jl2) = 1.
Since OT^Π £0 is of index 2 in 3JΪ2, it follows that C(X) Π TO2 = <J>.
Hence, 5ΠΪ2 is a four-group. This implies that X is of maximal class,
against 2 e ττ4. We conclude that ^ Φ 0 .

Let J7~ be the set of all 2-subgroups %γ of 3K with the following
properties:

(l) ^ί^r^©)-
(2) There is at least one involution T of J^ such that %γ con-

tains a iS2-subgroup of C^(T).
We argue that ^~ Φ 0 . Namely, choose / e J^> and let Z1 be a

S2-subgroup of CJI). Since C(J)^3ft, we get that ^ e jT~.
Let $2 be an element of ^ of maximal order. Since Ze ^*(®),

it follows that >̂2 is not a >S2-subgroup of 3ft. By maximality of φ2,
(e) holds. Let ^ = {@|£2S@e ^^>

βS ί ?(©), @g3ft}. By definition
^~, we have S^ Φ 0. If @ e ^ , the maximality of φ2 guarantees
that <§2 is a £2-subgroup of @. Let π = {p \ p is an odd prime, £^
contains a 2, p-group}. Thus, 7Γ Φ 0 . Choose >̂GTΓ and let § be a
2, p-subgroup of © which is contained in ^ , and is maximal with
this property. Thus, § is a maximal 2, p-subgroup of © which is
not a S2,p-subgroup of ©.

By definition of ^ , there is T in ^ such that C9i(T) is a S2-
subgroup of Cm(T). By definition of J^, we get that £>2 contains an
element IX of <%f. Thus, (d) holds.

By Lemma 6.6, either 02(φ) = 1, or Op(̂ >) = 1. By Lemma 6.1 (b),
U centralizes Op(§), so O2(φ) ^ 1. We thus get Op(^) = 1, so if p = 3,
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we are done. Suppose p ^ 5. Then by [43], we have

Since |iV^(^)|2 > | £ 2 | for B = Z{§2) and for £ = J(φ2), the maximality
of £>2 forces φ g 271, against our construction. The proof is complete.

For each odd prime p, let e(p) be the largest integer n such that
M(Gc; 2) is non trivial for some elementary subgroup @ of © of order
p \ Let

e = e(G) = max {β(p)} ,

where p ranges over all odd primes. Since © is simple, there is a
2-subgroup 31 of © such that -4β(St) is not a 2-group, by Theorem
14.4.7 of [21]. Hence, e ^ 1.

Hypothesis 13.1. e ̂  3.

LEMMA 13.3 through 13.38 are proved under Hypothesis 13.1.

We use the following notation: rQ denotes an odd prime such that
for some elementary subgroup 9ΐ0 of © of order rl, M(3ΐ0; 2) is non
trivial; Xo is a maximal element of M(9ίo; 2).

LEMMA 13.3.

Proof. If r0 G τr3, we may apply Theorem 13.1. Thus, we may
assume that r0 £ τr3. Since 3ΪO is elementary of order rl, we conclude
that r o6 7r4. If r0 ^ 5, we may apply Lemma 10.6. Thus, we may
assume that r0 = 3.

By Lemma 13.1, 9ΐ0 acts faithfully on O2(N(X0)). Thus, O2(iV(£0))
contains a non cyclic abelian group of order 8. Since 3ΐ0 is elementary
of order 33, we get 2 ~ 3. If the center of a S3-subgroup of © is
non cyclic, then © = E2(Ά)9 by Theorem 8.1. If the center of a S3-
subgroup of © is cyclic, then © ~ S4(3), by Theorem 9.1. Since © is
an iV-group, both of these possibilities are excluded. The proof is
complete.

We now set SK = M(dlQ). Let σ — {p\pe πz U τr4, SK contains a
Sp-subgroup of ©}. Thus, r0 e σ, and if pβπS9 then p e σ if and only
if 3ft contains an element of Sxf (p). Choose p in σ and let $ be a
Sp-subgroup of Wl permutable with the S2-subgroup S of SK.

LEMMA 13.4. OP($X) = 1.

Proof. If X is a S2-subgroup of ©, we are done, since 2 e ττ4.
We may assume that % is not a S2-subgroup of ©.
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Since ^3e^#*(©), ?βZ is a maximal 2, p-subgroup of®. Suppose
OP(^Z) Φ 1, OffiZ) Φ 1. Then Lemma 6.6 (iii) yields a contradiction.
Thus, proceeding by way of contradiction, we may assume that
OP(^Z) Φ 1, O2(φZ) = 1. Since OffiZ) = 1, it follows from Lemma 6.1
that Z contains no element of ^ (2). We will show that this is
false. Since 3ΐ0 6 ̂  *(©), it follows that N{Z0) S 2TC, and that JV(2;)g3ft
for every non identity characteristic subgroup ZL of ί£0. Since 3ft con-
tains no element of Ήf (2), it follows that ZQ is elementary.

Since 3ΐ0 is elementary of order rl, we can choose a subgroup %
of 3ί0 of order r\ such that £ 0 Π 0(3x0 ^ l Let I be an involution in
Zo n C ^ ) - By Lemma 5.38 (a)(ii), C(I) contains an element of ^ (2).
Since ΐfi^Cil) and since 3Ϊ.6 j ^ (r0), it follows from Lemma 13.2
that C(/)u9K. This contradiction completes the proof.

LEMMA 13.5.

( a ) If ©2 is a S2-subgroup of & which contains Z, then Z con-
tains every element of <%f (@2).

( b ) 02{Έl)Φl.
( c )

Proof. Let 2* = O2(^2). Since N(Z*) S 3K, it follows that Z(©2) S
S. Since OP(^Z) = 1, it follows that Z(@ 2 )gϊ*. Hence, JV(S*) con-
tains every element of W (@2), proving (a). Lemma 6.1 together with
(a) yield (b).

Since © is an iV-group, S K e ^ ^ (©), and 02{W) Φ 1, it follows
that SK - iV(O2(SK)). Thus, Lemma 13.1 implies that (c) holds.

In Lemmas 13.6 through 13.38, we use the following notation: Z
is a S2-subgroup of SW, S3 = ^(^(SK)), §B* = F(cclΘ (S3); S). Also, σ
has its previous meaning. We also introduce the set ^ of all involu-
tions I of M such that Cm(I) e ^C*(©). This set plays an important
role in much of the following discussion.

By Lemma 5.9 (iii), 93 is 2-reducible in 3ft.

LEMMA 13.6.

( a ) // 1331 > 2, then C(330)e2ft for every hyperplane 930 of S3.
( b ) One of the following holds:

(i) |9S| = 2.

(ii) If 93O is a subgroup of index 2 in 93 and I is an involu-
tion of 3ft such that CJJ) — 930, then [93, I] = <J> is of order 2, and

( c) // 1931 > 2, £foβ% 93 contains a non cyclic subgroup 36 such
that V^J?.

Proof. Let © be an elementary subgroup of 3ft of order p3, peσ.
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Assume that |33| > 2. Since 33 <] 2ft, there is a subgroup @0 of @ of
order p2 such that C(@o) Π S3 = X is non cyclic. This proves (c), since
g o e ^ r * ( @ ) . Let 33O be of index 2 in S3. Then 5B0 Γ) X =* 1, and
C(330) S C(33O Π X), proving (a).

In proving (b), we may assume that |33| > 2. Let S3 play the
role of Gc in Lemma 5.21. We conclude that (^([33, I]) contains an
element of s%f (q) for some qeσ. This yields (b).

LEMMA 13.7. 33gZ(33*).

Proof. Suppose false. Thus, |33| > 2. Choose G in © such that
X - 33G £ 2, X g C(33), and define d by 2d = | X: X Π C(33) |, so that d^l.
Let 9ft - 2ft/C(33), and let 36 = 3tC(33)/C(33) ~ X/X n C(33). Since S3 is 2-
reducible in 2ft, Lemma 5.34 implies that 2ft contains a subgroup
SI = 2tx x x 2td, where 2t{ is of odd prime order pif admits X, and
such that 26 is faithfully represented on St.

Let 33; = [S3, 2CJ, 36< = 3E Π 0(51;), and let X4 be the inverse image in
36 of 364. Thus, |X: X4| - |36: S j - 2, 1 ^ i ^ d.

By construction, we see that 2^ is faithfully represented on 33;
and that 33, admits 3136. Let 33? = 33, n C(Xi). By Lemma 3.7 of [20],
%i is faithfully represented on 33*, so in particular, 36 does not cen-
tralize 33?. Choose V, in 33? - 33? Π C(X). By Lemma 13.6(a) applied
to mG, we get C(X<) S 3KG Hence, V< e W\ By Lemma 13.6(b) applied
to WlG, we get C([X, VJ) - C«(?([X, VJ) e ^T*(@). Choose TΓ4 in [X, 7J*.
Then ^ T F J S S J i 0 . Since Tl^e33 and 33 is abelian, we get 33S3K*.
Hence, [33,36] £ X, since X <] SK̂  In particular, [33̂ , 364] is centralized
by 36, so [33;, 36J is centralized by %. As SI; has no fixed points on
33?, we conclude that [33;, X;] = 1. Since 33; admits SI, we conclude
that (%\j Φ i) — SI* centralizes 33;, and in particular centralizes 2B4.
Now %ι = S/C(33) for a suitable subgroup S of 3ft, so 2 centralizes
Wi9 Since C( W4) S 2T, we conclude that [S, XJ G [SKσ, X] s X. Thus,
[S, X]SC(SS). Hence, SI* is centralized by X. By construction, we
conclude that d = 1, that is, |X: X Π C(33)| = 2.

Since 33 £ 3KG and [33, X] ^ 1, we conclude by symmetry that
|33: 33 n C(X) | - 2. Choose F in 33 - C(X) Π 33, X in X - C(33) Π X.
Thus, [F, X] is an involution and is a generator for [33, X] = [F, 36].
We may apply Lemma 13.6 (b) twice to conclude that 2ft = WlG. Thus,
33 = 36 = 33̂ , which is absurd. The proof is complete.

LEMMA 13.8.

( a ) 2ft = C(§8).JV«(SB*).

( b ) One of the following holds:
(i) For each V in 33*, Cn(V)e^f*(®), that is 3 3 * £ ^ .
(ii) #„(»*) e ^*(@).
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( c) Z is a S2-subgroup of ©.

Proof. By Lemma 13.7, S3*SC(55). Since S3* is weakly closed
in X Π C(93), (a) holds.

Let 3̂ be a Sp-subgroup of Έl, p e σ. Suppose 3̂ Π C(S3) is non
cyclic. Since 5β Π C(S3) < φ, it follows that *β n C(S3) contains an ele-
ment of J>r (p). Thus, in this case, (b)(i) holds. Suppose Sβ Π (7(95)
is cyclic. In this case, the argument of Theorem 0.24.9 shows that
iVat(9S*) contains an element of j^f (p), so that (b) (ii) holds.

Let ©o be a S2-subgroup of © which contains Z. Since O2,(2JZ) = 1,
it follows that Ω^Z^)) a S3, by Lemma 5.40. If (b)(i) holds, then
we may choose V in Ωι(Z(®2)) and conclude that £ = ©2. If (b)(ii)
holds, then iV(S3*) a 2K, so that Z = ©2, since 53* is weakly closed in
Z. The proof is complete.

LEMMA 13.9. N(Z) a SK.

Proof. Choose JV in iV(2Γ). First, suppose (b)(i) of Lemma 13.8
holds. Choose Z in i2L(Z(£))n S3. Then Z^^Z.e Z(£). Since
we conclude that ZΊeSS. Since (b)(i) holds, Cm(Z) = C&(Z) e
Cm{Zλ) = C%{Zλ) e ^ * ( @ ) . But C(Z0 = C{Z)N, so 1 -

Suppose (b)(ii) holds. Then iV(S3*)GSK. Since N normalizes S3*, the
proof is complete.

LEMMA 13.10. Suppose % is a four-subgroup of M, 21 Π C(SS) = 1
and (7(21) Π S3 contains a subgroup Sδ mί/i |93: S | = 4. Then for each
element V of S3 — SB, ί/iere is cm element Ain% such that C([V, A]) a 3K.

Proo/. For each subset @ of SK, let © - @C(aS)/C(SS). Thus,
St = 21. By Lemma 5.34, we may choose a subgroup S3 = S50 x ^ of
9ft such that S3< is of prime order p f, SŜ  admits 21, i = 0, 1, and such
that 21 is faithfully represented on S3. Let % be the subgroup of
St such that 2Ϊ, = C(S3,) Π S. Thus, |2ti | = 2, ί = 0, 1, and St = 2I0 x SCi

Let S3̂  = [S3, S3J; thus, 33̂  has no fixed points on S3?, and the
dihedral group 33*31̂  is faithfully represented on S3, , i, j — 0, 1, iΦ j .
Thus, 133,1 = 2^, where d, is an integer. Also, | C{%) Π S3̂  | = 2d\
Suppose d€ ̂  2. Since 2t centralizes 58, it follows that ^ = 2, and
that qst ,) Π S3, = » n S3,. Since S3, Π 0(21,) admits 33,21,-, and since
$ Π S3, does not admit 33,2^, it follows that S3, Π C(2I,) properly contains
S& (Ί SSi The only possibility is that 2X, centralizes S3,. But since SB
is of index 4 in S3, we have S3 = 33$, so 2I,gC(S3), against the hy-
pothesis that 21 Π C(S3) = 1. We conclude that d, - 1.

Since |S3,| = 4, it follows that S3 = S30 x S3X x X, where X =• Cs(33).
Furthermore, since S3 is of index 4 in S3, it follows that SB = So x
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&L x X, where »< = » Π SS4 is of order 2. Let 31; = (A,). Then
93 Π C(Ai) = X x 3Ŝ  x $,- is of index 2 in SB, and so by Lemma 5.21,
we conclude that Cm([Ai, 93]) contains an element of s^f (#;) for some
qi in σ. Suppose now that Fe93 — $ . Then V= Fo^X, where
F;G93;, X G X . Since F £ $ , there is an index i such that ^ 6 ^ .
Hence, [A3, V,] = [Ad, V], where i Φ i, so that C([Ay, F;])£3K, as
required.

LEMMA 13.11. Owe o/ ί/̂ β following holds:
( a ) | S 8 | ^ 4 .
( b ) C(93O) £ SK /or βi er?/ subgroup 93O o/ 93 o/ index 4.

Proof. We may assume that 1931 ^ 8. Let © be an elementary
subgroup of SK of order p3, p e o , and let 93O be a subgroup of index
4 in 93 such that C(93O) g; 3K. Hence, 93O Π J^ = 0 .

Let 93 = asx x x 93/, where each 93; is an irreducible ©-group.
Let @4 = ©n C(93;). Since @, is non cyclic, it follows that 9 3 f £ ^ .
Hence, 93; n 930 = 1, l<Lί^f. Since 193: 93O | = 4, it follows that

Clearly, © does not centralize 93. Suppose |93i| = 2 for some i.
Choose j so that 193,1 > 2. Then (93^93,)*^^, against 930 n ^ = 0 .
We conclude that 93 n C(@) = 1, and that © is of order 33. Let 21 =
(93,93̂  Π 93O. Thus, |3t| ^ 4, since |93: 93O| = 4. Since St Π »* = 1, i =
1, 2, it follows that |2C| = 4. Let @* be a complement to ©i Π @2 in
@. Thus, |@*| = 32 and @* is faithfully represented on 931932. By
Lemma 5.31, @* has a subgroup G?f of order 3 which normalizes 21.
Thus, <©! n @8, ©?> £ JV(St). Since <ex n ©2, ®i*> e J ^ (3) it follows that
91(21) Qm. Since C(93O) £ C(St) S JV(2t) £ SK, we have the desired con-
tradiction. The proof is complete.

LEMMA 13.12. Suppose © is an elementary subgroup of A®(%$)
of order 8. Then 93 does not contain any subgroup X of index 2 such
that [X, (£] is o/ order 2.

Proof. In accordance with Lemma 5.34, choose 93 £^©(93) such
that 93 = 93i x 952 x 933, where 93; is of prime order pif 93; admits ©,
and C(93) n E = 1. Let (E4 = (E Π C(SB4), so that | (E: E, | = 2, i = 1, 2, 3.

Let X be a subgroup of 93 of index 2 such that [X, K] = 2) is of
order 2. Let (£0 be any subgroup of (£ of order 2. Then 93 = 93X x x 93S,
where each 93; is an indecomposable (E0-group Thus, | 9 3 { | ^ 4 , 1 ^
i ^ s. Suppose | » 4 | = 4, ΐ = 1, 2, 3. Let & - SBX x 932 x 933 and let
93O = X Π Φ. Thus, |93O| ^ 25. Since |® Π C(K0)I - 23, it follows that

1 [So, ®o] i ̂  22, against [93O, ©0] £ ?). We conclude that there are at most
2 values of i such that 193; | = 4,1 ^ i ^ s.
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On the other hand, (£ contains an element C which inverts S3.
Since |S5| = p^2Pz a n d since 33 is faithfully represented on S3, it fol-
lows that I [S3, S3] | ^ 26. Thus, the preceding argument with (£0 = <C>
yields the desired contradiction.

LEMMA 13.13. One of the following holds:
( a ) | © | £ 4 .
( b ) If Ge® and \%G:%GnWl\^2, then W^Wl.
(c ) I S31 = 24 and A@(S3) contains a subgroup of index at most

2 which is isomorphic to Σ3 x Σ3.

Proof. Suppose neither (a) nor (b) holds. Choose G in © such
that 133̂ : S3G n SKI ^ 2 and S3* g SK. Set X - S3* Π SW, so that X is of
index 2 in 33*. Let Xo = X Π C(S3), and let 2) be a complement to Xo

in 36. Suppose 12) | ^ 2 . Then Xo is of index at most 4 in 33*. Since
|33| ^ 8, it follows from Lemma 13.11 that C(X0)SSft* In particular,
33g2JΪ*. By Lemma 13.7 applied to 3K*, we get [33,33*] = 1. This
yields 33* £ C(33) £ iV(S3) = 3K, against our choice of G. We conclude
that |2)| = 2̂  ^ 4.

Since S3 is 2-reducible in 2K, 2) acts faithfully on O2,(3ft/C(S3)). By
Lemma 5.34, we can find abelian subgroup SI of F(SK/C(S3)) such that
31 = 2k x x SI,,, 2k is of prime order pi} % admits 2), 1 ^ i ^ ?/>
and such that 2) acts faithfully on St. Let 2); = Cv(%), so that
12): 2), I - 2. Let S3, - [S3, %}, S3? - S3, n C(2),).

Suppose S3* contains a four-subgroup ,3 such that 3 Π C(2)) = 1.
We will derive a contradiction from this assumption.

Since 2)iX0 centralizes S3* and since 2),Xo is of index 4 in S3G, it
follows that S3? a 2KG, by Lemma 13.10 applied to W°. In particular,
3Qmσ. In Lemma 13.10, let the pair (3, WG) play the role of (31, SK).
Now 3 n C{W) = 1, since 3 Π C(^) = 1 and 2) £ 53 .̂ Also, 3 cen-
tralizes Ŝ XOJ a subgroup of S3G of index 4. Choose Y in X — Ŝ XQ

Then by Lemma 13.10, we can find Z in 3 such that C([ Γ, Z]) £ 2KG.
But [F, £]eS3, so we get SSgSW .̂ Thus, Lemma 13.7 implies that
[S3, S3G] = 1, against our choice of G. We conclude that 3 is not available.

Let Yt be an element of 2) - 2),. Since S3? Π C(2)) = S3? n 0(7,),
it follows that S3? Π C(Y{) is of index 2 in S3?. Since Γ< inverts SI,,
we can find an element A, of -HJl such that 21, = <A,C(S3)>, and such
that Γ, inverts ^4,. Since A, has no fixed points on S3?*, it follows
that I S3? I = 4.

We next argue that S3? c S3,. By construction, S3? £ S3,, so suppose
by way of contradiction that S3? = S3,. Then Lemma 5.20 implies that
C(X) S Wl for all Xe S3f. In particular, C([S3?, Γ,]) £ 2R. But S3? cen-
tralizes X02),, so S3? £ mG. This yields [S3?, Y,] £ S3*, so we get S3* £ 2R,
against our choice of G.



520 JOHN G. THOMPSON

We next show that |93,| = 24. Since 93? c 93,, it follows that
133; I Ξ> 24. Suppose by way of contradiction that 193, | > 24.

Set (£, = 93? Π C(g)) - 93, n C(2)) - 93, n C(X), so that I (E41 = 2. Also,
set ®, - 93, Π iV(93*), so that ®, 3 93?. Since [®,, 93*]S93*, it follows
that [®,, ϊ ] S 93, n 93* S 93, n C(X) S <£„ and so [®,, ϊ ] - (£,. By Lemma
13.12 applied to W, it follows that |®,: (£,| ^ 4.

By Lemma 13.6 (c), 93* contains a four-group 3 such that C(Z) £3W*
for all Z in 3*. Hence, 36 contains an element X with C{X) S 9ft*.
Hence, C(X)n93,G£>,, so that (C(X) Π 93,)93? has order at most 8.
First, suppose Xe £02),. Since 193, | > 24, it follows that | C(X) Π 93, | ^ 8.
Since C(X) Π 93, admits %, we get | C(X) Π 93, | ^ 24 We have just
seen that this is not the case. Suppose X g 36O2),. Since X does not
centralize 93?, and since 93? g ® , , it follows that \C(X) D 93,| ^ 4.
This is impossible, since |93,| > 24. Both possibilities yield contradic-
tion, so we conclude that |93, | = 24, 1 ^ i tί y. Notice that among
other things, we get that SI is an elementary of order 3 ,̂ since §t, is
faithfully represented on the four-group 93?.

Suppose by way of contradiction that y Φ 2. Since we have
already shown that 2/^2, we get that y ;> 3.

Let $ = O3,(3K). Since 2) is is faithfully represented on SI, a
3-group, it follows that 2) Π $ = 1. Thus, 2) is faithfully represented
on 03,>3(9K)/5£. By Lemma 5.34, O3,)3(2K) contains an elementary sub-
group of order 33, and so 3 e σ.

Now §1 = S/C(§8) for some subgroup S of SK. Since (£, = 93, n 93*
is of order 2 and since C((£,) £ SJi it follows that C(93) has cyclic S3-
subgroups. Thus, a S3-subgroup S3 of S has a cyclic normal subgroup
S3 Π C(93) such that the factor group S3/23 Π C(93) = §t is elementary
of order 3^. It follows that each non cyclic subgroup of S3 of order
9 is contained in j^f (3).

Since C((£,)gXft, it follows that | £*(©,) | ^ 3,1 ^ i ^ j / . Since
193,1 = 24, we have also | §1: C,((E4) | ^ 32. We conclude that | (7̂ (93,) | = 3,

Since 2) acts faithfully on SI, the only subgroups of SI of order
3 which admit 2) are 2^, 2C2, §I3 Thus, we may assume that notation
is chosen so that SI3 = C g ^ ) . Thus, % does not centralize 93le Sup-
pose »! Π C(§I2) Φ 1. Then 93X Π C(%) and [931? S ]̂ are both non trivial
and both admit 2). Thus, 93X Π C(2)) is non cyclic, since SSL is the
direct product of 93X Π C(St) and [93X, 2C2]. This is impossible, since
[E,| - 2,1 £ ί :g 7/. Hence, 93, Π C(2t2) = 1. Since |932| = 24, we con-
clude that 93L = 932. By symmetry, we have 93X = 932 = 933. This is
absurd, since S^ centralizes 93X. We conclude that y = 2.

We next show that 3 e σ. Suppose false. Let £> be a £2,-subgroup
of 9W. Since § has no elementary subgroup of order 33, it follows
from Lemma 0.8.5 that ξ> has a normal 3-complement. Let ξ>3 be a
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S3-subgroup of # . Since 21 « W(S3), we have 2ΐS£3C(33)/G(33).
Let p e σ, and let φ^ be a £p-subgroup of © permutable with φ s .
Thus, ^ P < &&,.

By construction, &£F(3ft/C(93)). Thus, ®PC(%$)/C(%>) centralizes
21. In particular, ξ>p normalizes 33,. Hence, %>p Π ̂ (33,) contains an
element of s*f (p). This is impossible, since (?((£,) §£ SDΪ Hence, 3 e σ.

Let 3 - S3 n C(SQ. Since 3 e σ , it follows that C(Z)g2K for all
Z in £K Since C(36O) 3 S3, it follows that C(3£o) g W\ Hence, Xo n 3 e = l .
This implies that | 3 | ^ 8, since \W: ΐ o | = 8.

We next show that 2ϊ, = 332. Suppose false. Since | SSX | - |S32| = 24,
and since 33, admits 2I2, it follows that 33, Π C(2I2) ̂  1. Since 53, Π C(2)) -
E, is of order 2, it follows that 2I2 centralizes 33,. Hence, 33, Π 332 = l

Since 33, n 332 = 1, it follows that 33,33, = 33, x 332 - [33, 91]. Thus,
33 - 33, x 332 x 3 . Let ® = O3,(F(3K/C(33))). We will show that ®
centralizes 33,, ί — 1, 2. Since |33,| — 24, and since ® centralizes 31,
we may assume by way of contradiction that | S): 3) Π C(33,) | = 5.
Since ®/® Π ̂ (33,) admits 2), there is an element Y in 2) which cen-
tralizes 5y© Π C(33,). Thus, ® normalizes 33, Π C(Y). Since 2) acts
faithfully on 33,, it follows that |33, Π C(Y) \ < 24, so that ® centralizes
33,ΠC(Γ). Hence, ® centralizes 33,, i = 1, 2. Since F(2R/C(SS)) is
faithfully represented on 33, it follows that O3,(F(2K/C(SS))) is faithfully
represented on 3 . Hence, O3,(F(2tt/C(93))) = 1 or 7, since 131^8. In
particular, O3,(F(2K/C(33))) is cyclic. Since 36 σ, 3 | |SK: 2K'|. This
implies that a S3-subgroup of 3ft/C(33) centralizes O3,(F(9K/C(33))).

Let £ - O3(S«/C(33)) 3 21, and let £ 0 = iY,(2I). Thus, £ 0 admits 2).
Hence, 21 Π C(^o) admits 2). Suppose 21 Π C(^o) c 21. Since 2C,, 2l2 are
the only subgroups of 21 of order 3 which admit 2), we may assume
notation is chosen so that 21 Π C(£>0) = 21,. Hence, £>0 normalizes 33,.
Since 2I2 centralizes 33,, and since C(33,) Π £>0 <1 ̂ OJ it follows that
[2I2, ξ>o] £ C(33,). But [2I2, φ0] = 2X,, since 21, - C($o) Π 21. This is
absurd, since 21, does not centralize 33,. Hence, £>0 centralizes 21. Sup-
pose $0 contains an elementary subgroup 21* of order 33. We may
assume that 21 c 21* and that 21* admits 2). Let 2I3 be a subgroup
of 2X* of order 3 which admits 2) and is a complement to SC in 2X*.
If 2I3 is not centralized by 2), then by replacing 21 by another subgroup
of order 9 which contains 2I3 and on which 2) acts faithfully, we see
that we get [33, 2I3] = 24. Thus, 2I3 centralizes either S3, or 332. But
in this case, 2X* Π C(33,) or 21* Π C(332) is of order 9. This is impossible,
since 3 e σ . Hence, 2) centralizes 2I3. Since IKJ — 2, i = 1, 2, it fol-
lows that 2I3 centralizes K, and E2. Thus, (^(E,) or C^i&z) contains
an element of j ^ (3). This is impossible, since C((£ί) % SW. It follows
that ξ>o contains no elementary subgroup of order 33. Since S l £ Z(Q0)9

it follows that 21 = β,(φ0) char >̂0 Hence, £>0 = <&? which implies that
2ΐ < SK/C(33). Also, since |33,| = 24, i = 1, 2, it follows that % is not
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contained in any cyclic subgroup of ξ> of order 9 This in turn implies
that a = ξf.

Let S3* be a S3~subgroup of 9ft/C(33). As we have already shown,
35* centralizes O3,(F(9K/C(33))). Now 3^, §ί2 are the only subgroups IX
of SI of order 3 which satisfy | [33, tl] | = 24. Hence, 33* centralizes
SI. Thus, 33* centralizes F(3K/C(33)), so 33* = St.

Since SI is a S3-subgroup of 2ft/C(33), and since 3 e σ , it follows
that C(3S) contains a non trivial cyclic £3-subgroup. This implies that
the inverse image of 3^ in Έl contains a non cyclic £3-subgroup, so
contains an element of j y (3). This violates C ^ ) g 2ft. We conclude
that ©! = 332.

Suppose IX < 3ft, IX £33, and |U| ^ 8. We will show that IX = 1.
Suppose false. Since | ΐ t | ^ 8, Cm(U) contains an element of Szf (3),
so 1X#S

Case 1. |U| = 2.

Since C(X) £ 3ft*, we get U £ 3ft*. Since C(1X) £ 3ft, we get IX* £ 3ft.
Hence, ffeϊ. Since C(ΐt*) = 3ft*, we get !X*g3eo. Thus, we may
assume that IX* £ 2 ) . Thus, either IX* Φ % or IX* ^ 2)2. Suppose nota-
tion has been chosen so that UG Φ 2)i Then VLG does not centralize
33* = SBi n C(5)0 But SB* £ WlG, since C(3E0Si) S 3KG This contradiction
shows that this case does not occur.

Case 2. \U\ ^ 4.

Since ϊ normalizes IX, ϊ contains a subgroup X of index 2 such
that IX Π Cφ) is non cyclic. Since Cφ) £ SK*, we get IX Π C(f) £ WlG.
Since IX ΓΊ C(3£) is non cyclic, we can choose an involution U in IX Π Cφ)
such that C(U) Π IX̂  is non cyclic. Hence, X Π IX̂  is non cyclic. Since
Xo Π IX* = 1, we may assume that 2) = ϊ Π IX*. Then since 33* £ 3K*,
we get &! = [2), 33*] £ IX*. This gives C{&x) £ 9K*, which forces 33 £ mG.
This contradiction shows that this case does not occur, and completes
a proof that IX — 1.

Suppose 33O is a subgroup of F(ϊϋl/C($β)) of order 3 which admits
2) and is not centralized by 2). Let 2)0 = CVQ8O) so that 13)01 = 2
Since 2)0 is faithfully represented on O3(SPΐ/C(33)), 2)0 is faithfully repre-
sented on C(330) Π O8(SK/C(S5)). Thus, 330 is contained in a subgroup
$ of F(SW/C(33)) of order 9 on which 2) acts faithfully. Replacing SC
by », we see that | [330, 33] | = 24.

Set § = O3(SK/C(33)). Suppose 33O is a subgroup of £ ' Π Z(φ) of
order 3 which admits 2). If [330, 2)] ^ 1, then 33 = [33, 33O] x 33 Π C(33O)
and Q normalizes both [33, 33O] and 33 n C(330). Since |[33, 330]( - 24, § '
centralizes [33, 330]. This is absurd, since 33O does not contralize [33, 330].
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Suppose [9S0, 2)] = 1. Since S3o£Z(φ), 9B0 centralizes S3, so 950 normalizes
93^ Hence, 330 centralizes 93X Π C(?)) = G ,̂ and so 230 centralizes 93?
and 93*. Since <93f, 932*> - 8, 93O centralizes 93lβ Since | [SB, 8 0 ] | ^ 8,
it follows that φ' centralizes [93, 9S0]. This is also a contradiction.
Thus, 95O does not exist. This implies that £> is abelian. Since |93| ^ 27,
it follows that either SI = § or § is elementary of order 33.

Now SI = S/C(93) for some subgroup S of Wl. We argue that 2
contains an element of s^ (3). If φ = SI, then a S3-subgroup of 2 is
normalized by some S3-subgroup of SK, so we are done. Suppose S i c φ,
so that φ is elementary of order 33. If 3 Jf |C(93)|, we are done.
We may assume that a S3-subgroup of C(93) is a non identity cyclic
group. Thus, a ^-subgroup S3 of 2 has a cyclic normal subgroup
S3 Π C(93) with 83/S3 n C(93) elementary of order 33. It follows that
every non cyclic subgroup of 23 of order 9 is in SI (3). To obtain this
conclusion, we have used the fact that 2) acts faithfully on SI.

We next show that 3 = l Suppose false. Let |3I = 2% 1 ^ z ^ 3.
Since SK contains no non identity normal subgroup IX of order ^ 8,
it follows that z = 2, |93| = 26.

Since SI centralizes 3> we see that C(Z) £ Wl for all Z in 3*
Since |3 i = 4 and since 2) normalizes Q, we can find a subgroup 36 of
index 2 in X which centralizes 3 Since C(%)^WlG, we get ,3 £ 3 ^ .
Since <93f, 93*> £ 3KG, it follows that 93 Π W is of order 25. By all
the previous argument with (93 Π $JlG, WlG) in the role of (X, SK), we
conclude that 93 n 2ΓcG n C(93G) is of index 4 in 93 n 2Ŵ . Now Sx - (£2

since 93: = 932. Hence, | <93*, 93*>: ^ 1 = 4 . Hence,

93 Π ^JlG = <93 n SKG n C(9S f f), 93*, 932*> .

Choose Z in 3 s . Then Z - C F with Ce93 n C(93G), F G 93f93*. Hence,
[X, Z] = [X, F] S 93lβ Since X normalizes 3, we get [Z, X] S 93X n 3 = 1.
Hence, 3 centralizes X. Since 3 Γ) C(SSG) = 1, 3 is faithfully represented
on O2,(2Kf?/C(93G)). This is impossible, since 3 i s a four-group which
centralizes a hyperplane X of 93G. We conclude that 3 = l

Since 3 = 1, we have 93 = 93X of order 24. Since Aut (93) has no
element of order 8, it follows that a S2-subgroup SK2 of 2Jί/C(93) is of
exponent 2 or 4. Since S3Ϊ2 is isomorphic to a subgroup of Aut (SI),
it follows that SK2 is either a four-group or a dihedral group of order
8. In any case, SK/C(93) has a subgroup of index at most 2 which
is isomorphic to Σ3 x Σ3. The proof is complete.

LEMMA 13.14. // |93| = 24, then for each V in S3*, 93 gO 2 (C(F)).

Proo/. Suppose false, and F in 93* is chosen so that 93 §=O2(C(V)).
In particular, we have C(V)£$Jl. Let @ be an elementary subgroup
of m of order ^3, p e σ. Let SI = C(93) n ©. Since C(F) g£ SK, SI is
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cyclic- Thus, |3t| = 3, since |S3| = 24. Since (7(33) has cyclic S3-sub-
groups, it follows that if 3̂ is a S3-subgroup of 3K which contains (£,
then @ = Ωffi). Hence, every non cyclic 3-subgroup of © is in ^ί"*(©)
This implies that if $ is a solvable subgroup of © which contains
21 and also contains non cyclic £3-subgroups, then SgSK. Namely,
since C(3t) £ 2H, we get that £ Π Sft has non cyclic £3-subgroups,
whence $ ^ 3 K .

Let @o be a complement to §ί in (£. Thus, with a suitable choice
of notation, ©0 = Si x @2, ® = ®i x S32, and @0S3 = @iS32 x © A = A, x A4.
There are exactly 3 orbits of S3* under the action of @0, namely,
S3*, S3f, and S3*S3*. Clearly, F e S3fS3*. Furthermore, S3?S3* is a conjugacy
class of Tl, since C(F)gSW. This implies that each element of S3?S3|
is centralized by a £2-subgroup of fJR. Let ξ» be a S2,3-subgroup of
Cm(V) which contains 51, and let φ* be a <S2,3-subgroup of C(V) con-
taining ίg. Since C(3I)gϊ2ft and since S3-subgroups of C(V) are cyclic,
it follows that § = φ*. Since S3^O2(C(F)), there are a prime p ^ 5
and a Sp-subgroup K̂  of (£ = C(F) such that ©P is permutable with
>̂ and such that 93^O2(^(£2)). Let φ2, ^ 3 be Sylow subgroups of ^

which are permutable with (£„. We assume without loss of generality
that 2t§£>3. Since >̂3 is cyclic, we have (£„ <] ^S^P Let S) be a sub-
group of &p which is permutable with £>2 and with φ 8 and is minimal
subject to S3gO2(£®). Let % = 02($®). Since S3gg, and since
02/(φ®) = 1, it follows that S3 acts non trivially on 02>2,(φ5δ)/g.
Minimality of © forces 5)£02,2,(φ3)). Hence, g® < φ®.

Choose Ie Si - g. Since |S3| = 24, we have |S3 Π %\ ^ 23. Since
2> ̂  5, F G Z(K), and S3 < 93g, it follows that p = 5 and that [g®, /] Π ®
has order 5, while | S 3 n g | - 2 3 . Thus, <7, g>/ge Z(£2/g), and so
<I, δ > / δ ^ ^ ( ^ / δ ) , since £ 3 centralizes S3. Thus, [g®, I ] admits φ,
and so I® I = 5. This implies that £ 3 centralizes ®, so ®gC(2l)QSK.
This is false, since by construction, ® §£ SK. The proof is complete.

LEMMA 13.15. Either (a) or (b) o/ Lemma 13.13 ΛoZds.

Proo/. Suppose false. Then by (c), |S3| = 24. Choose G in ©
such that X = SK n S3̂  is of order 8. Let 3c0 = X Π C(S3). Thus, [3Eo| = 2.
Also, C(ϊ) Π S3 = K is of order 2. Thus, K is in the center of a S2-
subgroup of SK. Since S3 Π ̂ ΰlG is also of order 8, it follows that (£
is in the center of a S2-subgroup of TlG. By Lemma 13.14, we have
S3SO2(e((£)), S3GSO2(C((£)). Since C((E) contains a S2-subgroup of SK,
we have O2(C(e))S2R. Hence, S3^S9K, against |SBσ:ϊ| = 2.

LEMMA 13.16. One of the following holds:
( a ) | S B | ^ 4 .

( b )
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(c ) Wl = Nm(®*) Nm(%SQ), where 2B0 = Z(mλ) and SB, is the sub-
group of X generated by its subgroups 11 with the property that for
some G in (§>,U is a subgroup of %5G of index at most 2.

Proof. Suppose neither (a) nor (b) holds. Since (b) does not hold,
it follows that (b)(i) of Lemma 13.8 holds. Suppose that (c) fails,
too. By Lemma 0.7.7, it follows that for some odd prime q, Tt con-
tains a g-group O with the properties that

( i ) O is permutable with S,

(ii) Z& Φ JVIO(SS*)JVlo(SBo),
(iii) the 2-length of %d is at most 2.

We assume that notation is chosen so that O is of minimal order
subject to (i), (ii), (iii). Let £ = 02(SO). Thus, ££} < SO, and £O/
£Z)(O) is a chief factor of SO.

Since 2B0 < 2, it follows that Nza($S0) = 2O 0 , where D 0 = Ω n
JV(2δ0). Also, iVϊo(3S*) - SO,, where Ox = Q Π iV(S5*). Since £O/&D(Q)
is a chief factor of SO, it follows that O0, Q i S - D P . This is so
since £Oί/>(O) < SO, i = 0,1.

Let W = 2) be a conjugate of 95 with ? ) g ϊ j g § . Thus, 2) acts
non trivially on §O/©/)(O). Let O* be a subgroup of O which is
minimal subject to

(i) 3) normalizes
(ii) [$o*,?)]

Since 2) is an elementary 2-group, O* is cyclic. Let 8 = φO*S, a n ( i
let 80 - O2(S) Thus, | £ $ : So | = 2. Let Γ be an element of 2) - So.
Thus, Y inverts some Sg-subgroup of S, so we assume without loss
of generality that Y inverts O*. Let 2)0 = So Π 2) so that 2)0 is a
hyperplane of 23G - 2). Let 2, = ψ0 S So. Since Sx S S, and since Sx

is generated by conjugates of 2)0, it follows that SL S 2Blβ Let (£ =
CΪQ(SI), SO that 8 normalizes (L Since (£ centralizes 2)0, it follows
that E S 2Kσ. Thus, £ is a subgroup of 2KG which centralizes the
hyperplane 2)0 of 33*, and so |(£: (£ Π C(S5σ) | g 2. Thus, Y centralizes
a subgroup of E of index 2. Hence, Q* centralizes a subgroup of (£
of index at most 4. Now 2BoS£, since S ^ ^ . Since O * g / ) ( O ) ,
it follows that O* does not centralize 2δ0. Hence, [K, O*] = K* is a
four-group, g = 3, and /)(Q*) centralizes K. Let Ef = [E*, F] so that
|®i*| - 2 , efg9S G . Let Q be a generator for O*. Then e*«sSBG«,
and g * « s E * . By Lemma 13.8 (b)(i), it follows that 2)og2KG«. By
Lemma 13.15,we get SBσS3Kσρ. Hence, [9Sσ, SSσ<?] - 1, by Lemma 13.7
applied to 93σ<2. In particular, [Y, YQ] = 1. This is not the case,
since [Y, YQ] = Q2. The proof is complete.

LEMMA 13.17. One of the following holds:
( a ) | 3 3 | = S 4 .
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( b) There is V in 33* such that C(V) £ 3ft.
( c ) // Ge® and 33G n 3ft ^ 1 then 33*£3ft.

Proof. Suppose (a) and (b) fail. Choose G in ® such that 33G Π
3ft Φ 1. Let X = 33G Π 3ft. We must show that 36 = 33G. Choose X in X*.
Since C(X) S 3ftG, it follows that 33 n 3ft* ^ 1. Choose F in (33 Π 3ftG)*.
Since |33*| ̂ 8 , it follows that 33*nC(F) is not cyclic. C(F)£3ft,
it follows that X is non cyclic. Let X1? X2 be distinct subgroups of
X of order 2, and let X, = <X,>, i = 1, 2. Let X3 = X,X2. For each
i = 1, 2, 3, let 33, = 33 n C(X,). Thus, 33,Q3ftG. Suppose by way of
contradiction that X Φ 33G. Let Xo = X Π C(33). Suppose Xo Φ 1. Then
C(X0) £ 3ftG, so 33 £ 3ftG. By Lemma 13.7, we get [33, 33G] = 1, so 33Gg3ft,
against X c 33G. Hence, Xo - 1. Since [X, , 33,] ̂ 33 Π 33G, it follows that
[Xy, 33,] — 1,1 ^ i, j ^ 3. This is clearly impossible since XiX2 is faith-
fully represented on O2,(3K/C(33)). The proof is complete.

LEMMA 13.18. One of the following holds:
( a ) | 3 3 | ^ 4 .
( b ) ϊ e ^ f * ( @ ) .

Proof. Suppose false. Let & be a solvable subgroup of © which
contains Z and is minimal subject to § g 271. Thus, φ — SO- where
Q is a g-group for some odd prime g. Let φ0 = O2(φ). Minimality
of O yields ^>0Q < £>, and also implies that /)(£}) = O Π SK, while
®(&/ίQoD(£ί) is a chief factor of φ.

Suppose 33* g § 0 Let 33̂  = 2) be a conjugate of S$ such that
2) £ £, 2) g ξ>0. Let Q* be a subgroup of & which is minimal subject to

(i) 2) normalizes
(ii) [φ0Q*,2)]

Since 2) is an elementary 2-group, Q* is cyclic. Let 2)0 = 2) Π O2(S),
where S = £>0Q*2). Thus, 2)0 is a hyperplane of 2). Let Q be a generator
for O*. Then 2)0

ρ £ O2(S) £ S£ £ 3ft, so by Lemma 13.15, we get ψ £ 9ft.
Thus, <2), 2}ρ> £ 9ft. Since <2), 2)ρ> contains a ^-subgroup of 8, we
have S £ 9K. This violates Z)(Q) = £i ΓΊ 9ft. We conclude that 33* £ £>0.
Hence, 33* < ©.

Since £gΞ9ft, and since 33* <\ φ, we conclude that iV(33*) g 9ft.
By Lemma 13.8, we get C(F)g9ft for all V in 33*. Thus, (c) of
Lemma 13.16 holds. We conclude that iV(280) contains an element of
j y (p) for some p in σ, so iV(2B0) £ 9ft. Since 3B0 char 2B15 we conclude
that Sΰig φo. By definition of SB^ there is an element G in © such
that 33G Π SBi is of index at most 2 in 33̂ , and such that W Π 2Bi g &>•
Let 2) = 33̂  n 3Slβ Since 33* g § 0 , it follows that |SS :̂ 2)| = 2.

Let Q* be a subgroup of Q, which is minimal subject to
(i) 2) normalizes £l*£>0,
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(π) Wo&*,m£
Thus, D* is cyclic. Let & = O2(£0Q*2)). Thus, |2): 2) Π & | = 2 and
& £ £ . Since |SS| ^ 8, we have 9) Π & Φ 1. Let Q be a generator
for D*. Then (2) ΓΊ £J Q ^ 1, and (2) n & ) ρ £ & £ 2 : E 2 t t . Thus, by
Lemma 13.17, we get %>GQ £ 2ft. In particular, <2), 2)ρ> £ 9K. Since
£oQ*2) = <φo, ?), W>, we get O* S SK, against G n 9ft = />(£>). The
proof is complete.

We can at last obtain some important information about 33.

LEMMA 13.19. |33| ^ 4.

Proo/. Suppose |S3 | ^ 8. Then by Lemma 13.18, we get JV(2J*)£2tt.
Let 5^ be the set of 2-subgroups of 9ft which contain S3.

We will show that T1 G ^ ^ * ( © ) . Suppose false, and 21 is an ele-
ment of T — ^f*(®) of maximal order. Let £> be a solvable sub-
group of ® of minimal order subject to

(i) S t S § ,
(ii) ξ> g SK.

By maximality of |Sl|, SI is a iS2-subgroup of φ. By minimality of
^ y ^ = 2IO w here Q is a g-group for some odd prime g.

Let IX G ^ (ϊ), IX £ 21; U exists since 93<^S, fl^Zίϊ)) £ SS and | SB | ^ 4.
Then U centralizes O,(®, so Off(φ)£JV(U) Since S£iV(U), we get
Off(φ) £ 9K, by Lemma 13.18. By minimality of φ, we get

0,>2(φ) - Oβ(φ) x O8(φ) .

Let 2B* = F(cclβ(SS);a) If 2S*SO2(£), then maximality of 2ί
forces SI to be a S2-subgroup of ©. This violates Lemma 13.18.
Hence, 2B*gO2(£).

Let * G = 2) be a conjugate of S such that 2)g2I, 2)gO 2(®. By
minimality of £, we have O2(φ)iQ < ξ>, O n 3K = -0(0). Let £1* be a
subgroup of d which is minimal subject to

(i) 2) normalizes

(ii) [ 0 2 ( § ) O * J ] g
Thus, d * is cyclic and % = 2) Π O2(8:) is of index 2 in 2), where 2, =
02(§)D*2). Let Q be a generator for £}*. Then f g ϊ , so by Lemma
13.15, we get ψ^VJl. Since 8, = <02(£), 2), ?)«>, we get d * £ 2R,
against O n 2K = />(d). This contradiction shows that ^ S ^ T * ( © ) .

We next show that if %>G Π SK Φ 1, then G e 2K. Namely, if Ve 23*,
then C(F) £ 2K, since 23 G 3^. Hence, (c) of Lemma 13.17 holds. Since
S3G Π 2K Φ 1, we have «G £ SK. Since 93G e ^ f *(©), we have 3K - WiG,
Gem.

Let / be an involution of 2ft. We will show that C(I) £ 2R. Let
21 be a S2-subgroup of Cm{I), and let 2X* be a S2-subgroup of C(7)
which contains 21. Suppose 21 c 21*. Choose A e 21* Π JV(2t) - 21. Then



528 JOHN G. THOMPSON

1 Φ SBnasaTCnS)^, so m = WlA, AeWl. Thus, SI - Si*. By Lemma
13-1, OV{C{I)) = 1. Let 2t0 = O2(C(I)). It suffices to show that iV(2to)S
m. Now 2L0 n 23 ̂  1, since Z(5t0) - Cβ(2to). Hence, if Ne JV(2I0), then
2ίo Π 33 S 3 ^ , so that SK = Sft̂ , Ne Έl. This completes a proof that
C(I) £ SK for every involution / of 27ΐ. Now Lemma 13.9 and Theorem
13.2 are in conflict. The proof is complete.

LEMMA 13.20. Suppose 31 e ^S? (©) and the following hold:
( a ) O2,(3l) = l,
( b) 9ΐ Π HTί contains a S2-subgroup of 31.
( c ) 31 Φ m.

Then 31 does not contain an elementary subgroup of order p3 for any
odd prime p.

Proof. Suppose false. Let p be an odd prime such that 31 con-
tains an elementary subgroup % of order p\ Hence, 31 — M(%). Let
23O = 0,(^(31)). By Lemma 13.8 (c) applied to 31, 31 contains a S2-
subgroup of ©, so by (b), 31 f] Tt contains a S2-subgroup %,* of ©.
By Lemma 13.19 applied to 31, we get | 9 S 0 | ^ 4 . By Lemma 5.7,
SSΠSSo^βi(Z(2:*)). Choose Z in SS n 23?. Since Cm(Z) contains an
element of s^f (q) for all q in σ, we get C(Z) S SK Since C8(Z) is
non cyclic, we also get Cd(Z) e ^f*(®). Hence, 5DΪ = 31, against (c).
The proof is complete.

Let τ be the set of all odd primes q e π(Έl) — a such that Cm(Q) e
^/f*(®) for all elements Q of SK of order q.

LEMMA 13.21. Suppose g e r and £} is a Sq-subgroup of 9K
o/ the following holds:
( a ) £} is cyclic, q e πl9 and N(£ι) S 3K
( b ) qεπ2 and £loe ^t*(®) for every non cyclic q-subgroup O0

Proof. Suppose £1 is cyclic. Choose Q in D of order q. Then
30ΐ, since Cm(Q) e ^T*(©). Hence, Ω is a Sg-subgroup o f ® .

Choose NeN(D). Then <C(O), N} is solvable, so <C(O), iV> s SK,
and (a) holds.

Suppose Q is non cyclic. Let D* be a Sg-subgroup of © which
contains £}. Choose Q in £} of order g, Z in Z(D*) of order q. Since
C(Q) S 2W, we have Ze Tt. Since C(Z) S 2K, we have £} = O*. Since
ggσ, it follows that qeπ2. Let D be any non cyclic g^-subgroup of
©. Then Q £ mG for some G in ©. Let Q be a 5,-subgroup of ©
which contains Q. Then £i^WflG, as above. Let SR be a subgroup
of O of type (q, q). Then C(R) £ 20^ for all i2 in 2t*, so every element
of n(3t; ?') is contained in 2WG. Let C l g φ 6 Sfέ?^ (©). Thus Og,(© S
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2Kσ, and φ Π %JlG contains a S^-subgroup !gq of φ with D s φ β . Let
4 = & n Oβ,fff(φ), so that £ - Off,(φ) N,φg). Choose iVG JV*(|>ff)f and
let H be an element of Qq of order q. Then C(JΪ) S 2Kσ, C(HN) £ 2Kσ,
and C(i ϊ)G^r*(©). Hence, SK* - 2Kσ*v, JNΓe 3ft*, and so O G , / * ( ® ) .

The proof is complete.

LEMMA 13.22. Suppose q e π(W) — σ, q is an odd prime, and for
some p in σ, an Sp-subgroup 5̂ of W does not centralize every element
of M«0β;g). Then qeπ2f)τ.

Proof. Let Q be a S^-subgroup of 2ft permutable with Sβ, and
let £}0 = Oq(φD). Thus, Qo is a 5,-subgroup of O (̂2K) and φ does
not centralize £ϊ0, as Do is a maximal element of M3κ(Φ; ̂ ) Since ^βe
^^*(@), Q is a ^-subgroup of JV(Q0). Since g g σ, ^ ^ ^ f " 3 ( Q ) = 0 .
Since φ S 3K', so also φ s iV(Q0)', since 9K - OP,(2R) iV(O0). By Lemma
10.6, we have

( i ) fl^qsOo,
(ii) Q is a S^-subgroup of ©,
(iii) g G τr2.

Let 2S = ^(QVA^iίG))* so that SB is of order q\ Since each element
of φ induces a linear transformation of 3S of determinant 1, it fol-
lows that ^ Π C(A(O)) is non cyclic. Since φ Π Cφtfΰ)) <\ φ, we get
φ n C ^ P J G . / ^ ® ) . Choose QG.Q^Q)*. Then ^ ( Q ) contains an
element of j y (̂ >), so (7^(0 G ^*(G). This gives g e r and completes
the proof.

LEMMA 13C23. Suppose p e σ U r cmd S is α 2, p-subgroup of ©
// S Π 2K contains a non cyclic p-group, then S £ SK.

Proo/. If p G τ, then by Lemma 13.21 (b), we get S Π SK G t.^
/*(©)

and we are done. Suppose peσ.
We assume without loss of generality that S is a maximal 2, p-

subgroup of ©.
By Lemma 6.6 (iii), either O2(8) = 1 or OP(S) = 1. Let 8P be a

Sp-subgroup of 2 which contains a S^-subgroup 2P of S n 3K. By
hypothesis, Zp is non cyclic. Since peσ, it follows that Nm(£p) con-
tains an element of Stf (j>). Hence, iV^S^) G ^/f *(©). This implies
that δ p = Sp. We may assume that 2P contains no element of Jάf(p).
Thus, 8p contains a cyclic subgroup of index p, so that the p-length
of 2 is 1.

If 02(8) = 1> then 8^ <] 8. As 8 is a maximal 2, p-subgroup of
©, we get that 2P is a S^-subgroup of ©, against p G σ. Hence,
O2(8) ^ 1, so that Op(8) = 1.

Let 5S = O2(8), 35 = ^(8^). Since 33 £ S^(p), there is an element
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Bo of 33 such that C(B0) does not contain an elementary subgroup of
order p\ Thus, if $ is a Sp-subgroup of C(B0) which contains 33,
then S3 = βχ(?P). By Lemma 5.25, if @e Sf<?<Z> (©), 33 £@, then
every element of |/|®(23; p') is in Op,(@). Let ^3* be a £p-subgroup of ©
which contains Sβ. Then 5β = <B0> x P̂o> where φ o is cyclic and ^β0 2
β,(Z0β*)). It follows that iV¥*(̂ β) permutes transitively the subgroups
of 23 of order p distinct from Ω,{Z{ψ)). Thus, if Xe33 - ^(Z^P*)),
then φ is a Sp-subgroup of C(X).

Since 35 is faithfully represented on $, β^Z^*)) does not centralize
$. Since B = (CΛ(B) \Be 33*>, it follows that for some X in 33 -
^(ZOβ*)), CΛ(X) g Cίfl^Zίφ*))). Thus, Q l ) g θ , ( @ ) , where @ = C(X).
Hence, 1 is not the only element of nθβ; 2). Let $ 0 be a maximal
element of M(33; 2) which contains a £2-subgroup of Op,(@), and let ί^
be a maximal element of n(33; 2) which contains ί£0. Since ίΐ0 is a
S2-subgroup of Op,{N($t0)) and since iVftl(So)SO^(JV(So)), we get that
ffi0 — &!. Hence, Ŝ normalizes some maximal element St0 of n(33; 2)
which is not centralized by β^Z^β*)).

Let » = {X| Xe 33*, C,(X) ^ 1}, £ 0 = {-XΊ Xe 33#, CΛo(X) Φ 1}. Thus
Sgf l^Zi^*)) , Sogβi(Z(?β*)). Since iVr(φ) permutes transitively the
subgroups of 35 of order p distinct from β ^ Z ^ * ) ) , we can choose P
in NΨ(^) such that » p Π » 0 ^ 0 . By Lemma 6.3, ίΐp and ^ 0 are con-
jugate by an element of C(33). Hence, N($b) contains an S^-subgroup
of C(33). Thus, we may choose A in C(35) such that 2P^^A

O Replacing
ψ by ψA, we may assume that S P 3^3. If 8 P D $ , then 2P is a Sp-
subgroup of iV(̂ β), so contains an element of JV (p). This is not the
case, so 2P — ̂ 5.

Suppose Cψ^Ziψ))) Φ 1. Since N{^)^N{Ωγ{Z{ψ))), it follows
from Lemma 6.3 that 3̂ is not a *Sp-subgroup of N(&). Since 8 is a
>S2,^-subgroup of N($ΐ), this is impossible. Hence, C^Ω^Z(*$*))) = 1,
Hence, St = <C,(33*) (33* is of order p, S3* c 33, 33* Φ Ωγ{Z{ψ))y. Since
33 acts faithfully on £, there are 33X, 332, 33X Φ 332 of order ^ in 33 such
that C^ί&i) Φl,ί = l,2. We can then choose P in N**(φ) such that
S3Γ = 332. Hence, C,(332) Φ 1, Cfip(332) ^ 1. Hence, β = ®pc for some
C in C(^). Hence, ^ is not a Sp-subgroup of JV(S). This contradic-
tion completes the proof.

For each p in σ, let Έlv = {P\Pe SK, P is of order p, Cm(P) con-
tains an elementary subgroup of order p3}, and for each p in r, let
§lp = {P\Pe Wl, P is of order p}.

L E M M A 13.24. Suppose peσlJτ, and Xo is an elementary sub-

group of Tt of order 8. Then <ϊ0, Λ> e ^T*(@) /or αW P o e TOP.

Proof. Let S be a S2,p-subgroup of <£0, Po>> and suppose by way
of contradiction that <£0, Po> 6 ^/f'*(©). Since Sc<3£0, Po>, it follows
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that 8 $ ̂ f *(©). In addition, S contains an elementary subgroup £
of order 8 and an element P of $lp.

Let ^Γ = {5TC 131 e ^^Sf{%), £ S 9ΐ g 3K}, so that ^ΓΦ®. Among
all elements of *Λ^, let JΪ be chosen so that |9ΐΠ 2W|2 is maximal,
and with this restriction, |9ί| is minimal.

Case 1. 5ft is a 2, p-group.

Let % be a S2-subgroup of W Π 31 and let %2, 9^ be a Sylow
system of 9fc with %^%, Pe %. If 5βp is non cyclic, so is % Π C(P),
so by Lemma 13.23, we get %g3K. This is not the case, so $lp is
cyclic. In particular, S^-subgroups of <ϊ0, Po) are cyclic. Since Po

is of order p, ^-subgroups of <36O, Po> are of order po Hence, %lp — <P>,
by minimality of | ϊ ϊ | .

Let St = O2(5tt). Thus, % = ffi.JVR(5KP), since |5βp| = p. Also, 9^/^
is faithfully represented on 2%/®, so 9Ϊ2/S is cyclic. Since % g Έl
and iV(5Rp) S 3K, it follows that & g 3K. Let ^ 0 = ^ Π 2K c ^ . Since
ϊ is non cyclic, and since 9 Ϊ 3 S 3 Ϊ , it follows that ^ 0 Φ l Let @
be a S2,P-subgroup of iV(S0) which contains NΛ(&o). Since iVs(^o) g 3K,
we have @^2K. By Lemma 13.23, Sp-subgroups of @ are cyclic.
Let @! be a S^-subgroup of iV(^0) which contains %%lp and also con-
tains a S2?ί)-subgroup of Nm($t0). Since 5HPS@n@i, there is A in
iV(«o) Π iV(^) such that @ = @f. Since A G JV(STip) S 3K, we have ̂ g S K .
By maximality of |5RnSW|2, it follows that |@x Π 2K|2 = |STC Π SK|2.
Hence, ^ 2 is a S2-subgroup of @! Π 3K Hence, ^ 0 is a maximal ele-
ment of MuCK?; 2). In particular, ^ 0 3θ 2 (SK). Let $L be any sub-
group of Λ with O2(SK) s $i E Λ. Since C(O2(2R)) = Z(O2(2K)), it follows
that Z(^)^Z(O2(m)).

Let SK0 = Op/(aK). Since £ 0 is a maximal element of Ha«(̂ j>; 2),
it follows that Ti0 Π So is a S2-subgroup of SK0. Let SS0 = A(i22(3K0)),
so that So is 2-reducible in 9K0. Let 3W, - C^C^o). We will show
that m, S SKo Suppose false. Let S^ = S n 2TC0 so that B, a O2(3K)
and ^ is a S2-subgroup of SK0. By Lemma 5.10, S S o ^ β ^ Z ^ ) ) . In
particular, 850afli(Z(Λ)). Since SK, < 2R, and SK^SKo, it follows
that pUSKil. Hence, p l ^ ί i C ί f l ^ S ) ) ) ! . Let 3ΐ be a S2fP-subgroup
of Nφ^Zψϊ))) which contains STC. Thus, 3ΐ g 2K, so by Lemma 13O23,
Sp-subgroups of 3ΐ are cyclic. Let ̂ 30 be a subgroup of 27̂  Π
of order j>, so that ^ S i V ^ ^ Z ^ ) ) ) . We can choose B in
so that 5Rp = 5βo

fl. Hence, 9ϊ P S9KnSK β . Since iV(9ΐP)g9K, we get
that one of the following holds:

(i) Sp-subgroups of 2K Π SPΐ5 are non cyclic.
(ii) Sp-subgroups of SK are cyclic.

If (i) holds, Lemma 13.23 implies that 2K - WlB, so that Be$Jl. If
(ii) holds, then per. But then Lemma 13.21 implies that BeΈl.
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Hence, BeΉl, so that 5KpS2fti. Since S^-subgroups of ^ are cyclic,
it follows that %l2 is contained in a S2-subgroup £* of SJΪ which is
permutable with 9ΪP Since $ 0 is a maximal element of n ^ ί ^ ; 2), it
follows that Λo3θa(2:*9ip). Hence, $ 0 - O2(£*3y, since O2(Ϊ*5KP) is a
maximal element of 14^(91,; 2), Hence, £*$»p S JV(Λo). Since @
we can choose C in JV($0) Π iV(9ϊp) such that S C 2 ! Σ * . Since Ce
3ft, we get that @ contains a S2-subgroup of 2ft. This is not the
case since @ 3 2ft. We conclude that H^ S 3ft0. Hence, 02(9ft mod SKJ S
3ft0, since 3ft0 = 0p,(2ft) and O2(3ft mod SftO is a normal p'-subgroup of
3ft. Since 9S0 is 2-reducible in 9ft0, this implies that O2(3ft mod SftO =
3ftn so that 5?0 is 2-reducible in TO. Hence, SS0 S 95. On the other
hand, SSoS^^Z^)), since Λo Π SKL is a S2-subgroup of Sftlβ Since
93* S ^ ^ , we get $ C 2)ϊ. This contradiction shows that this case does
not arise.

Case 2. 5Ji is not a 2, p-group.

Let ^ be a S2)ί)-subgroup of 9Ϊ which contains S. Let 9ΐ2, 9ΐp be
a Sylow system for ft with P e 9^. Choose ge ττ(5R), g Φ 2, p, and let
Q be a Sg-subgroup of Sft which is permutable with ϋβ2 and with 5RP

such that £i 3 ^ Such a choice of g is possible since 9i 3 3K By
minimality of |SR|, we have 3i = %%£l.

Suppose G G © and %lQmG. Then PeWlσ. Since P e l , , it fol-
lows that 2K = SKG, against 5Ji g 3W. We conclude that 9̂  is contained
in no conjugate of 9ft.

We next show that 9ΪP = <P>. This is clear if 9tp is cyclic, by
minimality of |?i | . Suppose by way of contradiction that %lp is non
cyclic. By Lemma 13.21, we get p g r , so by construction, we have
peσ. Since %lp $ Jzf(p), it follows that 9 p̂ contains a cyclic subgroup
of index p. Hence, the p-length of 31 is 1. By minimality of |3i|,
we get % = β ^ p ) , since Pe Ωffi,). Since 5RP $ Stf(p), it follows that
%lp contains an element P1 such that Cm{P^) contains no elementary
subgroup of order p\ Hence, 5RP = <P> x <Pi>, since PeS0lp. This
implies that Nm(2flp) permutes transitively the subgroups of 3lp of order
p distinct from <P>. Hence, <P> < Λ ^ ί ^ ) . But JVa,^) contains
an element of j ^ ( p ) , and so JV(3ΐp)S2K. Since Sβ = 0p,(9i) iVR(5Kp),
it follows that ^ ( P ) ^ is a group, so by minimality of |?i |, we get
yi = K2<P>O. This contradiction shows that % = <P>.

Since JV(9ίp) S 2«, and since 9ΐ g SK, it follows that % <f\ SSI. Hence,
OP(5R) - 1, since |9Ϊ|P = p.

Suppose by way of contradiction that O2(5R) = 1. Since OP(%1) — 1,
it follows that F(9ΐ) = O,(9ί). Thus, X is faithfully represented on
Off(9ί), so by Lemma 5.11, S^^^K{0q{3l)) Φ 0 . Hence, qeπ3{Jπ4.
Also, 2 ^ g, since 3£ is a non cyclic abelian group of order 8. Hence,
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Sif (q) £^/£"*(©), either by virtue of q e τr3, or by virtue of q >̂ 5, qeπ^
Here we are once again invoking Theorems 8.1 and 9.1 to conclude
that if q = 3, then qeπ3. Let 9ft* = M($l). Thus, 9ft* Φ 9ft. By
maximality of | SDZ ΓΊ 5Xi|2, it follows that % is a S2-subgroup of 9ft*.
Let 9ft* be a S^-subgroup of 9ft* permutable with %. By Lemma
6.6, either O2(9ft*3ϊ2) - 1 or O,(3ΐ29ft*) - 1. Suppose O2(9ft*9?2) = 1.
Since 36S^ 2 , it follows that for some X in X*, O9(9ft*9?2) Π C(X) con-
tains an element of J^f (g). Hence, C(X)ϋ9ft*. By Lemma 13.1,
O2,(C(X)) = 1. This is impossible since Oq(Tl*%) Π C(X) S OV(C(X)).
Hence, O2(9ft*9ΐ2) ^ 1. Hence, N{O2{Έl*%)) £ 2ft*, so that 9ft* contains
an element 11* of ^ ( 2 ) . Hence, O2(9ft*) Φ 1, by Lemma 6.1. Hence,
3ft* = JV(O2(9ft*)), since 9ft* e ^ / / ^ (©)• By Lemma 13d, we get
O2,(9ft*) = 1. Hence, μM^ 2 ; 2') is trivial. This violates Og(3l) e
Mm*(%; 2'). We conclude that O2(5ft) ^ 1. By maximality of |ξβ Π STC]2,
together with the fact that Case 1 does not hold, 9ΐ2 is a S2-subgroup
of JV(O2($β)). This implies that O2,(5R) = 1, by Lemma 13.1. By Lemma
13.20, we get ^ ^ ^ ( Q ) = 0 .

Let £* be a $2-subgroup of 9ft which contains %l2. By maximality
of \%\, it follows that Z(%*)^%, and so Z(5E*)SZ(O2(SR)). Hence,
Q does not centralize Z(O2(STC)), since ^ ( Z ί S E ^ S ^ S ^ " .

By minimality of \3l\, %l Π 9ft is a maximal subgroup of 9ΐβ Since
and iV(^p) £ 9ft, it follows that 02(9ΐ)O < 9ΐ. Hence, SK ΓΊ 3ί =

and O2(9ΐ)Q/O2(9ΐ)D(£l) is a chief factor of Tc. Since
= 0 , (0.3.4) implies that either O is abelian or is a non

abelian group of order <f and exponent q. Since [£l, %lp] Φ 1, we get
q Ξ 1 (mod p), so g ^ 5.

Let 3B be a minimal normal 2-subgroup of Sft which is not cen-
tralized by O; 2B exists since 1 Φ [Λa(5R), O] < 3̂ o Let 9ΐ0 = CW(SDB).
Thus, 3ίog9Ϊ2^p/>(^), and so 3ΐo^9ί2Z>(D), since O - [O, 91J. Since
g ^ 5, Theorem 1 of [43] implies that 9Ϊ2C = C^(Z(3l2)). N^(J(%)).
Since C(Z(9ΐ2)) £ 9ft, and since 9ft Π G. = /)(D), it follows that D normal-
izes J(5R2), so that J(%) £ O,,(9ΐ) = O2(9ΐ). It follows that J(%) < 9ΐ, so
by maximality of |3i Π 9Jί|2, we conclude that % is a S2-subgroup of
9ft. Clearly, 2B n Z ^ ) ^ 1. Since SB n Z ί ^ ) £ S3, and since />(Q)^9ft,
it follows that D(Π) centralizes SB Π Z(3l2). Since 2δ is a minimal
normal subgroup of % we_get [D(SD), 2S] = 1. Let ft = Tι/% and for
any subset 2) of % let fj be the image of 2) in 5i. Thus, D is a
normal abelian subgroup of 9ί and [Q, 3ΪJ ^ 1. Let 3S0 = 3B Π Z(9ί2).
Since 9ί2 is a S2-subgroup of 9ft, we have 2Sog3S, by Lemma 5.10.
Thus, |3B0| S 4, by Lemma 13.19. By Lemma 5.46, we get |2B0| = 4,
whence £δ0 = $5. But S3 <\ 9ft, against Lemma 5.46. This contradic-
tion completes the proof of this lemma.

Let ^l be the set of all the normal elementary 2-subgroups of
9ft of order ^ 8. Thus, j^l is partially ordered by inclusion. Let
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be the set of all minimal elements of l
Hypothesis 13.2.
( a ) Hypothesis 13.1 is satisfied.
( b ) ^Φ 0 .
Let % be an element of _^ r . Choose @ such that S/@ is a chief

factor of m. Let 2K0 - <?„(©), K - C«(g), 3) = O2(SK0mod (£). This
notation is preserved in Lemmas 13.25 through 13.38.

LEMMA 13.25.
( a ) |G?|<:4.
( b ) e ^ i .

Proof. Since g e ^ , (a) holds. If © = 1, then % is 2-reducible
in 2)1, against Lemma 13.19 and Lemma 5.9 (i).

LEMMA 13.26.
( a ) If I is an involution of 9K and Cm(I) Π $lP =£ 0 /or some

( b ) © * g ^ .
( c ) One of the following holds:

(i) δ * S ^ .
(ii) § is generated by subgroups 31 o/ order 16 swc/z, ί/z,α£ §I # £^^.

Proof. Since 2 e τr4, it follows that C^(I) contains an elementary
subgroup of order 8. Thus, (a) is a consequence of Lemma 13.24.
Since |@| ^ 4, (b) is a consequence of (a). If \%\ = 8, then (a) yields
(c)(i), so suppose | g | ^ 16.

Choose peσ and let S3 be an elementary subgroup of SK of order
p3. Let g = go x Si x * x Ss> where each S» is a n irreducible 35-
group, 1 ^ < ̂  s, and g0 = Cff(»). Let S3, = C8(g4), SB4i = 83* Π SBy.
Thus, S 5 4 i ^ l . By Lemma 13.24, it follows that (&&&•)* S « ^ . If
s ^ 1, then 33 is not faithful on §, and so g*g^^, so that (c)(ii)
follows. If s ^ 2, then |80&S/l ^ 16 for 1 ^ ί < i ^ s. Since go&&
is generated by its subgroups of order 16, (c)(ii) holds and the proof
is complete.

LEMMA 13.27. Suppose g0 is a subgroup of g of index 2 and §1
is an elementary 2-subgroup of 3K such that

(a) 3tnC(g) = l.
( b ) C9(SX) = go.

| S I : § ί n ® | ^ 2 .

Proof. First, suppose that §1 does not centralize @. Choose
® - C(St). By (b), we get % = %ox (E). By (a), no element of
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21* centralizes @. Thus, 2ί is faithfully represented as automorphisms
of @, a four-group. Hence, |St| ^ 2, and we are done. We may as-
sume that g g § 0 , so that 3Ie3K0.

Let 2l0 be a complement for 51 Π ® in SI, and let 12L01 = 2α. We
must show that a ^ 1. Since ϊl0 Π ® = 1, no element of SI0 stabilizes
the chain c^\ § D E D 1 . Since 2l0 centralizes @, it follows that no
element of St* centralizes 2δ - S/@. Let 2B0 = So/®, so that 2S0 is a
hyperplane of SB, and 2B0 = Cn(A) for all A in 21*. Since 2Γco/C ô(2S)
has no normal 2-subgroup and is solvable, we conclude that |210| ̂  2.

LEMMA 13,28. One of the folloiving holds:
( a ) g * S ^ .
( b ) C9Jl(g) is a (σ (J r)'-group.

Proof. Suppose (b) does not hold. If Cm($) is not a τ'-group,
then (a) holds by Lemma 13.24, together with the fact that for each
p in τ, Utp contains every element of 9K of order p. Suppose pe σ,
and p\\Cm(%)\. Let $ be a ^-subgroup of C(g), and let ψ be a
^-subgroup of 2K which contains φ. Then 1 c ψ - φ* Π C(g) < φ*.
Since 3̂ <1 ̂ β*, 3̂ contains an element of wlp, so (a) holds by Lemma
13.24. The proof is complete.

The next lemma is the heart of the matter.

LEMMA 13β29. Suppose J is an involution of Wl — CΨί(%). Let
So = Cff(J), 2 ' = |g :& | .

(a) If © g g 0 then [g, J] Π ̂  ^ 0 .
( b) Suppose e S go

(i) If f^2, then [S, J ] * S ^ " .
(ii) Iff—S and Si ^s α subgroup of S °/ index 2 which

contains %Q, then [g^ J] D ̂ ~ ̂  0 .

Proof. By Lemma 13.28, we may assume that C(S) is a (<j (J ^)'-
group, since the conclusions of this lemma are obvious if ?SΛ*§=^

If © g So, then we get [g, J ] 3 [@, J ] =) 1. Thus, (a) holds, by
Lemma 13.26(b). For the remainder of the proof, we assume that

(13.1) e s S o , J e 2 K 0 .

For each subset @ of 3K0, let © - @£>/S. Let ^ _be the set of
all K in 2R0 such that [JBΓ, J ] e ®, so that ^ 3 ® , and « = C«0(«7).

Since S/© is a chief factor of Έl which is centralized by ®, we
may view S/® a s a module for Wl0. Hence, $t normalizes [S, J]@.

Suppose ϊ is a subgroup of S such that for each p in σ [j τ,
every element of 36 of order p is in $lp and such that | ϊ i σ J r Φ 1, 3, 7.
Since $ normalizes [S, e7]@, so does 36. Since
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it follows that |[g, J]@: G?| = 2% where α ^ 3. Hence, for some p in
σ U r, some element of X Π ̂  centralizes [g, J]Gf, and we are done.
We may assume that no such subgroups 3£ exist.

Case 1. 2K0 contains a subgroup 91 such that
(a) 5R:D®, |5R: ®| - p r, p e σ u r.

(/?) J normalizes 9ΐ.
(7 ) Every element of 3R of order p is in Wlp.
(<5 ) One of the following holds:

( i ) p — 3? r = 3, 5R/® is elementary,
(ii) p = 3, r ^ 4 .
(iii) p = 7, r ^ 3.
(iv) p = 7, 3ΐ contains an element R of order 7 which is in-

verted by J and such that for some prime q in σ — {7}, C^Q(R) con-
tains an element of j ^ (q).

(v) p =*= 3, 7, r > 5.
Let 5ft - <Sft, J> and let @, @lf @0, -3Γ be the images in AmJ%) of Sft, 5ft,
3), J respectively. If (δ)(i) or (δ)(ii) holds, then we may apply Lemma
5.48 or Lemma 5.49 with f? in the role of the ^©-module M. Trans-
lating the conclusions of these lemmas to the present situation, and
then using (7) and Lemma 13.24 yields this lemma. Suppose (δ) (iii)
holds. If J inverts a subgroup of 5ft/(£ of order 72, then there is a sub-
group Sβ of 5ft/C(f§) Π 5ft of order T which is inverted by /, by Lemma
5.36. In this case, [g, 5β] — § is a free F2<J>-module, and since / <£ 3,
we get | § | = 26. Also, φ is represented faithfully on §. Thus, <J, ̂ 3>
is isomorphic to a subgroup of GL(2,6). This is impossible since
GL(6, 2) has S7-subgroups of order 72 and also has elements of order
7 which are not real.

Let 5fto/S) = Cm{J). Thus, 9ΐ0 normalizes [g, J]©. Since 9ΐo cen-
tralizes ® and since / ^ 3, we get |5R0:5ft0 Π C([g, J](£/(£)| - 1 or 7.
If |5ft0: ® ] > 7, then 5R0 contains an element of order 7 which centralizes
[%, J] a n ( i w e a r e done. On the other hand, 9i0 ^ ®, since J does not
invert 5R/S). Hence, |5R0: ® | = 7. Since / inverts no subgroup of 5ft/©
of order 72, and since |5ft: ® | ^ 73, it follows that 5ft/® is a non abelian
group of order 73 and exponent 7, and that J inverts the Frattini
quotient group of 5ft/®. This is impossible, since / ^ 3.

Suppose (δ)(iv) holds. Let § = [g, R]. Thus, |§[ = 26, / - 3.
Let 91 be an element of Sz? (q) which centralizes 5ft. Then § admits
§1, and since q Φ 2, 7, it follows that §1 centralizes §. But § 3 [g, J ] ,
so we are done.

Suppose (δ)(y) holds. Again, let 3ΪO/® = CW(J). Then 3ϊ0 nor-
malizes [g, J]@, so a >$vsubgroup of 9ΐ0 centralizes [g, J]@, since



NONSOLVABLE FINITE GROUPS 537

I[$, /](£: ©I ^ 23 and p Φ 3, 7. If 9ΐ 0D®, we are done, so suppose J
inverts 9ΐ/®. Since p r > 5, we get / ^ 4. Thus, if any of the above
possibilities occur, we are done.

Let «/® be the Fitting subgroup of 2ft0/©. Thus, £/® is of odd
order. Let Sx be a SσU--subgroups of 8, so that 2λ — βx. Let p be
the largest prime in σ, and let $ be a Sp-subgroup of ίΰl. Since
SβiϊSft', *β centralizes every cyclic factor of 27Ϊ.

Case 2. p Ξ> 5.

Since neither (5)(i) nor (<5)(ii) hold, either the £3-subgroup of 2λ

contains no elementary subgroup of order 33 or 3 $ σ. If 3 g σ, then
Sβ centralizes every chief 3-factor of 2K, since SW has no elementary
subgroup of order 33. If 3 e σ, then we still get that 5β centralizes
the £3-subgroup of S1? since 18X |3 < 34, and Si contains no elementary
subgroup of order 33.

Suppose q is a prime such that 3̂ does not centralize the Sq-
subgroup of S. We will show that q = p. If q Φ p, we get q Φ 3,
and by Lemma 13.22, we have qe σ U τ. Since p is the largest prime
in σ, and p ^ 5, it follows that one of (S)(iii), (iv), (v) is satisfied for
a suitable subgroup 3Ϊ/S) of fi. We may assume that 3̂ centralizes
the iSp/-subgroup of 2. Hence, 3̂ centralizes Or(SR0/®)> from which
we conclude that 8/S contains an elementary subgroup of order p3.
It follows that one of (<5)(iii), (iv), (v) holds for a suitable p-subgroup
of S.

Case 3. p = 3.

In this case, we get σ — {3}. If Sβ does not centralize the S3,-
subgroup of S, then one of (δ)(iv), (v) holds and we are done. We
may assume that 3̂ centralizes the £3,-subgroup of S.

Let φ 0 = 3̂ n S, so that £β0 is the 53-subgroup of 5. First, suppose
that ^30 contains an element P of order 3 which is not in 3Jf3. Choose
Ue'&(%>) and let 5ft = C^flZ). Thus, % = 5px<P>. Since (5)(i), (ii)
fail, it follows that |^3L| ^ 33 and ^ L contains no elementary subgroup
of order 33. Hence, IX = βi(φi). Suppose in addition that ^30 contains
a non cyclic characteristic abelian subgroup. In this case, we get U
char 3̂0> so that U is a factor of 9K. But then [IX, ̂ 30] is a chief factor
of 2K so that Sβ35 centralizes every chief 3-factor of SK which is between
® and 2. This forces φ Π Mo = %, and also gives φ® < 5K. Since
J normalizes ^?, (δ)(i) is satisfied for a suitable subgroup ΐft of ^3®.
Vv̂e may assume that every characteristic abelian subgroup of ^30 is
cyclic, and that ®φ <£\ Wl. This forces Ωλ(%) to be non abelian of
order 33. Since φ does not centralize Ω1(%)/D(Ω,(%)), owing to
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we get that all elements of % of order 3 are in Sft3.
It remains now to consider the case where every element of ^30

of order 3 is in $ϊ3. As (<5)(i), (d)(iϊ) do not hold, ^ 0 is of order at
most 33 and if \%\ = 33, % is not an elementary. Since ©φ jH 3ft, it
follows that β̂o is non abelian of order 33 and $ = ^ S Zz.

We next show that 2 = 5)5O. Suppose false. Let r be the largest
prime divisor of | β | , so that r ^ 5. Let 5ft be a Sr-subgroup of 3ft.
Then 3ΐ centralizes the £v-subgroup of 8, and so 9 i g S . By definition
of r, together with σ — {3}, we get reτ. Suppose r Φ 7. Then
1311 = 5, since otherwise (S)(v) holds. If J inverts 9ΐ, then 3ft has an
element R of order 5 inverted by J", and [g, iϋ] = § is of order 24.
But §@ <] 3ft, against the presence of %, together with the fact that
g/(ϊ is a chief factor of 3ft. If J centralizes ift, then 3ΐ normalizes
[g, J]©, so that a S5-subgroup of 3ft centralizes [g, J ] . This is im-
possible, since 3ft5 contains every element of 3ft of order 5.

Suppose r = 7. If J inverts some element of 9ΪS) of order 7, we
are done, since (<5)(iv) holds. We may assume that J centralizes 9ϊ.
Hence, 91© normalizes [g, ]̂®> so we may assume that |3t| — 7. Hence,
S is the direct product of $β0 and St. Now g/© is a chief factor of
3ft, so Sβo and 3ΐ have no non trivial fixed points on g/Gc. Since J
does not centralize 3̂0> it follows that \%: @| = 26, owing to / ^ 3.
But no element of GL (6, 2) of order 7 centralizes any extra special
subgroup of order 33. Hence, S = ^0> from which we get that 3ft is
a 2, 3-group.

We now get ®φo < Sft. Let SW,. - 3ftoφ. Since 3ft/3ft0 is 3-closed,
we get 3ft, <i 3ft, 13ft: 3ft, I ̂  2. Also, O2(3ft1/®) = 1, and the 3-length
of Sfti/S) is 2. If JeOSf2(2) fl1mod©), then since S2-subgroups of
O3)2(3ft1 mod ©)/S are quaternion, it follows that J normalizes 5β©. This
is impossible since (σ)(iϊ) does not hold. Hence, we may assume that
J £ O8,2(SKi mod ©). In this case, S2-subgroups of HJIJ& are isomorphic
to S2-subgroups of GL (2, 3). Every involution of GL (2, 3) normalizes
some £3-subgroup of GL(2, 3), and so J normalizes some £3-subgroup
of 3ft7®, against the fact that (δ)(ii) does not hold. The proof is
complete.

LEMMA 13.30. Suppose Ge® and g^SSft. Then %G^&.

Proof. Let g* = %G, 3ft* = 3ft*, ®* = (T, ®* - 2)G, <E* = &G, *y* =
^ " σ . Since g is abelian, we may assume that G & 2ft, so that 3ft Φ 3ft*.
Hence, J? Π ̂ ^ * = 0 .

First, suppose g * S ^ . Then g**g^^*. Let g0 = ^ ( g * ) , and
suppose by way of contradiction that %0 c g. Let gi/g0 be a chief
factor of gg* with g ^ g . Choose F e g i - g0. Since | g | = |g* |, we
get I g01 < |g* |. Hence, there is ί7* in g* - {1} such that [F9 F*] = 1.
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Since F * 6 ̂ * , we get Fe 9K*. Hence, 1 Φ [F, %*] S g Π g*, against
^ ΠJ^* = 0 .

We may now assume that g ^ ξ S ^ . By Lemma 13.26 (c), it fol-
lows that if g? is a n y subgroup of g* °f index at most 8, then
C(gί)£2TC*. We will show that g* centralizes ©. Let g* - Cβ (@),
so that |g*: g* | ^ 2. Suppose |g*: g*| = 2. Choose E in © - C(g*).
Thus, £/e2K*. We may apply Lemma 13.29 (c), with E in the role
of J, SK* in the role of 2TC, g* in the role of g0. We get [g*, Ef £ w^"*.
But [g*, J £ ] * £ ^ , against J? Π ̂ * = 0 . Hence, g* centralizes ©.

Suppose g * £ 3 5 , but g*g<£. Choose F in g - C(g*), and let
%ϊ = Cr(F). Then | g * : g a * | ^ 4 , since [F,g*]£@. Hence, FeSK*.
Hence, [ r ^ J g g Π ^ = 1, so ©*Sg2*. By Lemma 13.29 (b)(i), we
get [g*, 2 Π * £ ^ * , against l c [ g * , F ] £ @ .

Thus, in proving this lemma we may assume that g* £ 37ί0, g* §= ®
Let Sβ/35 be a subgroup of 3W0/S) of odd prime order p which admits
g* and is not centralized by g*. We will exploit 3̂/® to show that
g£S) ϊ* , introducing a powerful symmetry.

Namely, let g3* - CV(5β/S), so that |g*: g3* I - 2. Let § = g/(£,
and ^ ! = gj® be a subgroup of g which admits <̂ 3, g*> and is minimal
subject to [gi, 3̂] Φ 1. Then g3*® centralizes %x and g* does not.
Choose F in gL such that g* does not centralize &F. Let g4* = g3* Π
C(F). Since [%l9 g3*]S@, we get |g3*: g* | = 2% with a ^ 2. Hence,
|g*: g* I ̂  8, so that C(g*) £ 2K*. Hence, F e SK*.

Since Fe 2R*, we get [F, e*] g g n @*. If g Π @* ^ 1, then g g
C(g Π @*) £ SK*, as we are trying to show. So suppose g n @* = 1.
In this case @*£g4*.

If a — 2, we apply Lemma 13.29 (b)(ii) with JP in the role of J,
Wl* in the role of 3ft, g4* in the role of g0, g3* in the role of gx. We
get [g8*, F] Π J?* Φ 0 , against 1 c [gs*, F] £@. If α ^ 1, we apply
Lemma 13.29(b)(i) and get [ g * , - P J ' ε ^ ' * , Thus, ^ * ίl g ^ 0 in
both cases, so that gϋHJΐ*.

We now define the integer b by 2b = |g*: g* Π © | As we have
seen, 6 ^ 1 . Let %l0 = 2K0/®. Thus, g is a F2Φl0-module. Since
g^2K*, we get [g, A, B] = 1 for all A, B e g * . Let 3c/® be a sub-
group of HJlo which admits g*®/®, such that X/® = Bόy® x x 36^®,
where each 3E< admits g* and (7̂ (36/®) = g* n ®, and where | ^ : <S)\ = pi,
a prime. We can then choose elements F*, •••, F* of g*, such that
Ft inverts 3t,/® and centralizes ϊ,/® for j Φ i. Thus, g* = g* Π 35 x
<jPi*> x x <-F*> Also, since Ff inverts X /̂®, 364 contains an ele-
ment Xι of odd order which is inverted by F* and satisfies K̂  = <®, X, ) .
Let §i = gi/@ be an irreducible subgroup of g as î 2<X, g*>-module
such that 36 does not centralize gx; gx exists since 9£/® acts faithfully
on § and 6 ^ 1 , and since § is a completely reducible ϊ/®-group.

Suppose ϊi/35 centralizes gx for some i. Then X^ stabilizes gx 3
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@ID1, SO since Xi has odd order, Xι centralizes glβ On the other
hand, we can choose j such that Xy/© does not centralize § l β Thus,
letting £,-/© play the role of 31/© in the first part of the lemma, it
follows that g 1 Π ^ r * ^ 0 . Thus, X.eSft*. This is absurd, since
Ft inverts Xi9 while g* <\ 2ft*. We conclude that 36;/® has no non
trivial fixed points on $19 1 ̂  i ^ b.

By Lemma 5.47 with <X, g*, ®>/® in the role of Θ, %x in the role
of 2ft and with A: = F29 we conclude that & = 1.

By symmetry, we get |g: g Π ® Ί = 2. Also, [g Π ®*, g* Π S ] S
® Π ®* = 1, so <g Π ®*, g* Π ®> is abelian.

We next show that (£* g g * ΓΊ ©. Suppose false and E*e&* -
g* n ®. Since gg2ft*, we get \%:Cd(E*)\ = 2. By Lemma 13.29(a)
with £7* in the role of J, we get [g, # * ] * S ^ . This is impossible,
since [g, #*] g r . Hence, @* e g * Π ©. By symmetry, ©g®* Π g.

Since @*£®ng*, we get [g, <£*]£©• Since [g, @*]g@*, we
conclude that @* centralizes g. By symmetry, © centralizes g*.

Choose Fe g - g n ©*. Then F centralizes (£*. Let §* - g* Π
C(F). Since [g* Γi ®, F] S®, it follows that |g*: §* | ^ 8. Suppose
|g*:g*| = 8. By Lemma 13.29(b)(ii) with F in the role of J, SK* in
the role of 2K, §* in the role of g0, g* Π ® in the role of g1? we get
[g* Π ®, F] Π ̂ * Φ 0 This is impossible, since [g* Π ®, F] £ g .
If | g * : § * | = 4 , then Lemma 13.29(b)(i) yields a contradiction, since
[g* Π ®, F] Φ 1. Hence, we may assume that g* Π ® £ E , since
otherwise, [g*, F\%^J?*, against l c [ g * Π ®, F] S@.

Now F centralizes a hyperplane of g*. Choose F* e g* — g* Γ) ©.
Then by symmetry .F* centralizes a hyperplane of g. Hence, [g, g*] =
[F, g*] = [g, JP*] = <[F, JP*]> is of order 2, so by two applications of
Lemma 13.29(b)(i), we get [ ^ F l e ^ n ^ . This contradiction
completes the proof.

LEMMA 13.31. One of the following holds:
(a) g * ϋ ^ .
( b) C(g0) C SK /or β^βr?/ subgroup g0 o/ mdβα; 16 m g.

Proof. Suppose (a) fails. Choose peσ, and let ̂ 3 be an elementary
subgroup of 3K of order ps. Thus, 5̂ is represented faithfully on g,
by Lemma 13.28. Let g = 3£0 x #i x x ϊ , , where Xo = Cs(5β) and
^i, # ,3εs are irreducible ^3-groups. Thus, ( ϊ o ϊ ^ ) * £ ^ for all i, y,
so we may assume that H$&i Π g0 = 1 for all i,j,l^i<jS s.
Since Ig^gyl ^ 16 whenever 1 ^ i < j ^ s, we get p = 3,3£0 = 1, 1^1 =
4,1 ^ i ^ s. Since φ acts faithfully on g, s ^ 3. Let U = g0 Π Ϊ Λ ^ ,
so that IIXI Ξ> 4. If IX Π ϊ ^ ^ 1, for some i, i , we are done. Hence,
we may assume that IX = (UΊ, U2), where Z7f — XαX ί2X ί3, X^ e 3cy, X^^l?
1 ^ j ^ 3, i = 1, 2. Since E/"^ g ϊ ^ for all i, i, we get X, - <C7ii, Z72i>.
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Now 5β = 5βx x SR x 5R, where | ^ | = 3and [$<,£;] - 1, i Φ j , 1 ̂  i, j g 3.
We can therefore choose Pi in ^ such that PrιXnPi = X2i,l^i^Z.
Let P = P^Pg. Then UΓ = U2, Uf = U&, so that P normalizes U.
Hence, C(g0) C C(1X) SN(U) £TO, the last containment holding by
Lemma 13,24.

LEMMA 13.32. One of the following holds:
( a ) S * £ ^ .
( b ) J/ G e © <md |g σ :g c n2TC| ^ 2 , ίλew g*S2R.

Proof. Suppose (a) and (b) fail. Choose G in © such that
Iff: g* n 9TC| = 2. Let TO* - TOG, g* = gG, and let g* - g* Π TO. By

Lemma 13.30, we get ggTO*. Hence, ^ * Π g = 0
Let go = S Π TO* so that g o c g. Choose i^e g - g0. Let g2* =

C(F) n %* and let 2̂  - |g*: g2* |. If / ^ 3, then |g*: g* | ^ 16, so that
by Lemma 13.31, C(g*)^TO*, against F^TO*. Hence, / ^ 4. In
particular, gfξg®, since g0 e g . Also, we get ©gΞTO*, so that
[gf, E7] g g * n @ = 1, the equality holding since ^ ί l g * = 0 .

Let 3ΐ/® be a subgroup of TO0/S) of odd prime order which admits
%* and is not centralized by g*. Let g2* = g* Π C(3t/SD) so that
|g*: g2*| = 2. Let g^g be a subgroup of g/g which admits Sftg* and
is minimal subject to [gt, SR]g®. Then [g2*, g j S g , and gf does not
centralize gx/g. Choose F in gx such that &F is not centralized by
g*. Since [g*, F ] g g , it follows that g3* = g2* Π C(F) is of index at
most 4 in g*, so is of index at most 16 in g*. Hence, C(gf)gTO*,
so that Fe TO*. Hence, [g*, F] g g Π g* = 1, so that g3* = g2*. Now
Fe TO* and g* Π C(F) 3g*, so that |g*: g* Π C(F)\ ^ 4. On the
other hand, ©eTO*, so that ©* = ©^^TO. Hence, g * S g ί , so that
[g*, F] £ g Π ©* = 1; that is, ©* S g2*.

By Lemma 13.29(b)(i) applied with F in the role of /, TO* in the
role of TO, g* in the role of g0, g* in the role of g, we get [g*, F] g
^ * . In particular, [g*, F] g ^ * . But 1 c [gf, ί ' J S g , so we get
^ * π g φ 0 . This contradiction completes the proof.

LEMMA 13.33. g * £ ^ .

Proof. Suppose false. By Lemma 13.28, C(g) is a (cr u τ)'-group.
Let SB = F(cclβ(g); S), where S is a iS2-subgroup of TO. By Lemma
13.30, 2S S Cffi(g) = K, so iVTO(2δ) contains a SσUr-subgroup of TO. Hence,
JV(3B)gTO, since JV*(3B)e ^ * ( ® )

Since g# g ^ ^ , we can choose F e g* - Jf. Hence, C^(JP) ί Λ?*(©).
Let 20 be a S2-subgroup of ^ ( F ) . Thus, £0 £.,#*(©). Let ^ ^ -
{SεxISEj. is a 2-subgroup of TO, %^%ξ for some M in TO,
Thus, ^~ Φ 0 , as J 0 G y . Let 2 : be a maximal element of
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Since ^" = ^ M for all M in 2ft, we assume without loss of generality
that S^SίE. Since g g ϊ 0 , every element of ^~ contains g .

Choose @ 6 ^Sf(®)9 %1 £ @, @ =£ 2ft. Since g £ @, we can choose
a four-group § of g with §*£w^" Hence,

O2,(@) - <O2,(@) Π C(F)\Fe §<> ,

and so O2/(@) C 2ft. I n particular, g centralizes O2,(@), and so O2(@) ^ 1.
Since @e ^ T ^ ( © ) , we have @ = iV(O2(@)), and so by Lemma 13.1, we
have O.,(@) = 1.

By maximality of £ l y it follows that 2^ is a S2-subgroup of @.
Let SBi = F(cclβ(g); ay . Since g S ^ , we have 2^ ^ 1. We argue
that JVίSBx) £ 2ft. This is clear if 2^ c X, since in this case, JV^S^) =>
Si, so that maximality of Sx forces iVίSSx) £ 3ft. If Sx = 2, then
2S1 = SB, and again we have ^(SBO £ 2ft, by the first paragraph of the
proof.

Let D be a subgroup of @ which is permutable with X19 and is
minimal subject to d ^ 2ft. Then O is a g-group for some odd prime
g, and SBj. <f\ ΠίEx = @x, say. By minimality of £i, it follows that the
g-length of @x is 1, and that O2(@1)^/ί>2(@1)/>(D) is a chief factor of &,.

Since S K i g O , ^ ) , we can choose G in © such that ff = ff ^ 2 ^
S* SO2(@i). Let Oo be a subgroup of D which is minimal subject to

( a ) OaίβJOo admits g*,
( b ) [Q 0 ,δ*]g2ft.

Since O satisfies (a) and (b), owing to D Π 2ft = />(£!), O 0 exists. By
minimality of £}0, 02(@i)£VO2(@i)(£io Π -D(Q)) is an irreducible g^-group.
Since g* is an elementary, we get that |£l0: Oo Π -D(?O) I = Q, so that d 0

is cyclic. Hence, if g* = Cr(02(@OGo/02(@i)), then g* is of index 2
in g*. Let Q be a generator for O0. Since gfO.^O < O2(@1)d0g*,
we get g* ρ g2ft . Hence, | g ^ : ψQ Π 2ft | ^ 2. By Lemma 13.32, we
g e t g ^ S 2 f t . Hence, <gσ,gσ«>. 0.(00 S 2 « . But since

we have a contradiction, since D o g2ft. The proof is complete.
Again, let 2B - F(ccl@(g); ϊ ) , ϊ being a S2-subgroup of 2ft. Let

2δ* = <F(ccl@(g0);2:)||g: g o | - 2>, and let ϊ = ^

LEMMA 13.34. Owe o/ ίΛe following holds:
( a ) J
( b ) j

Proo/ Let § = O2(2ft), β = F(2ft mod £) . Let G be a S2,-subgroup
of β, so that O is nilpotent We first show that there is a subgroup
φ of O such that
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( i ) β̂ is a p-group of exponent p for some prime p e σ (j r.
(ii) fβ is non cyclic.

(iii) 5β*S^p.
(iv) £ ^ < 3 f t .

Namely, for each prime p in σ [j T, let O p be the Sp-subgroup of £}.
Suppose Q.p contains a non cyclic characteristic abelian subgroup S3.
Take φ = ^(33). Then (i), (ii), (iv) are satisfied. If p e r , so is (iii)
since every element of 2ft of order p is in $flp. If p e σ, then (iii)
holds if m($β) ^ 3, while if m(Sβ) = 2, then C(5β) contains an elementary
subgroup of order p3, so again (iii) holds.

We may therefore assume that iΐ peσ I) T, then every characteristic
abelian subgroup of Q>p is cyclic. Hence, £lp = SjAίQp), where SP =
Z(dp), and fli(Op) is either extra special or of order at most p. If
|β x (£g I > p\ we take 5β = fl^O,). In this case, for each P e «β», C,p(P)
contains an elementary subgroup of order p3, since | ί2i(£}p) | ^> 2?5.
Thus, φ * S ^ p , and (i)-(iv) hold. Suppose {0,(^)1 = p3. If p e r , we
may take Ω^&p) = 5β, since all elements of SK of order p are in 3KP.
Thus, in our search for 5β, we may assume that for each p in r, £ιp

is cyclic, while if peσ, then D p is either cyclic or is the central
product of a cyclic group and an extra special group of order p\
Let p be the largest prime in σ. Since £lq is cyclic for all q e τ, it
follows that a Sp-subgroup Wlp of M centralizes $£ιq/%, as Wlp^W.
By definition of τ and Lemma 13.22, it follows that ίSJlp centralizes

£> for all r gσ. \ί qeσ,q Φ p, then p > q, so SPΐ̂  centralizes
#, by the special shape of O g. Since SW^SSK', it follows that

SKP centralizes QίCidφΩά&p) and also centralizes §fli(jQp)7§> both these
factors being cyclic. Hence, %flp/£ip is faithfully represented on
QΩ^d^/QΩ^pY. Furthermore, the chain φ f l A ) ' c ^ ( O , ) must
be part of a chief series for fΰl, since otherwise SKP centralizes every
chief factor of Tt between φ and ^ , which in turn forces SK^g^,
which is false. Since lΩ^&p): Ω^SCLpYl = p2, we get p = 3. Since
2) = φfliίDsJ/φβiίQs)' is a chief factor of SK, the four subgroups of
2) of order 3 are permuted transitively by AR(2)), so that £i(Π3)* i i 2ft3.
Thus, in all cases, 3̂ is available satisfying (i)-(iv).

If we now choose β̂ of least order satisfying (i)-(iv), it follows
that β̂ is either elementary or extra special. So we assume in addi-
tion to (i)-(iv) that 3̂ satisfies

(v) 3̂ is either elementary or extra special.
Let S = £^3BX, and for each subset @ of S, let © = ©£/£. If

Cf(SS) ^ 1, then ^(SB) e ^*(@), since JVκ(aB) contains an element of
yhp in this case. So we may assume that

(13.2) Cτ<β) = 1 .

We may in addition assume that
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(13.3) 5β n C(X) = 1 ,

since otherwise (b) holds.
Let j r = {g* G e ©, g* S 2B, [if, $] g €>}• By (13.2),
The first task is to show that if g* e β~, then |g*: g* n £1 = 2.

Since g * € j ^ , there is Ge© such that g* - gσ. Let ^ be a sub-
group of *β of order p such that φ ^ admits £g* and [5βx, g*] g φ. Note
that since 3£ centralizes 2S, 3£g* is an elementary, so that ^ exists. Let
g* = Cs OPO so that g* is a hyperplane of g*. Let Xx = C s(^), so
that | X : ϊ 1 | ^ 2 . Let 2) be the normal closure of g* in φ^g**.
Since (13.3) φgf <] φRg**, we get 2 ) g ϊ . Hence, 2) is generated by
conjugates of gf, so 2)§Ξ2B*. Hence, X centralizes 2). If ϊ i C ϊ , then
C(2)) contains ^ . But g * f g ^ G , so that C{ψ)^W>. This is impos-
sible, since [g*, SβJ is not a 2-group. Hence, 36X = 36.

Let (£* = C(2)) n £gi% so that (£* is a normal 2-subgroup of
φgfXSPi which contains ϊ . Also, E* s 2KG, since g* Φ 1, and g * ' S ^ G .
Choose Fe g* - g*. Then F inverts an element P of φ g * * ^ of order
p. Let ® = <P, F>, so that 55 is dihedral of order 2p. Let K* =
[(£*, <P>], so that 55 normalizes <£*, and K* S 3KG Let (£2* = [(£*, F ] .
Since (13.3) holds, we have (£* ̂  1, and so (£2* ^ 1. Since (£* £ SJί̂ , we get
e2* S gσ. Since (£* n gG ^ 1, it follows that C(K*) S 3KG, as g** s ^^G.
Let IX = C(e*) Π £S?3£, so that 5) normalizes U, g*g2)glX, and U g
SK̂ . Let 11* - [U, <P>], so that IX* Φ 1, since ^gSW*. Let U* =
[U*, ί 7 ] . Since U*/Z>(1X*) is a free F2<ί>module, it follows that
IX* = <Uf, !XfP>. Now IX? is a normal elementary subgroup of U*
contained in g*, so U* - n*V*p,VL*' = [Uf, Uf] g g * . Since F cen-
tralizes g*, we get that F centralizes tX*;, so P centralizes IX*'. Since
lX*'Sg*, we get IX*' = 1, so that IX* = Uf x U*p.

Since P centralizes 1X/1X*, we get IX - 1X*CU(P), U* n C(P) = 1.
Since F normalizes Cn(P) and since P g SK̂ , we get

Choose F * e g*. Then F * = A5, where A e CU(P), Be U*. Since
F centralizes F* and A, we get BeCa,(F) = U*. Hence, A eg,*, so
that A = 1, as Pg 2KG. Thus, Uf = gf ΞU* = [U, P]S€», so we get
the desired conclusion:

(13.4) %G e β- implies j %°: gG Π £ | = 2 .

Retaining our notation g* = g° e β~, let

Thus, ®S2B* and %* = §* n £ S 2 3 , since gf e ccle(g0) for some sub-
group go of index 2 in g.
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Since 28 < 2TC, so also 2B < φ^SSϊ = S. Now ψQ$lP, so that
φ n 3W = 1. Hence, C£(28) is a 2-group with 3EgCs(23). Let f) =
C8(SB), so that g < S, and f) S 3KG. Let % be a subgroup of *β of order
p2; ^30 is available by our construction of Sβ. Choose F e %G — g σ Π φ
For each A in <β*, we get C^(A) n g c = 1, since Ag 2ftG.

Now g) s ΈiG and g) centralizes the hyperplane gt* of ?F Further-
more, [g), i*7] G g) Π gf. But 0 centralizes 2B and g* S 28, so g) Π g? S
Ω^Zφ)). Hence, F centralizes ty/Ω^Z®)), and since f) centralizes the
hyperplane g* of £f, F centralizes D{%. By (13.2), it follows that 5β
centralizes g/fl^Zί^)) and 2>(̂ )« Thus, φ is faithfully represented
on Ω,(Z®)) = 21, say.

Let P be an element of £>̂ 2B36 of order p inverted by F. Thus,
setting & = {XeQ^lP* = P or P"1}, we see that K normalizes
S3 - [31, P] and K contains î 7. Let S3L be a minimal normal subgroup of
K with Si g S3. Thus, <P> is faithfully represented on 33^ as P has no
non trivial fixed points on S3. Hence, S32 is a free i^2<JP>-module, so
S3! Π %G Φ 1. Hence, a S^-subgroup of K is non cyclic and is faithfully
represented on S3i. By minimality of S3i, φ Π S centralizes 331? and so
ig(Si) is ^-closed. Let Fo be the image of F in A?(S30 and let ^β0 be
a Sp-subgroup of A^(S3i). Thus, î o normalizes ^β0 and ^30 is non cyclic.
Suppose φ 0 Π C(F0) = β̂Oo Φ 1. Then φo o is faithfully represented on

by the φ x Π-lemma. But C^(F) - [S3X, F] e 2KG. Since

i t f o π o w s that NiC^iF)) S SK̂  Since § ^ Π SKG is a 2-group,
we have ^500 = 1. Hence, Fo inverts ^β0. Choose Poeψϋ. Then S3X Π
C(P0) admits Fo. Since φ φ Π 2KG is a 2-group, it follows that ^ Π
C(Po) n g ° = l . Since ^ n C(P0), F] s gG, it follows that î 7 centralizes
S3i Π C(P0). Since ^ = φ, Π C(P0) | P 0 e 5βo*>, it follows that F centralizes
S3i. This is not the case, since S32 is a free F2(F}-module. The proof
is complete.

LEMMA 13«35, Suppose the following hold for some G in ®;
( a ) \%G:%GnϊDl\ = 2.
( b ) %G Π 2JΪ centralizes a hyperplane of %.

Then one of the following holds:

( i ) I S I = 8 .
(ii) | g | = 16, | ® | = 4 .

Proof. Let 21 - %σ Π 2«, g0 - g Π C(2l), so that g0 contains a
hyperplane of g. If g S TiG, then by Lemma 13e30 applied to WlG,
we get g g C ( δ G ) , and so gGg9K, against our assumption. Hence,
ggaK G , and so g0 is hyperplane of g. Since C(X)g2Kσ for every
X in gσ#, it follows that g0 = Cδ(X) for every Xe 21*. By Lemma
13.22, |2X: 21 Π ® I ̂  2. Since 21 Π ® acts faithfully on g and stabilizes
the chain g z > @ 3 l , we get |2XΠ®| ^ |G?|, whence
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Iff I = 2|a| ̂ 22|sxn®| ̂ 22|g|.

Since |G?| ̂  22, the proof is complete.

LEMMA 13.36. // J s S e y ^ f ® ) , then g£O2(@).

Proof. Suppose false, and that @ is a minimal counterexample.
Thus, @ = £ D for some #-group £}. By Lemma 13.20, Sf&Λl(£}) = 0 .
Let § = O2(@). By minimality of @, we get £ Π <@, and g £ O2(SZ)(Cl)),
while φ£}/φD(£l) is a chief factor of @.

First, suppose that O is cyclic. In this case, g/ξ> is cyclic and
g Π § = %0 is of index 2 in g. Choose Fe% — g0. Then we may
assume that i*7 inverts a generator Q for £}. Since g S 0 2 ( ϊ / ) ( Ω ) ) ,
we get |iQ| = q.

Let £ 0 = [£, £*]. Thus, &>//>(£<>) is a free F2<F>-module. Let
©i - [&,1Π> so that £ 0 = Φi Φ?, and & £ g . Hence, £ ' - !&,#?]
is centralized by JP, SO is centralized by Q. Since Q £ SK, and g* £ ^ ,
it follows that φί = 1.

Let £ 2 = Cj(Q), so that $ = § 2φ 0, & Π § 0 = 1. Since [§2, ί 7] £
φ 2 Π g = l, the equality holding since QgSK and g # £ ^ ^ , we get
that for each Fo in g0, Fo — AB, where Ae$2, Be φ o Since F cen-
tralizes Fo and A, F centralizes B, so Be^ι~ C^{F), which then
gives Ae φ 2 ΓΊ g = 1. Hence, g0 = §i is a hyperplane of g. Let
S3 = $Qf so that g ρ Π SK = S3, and 35 centralizes the hyperplane & of
g. By Lemma 13.35, it follows that | g | ^ 16.

Suppose | g | = 8 . Here, we get | φ o | = 16, £ 0 = Φi x €>?, and
1^1 = 4. Hence, g = 3 or 5. Let £3 - £2 Π C(φ0). Then £ 3 < @.
If & =5* 1> then $ , f l Z ( 2 ) ^ l , against ^ ( Z ^ ) ) * £ ^ , and Qί2K.
Hence, £>3 = 1. Since Q centralizes φ 2, it follows that φ 2 is faithfully
represented on φ l β Hence, | φ 2 | ^ 2, as | ^ L | = 4. If q = 3, we get
\Z\ ^ 64. Since O2/(SK) = 1 and SW contains an elementary subgroup
of order p* for some odd prime p, we get £ = O2(2K), ί? = 3, and 2
is an elementary. This is clearly not the case, since ί2(@) = 2. If # = 5,
then $o is an irreducible O-group, so § 2 = 1. Again, we get \X\ ^
64, a contradiction.

Suppose | g | = 16. Here we get q = 3 or 7, since | φ o | = 64, and
since O has no non trivial fixed points on φ o If q = 7, then £>0 is
a minimal normal subgroup of @, so that $ a = 1, | S | = 128. Since
SW has an elementary subgroup β̂ of order p* for some odd prime p,
and since !β is represented faithfully on O2(2K), it follows that either
O2(Wl) is an elementary of order 64, or O2(2ft) = Z. The first case yields
O2(3K) = O2(@), against @g3K. The second case is impossible since
2/ = φ x is of order 8.

It remains to treat the case | g | = 16, q = 3. Here we get X —



NONSOLVABLE FINITE GROUPS 547

Since £>2 is faithfully represented on §lf and since § Π C(F) =
it follows that % — φj. x {F} is a self-centralizing normal sub-

group of Z. Consider O2(9ft). Since |©| = 4, and %/(£ is a chief factor
of 9ft, it follows that [g, O2(3ft)]£@. Since 3ft contains an elementary
subgroup of order pz for some odd prime p, it follows that 9ft contains
a subgroup 3̂ of order p which centralizes %. Hence, [O2(3ft), β̂] S
C(g) Π O 2 ( l ) = g, so φ stabilizes O2(9ft) =) g =) 1. This is impossible
since O2,(2ft) = 1.

We may now assume that £ι is non cyclic. Let OL be a subgroup
of £i of order g such that ^C^ admits f$ a n d [f5> £X] ^ Φ Let ©,. =
€>QiS, § = Oίί®!), and Si = S Π ©. Then \%: g j - 2. Choose F e
g — δi We assume without loss of generality that F inverts a
generator Q of £},. Let φ 0 = [|>, &J, Ik = [|>o, ^ Ί Then |>0 = Ik x
|>?, ^ g g , and § = §o-§2> where § 2 = Cj-ίOJ. As in the earlier part
of the proof, we have gx = «§lβ Since f&g [§, DJ = [§, OJ, it follows
that δiϋ£>, φ = §- Hence, g^/ξ> is a central subgroup of %I$Q of
order 2. Since ££V£>D(G) is a chief factor of @, it follows that g
inverts §D/©Z)(D). Since F centralizes §Z)(D)/§, it follows that D
is either non cyclic of order q2 or extra special of order g3 and ex-
ponent q.

Suppose Q. is abelian. In this case, since F inverts φ£l/φ, we
may assume that F inverts C. Thus, C9(Qj) admits F for all Qλ e Ό,.
Since £1 Π 2ft = 1, it follows that g Π C^Q,) = 1 for all Q, e D*. Hencs,
[CiiQJ, F J g g Π C^QO - I. Since £ = (C^QO | Q, e jQ*>, we get that
JP centralizes ^ . This is not the case, so Q is extraspecial.

Let EL = C s ^ ) . Thus, Sp-subgroup3 of E t are of order g2. Also,
d1 normalizes ^ 0 = [|>, GJ = [Φ, QJ Let O2 be a Sρ-subgroup of (lL.
Thus, F normalizes £>D2, and F centralizes ^D^/ΦQi We may assume
that notation is chosen so that O2 £ £}. Then D 2 = Qi x O' Thus,
F centralizes φQ'/φ. We will show that O'g2ft. Namely,
normalizes |>0o Let φOo be a minimal normal subgroup of
with |>oo£|>o Since C%0(F) = %0, we are done in case £}' centralizes
^>00, so suppose that [§0 0, D'] ^ 1. Since $£ιr(F) is 2-closed, we get
looS^ίΦCF)), s o ΦooSS' Since S f c S ^ " , we get ΛΓΘ(φoo)e2ft, so
Π'gSft, as required.

Suppose q ^ 7. Here we get | gi I = 8, | % \ = 16, | © | = 4, by Lemma
13.35. Thus, Am(%) is a 2, 3-group, so Q' centralizes g. Hence, D'
centralizes φo This is not the case, since ^ 0 = [§, Q-J s,nd d is an
extra special group which acts faithfully on φ. Hence, g = 3 or 5.
If g = 5, we get |§U = 4, | φ o | = 16, so that O' centralizes φ o This
is impossible, since φ 0 = [Φ, d j and Q is represented faithfully on
φ. Hence, g = 3.

Let ^ = [§, D'], so that ^ <j @. Since Q is represented faithfully
on i£/Z)(S), and Q ; has no fixed points on ^ - D(&), it follows that
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\B: D(B) I = 26\ with k ^ 1. If k ^ 2, we get that

against | £ 0 | ^ 26. Hence, A; = 1. Since |[ί£, QJDίS): Z)(ί£)| ^ 24, it
follows that | g ΓΊ />($) I ̂  2, Hence, £i' centralizes /)($), since other-
wise |[QX, /)(®)]Z>(Z)(S)): />(/>($)) | ^ 2\ Suppose />{$) ^ 1. Since £}'
is a S3-subgroup of 3K Π @, it follows that C(D(B)) Π G = £1'. Since

is a chief factor of @, it follows that φ .F is a square in
This implies that \D(St): D(St) Π C(F) | ^ 4, so that | [JO(Λ), g] | ^ 4,

against |Z)(^) Π %\ ^ 2. Hence, /)(β) = 1. Hence, | g Π ̂ 1 ^ 4, so
that f5 centralizes a subgroup of £>/$ of index at most 2. This implies
that £} centralizes φ/S, so that £> =. ̂ ^ 0 > where ^ 0 centralizes 56, so
§ = $ x <S0. Since β 0 n δ = 1, and $ 0 <| @, we get $ 0 = 1.

We next argue that 3<£σ. Suppose false. Then since | D | = 33

and O is of exponent 3, we get Q G J / ( 3 ) . Hence, G £ ϋ f ( £ l ) = WG

for some G in ©, the equality holding by Lemma 13.20. Since £} g 2)1,
we have SK ^ SK .̂ On the other hand, we have already shown that
£1' S 9K, and so S3-subgroups of Cm(D,') are not cyclic. This violates
Theorem 13.1. Hence, 3gσ. Since σ Φ 0 , it follows that

Since £> — ̂  is of order 26, and since S/§ acts faithfully on
it follows that every subgroup of % can be generated by 6 elements.
This contradiction completes the proof.

LEMMA 13.37. Suppose &Qe<9*έ?^(®) and the following hold:

( a ) O2,(@o)=l.
( b ) g S O 2 ( 6 0 ) .
(c ) X Π @o = @2 is a S2-subgroup of @0

( d ) / / l c S < l g 2 , then either N($t) ̂ Tt or &2 is a S2-subgroup
of

Proof. Suppose false. Let @ be a subgroup of @0 which contains
@2 and is minimal subject to ©§£90?. By (a), O2,(@) = 1. By mini-
mality of @, we have © = @2Π for some g-group D, and 2ft Π O = Z>(D),
while if £ = O2(@), then φQ/φ/)(£ϊ) is a chief factor of @. Suppose
G e © and ff Π @2 is non cyclic. We will show that ff n @ 2 £ £ .
Suppose false. Then G $ 2R, since g S O2(@). Let g* - gG Π @2.

Let Qi be a subgroup of £} minimal subject to (a) O i g ^ Q ) ,
(b) ££>! admits g*, (c) [ θ ! , g * ] g © . Then £i, is cyclic. Let @x =
^^ig*, Φi = ί>2(@i), and let g* - ψ f] &. Thus, g* is of index 2 in
f5*, so is not 1. Since OigSK, O : does not centralize Z{$QU Choose
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F* e g* — gf. We assume without loss of generality that F* inverts
a generator Q of O lβ Now Z(&) g C(gf) £ 3KG. Since Dx does not
centralize Z(&), neither does F*, so [Z(^L), F*] =£ 1. Hence, Z(£L) Π
g*=* l, so ^gaw*.

Let Λ - [&, QJ, ft = ©i Π (7(0,), ft - [ft F*]. Then & = $ft
and ^ o n g G - 1, so that F * centralizes ft. Also, S = ft x ftρ is
elementary. On the other hand, g ϋ Φ S Φ i , so Sϋ9KG By Lemma
13.30, [g, gG] = 1. Hence, g S t t Since |g | = ISΊ > l^il, it follows
that S Π ft ^ l Since £X centralizes ft, we get ICl^Wl, contrary
to our contruction.

By the previous argument, we get F(cclβ(g0); @2) <I @ for all non
cyclic subgroups go of g. By (d), we get that @2 = X. Hence, both
SB and SB* are normal in @. Since 3c = Ωγ{ZφS>*))y we get 36 <| @.
By Lemma 13.34, we get @g2K, against our construction.

LEMMA 13.38. If G e @, ίfeeti o^β 0/ ίfee following holds:

(a) ffnarc = i.
(b) g^ Π 3K is 0/ index 2 m g^ α ^^ SG Π Sc centralizes a hyper-

plane of g

(c) rsSK

Proo/. Suppose 1 c ff Π M c SG. Set g* - ?F, gf - SG Π SK, gx -
g Π 2Rσ. Since g # S ^ " and %**<^^G, we get g Π %G = 1. If ^ e
g**, then [g*, Cff(F*)] S g n g* = 1, while if F, e gf, then [gx, ^(F,)] £
g n g * = l . Since g*g2K, so also ggaKG, by Lemma 13.30. Let
& - Λ^&g*), g2* - iVr(gfgi), so that g2 =) g,, g* 13 g*. Choose
^2 e g2 - g lβ Then [ί7,, g*] S %1 and C(F8) Π gΓ - 1. Hence | & | ^ | g? |.
By symmetry, we get |g*| ^ [gj, so |gL | = |g*|. Let φ = g^* -
gx x gf. Let ^ , ^ * be the chains £ z> gx z> 1, £ z> g* z> 1, respectively.
Then g2/gL maps isomorphically into Jl<g(

(^) and g2*/gf maps isomor-
phically into A*^*), and if ί7, e g2 - gλ, then the map φ(F2): g* ^ g L ,
given by ί7^ ι-* [F2, F*] is an isomorphism of gf onto g1# Since iV(ξ>) is
solvable, it follows that |g2: g^ = |g2*:gf | - 2. If g2 - g, we are
done, so suppose %2a%. Let g2 = gx x <-F2> Choose ί7 in g — g2

with [ί7, g f ]gg 2 . Since ί7 does not normalize gxgf, we can choose
F ^ e g * such that [ F , ^ * ] ? ^ Hence, [F, F?\ = F2F, with ^ e g ^
Let gf * be the largest subgroup of gf such that [F, gf *] £ g l β Hence,
gf = gf * x <^*>. Since |gf [ ̂  4, we have gf * ^ 1. Choose ί7^* e
gf**. By the Jacobi identity, [F, F*, F**][F* *, F, Ff] = 1, since
[F*, Fx**] = 1. This is not the case, since [F, Ff, F**] - [Fi9 F**] Φ 1,
while [F**, F] e %19 so that [ί7**, F, F*] - 1. The proof is complete.

THEOREM 13.3. Hypothesis 13.2 is not satisfied.
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Proof. Suppose false. If £ £ @ o e S^έ?^ (©), then by Lemma
13,36, @0 satisfies the hypotheses of Lemma 13.37, so @0£3K, that
is, % G ^f *((&). Thus, we may apply Lemma 13.2. Let φ be the group
given in Lemma 13.2. We may then choose M in W such that $QM Π X
is a £2-subgroup of QM. Thus, we may assume at the outset that
£ Π £ = ξ>2 is a S2-subgroup of φ. Let I be an involution of S7Ϊ such
that Cβ2(/) = £2 is a S2-subgroup of {^(I).

Let φ£@e.^£\5^(®). By Lemma 13.2, Q contains an element
U of ^ (2), so O2(@) Φ 1. By Lemma 13.1, we get O2,(@) = 1, since
@ = JV(O2(@)). By Lemma 13.20, @ has no elementary subgroup of
order p3 for any odd prime p.

By Lemma 13.2, φ = £2Q, where O is a 3-group. By the preceding
paragraph, Sf^Λlifΰ) — 0 . We assume without loss of generality
that if £ 2 £ £ o c : £ , then £0£2K. Hence, Έl Π O = Z)(O) and if
O2(φ) = ft, then ftO/ft/)(O) is a chief factor of £.

Let go - g Π £, Si = % Π ft = %0 n ft. By Lemma 13.37, & c g.
We argue that & c g0. For suppose gL = g0. Let %2/%ι be a chief
factor of g£2, with g 2 g g . Then [ f t ,g j sg i = δ o S ^ , so that & S
JV(ft). Since ^ 2 is a S2-subgroup of JSΓ(ft), we get & S & Π g = & = go,
against & = g0 c g2 Hence, & c g0 S S

Since Cg(/) is non cyclic, and since φ2 contains a S2-subgroup of
Cm{I), it follows that go is non cyclic.

Now &$/$ < &/ftf so that ft[D, g0]i?(O) < Φ Since
is a chief factor of §, we get SO = ft[O, go]^(Π), so that
ft[Q, So]. Since Z)(Q) £ 2R, it follows that [J9(O), g0] £ S Π ftJ5(D) =
g n ft = Si % Lemma 0.8.7, ΰ(Ώ)SZ(Q). This implies that £} is
of exponent 3, and either | O | ^ 32, or d is non abelian of order 33.
If O is non abelian, then each element of %Q induces an automorphism
of $£V$D(G) of determinant 1, since %0 centralizes ftZ?(G)/ft. In this
case, we get \%0 Si I = 2 . The same equality clearly holds if | C | = 3 .
Suppose ID | = 32. Then %0 contains an element Fo such that Fo inverts
ftO/ft, and we assume without loss of generality that Fo inverts G.
If Q e O, then CΛ(Q) admits i^0, so [Cβ(Q), FQ] £ g n Cft(Q) = 1. Hence,
F o centralizes <CS(Q) | Q e D*> = ft, against F o ί ft. We conclude that
|£>| = 3 or 33 and that \%0: %,\ = 2.

Choose F0e%0 — gi Then %0 inverts a subgroup Dx of Dft of
order 3, and we may assume that £ ^ £ 0 . Let ftx = [Λ, QJ, Sg —
[ftx, -Po], fto = C^DO. Thus, ft2Sδ, so that &, = ftg x ®2

ρ, where Q is
a generator for £}lβ Since ft0 Π g = 1, we get ^ = ft^ ̂  1. Suppose
ftx| ^ 24. In this case, it follows that /(&>)£$, so that J((&) < § .

This is not the case, since | N(J(§2))) |2 > | φ 2 | . Hence, |ftj = 28, |go | =
2\\%1\=2. This in turn implies that 1 0 1 = 3 , 0 = 0!, and so
§ = $2 x ftiO^Fo), with ftxO!<Fo> s ^

Since no non identity characteristic subgroup of $2 is contained
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in $09 it follows that D($b0) is elementary and central in ίϊ0. Thus,
/)(&) - Z)(JB0) x gi. Choose X e JVff(&) - &. Then Z(J80) Π C{X) = 1,
since £ 2 is a ^-subgroup of iV(3)) for every non identity normal sub-
group 2) of φ. Hence, |/)(ffi0) | ^ 2, \Z(B0) | ^ 2. Now X normalizes
§2 Π C(g0) = ^o x go- Hence, ί£0 is elementary, so |ίΐo| ^ 2. If $ 0 - 1,
then £>2 is dihedral of order 23, against the presence of I. So suppose
l̂ o I — 2. In this case, ξ>2 has exactly 2 elementary subgroups of order
23, namely, BQ x % and St. Since X normalizes ί?0 x g0, X also nor-
malizes S. This contradiction completes the proof.

REMARK. Theorem 13.3 is one of the watersheds of this work.
While there is still a great deal to be done, we are now reduced to
examining a succession of explicit groups. The "generic case" is com-
pleted.

HYPOTHESIS 13.3.

( a ) @ e ^ f ^ ( @ ) .

( b ) O a,(@)=l.

( c ) m(SX) ^ 2 for every normal abelian subgroup 21 of @.

( d ) @ contains a non cyclic normal abelian subgroup 33 such
that C(B) S @ for all 5 in S3*.

Lemmas 13.39 through 13.53 are proved under Hypothesis 13.3.
We use the following notation: 5? is a normal abelian subgroup of
@ which contains S3 and is maximal with this restriction, and SS0 =
β^SS). By (c) and (d), we get m(9S) = m(SS) - 2, so that ^(33) - ϊ$0

is a four-group. Since @e ^ / r ^ ( © ) , © = JV(3S0). Let SE be a S2-sub-
group of @.

LEMMA 13.39. % is a S2-subgroup of © and

Proo/. Let 3 = ^ ^ ( 2 ) ) . Since O2,(@) = 1, we get 3SO2(@).
Thus, <3, ®o> S <3S, Z(O2(&))y, and the group on the right is a normal
abelian 2-subgroup of @. Hence, 3gΞ33o by Hypothesis 13.3 (c). If
3 = 3S0, then we get @ = JV(3)> and we are done. Suppose 3 c 930J

so that | 3 | =2. Hence, N(&) = C(3)g@, by (d), and we are done.

LEMMA 13,40. S3 is a T.I. set in @.

Proof. Suppose false. Then there is G in © — @ such that
93 Π 3SG ^ 1. Let V be an involution of 23 Γ) 93^ By Hypothesis 13.3(d),

Case 1. C(V) contains an S2-subgroup X* of ©. Since £* g@ Π ©r;,
we get X*0"1^®. Hence, ϊ * 6 " 1 = 2* s for some S in @. Hence,
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SG e N(Z*). By Lemma 13.39, we get N(Z*) £ @. Hence, G e S"1© - @,
against our choice of G.

Case 2. C(F) does not contain a £2-subgroup of ©.

Let £ 0 be a £2-subgroup of C(F), so that %0^&. Let £* be a
S2-subgroup of @ which contains £ 0 Since F e 9 3 0 < ] £ * , it follows
that | X * : Ϊ O | = 2 , and that £ 0 - C**(F) = CS*(93O). Since F is not
contained in the center of any S2-subgroup of ©, @ does not permute
S3? transitively. Hence, £*/£ 0 maps onto A&(%$0). Hence, C&(V) =
Cβ( 10 = Cββ(7) < <β, &), against @ e ^tS^(®). The proof is complete.

LEMMA 13.41. Suppose Ge® and 93* g@. ϊ%ew [SB, 93*] - 1.

Proof. Let SB = S3 Π C(93*), and suppose by way of contradiction
that » c 93. Let ^/ffi be a chief factor of 93 33* with ^ g 93. Since
|SI < 183*1, and since [*8lf W] s », it follows that there is F in 93G*
such that 93X S C(V). By Hypothesis 13.3 (d), ^ £ @σ, so that [93^ 93^]S
93 n 93*. By Lemma 13.40, 93 Π 93* = 1, so 9 3 ^ $ , against our con-
struction.

LEMMA 13.42. Suppose Ge® and |93G: 93* Π @| ^ 2. Then one of
the following holds:

( a ) 93*S@.
( b) 93 is a four-group.
(c ) 93 is of type (2, 4) and 93* Π @ is a four-group.

Proof. Suppose |93*: 93* Π @| = 2. Let 93 be of type (2α, 2b) with
1 <; a ^ 6. We must show that α = 1, b <; 2, and that if 6 = 2, then
93* Π @ is a four-group.

Let 93* = 93*, 93f - 93* n @. Let 93, - 93 Π C(93*). If 93X = 93, then
93 S@*, so by Lemma 13.41 applied to ©*, we get [93*, 93] = 1. Thus,
93* £ @, against our assumption. Hence, 93: c 93. Let SS2/3Si be a chief
factor of 9393* with 932g93. Choose F 2 e 932 - SSX. If 93,* n C(Fa) Φ 1,
then F2G ©*, so that [F2, 93*]g93* n 93 = 1. This is not the case, by
definition of 93, so 93* n C(V2) = 1. Since [F2, 93f] £ 93:, we get [93,| ^
193* I = 1931/2. Hence, 932 - 93, and [93:93,1-2.

Let φ - 93,93* - 93, x 93*. Since 93 g@*, we get 93, = 93 Γ) &G.
For each F in 93 — 93,, we see that F normalizes 93,* Π 93*F, since
F2G93,gC(93,*). If 93,* n 93*F Φ 1, choose F * an involution of 93,* n
93*F Π C(V), and conclude that Ve C(F*) S © * , against ©* n 93 - 93,.
So 93,* n 93,*F = 1. Since |93?F| - |93,* | - |93,|, it follows that

φ = SB* x 93,*F .
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Since F ^ ^ g φ , we have

V2 = X* X* Γ , X*, X^eSS* .

Hence, F 2 - V2V = X* X,*F = X* F . X*, so that

x*. x*-1 = (x*. χ*-y e as* n ssf = 1,

whence

X* - X* , V2 = X* X * r = X*2[X*, V] .

Since F 2 and [X*, F] are in F, we get

X*2 e F Π F * = 1 .

Hence, F 4 = 1, and F - X ^ F ^ X * . Since S3, is of index 2 in «, S3
is generated by S3 - S31? and so 6 ^ 2. If 6 = 1, then a = 1 and we
are done. We may assume that 6 = 2.

Case 1. a = 1.

Here we must show that S3f is a four-group. Since (S3J = 4 ,
and SSxgSS0, it follows that some F of S3* centralizes ^(93°). Hence,

S@. Since @ n S3* = S3*, we get S3* = ^(93*).

Case 2. a = 2.

In this case, it follows that for suitable F, We S3, S3 = <F> x (W),
S3L = <F2> x <TF>. For each X in S3*, we get Vx = F V2zWy, for
suitable a?, y. Since X centralizes F 2 , we get y — 2z for suitable
integral z. Thus, S3* stabilizes S3 =) S3: z> 1 and also stabilizes S3 z) S30 =) 1.
As the intersection of the two stability groups is of order 4, S3f does
not act faithfully on S3. This contradiction completes the proof.

LEMMA 13.43. Suppose % S 9ΐ e 5 ^ J 2 ^ ( @ ) αwd 9ΐ g @.
contains no elementary subgroup of order p 3 /or cm?/ ode? prime p.

Proof. Suppose G? is an elementary subgroup of 91 of order p3, p
an odd prime. Since 2eττ4, we get O2,(9i) = 1, so O2(9i) 9̂  1. Hence,
H(@; 2) is not trivial, so e{p) ^ 3. Hence, Hypothesis 13.1 is satisfied.

Let 31* - M(d) 3 5β. Let 3 = Ω^Rffi*)). By Lemma 13.19, 131^4.
Hence, e Π C(3) e J ^ ( p ) . Let ^ be an involution of 3 Π Z{%). Thus,
Ze S30. By Hypothesis 13.3 (d), we get C(Z) S @. Hence, © n C(Z) S @.
Since @ Π C(Z) e ^T*(@), we get @ g r . Since @e ^6^{G), we have
@ = 9Ϊ* 2 % against our assumption that 5ft g£ @. The proof is com-
plete.
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LEMMA 13.44. If % s SSI e £frέ?^{%), then 33 s O2(9l).

Proof. Suppose false. Then sJί§£@. We assume without loss of
generality that if % £ ^o c % then S3 £ O2(9ί0). Hence, 5β = SO, where
D is a g-group for some odd prime q. By Lemma 13.43,

Let φ = Oa(9fi). By minimality of SR, we get £ D < % and SB =
( is a chief factor of 9i. Let Xo = 2? n £, so that Xoc33.

Let 3̂ /Xo be a chief factor of X with ^ £ 3 3 . Choose Ve^-%0.
Since SB is a chief factor of 9ί on which 33 acts non trivially, and
since £ F is central in £/£, it follows that [/)(£!), F]SO2(S/)(Q)) Π
&D(G) = φ. Let £i = ^D/ξ>. Thus, F inverts O/Z)(O) and F cen-
tralizes />(£!)• This implies that /)(£}) SZ(Q), and that Q is of ex-
ponent q. Thus, |jQ| ^ g2, or else D is extra special of order <f.

Let § = $/D(ξ>). We will show that SS/ϊ0 is elementary. Suppose
false. Let VΊeS satisfy FίίX 0, Fίeϊo. Since [2, F1? FJ = 1, the
minimal polynomial of Vt on § divides (x — I)2, so SS? centralizes ^ .
This is impossible, since Fx

2 ί φ. Hence, 9S/ϊ0 is elementary.
We next show that |S5: ϊ o | = 2 . Suppose false. Since S3 is abelian,

m(S5) = 2 and SS/ΪO is elementary, we may assume that 9S/X0 is of
order 4.

Let jQo be a subgroup of <G = £>£!/£> of order g which admits 33
and is not centralized by 33. Let $ = S3 Π C(O0), so that |S3: $ | = 2.
Let Qo — Φ ô/Φ> where D 0 § Q ) and let Q be a generator for Do.
Then SρSθ2(φD0SS)S2:£@. Suppose S3ρS@. Then

, 93, 33*> £ @ ,

so that O0S@ Hence, [S3, C0]S33 Π ξ>O0S^> against our choice of
Do. So 93ρg@. By Lemma 13.41, we get that 33 is of type (2, 2δ)
where b <; 2. Since |33:330 |=4, and since Z(£)£O2(£), it follows
that Xo ̂  1, so that |33| ^ 23. Hence, 6 = 2. By Lemma 13.42 (b), (c),
S is a four-group.

On the other hand, 33/X0 is faithfully represented on D, so we
can choose Qo above, with additional property that ΩJβ) does not
centralize jQ0. In this case, 2? is necessarily cyclic, against Lemma
13.42 (c). We conclude that |33:3£O| = 2.

Recall that Ve 33 - ϊ 0 . Choose Q e 0 such that £ F inverts φQ.
Hence, Q ί @, so that 33Q Π @ = X? is of index 2 in 33ρ. By Lemma
13.42, we get that 33 is of type (2, 2h) with 6 ^ 2 .

Case 1. 6 = 1.

In this case, [33, £]<Ξ£0, a group of order 2. Since 33 does not
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centralize ξ>, we get [93, £>] = Xo, so that ϊ 0 = Z(£), the equality holding
since by construction, Z(£)g93. If £ 0 S #(<£), then F centralizes
§ = $/D($), against 93§g£>. Hence, ϊ o g / ) ( φ ) . Since £0 is the only
minimal normal subgroup of £, we get Z)(φ) = 1.

Since V centralizes, a hyperplane of φ, and since F also inverts
£D/£/)(O), it follows that | Q | = 3, \X:Q\ = 2, SE = £<F>. Since
£0 = Z(£), it follows that £ is dihedral of order 23, against 2G7Γ4.

Case 2. 6 = 2, and ξ> is not elementary.

Let §o = />(£) =£ 1, and let £, - £ 0 Π 33 - £ 0 n ϊ 0 . Since £ 0 Π
Z(£)g93, we get X2 ^ 1. If ^ - Xo, then we get that [φ, 93] g £ Π
53 = ϊ 0 — &!£/?($), against F£<£>. Hence, 13£x[ = 2, since 36O is a four-
group and l c ^ c Xo.

Let 4 = [£, F]D(i&)/Z>(©)£Xo/)(ί&)/Z)(§), so that £ 0 is of order 2.
Since F centralizes a hyperplane of § and F inverts φ£i/φZ)(£l), we
again get | Q | = 3, £ = £<F>.

Let § x = [£, G]. Since 5« = §JVR(Cl), we get § x < 5R. Let φ 2 -
C§(D), so that >̂ = ^rξ?2, and ^>! ΓΊ ̂ S ^ ί ^ i ) -

First, suppose £>x is not elementary. In this case, we get Z)(φi) Π
33 = #! of order 2, and F centralizes a hyperplane of ^JDi^,). The
only possibility is that ξ>: is a quaternion group. Hence, 3^ = ZϊίΦiX]^,
against C(ϊ 1 )£@.

We may therefore assume that Q1 is elementary. Let ξ>3 = φ2 Π
C m ) . Then iV,(&) 2 <&, &, %(£i)> = 5β. If ©8 ^ 1, then & n 93 Φ 1,
so that Q g C ( 7 0 ) S ® for some Fo in 33*. This is not the case, so
φ 3 = l . If φx is a minimal normal subgroup of 3ί, then £>2 centralizes
<£>!, so $ 2 = $ 3 = 1 and £ is dihedral of order 23. This is not the case
since $ is not elementary. Hence, £>x is not a minimal normal sub-
group of 5R.

Since [&, F ] g £ 0 , it follows that | & | = 24, $, = Xo x ϊo«, where
Θ is a generator for £ι. Since $ 3 = 1, it follows that | $ 2 | ^ 2 . Since,
§ is not elementary, we get | $21 = 2 . Hence, | ϊ | = 26. Let $ x Z) $ n 3 1
be a composition series for £>x as 9ΐ-module. Thus, [$, $ J = $ u . By
Hypothesis 13.3 (c), we have S c S . Let @ = SSR, where 31 is a S2,-
subgroup of @. Suppose S <| @. Since 93 is of type (2,4), 9i centralizes
93. Since 9ΐ is faithfully represented on Z/V, 3ΐ is also faithfully
represented on £/£'93. By the preceding paragraph, £'93 a <93, φn>,
a group of order 24. Hence, |Sr93| = 24, and £/£'33 is a four-group.
Hence, |Sft| = 3. Since 31 centralizes 93 and normalizes £'93, it! cen-
tralizes £'93. Thus, £'93 = CS(9Ϊ). Let £ 0 - [£, 31] < £ . Thus, £ 0 is
a quaternion group, and £ = £ 0£i, where £ x — Cs(3i) = £'93. Hence,
£ n C(93) 3 <93, £0>, since £ 0 Π £i = £ό is of order 2. Hence, | A9(9$) | = 2.
This is not the case, since C (̂93) = Xo and | & \ = 24, Hence, £ <# @.
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Let Jt = O2(@), so that S3S®. Since 9ΐ centralizes S3 and 3ϊ is
faithfully represented on $, we get |SB| = 25, |3Ϊ| = 3. Let ®0 = [SB, 3t].
Since every normal abelian subgroup of @ is generated by 2 elements,
it follows that $ 0 is a quaternion group. Let Stx = Cβ(5R), so that
SB = SBoSBx, $ 0 Π Λi = SBJ. Hence, SBX = S3, since S3 S Cβ(2ΐ) = SBX, and since
I SB I = ISBXI = 28. Since fa = S3, and $ 0 centralizes SBlf we get | A9(9S) \ = 2.
This is not the case, since C9Jβ) = £0> and | & | = 24.

Case 3. 6 — 2 and φ is elementary.

We will show that | Q | = 3 or 5. Namely, [φ, S3]§X0, so g = 3
or 5. Hence, it suffices to show that |£}| = g. Suppose O is ele-
mentary. Then V inverts ®Q/φ, so if QeG*, Cβ(O) admits F. Since
O Π @ = 1, it follows that [Q(O), F] S Cβ(Q) Γ) 33 = 1. If |£>| = g%
we get that φ = <CΦ(Q) |ζ)e £}*> £ C ( 7 ) , against F e φ . Hence, if O
is elementary, then | Q | = q. Suppose JO is not elementary, so that
O is extra special of order qs. Since 93 centralizes $&'/§, it follows
that O' normalizes [φ, 93] = 3£0. Hence, D ' £ @ , since 93 is a T. I. set
in ©. Since S3 is of type (2, 4), £}' centralizes S3, in particular cen-
tralizes £0

Let £ 0 = [£, O'J. Since Q' ^ 1, ©0 ^ 1. Since ϊ o £ C(O'), we get
^o Π 3£0 = 1. Hence, £>0 D Z(2;) = 1, since Z(%) SS3. This is impossible
since φ 0 <1 ϊ . We conclude that | Q | = 3 or 5.

Since Cφ(£ί)<]% and since C9(d) Π S3 = 1, it follows that C$(Q) = 1.
Since [S3, φ] s S30 and S30 is a four-group, it follows that | φ | = 24.
Hence, | 2 | = 2α, with 5 ^ a <̂  6. If α = 5, we get S <| @, since
12: S31 = 4 and a S2/-subgroup @2, of @ is represented faithfully on
O2(@). But § is the only subgroup of X of its isomorphism type, so
φ <| @. This is impossible, by Hypothesis 13.3(c), so we get a = 6.
Thus, |jQ| = 5, and Sε/ξ> is cyclic of order 4.

Suppose § £ O2(@). Since § is the only subgroup of X of its
isomorphism class, we get φ <1 @, against Hypothesis 13.3 (c). Thus,
Φ §£ O2(@). This implies that |O2(@) | = 25. Let @2, be a £2,-subgroup
of @, so that |@2,| = 3. Let J be an element of § - Oa(@). We may
assume that J inverts a generator S of @a,. Thus, ^ = [O2(@), @2/]
admits J . Since [Zί9 J] gSj . Π φ, it follows that Ϊ ! is not a quaternion
group. Since \Zt: £L Π C(@2,)| <£ 4, it follows that ^ is a four-group.
This is impossible, since 2^ <| @, and since @2. centralizes S3Ξ§Z(2:)
The proof is complete.

Let SB = O2(@), and let φ = Λ Π C(S3). Since S3 is a normal abelian
subgroup of @ of maximal order, it follows that S3 = Z(Q). Let c be
the class of nilpotency of φ . If c > 2, then Cβ-1(φ) is abelian, so that
S3Cc_i(φ) is a normal abelian subgroup of @ which contains S3 properly.
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This is impossible by maximality of S3, so c ^ 2. Let @2, be a S2,-
subgroup of @.

LEMMA 13-45.
( a ) $/S3 is elementary.
( b ) @2, is faithfully represented on φ.

Proo/. Since c ^ 2, £/S3 is abelian of type (2βl, , 2α2), ^ ^ α2 ^
. . . ^ α s. Suppose as = α :> 2. Let £ 0 = ff""1^ mod S3) D 53. If flΊ, H2 e
φ, then

[iff"1, fl?""1] = [#f , fl?β"2] = 1 >

since iϋΓfeS3. Thus, £>0 is abelian, against the maximality of S3.
This establishes (a).

Let 2 = § Cβ(£), so that 8 < @. Thus, O2(8) £ O2(@) = $. Hence,
§ is the S2-subgroup of 8. Thus, 8 = § x O2,(8), since ̂
Since 2eτr4, O2,(@) = 1, so O2,(S) = 1, establishing (b).

LEMMA 13.46. Suppose 23s£iCi£> and | φ : © i | = 2 .
involution of C6((QI) is contained in &.

Proof. Suppose X is an involution of Cβ(φi) — ̂  Then @ con-
tains an element Q of odd prime order which is inverted by X, by
Lemma 5.36. Let ® = <Q, X>, S = φ δ . Let φ* = [φ, <Q>], ©x* =
CΦ(Q). Thus, ^ * and § * admit ®, and S 3 S § * . Since <Q> is repre-
sented faithfully on φ, we get § * ^ 1. Thus, £>* Π φi is of index 2
in £*, as is £ * Π #?. Since <X, Xρ> = ® centralizes § * Π §i fl §?, it
follows that Q centralizes a subgroup of $* of index 4. Since Q has
no non identity fixed points on $*//)($*), it follows that ξ>* is either
a four-group or a quaternion group. If φ* is quaternion, then C9*(X)
is of order 2, as is well known. Hence, ip* is a four-group. On the
other hand, £ * < φ, so § = ^>* x §*, which gives § * g Z ( ® = S3,
against S3£Φi* The proof is complete.

The next easy lemma is important, and perhaps will admit of
interesting generalization in later work, since it involves the explicit
construction of non solvable local subgroups.

LEMMA 13.47. If Ge® — @, then one of the following holds:

( a ) SBoSΦ*,
( b ) 330sg£.

Proo/. Suppose false. Let 2} = <930, 93ίf>. Thus, S30 < 2), 33O

G < 2),
since 2 ) S ^ n ^ . Since S3 is a T. I. set in ©, we get 5) = S30 x S3<r,
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an elementary group of order 24. Since the normal closure of 2) in ©
is a subgroup of φ, Hypothesis 13.3 (c) implies that ψ is non abelian.
Choose S in @ such that <2), 2)5> is non abelian.

Since />(£)S23 = Z(φ), it follows that φ '£S3 0 = fli(93). Thus,
?) <\ <2), 2)s> and 2)s stabilizes the chain if: 2) =) S30 ID 1. Choose A e
gjjrc* S ψ. Suppose C(A) f] S3? Φ 1. Then A e &G, by Hypothesis 13.1(d).
Hence, [S3?, A]gS3? f] S30 = 1, so that A centralizes 2). If S3?* = 93O,
then GSe JV(S30) = @, so that Ge@. This is not the case, so S3?5 n
S30 = 1. This implies that S3?5 centralizes 2). Since ψ = S3?5 x SS0,
we get that <2), 2)s> is abelian, against our construction. Hence,
C(A) Π S3? = 1 for all A e 33^*. Let S3 - Λ ( ^ ) 2 A%>°s(%?).

Similarly, let ^ * be the chain ξ) z> S3? D 1 . We can choose S* in
@G such that <2), 2)5*> is not abelian. Hence, W* stabilizes ^ * and
does not centralize 2). It follows that A*($!j) is non solvable. This
contradiction completes the proof.

LEMMA 13.48. Suppose Ge® and the following hold:
( a ) f8?n@Φl.
( b ) 5B?g@.

Proof. Let ϊ = 33̂  n @, so that ϊ ^ 1. Suppose J e f f and
I S3 n C(X) I ̂  4. Since C(X) S @G, we get S3 n C(X) S @G. Since
I S3 n C(X) I ̂  4, we can choose V in S3 n C(X) Π C(S30

σ)*. Hence, S30

G s
C ( F ) S @ , against (b). Hence, | ϊ | = 2 and |C8(-X")| = 2. This implies
that S3ϊ is of maximal class, forcing S3 — S30.

LEMMA 13.49. Assume that G e ® — @ and the following hold:
( a ) S30

Ge£.
( b) S3<f Π φ = ϊ 0 ^ o/ order 2.
(c ) §i = C$(X0) is o/ index 2 in ξ>.
( d ) ΓΛe normal closure of S3? m X is abelian.

Set 2 = O2,2,(@)/O2(@), S30

G = 3e0 x ϊ i , ^/^βre ΐ< = <X, > is o/ order 2.

Then the following hold:

( i ) If Si is α^2/ subgroup of S inverted by X19 then \2L\ = 1

or 3.

(ii) If Q is any non identity element of @ o/ odd order wfcicfc
is inverted by X19 then [§, <Q>] = § * contains Xo and is the central
product of 2 quaternion groups. Furthermore, § = φ*Cδ(§*), cmd

(iii) S3 - S30.

Proo/. Let Q and £* be as above. Let £? = φ* Π Qi Since

C ( I 0 ) S 6 G , we get [&*, X j S φ Π 9S0

G = 3E0.
 S i n c e <Q> = Ω h a s n o
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non identity fixed points on §*/D(ίQ*), it follows that $*//)(§*) is a
free .F^X^-module. Let © = [£>*, XJ. By (d), © is elementary, and
by the preceding remark, we get £>* = <©, ©ρ>, since <©, ©ρ> covers

First, suppose © is of order 2. In this case, |φ*:/)(£*) | = 4 ,
and since ξ>* is generated by involutions, we get that φ* is a four-
group. Since φ* = [£>, Q] <]£>, we get § * g Z ( § ) = 53. On the other
hand, 53 g C(X0) S ΘG, so that [53G, 35] = 1, by Lemma 13.41 applied to
&. Thus, Xγ centralizes 53, so £} also centralizes 53. This contradic-
tion show that | © | ^ 4 . In particular, since [ξ>f, XJ ϋ £ 0 , we get
that |£>*:£>ί I = 2, and [£>?, XJ = ϊ 0 . Hence, £ * contains Xo.

Let ^ = g n # * ' . If I©: ©i| ^ 2, then | £ * : £ * ' | = 4, against our
previous argument. Hence, | ©: ©x | ;> 4. Let © = @x x ©2 where Xo e
©2; ©2 is available since Xoe£>*' and X o e©, while © is elementary.

Choose jffe £ * - φ*. Thus, <\H, Xx], Xo) covers ©/©!, and so
I e21 = 4. Hence, | £*: Z)(φ*) | - 24, since <©2, ©2

ρ> - φ*. Since Q* c §* ,
it follows that ^>* is non abelian. Let % be a subgroup of $*' of
index 2. Then ©^/S is elementary of order 8, and so £>*/§ is the
central product of 2 quaternion groups. Hence, Aut ($*/§) is a 2, 3-
group whose >S3-subgroups are elementary, and so Q has order 3.

Since Q has no fixed points on £>* — ξ>*', it follows that for each
He$*,H HQ HQ2e$*'. This implies that for each involution / of
£*, [I, P] = i . Let ©2 - <X0> x <Γ0>. Then ^ * = <©2, ©?> and

[x0, x0^] = [γ0, γ$] = [xoyo, ( X 0 F 0 ) ^ ] = i ,

so that £* ' = <[X0, Γo

ρ]> is of order 2, so that g = 1.
Since 53 n φ* = §* ' , it follows that § stabilizes φ* z> § * ' => 1.

Hence, Cδ(Q) centralizes φ*, and Cϋ(Q) = Cφ(§*), § = £*C δ (£*). Since
Ce(φ*) S C(-Xo) S @G, we get [Cφ(§*), 53?] s ϊ 0 Π C(φ*) - 1. This estab-
lishes (ii).

Set Xo* = XoQ. Thus, Q normalizes <X0, Xo

ρ, ©*'>, an elementary
group of order 8. Since Q does not centralize <X0, Xo*, €)>|;'>> it follows
that [XUX*]Φ1. Thus, I 0 * G C ( I 0 ) £ 6 6 , but 53̂  g@*«, this last
relation holding since [53O

G, Xo*] g 5S0

G, while 53? Φ 53?Q, this final inequality
holding since XL inverts Q. By Lemma 13.48 with &GQ in the role of
@ and our present G in the role of G, we get 53 = 53O; so (iii) holds.

It remains to prove (i). Since Q has order 3, it follows that Sx

is an elementary 3-group. Since X1 inverts 219 it follows that SL =
SIO2(@)/O2(@), where St is a 3-group inverted by X^ We assume
without loss of generality that Q e 31. Thus, φ* admits Sl Since
Q*(Xi) is elementary of order 23, Xx interchanges the 2 quaternion
subgroups of £>*. If [2t| ^ 32, we can choose A in 21 such that
C(A) Π &* is a quaternion group. Since C(A) Π €>* admits X1? we have
a contradiction. Thus, |Sl| = 3, and (i) holds.
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LEMMA 13-50. Assume that G e ® - @ and the following hold:
( a ) §G Π £ is 0/ m t o 2 m §*.
( b ) 33*g2:.
(c ) 33? Π £ = Ko is of order 2.
( d ) φi. = CS(3Q is 0/ index 2 in ξ>.
(e ) The normal closure of 93? in £ is abelian.

Set 3ΐ = £ G Π £ , 3ΐ0 = 31 Π $ . T&ew

(i) 9ΐ0 <] 3t, and 3ΐ/3ΐo contains no abelian subgroup of order 23.
(ϋ) g = O2,2'(@) contains no elementary subgroup of order 33.

Proof. Since $ <| @, so also 9t0 <] 31. Suppose (i) is false. For
each subset @0 of @, let ©0 = &Jt/St. Thus, jft and fR/ΣR0 are incident,
so 9Ϊ contains a subgroup 3ΐx D 3ΐ0 such that 3^ is abelian of order 23.

Since the hypotheses of this lemma are stronger than those of
Lemma 13.49, we get 33 = 33O Hence, Q is of exponent 4, so 3ΐ is of
exponent at most 4. Hence, 9^ is either elementary or of type (2, 4).
We assume without loss of generality that 36 = S3? c ^ This assump-
tion is permissible, since X is a central subgroup of 9ΐ of order 4.
Let 9ΐ2 = Ωffi! mod %), so that 3ϊ2 2 fli(3ti) 3 Xi Here we have written
X = £0 x #!, where 36̂  = <X̂ > is of order 2, and 36O is given in (c).

Let So = F(@modOL(@)). By Lemma 13.49, [β0, #i] is a 3-group.
We first show that [£, %] is a 3-group. Suppose false. Let Q be a
subgroup of So of order 3 such that €X admits % and such that ϊ x

does not centralize G. We assume without loss of generality that
XI inverts a generator Q of £}.

Let ξ>* = [Q, Q], so that by Lemma 13.49, $* is the central
product of 2 quaternion groups. Since So is nilpotent C8o(Q) contains
a Sl2,3}^-subgroup 3D of So. Hence, 3) centralizes $*, since Aut(φ*)
is a 2, 3-group. Since X o e £ * , we ge ®S@ G , so that [31, ® ] £ £ G n
S o S ^ . Hence, [So, %] is a 3-group.

We next show that if S3 is a S3-subgroup of So, then

^ ί f Λτ(Ss) ^ 0

Suppose false. Then Aut (S3) does not contain any non cyclic abelian
subgroup of order 8, against the fact that Sftj. acts faithfully on S3.
Hence, Sf^^ΫHQά Φ 0 . In particular, Hypothesis 13.1 is satisfied.

We next observe that since <3ΐ2, S3> is supersolvable, S3 contains
an elementary subgroup 51 of order 33 such that % admits 3ft2 and
such that % acts faithfully on SI. We may assume that Xγ inverts
the element Q of 21*. Hence, φ* = [φ, <Q>] admits 21, so Cn(%*) Φ 1.
Choose A e W n C(©*). Since Xo e φ*, we get A € ©G. Since C(A) -
CS(A) e ^f*(®), it follows that @3-subgroups of @ Π & are non cyclic.
This violates Theorem 13.1 (b)(ii) with @ in the role of M. The proof
of (i) is complete.
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Suppose 8 contains an elementary subgroup of order 33. Since
2 <] @, S contains a S3-subgroup Sβ which is permutable with Z. Thus,
Xx normalizes ψ. By Lemma 13.49, Xx centralizes a S3,-subgroup of
β, so Xι does not centralize $β. Hence, 3̂ contains an elementary
subgroup 6? of order 33 such that Xγ normalizes @ and Xx does not
centralize (S. Let Si = ΛG?<-XΊ>. We assume without loss of gener-
ality that X, inverts Qe&. Let £ * - [φ, <Q>]. Thus, <@, Xx> nor-
malizes £ * . By Lemma 13.49, C9(Q*) = <£0 Φ 1. Since Xoe®*, we
g e t ^ o S © 0 . Since C(@o)3®, we get C@(@o) e ^T*(@). Hence, Cβσ(@0)S@.
Hence, S3-subgroups of @ Π @G are non cyclic, against Theorem 13.1
(b)(ii). The proof is complete.

LEMMA 13.51. Assume the hypotheses of Lemma 13.50 hold. Then
the following hold:

( a ) [β0,36J is of order 3
( b ) 3ΐ/9ΐo is elementary of order 21+% where e = 0 or 1.
(c ) $ contains a subgroup φ* ŝ cfe ίAαί $&* is the central pro-

duct of 2 quaternion groups, Q — <ξ?*C§($*), and |Cφ(^ρ*)| ^ 24.
( d ) £ Π ̂  is elementary and <9S, § Π §σ} is of index at most

23 in φ.

Proof. The difficult step is to show that if O is a non abelian
subgroup of O2,2,(@) of order 33 and exponent 3, and 3̂  normalizes ίftO,
then [Q, ϊ j S β. Suppose this assertion is false. Let O = {Q \ Q e O,
Xx inverts ^Q}, and let O 0 = {Q | Q e O, [X:, Q] e 5i}. Thus, Ω n Ω 0 = 0 .
Since O is non abelian, O0 ^ 1. Since [Π, XJ g ϋ , D o c O, and so
IQ^I = 3. If D o ^ D', then D* = [D, XJΛ Π Π is elementary of order
32 and X, inverts O*^/^, against Lemma 13.49 (i). Hence, O 0 = £}',
and -Zi inverts St£i/St&'.

Let $ = [§, £i] = [Λ, O], the second equality holding since | ft: § | ^ 2
Let g - φίQΪ!, so that § < g, § D < g, and φ = O,(g). Let ^ be
the set of subgroups of g of order 3 which are inverted by -Xi We
will show that <^ contains elements O1, Cl2 such that ^ ^ O2> is a
S3-subgroup of g Suppose this too is false.

For each Ste ^ , let §(St) = [@, a] By Lemma 13.49, |>(§ϋ) is the
central product of 2 quaternion groups. Since Xλ inverts |>O/φ£l', it
follows that if SU, §X2 are elements of & whose images in g/§ are
distinct, then <SXi, SXa) contains a S3-subgroup of g . Hence,

since <^(Stx), §(§X2)>< § and <SXχ, S12> centralizes
Hence, § is the product of 4 or fewer quaternion groups. On the
other hand, %>(%) contains [|>, XJ, by Lemma 13.49, and [§, Ϊ J is
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elementary of order 23. Hence, | %(%) Π φ(2t2) | ^ 23, so that | |> | ^

2τ = 25+β-3# s i n c e Q i s faithfully represented on §/D(§), it follows
that | ) is extra special of order 27.

Choose a fixed element 21 of & and choose notation so that §X c Q.
Let § = £(3i) S3, where 35 = § f] C(|>(2t)). Thus, 33 is non abelian of
order 8. Let S) - iVίo(D), where g0 = | f o . Thus, | ® | - 4 and § n ® - £ '
is of order 2. Choose ΰ e S ) - § . Then D = XJiwith He$. Hence,

H~ίX1WiX1H= 2t

so that i J e S3. Now Co(2l) = 8 x O ' , so D' normalizes S3 = |> Π C(3t).
Since Q' has no non trivial fixed points on φ/Z)(|>), it follows that
93 is a quaternion group. By Lemma 13.49, Xx centralizes 33. Let Q
be a generator for £}'. We will show that [Xlf Q] e S3. Namely,
|>£}'/l> i s a central factor of g, so D centralizes Q, and X1QXι — Q^
with ί?! G |>. Since D = XXH, we get Q = H^QHiH, or equivalently,
iΪ ! = Q-ΉQH-1. Since F e S 3 , and Q normalizes S3, we get
Hence, § = S3O'<X!> is a group. Thus,

= 33 x 3£x - S3 §

Since 33' x <Xi> = Ω^iX,}), it follows that Q centralizes X,. Hence,
Q centralizes H, so Heξ>', which gives JEΊeS). We have therefore
succeeded in showing that XL lies in a systemizer of %.

Since O'SC^-Xi), it follows that Q' normalizes 33 .̂ Hence, Q'
centralizes 33? since d ' stabilizes £ ID 3^3 1. This is impossible, since
Xo is a non central element of § and £> Π C(O') = Z(§). This estab-
lishes the first reduction of the proof.

We turn to (a). Let Ŝ  = [£0, £i]$ and suppose \2i.\ Φ S. **We
already know that | £i | is a power of 3, so suppose | ̂  | > 3. By Lemma
13.49, Si is non abelian. Let S2 be a subgroup of 2X such that β2 3
CΪΛXO, I S2: ^ ( X O | - 32. Let S3 = IK S j , so that |S,: Z>(23) | - 3_2,
and Xx centralizes D(S>3). By Lemma 13.49, &3 is non abelian, so 2 3

is of exponent 3 and order 33, against the first part of the proof.
This establishes (a).

Since Z>(3ft)S* =jB?, it follows that Dβ)^^. By (a), 3e2 is not
a square in 5R, so Z>(3ΐ) = 1. By Lemma 13.50, (b) follows.

We let Q = <Q) be a subgroup of So of order 3 inverted by Xu

and we define £ * = [£, Q] By Lemma 13.49, £ = £*Cs(£*), so it suf-
fices to show that |C#(€>*)| ^ 24. Let ©* = C^φ*). Thus, Z(φ?) =
33 = Z(φ) is of order 4. By (b), we have 13ΐ01 = I £ G I 2~2"e = | φ | 2~2-e.
Let 3ΐx = CRo(S) = 5Ro Π ©, so that | ̂  | ^ | φ | 2~3-% Now D^) g S3 n
SSσ = 1, and ϊ x centralizes Sftx, while <9ϊx, E:> = fft,. x Xx. Hence, φ^
contains an elementary subgroup of index at most 8, so φ contains
an elementary subgroup 6c with | φ : @| ^ 8, 33 S@. Since § * is extra
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special of order 25, we get that £>*© is of index at most 2 in φ. Let
3 = φ*', so that φ*@/3 is a n elementary subgroup of ξ>/3 of index
at most 2. First, suppose £>*Gc = φ. In this case, />(£>) = 3, so that
£ = h x &, where I& | = 2, & c 95. Since Z(φ) = S3, we get £ is extra
special, so the width of φ is at most 3, since G? exists. The proof
is complete in this case. We may assume that £>*@ c φ. This implies
that | £ * Π ®| = 8, since [ £ * | - 25 and | £ : @| ^ 8. Hence, £ * n @e
S^^^iQ*). Hence, @g(£* Π ©)£?, so that | £ * : ©f Π @ I ̂  2; the
inequality holding since | φ : (£>* n ©)£? I = 4. Suppose | φ * | = 2b > 24.
Since Z(£>?) = S3, and since φi* stabilizes the chain φ* Π © => S3 z> 1,
and since |φ? : £>? Π @| = 2, we get that 6 — 5, and that ξ>L* contains
exactly 1 elementary subgroup of order 24, namely, φf Π ©. Hence,
I © I = 26, every elementary subgroup of φ of order 26 is contained in
4?*©, and φ*@ is generated by such subgroups» Hence, £>*© char
φ, against m(Z(φ*@)) = 4« The proof is complete.

LEMMA 13.52. The hypotheses of Lemma 13.50 are not satisfied.

Proof. Suppose false. Let O = <Q> be a subgroup of So of order
3 inverted by X19 and let $ be a S2/-subgroup of So which contains
O- By Lemma 13.51, [So, 36J = 0 , and so Q is a direct factor of
5j5 = So Hence, 5β = £} x ^30 for a suitable subgroup ^30 of 5β. Since
3̂ has no elementary subgroup of order 33, a S3-subgroup of ^β0 is

cyclic.
Let £ * = [£,£1], and let S3 be the S3,-subgroup of φ. Since

Aut(φ*) is a 2, 3-group, 35 centralizes £>*. Since |C a (φ*) | ^ 24 and
since SSgC^ξ)*), it follows that 93 centralizes C$(φ*). Hence, 33 cen-
tralizes § = ^*(7§(^*). Since |5£:φ| ^ 2, S3 centralizes ^ , so S3 = 1,
as O2,(@) - 1.

Since a >S3-subgroup of Aut ($*) is elementary of order 32, &"\̂ 3)
centralizes £>* and since |Ca(§*) | ^ 24, ff1^) also centralizes Cϋ(%*),
hence centralizes ^ and 5Ϊ, so that O"1^) = 1. Hence, 3̂ is elementary
of order 3 or 32.

First, suppose |^β| == 3. By definition of So and by 0.3.3, we get
@ = 80Xi. Let a ^ S R o Π φ so that {%: $1,1 ^ 2. Since D^) S36 Π
S3 — 1, it follows that <5ti, Xi) is an elementary subgroup of § G of
index 21+α, where 2α = |3ΐ0: 3ΪJ. Since φ* is extra special of order 2δ,
we get a — 1. Thus, £> has an elementary subgroup © of index 4,
so £> = £>*@. This implies that C$(iQ*) is elementary, so Ca(£>*) = 53,
since S3 = Z(CΦ(£*)). Let 3S = CΛ(Π), so that SB is dihedral of order
8 and S = §3B, $ Π SB = S3. Since SB admits Xx and X : centralizes
S3, it follows that [3B, XJSZ(2β) = ©*'. Choose T 7 G 3 B - S 3 with
T72 = 1. If W induces an inner automorphism of § * , then SB cen-
tralizes £>*, since £>* Π C(W) admits O. But in this case, <S3, Xθ9 Xo

ρ>
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is a normal elementary subgroup of @ of order 16. Hence, W does
not induce an inner automorphism of φ* Let

Since Λ = φ 9t0, it follows that X0e£>0*. Thus, £* is not a quater-
nion group, and £* admits Q. The only possibility is that £>0* is ele-
mentary of order 8. Thus, £>0* <d @> again a contradiction.

It remains to treat the case |Sβ| = 32. We first show that [£>, φ] =
φ*. Suppose false. Set £ ί = <?*($*), £2* = [£?, φ], so that £* Φ 1,
&*£&*. Since [SB, 5β] = 1, 33s£f, IS?: ©I ^ 4, and Z(£?) = S3, it
follows that §* is a quaternion group. If φ = φ2* x £>*, then ΩJJQ) =
£2*' x €>*> so that § has no elementary subgroup of index 8. If
$ Φ φ* x £>*, then £>2*$*c:ξ>, so that £2*φ* is the central product
of 3 quaternion groups, and φ = &*$* x 3> for some subgroup 3 of
33 of order 2. Again, we see that ξ> has no elementary subgroup of
index 8. Thus, Lemma 13.51 (d) yields a contradiction.

Now @ = Λ JVβ(5β), and since £* = [£, φ] = [Λ, φ], we get £*<]@.
Since φ*^β permutes transitively the non central involutions of φ*,
it follows that <£*', Xo> is normal in some S2-subgroup 2* of @, with
ϊ c 2*. Thus, 2* = £* C2*(K0). Thus, [ϊ*, Ϊ J S £*, since [C^(X0), ϊ x s
3e0, due to Ct (Xo) S @σ Thus, 3cx is a central subgroup of 2* of order
2. Hence, 0 admits ί£*. This implies that S* is elementary of order
2δ with b ^ 2, which in turn implies that @ = £*φ. Hence, JO(Ϊ*) S S,
and since D(X*) obviously centralizes 33, we even get />(£*)§£>.

We next show that 33 is weakly closed in φ. For suppose Ye
® - Θ and 33F s φ. Let Λ, Λ, Λ be the involutions of 33F. Thus,
A, = AuAi2, where ^ e £*, Aί2 e C^ίφ*). Since [C^A,), W]s 33F n 33- 1,
we get Ce(Ai) = C (̂33F), i = 1, 2, 3. Since ξ>* is extra special, it fol-
lows that ^*SC@(33F), that is, 33FSCf

a(§*). Since |Cj(φ*)| ^ 16, we
Cz{§*) = 33 x 33F, against Z(Cβ(φ*)) - 33. So 33 is weakly closed in φ.

Let I be a S2-subgroup of @G which contains a S2-subgroup of
Cm(XQ). Thus, 33 s t . If 33S/>(δ), we get 33S^G, since />(S)S §G.
Hence, 33 = 33G, since 33G is weakly closed in $G. This is absurd, so
33 g/)($£). In particular, 33g/)(C5(3£0)). Now Cδ*(3e0) is the direct pro-
duct of <X0> and a dihedral group of order 8. Hence, φ*'SCW-^o)'
This implies that £*' = />(C,(X0)). Let §* - C$(^*) c Ca(X0). Thus,
/){£?)S£*' Hence, βf = 3 x ^2*, where | £ | - 2, 33 = 8 x «*', and
/>(&*) S©*'. Hence, φ = £*£* x 3. Since Z(φ) - 33, £*£* is extra
special of width 2 or 3.

Since £* = [£, 5β], we get [Λ, 5β] - [Λ, O]. Let ^ - JV f̂β), so
that @ = Φ*φ2i. We can thus choose & in 21 such that XL = i ϊ * ^
with H* G φ*. Since Q < JVβ(5β), it follows that both X : and Sx nor-
malize O. Hence, £Γ* e §* Π iV(Q) = φ*'. Hence, Xγ normalizes φ.
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Let $p = Q x Do, where O0 - C,(-Xi) Thus, O0 £ C(Xi) £ 93*, so Qo

centralizes 93G. Hence, XQeC$*(£i0). This is impossible, since the
centralizer in £* of every non identity element of 3̂ is contained in
a quaternion subgroup of φ*. The proof is complete.

LEMMA 13.53. Z e ^?*(®).

Proof. Suppose false, and 2 c 91 e <5^j^(@), 9? c <δ. We assume
without loss of generality that if ££9ΐ o c9ΐ , then 9ΐo£@. Hence,
3i = £Π, where £1 is a g-group for some odd prime q.

By Lemma 13.44, 93£O2(9?) = 9^, say. Since ^ g ϊ g ® , it fol-
lows from Lemma 13.41 that %$N is abelian. Thus, for each G in 9ΐ,
the normal closure of 93? in X is abelian.

By minimality of % %& <\ % and ^D/Sβ^P) is a chief factor
of STC. Suppose §S% By Lemma 13.45(b), we get C(φ) - Z(£) = 5J.
Hence, Z ( ^ ) g S . By Lemma 13.40, 93 is a T.I. set in ©, so that
9ΐ£@. This is not the case, and so §£%. Since £><]£, we get
â JQ = 9^[Q, φ], and since Z)(O) § @, we get [i>(O), φ] S ^ ^ ( Q ) Π § S
9?!. By Lemma 0.8.7, J9(Q)gZ(Q), and so O. is of exponent q.

Since φ Π 3̂ i 3 8̂> and since ξ>/23 is elementary, it follows that
QyiJΌlt = §/§ Π 9ΐi ~ ©/35/Φ Π §i/SS is elementary. Hence, Q contains
a subgroup θ ! of order q such that >̂ normalizes 31^ and >̂ does
not centralize %£!,,/%. Let S = SRΛφ, 8X - O2(S), ̂  = @ Π Sx. Thus,
| £ : φ j = 2, and Dx = <Q>, with Qq - 1.

Let 2S - Ωι{Z(%ύ) < 8. Then 2δ 3 fli(^(3:)), so that SB n 83 =£ 1.
Hence, Qi does not centralize SB. Let SBj. = ^ ( 0 0 . Suppose SBi ^ 1.
Then SBi < 8, and so ^ Π C(§) ^ 1. But Z(£) - 93 - C(φ), against
O ^ Θ . Hence, ^ ( Q J = 1.

Suppose I SB | > 4. Let S2 - S^, S2 - S ^ ^ ^/φ l y so that |S 2 | = 2.
Since 2B is a free jP2S2-module, we get [233 Π C(S2)| ^ 4. Hence, 2S n
C(S2) = fl^SB) and |SB| = 24. By Lemma 13.46, we get 2 S S ^ Thus,
93? S Φ, ^S'3"1 s φ, or equivalently, 930

ρ S φ, 53O S £ ρ . This violates Lemma
13.47. Hence, |Sδ[ = 4,g = 3.

By Lemma 13.47, either 93? g £ or 930g^ρ. Replacing Q by Q"1

if necessary, we may assume that 33?§S£>.
We now let Q play the role of G in Lemma 13.50, and proceed

to verify the hypotheses of that lemma. First, ^1 is of index 2 in
φ, and ΦXSSL Hence, £ ? £ S i S £ . If £ ρ ^ £ , then <g:, §, §«> is a
subgroup of £, against (2U §, iρρ> = 8. Hence, (a) is satisfied. Since
S3gO2(5ft), we get 93ρ S O2(R) S S, so (b) holds. By our construction,
93? n § c 93?. By Lemma 13.46, 2B £ £. Since Cβ(φ) - 93O n 2δ is of
order 2, we get (930 f! 2S) ρ £^, so that (c) holds. By construction,
(d) holds, and we have shown that (e) holds, in the first part of the
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proof. Now we have a contradiction with Lemma 13.52, completing
the proof.

THEOREM 13.4. Hypothesis 13.3 is not satisfied.

Proof. Suppose false. By Lemma 13.53, Ϊ 6 ^ * ( @ ) . Let φ be
the subgroup given in Lemma 13.2. Let $2 — % Π £>, and let φ3 be
a Sj-subgroup of φ, so that £ = $2£3.

Since O8(£) = 1, it follows that Z(£)£Z(O2(£)). Hence, £ 2 con-
tains every element of ^ ( £ ) , so £>2 contains SS0 Let

Thus, 21 <f\ Q, since ξ>2 is a S2-subgroup of JV(S5) for every non identity
normal subgroup S3 of $.

We assume without loss of generality that if & i & c § , then
£oS@. Thus, with & = O2(φ), we get that §&/$&(&) is a chief
factor of £ and /)(£}) = Q n 6 .

Choose G in © such that 23£ = X S φ2, X g φi Let SX be a sub-
group of Q minimal subject to (a) 36 normalizes φiQi, (b) [O^ X] §£ φ l β

Since £ is elementary, Ox is cyclic. Let S = Q&Jί. Let So = O2(S),
Xo = * n so, so that |3Eo| = 2. Let 2) = [fl̂ ZίSo)), OJ. Since A(Z(2:))S
fl!(Z(S0)), it follows that $) Φ 1. We assume without loss of generality
that X = ϊ 0 x &!, 3£ί = <Xi>, and that Xi inverts a generator Q of Ox.
Since Xo centralizes 2), we get [2), XjSXo Hence, |2)| = 4, [2), Xi] =
ϊ 0 . Hence, [So, XJ = 3£0, since 2 0 gC(I 0 )S@ 6 . Thus, Q3 centralizes
2), so Q3 6 &G. Since Xx inverts, Q\ we get Q3 = 1. Hence, [80, OJ =
[Φi, QΊ] = ?)> a four-group.

We now look again at φ. Let Qo = Q- Π Φi[Q-, ϊ j 2 Q i Since Xx

centralizes a subgroup of & of index 2, we get O0 = fdif so Ox is a
direct factor of £}. Thus, fl^ZίD)) is permutable with φ2 and

Hence, Q. is elementary.
Suppose | O | ^ 33. Then Hypothesis 13.1 is satisfied and

^r*(©). Let SK = Jf(D) 3 φ. Thus, ^ 2 is a S2-subgroup of © by
Lemma 13.8(c). Hence, § 2 = £, against ί£e c^

r*(©). Hence, | Q | = 3α,
with α = 1 or 2.

Suppose by way of contradiction that a = 2. Since 2) admits O,
we get iQ = l 0 1 x O 2 , where D2 = Cr

o(Γ)SCr(X0)S@Gί. Hence, D2

stabilizes 9£3 9£03l, so O2 centralizes ϊ . Hence, 3£x g iVa2(Π) = ^0 5

say.
Since &£}/$! is a chief factor of φ, O is an irreducible Sεo-group.

Thus, we can choose T in Xo such that ίDf ^ Π l β In particular,
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Φ1X1/Φ1 is not central in φ2/Φi> so 36 Φ 33O. Since X may be chosen as
any conjugate of 33O which lies in £>2 but not in ξf19 we get 33 0 §£i.
Since a = 2, we have Q = ^ x &f. Let 3S = [§ x, D] = [&, Q J x
[&, Of] = 2) x 2f, of order 24. Thus, T does not normalize ϊ . Let
m, = 2B33 < £ . We argue that 1 ^ : SB| ^ 2. Suppose false. In any
case, SBi is abelian. Since SB,. = 3S x Cβ l(O), it follows that Q cen-
tralizes σ^SBJ = ff1^). Hence, 33 = 33O, so that 3Ώ, = 253 x 33. Let
2B2 = Cβι(£i). Thus, 3S2 = 33 and 3B2 n S3 = 1. We now get SB, = 2) x ψ x
S3 = 2) x 2)Γ x 3B2. Thus, for each V in 33*, we have V = VλV2W with
VΊeD, F 2 G 2 ) T , T7G2B 2 . If VΊ = 1, then Π x centralizes F, against
O Π @ = 1. If 7 2 = 1, then Of centralizes 33, against lQn@ = l .
Hence, ViΦl,i=l, 2. Hence, ^ = 53 x ψ x 2δ2. This is impossible,
since X, centralizes S3 x 2)Γ x 2δ2. Hence, (2^: 2B| ^ 2.

Suppose I SBj.: 2B | = 2. Then SBx = SB x 3 , where 3 = (7^(0) is
of order 2 and is centralized by 2 0 O = N^Ώ). Since SBi = 35593, it
follows that [SBX, φ j - [33, φ j , since 3S = 2) x 2) Γ S Z($0. Thus, [2B,, φ j
is a normal subgroup of £> of order at most 2, so O centralizes [SBi, §i].
Since 2S n C(O) - 1, we get ^ 9 % ) , 3 S ^ ( Φ )

Let 3 - <^> and choose F G 33 - SB. Let So - 3S n 3S = <F0>.
Furthermore, let ?) = <Yi, Γ2> with Γ^1 = Γ2 Thus, 2S - <ΓX> x
<Γ2> x <ΓX

Γ> x <Γa

Γ>. Hence, 3S n C(&) = ^ ^ Γ f Γ f . Since S o is
a normal subgroup of £>2 of order 2, we get Vo = Fi F 2 IT ΪT Now
F = £ ί 7 w i t h We3B. Let W = W,W29 with TFXe2), TF2G2Γ. If
TFί = 1 for i = 1 or i = 2, then Q ί l S ^ l . Hence, TΓ< ̂  1, i = 1, 2.
Since [3c, 33] = 1, by Lemma 13.41, we have [Xu W] = 1. Hence,
Wt = Y,Y2. Since [Ϊ Γ , 33] - 1, we get W2 = YT

XY
T

2. Hence, Z =
33*, against @ ί l Q = l . We conclude that 33SSB.

Again, let 2) = < Yl9 Y2) with Y^ = Y2. Since 33 S 3S n C(X) Π
we get 33S <ΓiΓ2, Ff Γ2

Γ> = 233 n Cβ) f] C(£τ). But then this contain-
ment is an equality, since |33| = 4. Hence, YfYξ e 33. Hence, C(W) S
C(Ff Yί) g @, against ^ S C(2)r), @ Π Ci = 1. Hence, α = 1, S = φ,
0 = 0,.

Suppose 33SΦi Then by Lemma 13.41, we get 33 <\ & Π C(ΐ) =
C9ι(£i) x 3£0. Hence, 33 n C9ι(&) Φ 1, against Q g @ . Since 33g^ 1 ? we
may assume that 33 = X. Choose Ue N%($2) — φ 2, with U2 G φ a . Then
U normalizes 33O and also normalizes C 2̂(330) = Cϋι(£ι) x 3S0. If Cβl(SS0)
is not elementary, then N(D(C9ι(%$))) 2 <U, φ>, against the maximality
of §2 Hence, Cβl(Q) is elementary and so is central in φ 2 . If
|C^(£i)| ^ 4, then C(U) Π Cϋl(Q) Φ 1, and if Ae C(U) n ^ ( Π ) * , then
C(A) 2 < J7, φ>. This is impossible, by maximality of φ 2, so | ̂ ( C l ) | ^ 2.
If C$1(G) = 1, then £>2 is dihedral of order 8, against 2 G 7Γ4, and Lemma
13.2(d)(i) Hence, |C^(Q.)| = 2. In this case, ξ>2 has precisely 2 ele-
mentary subgroups of order 8, namely, φi and C$2(3S0). Since U nor-



568 JOHN G. THOMPSON

malizes C$2(9S0), U also normalizes φ l β This contradiction completes
the proof of the theorem.

HYPOTHESIS 13.4.

(a) @ e ^ ^ ( @ ) .
(b) Or(β) = l.
( c ) Every normal abelian subgroup of @ is cyclic.
(d) φ = O2(@) has a characteristic abelian subgroup 3 of order 8.
Lemmas 13.54 through 13.57 are proved under Hypothesis 13.4.

% denotes a S2-subgroup of @. We observe that if (a), (b), (c) of
Hypothesis 13.4 hold, then Ω ,&{%)) = Ω,{Z{02{&))), so that % is a S2-
subgroup of © and N(X) S @.

LEMMA 13.54. Q is a cyclic weakly closed subgroup of @.

Proof. By Hypothesis 13.4 (c), £ is of symplectic type, so 3 = (%}
is cyclic. Suppose G e © - © and 3G = X = <X> £ @, where X = ZG.
Let 2) - £ Π 3L If |2)| > 2, then ft©) - ft (/>©)) S ft (/>($)) = <^4>,
so X4 = Z4,Ge @. Hence, |2)| ̂  2.

Let § = $oΦi> where § 0 is either cyclic or of maximal class and
$i is extra special, and [φ0, Φi[ = l Let £ 2 be the unique normal
subgroup of §o of order 4, and let $ = ^ ^ c h a r £ . Let 5£0 = C^(X2),
so that β o c ^ . The containment is proper since C@($) = C§($), this
equality holding since every chief factor of @ between § and $ is
central. Let φ/Λo be a chief factor of M with ^ g f i .

Suppose X4 centralizes β l β Then [^, I ] g X Π ̂ S<X 4 >, so that
9£ stabilizes ^ D ^ n <Z4> 2 1 . This implies that X2 centralizes Λx,
against our construction. Hence, X acts faithfully on $ l β Choose
Ke®,- BQ. Let X^iΓX - KKQ, where ίΓo e $0 Let X^iΓoX - iΓo^.
Thus, X-2KX2 = KKoKoK, = KKIKX. Since Koe C(X2)SiV(3£), we get
ίΓiG <X4>. If ifi = 1, then X4 centralizes if, so centralizes J8lβ This
is not the case, so Kx = X4. Since D(ίϊ) = β ^ © ) ) , we get if0

2e
fl!(Z(@)). Hence, X4iίX4 = X~2KKξX'X2 = KK0

2X4K^X4 = K, against
36 Π C($i) = 1. This contradiction completes the proof.

LEMMA 13.55. (Z2} = Qo is weakly in @.

Proof. Suppose G e ® - @ and Γ^ e @, where Γ = Z2. Since
Aut(S) is elementary, Y2 centralizes Q. Hence, &S-C(Y2) = &σ.
Hence, 3 = 3G, since 3G is weakly closed in @σ. This yields G e @.
The proof is complete.

Let Γ = Z 2 ,1 = Y2 = Z4.

LEMMA 13.56. </> is weakly closed in Cβ(F).
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Proof. Suppose G e © - @ and Γ = Je Ce(Y). Then Ye C(J) =
&G. Since (YG) is weakly closed in @G, we get <Γ> = (YG}, Ge@.
The proof is complete.

LEMMA 13.57. // J is an involution of C@CS), then C(J)£@.

Proof. Suppose false. Let

Thus, C(J) e Λr, by Lemma 13.1. Choose 9ϊe Λ~ such that |5β n @|2
is maximal. Let 2* be a S2-subgroup of 9ΐ Π @ Thus, 3 i ^ * Let
8 = iV(S*). By Lemma 13.1, O2,(£) = 1. If 2* is not a S2-subgroup
of 5R, then Sg@, so that S e ^ 1 , |8 Π @|2 > |S n 9t|2. This violates
the choice of 91, so £* is a S2-subgroup of ϋft. Since 2) = (Z2) is
weakly closed in @, we have DgO2(?l). Hence, O2(5K) Π 2) = <I>.
But O 2(3i)gϊ*g@, so [O2(5R), 3]SOa(SR) n S 9 < / ) This implies that
Z2 centralizes O2(K), so Z2 = Ye O2($l). This contradiction completes
the proof.

THEOREM 13.5. Hypothesis 13.4 is not satisfied.

Proof. Suppose false. By a basic result of Glauberman [16],
there is G in ® - @ such that IG = JeX. Let © - C%(J). Thus, ©
normalizes 3 and 3G. Let @0 = Ce(Z), ©! = C9(Y°). Suppose @0 Π ©i Φ 1.
Choose EeEoΠEf. By Lemma 13.56, C(J?)S@ Hence, Γ^G®.
Since <Y> is weakly closed in @, we get <FG> = <F>, I = /G. Hence,
©0 Π ©i - 1. Since />(©) S@o Π ®i, we get that />(©) = 1. Since

|Aut(3)| = 4 , | A u t « Γ » | = 2 ,

we get I©I ̂  8. Since 2eπ4, we conclude that |G?| = 8.
Let φ* = Cι(Z). Thus, | $ * Π C(J) \ = 2, since §* Π C(J) is faith-

fully represented on (YG). Hence, φ*<J> is of maximal class. Thus,
§* is either of maximal class or is cyclic. Since ZeZ(§*), we get
that £>* is cyclic. This is not the case, since the width of ξ> is at
least 1. The proof is complete.

HYPOTHESIS 13.5.

(a) @ e ^ ^ ( © ) .
(b) Oa,(@) = l.
(c) Every normal abelian subgroup of @ is cyclic.
(d) φ = O2(@) contains a characteristic subgroup 3 of order 4.

Lemmas 13.58 through 13.60 are proved under Hypothesis 13.5. Set
3 = (Z), I = Z2, 3o = <I>. Let X be a S2-subgroup of @. Let w be



570 JOHN G. THOMPSON

the width of § . Thus, § is the central product of Q and an extra
special group of width wf by Theorem 13.5. Since 2 e π4, we have
w ^ 2, so that m(φ) = 2w + 1 ^ 5.

LEMMA 13.58. // Qt is a subgroup of Q of index 2 which con-
tains 3, then for each G e © — @, £>? g @.

Proo/. Suppose false. Let £ = £G, ^ = φf, X = £*, J = IG = χ\
3E = <X>.

Case 1. / g φ

Since 15B: 5ϊr | = 2, φ contains an extra special subgroup 5?0 of width
w — 1. Thus, J8o Π φ = 1, since J is the only minimal normal sub-
group of Λo. Let 8 = O2f2,(@), £* = [#, 8]. Thus, £* is extra special
of width w* ^ w. By Lemma 5.13, we get w ^ 2. Hence, w = 2,
since 2 6 π4. However, ^ 0 ^ is the central product of $ 0 and 36 and
$0X is faithfully represented on 8/φ. Let S = ίQ20, where So is a
S2,-subgroup of S. Thus, So is faithfully represented on φ*, an extra
special group of width 2. Thus, |S 0 | = 3, 5 or 9. This is impossible,
as &0% is isomorphic to a subgroup of Aut (So).

Case 2. Je φ.

Let φo = Cβ(J), so that | φ : φ o | = 2. Let © = % f] φ . Then
S <J> Π <I> = 1. Thus, I® I ̂  2W+1, since 2W+1 is an upper bound

for the order of every elementary subgroup of φ Let |@| = 2β. Since
^/<J> is elementary, so is Sljfi. Thus, ^/@ is elementary of order
22w+1~e. Now Λi/g ~ Λ^/φ = « l f and ftx is represented faithfully on
Q =z O2,2/(@)/φ. Set / = 2w + 1 — e. Thus, β contains a subgroup
33 = S5i x ••• x 93/, such that l ^ l = p< is a prime, 83< admits ^ x ,
1 ^ i 5*/, a n d C5i(a3) = 1, and where we have chosen S3 as an abelian
subgroup of 02f2,(@) of odd order, such that » =

Let F - £/$', so that F is elementary of order 2 l w + 1. Let V =
Vo x Vl9 where Fo - CΓ(SB), V, = [V, S3]. Thus, 3 / $ ' S Fo, so | F, | - 2α

with α ^ 2w.
Since β ^ w + 1, we get f^w. Let SX0 = <̂ 8, Φ, ̂ i>, and let

31 r= ̂ ( v y . Thus, 31 = SLi x x 31/, where 31* is dihedral of order
2pi9 and we choose notation so that % is the image of (%$if Ki9 ξ>}
in 3£, where Kt e Λlβ Let FΊ = l^Ί Z) TF2 3 =) TFS+1 = 1 be a com-
position series for Vx as 2C-group. Let TFί = Wi/Wi+1, i — 1, 2, , s,
and let 31* = C%(Wι). Since 3l[, , 31/ exhaust all the minimal normal
subgroups of 3t, we get that 31* = 3tJ(i, for some subset J(ί) of {1, , /},
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and where we define 'tΆj = (%\jeJ) for all J £ { 1 , •••,/}. Thus,
each Wi is a free i ^ - m o d u l e , where 5£* is a S2-subgroup of 21/21*.
Hence, \W*\^ 2 l β ί | for all i, so that | Wλ\ ^ 2*, where fc = Σ u l ^ l
Since | ^ | ^ 2 for each i, it follows that if |®*| = 2% then | β * | ^ 26,.
Hence, 2w ^ A; ̂ > 2 Σ &*• Since Σ δ< ̂  / ^ w, we conclude that A; =
2w, 2bi — | $ * | for all i. Hence, bi = 1 or 2 for each i This implies
that S3 is a 3, 5-group, and that for each ί, a S3)5-subgroup of 21/21*
is of order 3 or 15.

We can do a little better, however. Namely, 21 is not represented
faithfully on any proper submodule of V19 as the inequalities show.
Let 21(2) be the S3,5-subgroup of a n C(W2), so that 21(2) Φ 1. Let
33(2) be the preimage of 21(2) in 33. Then set V, = #*/£ ' . Hence,
$5* = C,*(S3(2))[£*, 33(2)], W2 = C^(S3(2))/φ' and [$*, 83(2)]/$' is a com-
plement W1 to TF2 in V; = WL Hence, WΊ = Wι x W2 as 2X-module.
Repeating this argument suitably often implies that Vλ = W1 x W2 x
•••x Ws, £>* = $*••• £>s*, where each £>* is extra special, admits
$53$!, and W* = $?/$' is an irreducible 2X-module. Since | W*\ ^ 24,
it follows that Aut ($?) does not have a subgroup of order 15. Hence,
33 is a 3-group, and φf is the central product of δ4 quaternion groups,
1 ^ i ^ s. By the inequalities, we get 3 — C$@8), so that

Case 2a. ^ ^ 3.

Since f — w and 33 is elementary of order 3™, we get e(3) Ξ> 3.
Hence, j^(3)S^>^*(©) and so @ = Jf(33). Also, since e = w? + 1,
@ = ^ Π $ is an elementary subgroup of £> such that 3® e S^C^^V{^).
Suppose ί G ( S - </> and C9(E) is non cyclic. Let % = <£?, />. Thus,

is non cyclic for each Fe%\ Since J ^ ( 3 ) £ ~ ^ * ( @ ) , we get
g @ for all F e f f . By Case 1 applied to @G, we get Ie®G.

Hence, g ^ φ G , and so %G = <^G Π C(i^) |jPe §*> S@. Hence, $ $ β is
a 2-subgroup of @ whose center is contained in 3 Π &G = 1. This is
impossible, so no such £7 exists.

Again, since / = w, it follows that φ is the central product of
3 with quaternion groups £ll9 •• , £ \ ; such that each Q 4 admits 33.
Let e 4 - 33 Π C(D,), so that j 33: (£* | = 3, 1 ^ i ^ w. For each subset
J of {1, « ,w}, let £ϊj = <3, Π<| ie J">. As J ranges over all the
subsets of {1, •••, w}, the groups Ώj range over all the subgroups of
φ which contain 3 ^^d admit S3.

Suppose i, j e {1, , w}, i ^ i Let J ' = {i, i}, J = {1, , w} - Jr.
Then @ Π £lj = </), as we have shown, since

n e*
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is non cyclic and centralizes Oj. Thus, for each Ee&, E —
E(J)E(J'), where E(J) e SdJf E{J') e £ U and E(J')e& if and only if
Ee </>. Thus, the map φ: Ev-* E(J')g> is a homomorphism of © into
£ W 3 with ker <p = <I>. Since |£V: Q\ = 24, we get |@| ^ 25. Since
|@I = 2W+1, we have w = 3 or 4.

We next show that &G Π 33 = 1. Namely,

Since Rλ has no non trivial fixed points on $33/φ, by construction,
we get @G Π 33 = 1. We may rewrite this equation in the equivalent
form C8(e7) = 1. Hence, we have J = ZaQ1Q2 Qw, where Qi e D< —

Now S = 33£>/ξ> = K x S , where X— ξ>X inverts (£ and centralizes
®. Suppose | & | ;> 9. Let K be a subgroup of 33 incident with (L
Thus, X normalizes [£>, ©] = |>, and 3|> = QJ for some J. Since
| $ : & | = 2, ( ^ = C,(/)) we get | φ C,(X)[^ 4. Since [φ, q/φ ' is a
free F2<X>/<J>-module, it follows that |K| = 9, and that |> is the
central product of two quaternion groups. Since w ^ 3, J$ [§,£].
Hence, [X, Cj(J)]Sφ Π (J) = 1> so that X centralizes a subgroup of
|> of index 2. This is not the case, so |(£| ^ 3.

Since w = f ^ 3, we get |SD| ^ 9. Let ® be a subgroup of 33
incident with ©. Thus, <X, ^> < <X, ©, ®>. Hence, />«X, $ » =
<X2, φ', [φ, X]> is normalized by 3). Since [®L, X]S<^Γ2> = </>, it
follows that |/>«X, φ » | ^ 8. Hence, S) Π C(J) ^ 1, against 33 n & = 1.
This contradiction shows that this case does not occur.

Case 26. w ^ 2.

Here we get w — 2, since 2G 7Γ4. Hence, |@| = 23, where, as above,
© = φ fϊ Λi.

Let β = iV6(S3). Since ^'-subgroups of Aut ($*) are of order 9,
it follows that S3 is a Sr-subgroup of S. This implies that @ = φβ,
since Aut (§) has no elements of order 15, and by hypothesis, @ is
solvable. Thus, ξ>* <1 @. Since ^* has exactly 2 quaternion subgroups,
it follows that X/Q is isomorphic to a subgroup of a dihedral group
of order 8. Since Bffi/Q ~ StJQg is a four-group, %/Q is dihedral of
order 4 or 8.

Choose generators Blf B2 for 33 such that C^(Bi) = ίQ< is a quater-
nion group, i — 1, 2. Suppose J e g C ^ Then 5< centralizes J", so
Bi e &G. Hence, [Sil9 B{] S §G

9 against the fact that ^ has no non
trivial fixed points on £33/£. Hence, J g ££>! U 3Q2 Let J = ZΉJSi,
where flieD4. Thus, fli and iϊ2 are both of order 4, so ί̂ f̂  is an
involution. Hence, Zae(I), and replacing i2i by ^"fli, we get that
J - flifl, with HtβQt- <J>.
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Since ί£i£>/£> is a four-group, ^ contains an element KL such that
K1 inverts ξ>33/£>. The coset Gri^ is uniquely determined by this con-
dition, since iΓx lies in a uniquely determined coset of ξ> in ξ ) ^ . Since
Kγ inverts %>Biy i — 1, 2, it follows that Kί normalizes D,i9 i = 1, 2.
We can therefore choose Li e Q^ such that (Li9 Lf1} = 0$. Since
D(^) = <J>, we get Kle <J>.

Let F = i? c. We will show that @ F = GΓULΊ. Suppose false. In
this case, Y does not invert ξ>33/£>. First, suppose Y normalizes O x.
Since Ox and O 2 are the only quaternion subgroups of £>*, F normal-
izes G2. If Y induces an inner automorphism of £ίi9 then J = Y2

centralizes O ί β This is not the case, so Y induces outer automor-
phisms of both Oi and D 2 . Hence, YKλ induces an inner automorphism
of Oi and of Q2, so FiΓx induces an inner automorphism of ξ>*, so
YΈΓi G φ, which gives YKγ G @. We may therefore assume that Y
does not normalize O l β Let Ox = <ί?Ίi, ί̂ i2>> s-nd set £Γ2i — Jϊί>, i =
1, 2, so that D 2 = <f?"21, ίί22>. Thus, H£ = H? = Hfim We assume
notation is chosen so that Hι — Hn, recalling that J — Ή.JI2 with
Hte&t- </>. Hence, H2 = Hi1, and H2\ = H( = JE?i, while Hξ2 =
Hi = Hή1. Since #12if22 e C(J), we get [H12H22, Y] e <J>, as <F><] @ff.
But H2tH^ιY-ιHl2H22Y = / e < J > . We conclude that @Γ=@ίΓ1, so
that Γ inverts φ35/Φ

Since F inverts §S3/̂ >, it follows that F normalizes D x and O 2

and F induces an outer automorphism of each. Hence, we can choose
generators Hiu Hi2 of O, such that H[L = Hi2, ί = 1, 2. Hence,

an abelian group of type (2,4). Since [$L, F ] ^ < / > , it follows that
C r ( F ) = (HnH12, H2lH22}. Since F centralizes (5, we conclude that
@ξδ€>* Since HnH21e^19 we get

[Hnff21, Y] = J = H2~
ιH^ιY 1H11H21Y = H2~

1HnιHί2H22 = HnH12H2lH22 ?

an important equality.

Since C9(Y) = (Z, HnHl2, H2lH22), and since </, J> c @, we get
that E = ZHnH12e®. Choose KG®, - e<y>. Then iΓ does not cen-
tralize E, since Z{Rλ) = <Γ, J>. Hence, [#, i ί ] = J, and so Of = Q2.
Also, however, we conclude that && normalizes © and permutes
© — </, J> transitively.

Let © - <Cβ(J&), 5,, 7 ) g C s ( ί ) . Now Q ( ^ ) = <£;> x ^ w h e r e
^ is the central product of 3 &n(l £X We can choose Heξ> such
that J Ϊ F inverts 5 l f since Γ inverts <^, J5i>/φ. Hence, {HYf e § Π
C(J50 = <^> x <Z>. Let H= EaZbH2\H2%, so that

(HYY = HJY~lHY = HJΈaZhH2\Ή2ι

d =
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Hence, c + d is odd, which implies that (HY)4 = 7. Hence, I is a
fourth-power in CJJS). Let £ be a S2-subgroup of C^{E). We argue
that <7> = ΰ2(%). Namely, Ce(E) does not contain a S3-subgroup of
@, since 3 = C9(β). Hence, (J^) is a S3-subgroup of Cβ(#). This
implies that £ / § ί l t ^ £#/£ normalizes <φ, B^/φ. So S/S Π £ is
elementary, from which we get ΰι(%)£$, ΰ\T)<S-ϋ\§) = <7>, as
required. Since <7) = &"2(S£), we get that £ is a S2-subgroup of
C{E) = £, say. Hence, <7>e is elementary, since JeZ(O2(K)). Since
4̂©(@) permutes transitively Gc — <7, J>, it follows that for each F e

© - <Z, J>, <7>C(^ is elementary.
We now exploit the symmetry between @ and @G. Namely,

& = C%(J) = @G Π © is of index 2 in $ and & n ®G = ®, ̂ *G Π & -
<7, J>. By all the above applied with the pair (φx, @

σ) in the role
of the pair (^, @), we get that (J)ciF} is elementary for all .FeGc —
</, />. This is not the case, since D 2 g <JY{E). The proof is complete.

LEMMA 13.59. <7> is weakly closed in φ.

Proo/. Suppose G G ( S - @ and J = IGe%. Let ^ = Cθ(J) so
that | £ : & | = 2, ^g@ G . By Lemma 13.58, we get G-16@. This is
not the case, since G e © — @.

LEMMA 13.60. Se^r*(@).

Proof. Suppose false and ϊi is minimal subject to

Thus, as usual, 9i = £O, where O is a g-group for some odd prime
q. Let ?io = O2(5R). We argue that B^9^o Suppose false. Then
3 Π 9ΐ0 = <7> = Z{%) and %Z is central in 2/9ϊ0. By minimality of
3?, 9ZoQ/3U>(D) is a chief factor of % and Z)(Q) = On@. Thus, Z
inverts %&/%D(£i) and Z centralizes ίflJOiΣX)/^. Since

we get that |JQ| = 3, £ = %3, % = %tQ(&) x [%, OJ, and [Ko, O] is a
fourgroup. Hence, Z(S£) is non cyclic. As this statement is false, we
conclude that 3 S ^ Let & - § n J ί o 2 3 , so that £/&> - Φ^o/^o
is elementary. If § = φ0, then Z(9lo) S Z(@) = 3, so that 5ft g@,
against our choice of ϋft. Hence, ξ>0 c φ, and we can choose a sub-
group O0 of £} such that (a) |Q 0 | = Q9 (b) >̂ normalizes %€ι0, (c) §
does not centralize %O,0/%- Let 8 = %£ιQ®, S, = Oa(S), ©! = St n φ,
so that | ^ : φ i | = 2. Clearly O0g@, since [Ωo, Φ] is not a 2-group.
Let Do = <Q>. Then φ f s S ^ S : , so by Lemma 13.58, Qe@. This
contradiction completes the proof.
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THEOREM 13.6. Hypothesis 13.5 is not satisfied.

Proof. Suppose false. By Lemma 13.60, £ e ^ * ( © ) . Let £ be
the subgroup given in Lemma 13.2. Let φ 2 = φ ΓΊ £. Thus Z(%) £
Z(O2(£))f so that 3£€>2 Let S3 = F(cclΘ(3); £ 2). By maximality of
£>2, we get 93 <fl φ. Hence, there is G in © such that 36 = 3 ^ § £>2,
£ g O 2 ( £ ) .

We assume without loss of generality that if ^ S ί & j C i φ , then
£>3S@. Thus, £ = £ 2 D, £1 is a 3-group, @ Π Q = />(&), and if £ 0 =
O2(£), then φoCl/φoZ^εi) is a chief factor of £ .

Let 36 = <X>, and let Do be a subgroup of Q minimal subject to
(a) Gog/)(£}), (b) 36 normalizes ξ>0£}o> (c) X does not centralize $0£ιQ/£ι0.
Let 8 = £o&o£, Si = O2(S) and let 3BX - Ω1(Z(21))^Ω1(Z(Z)). Thus, O0

does not centralize 2Ble Let 2B be a minimal normal subgroup of S
which is not centralized by O0. Since S^o/S^Do) ^s a cbief factor
of 8, it follows that Cβo(2B) S/>(O0). We argue that X2 e 8 l β Suppose
false. Then the minimal polynomial of X on 2© is a multiple of
(α - I)3. Hence, X does not centralize 2B Π C(X2). But

[x, 2s n C(X2)] s <x2>,

so X 2 e 2 δ S 8 i . Hence, X2e2ly so O0 is cyclic. Since X2eC(2B), we
get [SB, X] - <X2>, so that |2B| - 4, ΰ ( Q 0 ) S C ( Γ ) . Hence, X cen-
tralizes Z>(A), and Xinverts S ^ C ^ / S ^ so | D 0 | - 3. Since X 2 G Z(SX),
we get [Sx, X] = <X2>. Hence, 8X = CSl(D0) x SB.

Since X is not of maximal class, Cfil(Q0) ^ l Suppose 3 S $o
Then since Do centralizes ff^SO, we get D o g C ( / ) = @. Hence, 3 € ^o.
and we may assume that 3 — #• Hence, O0 = O, ξ> = φ2Q , €>2 =
^0<^>. Let O2(@) n £o = a, and let L be an involution in Z(φ). Thus,
§ 2 is a S2-subgroup of C(L), so C(L) n O2(@) S $ 2. Hence, O2(@) Π Φo =)
</>. Suppose O2(@) Π Cβ0(Π) ^ 1. Then O2(@) Π C J D ) Π Z(φ) contains
an involution Lo. Hence, C(L0) Π O2(@) £ § 2 Hence, O2(@) Π C(L0) is
abelian, since

o2(@) n c(L 0) - (O2(@) n c(L0) n ^ 0 )<^> and o2(@) n c(L 0) n ̂ 0

is elementary. This is not the case, since the width of O2(@) is at
least 2. Hence, O2(@) Π CJJQ) = 1. Let U = IQ e Z(©0). Thus,
O2(@) Π C(ί7)S JV(8B), so that O2(@) n C(C/)G§2 and Z ^ Oa(@) Π C(U),
since [U, Z] = Z2 = I. Since O2(@) Π C 0̂(D) = 1, and since O2(@) Π
C(ί7) S §o, it follows that O2(φ) Π C(ί7) is a four-group. But m(O2(@)) ^
5, so |O2(@) n C(Z7)| ^ 8 . This contradiction completes the proof.

HYPOTHESIS 13.6.

( a ) 8 G ^ / y ( @ ) .
( b) O2/(@) = 1, and every normal abelian subgroup of @ is cyclic.
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(c ) O2(@) is extra special.
Lemmas 13.61 through 13.69 are proved under Hypothesis 13.6.

Let § = Oa(@), let w be the width of φ, and let % be a £2-subgroup
of @. Let Q' = </> = Z(φ). These equations show that # ( £ ) £ © ,
so that % is a S2-subgroup of ©. Let $ be the set of non central
involutions of φ Since 2 6 τr4, we have w Ξ> 2.

LEMMA 13.61. // X e ^ αrcd & = C9(X), then C(&) = Z(&) =

Proof. Since /e &, we have C(φi) = Cβ(φi), so it suffices to show
that C@(^i) § Q. Now φi = <X> x φ2, where £ 2 is extra special, and
Cϋ(%>2) = φ8, where φ3 is dihedral of order 8.

Choose Ce C(&). Then C stabilizes φ Z) § ! 3 1 , so C is a 2-element.
Also, C normalizes Ca(^2) = ξ>3 and C centralizes the four-subgroup
</, X} of φ8. Hence, C induces an inner automorphism of φ3, so C
induces an inner automorphism of φ. Since Cβ(φ) = </>, we have
Ce®.

LEMMA 13.62. If ®1 is any subgroup of index 2 in $, then ®1

contains every involution of C(©x), and C{®^) is a 2-group.

Proof. Since § is extra special, | Z^) \ — 4. If Z{$&ύ is a four-
group, we are done by Lemma 13.61, so suppose Z(φx) is cyclic. Let
X be an involution of C{^x). Then I e @ , and & = ZίΦO&β, where
φ2 is extra special, and X normalizes C$(φ2) = φ8. If φ3 is a quater-
nion group, then X induces an inner automorphism of φ3, so that X
induces an inner automorphism of $ and we are done. We may as-
sume that φ3 is dihedral and that X induces an outer automorphism
of φ8. Hence, X&Q, so by Lemma 5.36, X inverts an element Q
of @ of odd prime order. Let O = <Q>. Since X centralizes φ l f and
|φ: φil = 2, we get | O | = 3, and [ξ>, Ώ] = Q is a quaternion group.
Thus, X induces an outer automorphism of |>, against |©:φi | = 2.
The proof is complete.

The next lemma is somewhat elaborate, and is the nub of the
matter.

LEMMA 13.63. Suppose Xe^,^ί = C^(X) and Ge® - @. Then

Proof. Suppose false. Let Bx = φ? S @ We assume without loss
of generality that fligϊ. By Lemma 13.61, C ^ ) = <X, />. Set
J = IG, so that C(ftO = <XG, J>. Since Je Z(@), we get Ie <XG, J).
Hence, φ = <J> x Λ2, where ^ 2 is extra special of width w — 1.
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Suppose § n S i - </>. Then § n ^ 2 = l. By Lemma 5.12, w = 2.
Since $2 is represented faithfully on O2,2 (@)/ ,̂ it follows that A®(!Q)

contains a S2-subgroup of Aut(φ). It follows that % does not nor-
malize any elementary subgroup of (Q of order 8. On the other hand,
2 e τr4, so £ contains a normal elementary g °f order 8. Let g0 =
g Π £. If go = </>, then g stabilizes § D < 7 ) D 1. This is not the
case since @/φ is represented faithfully on φ/Φ' Hence, g0 is a four-
group. Choose F e g — g0. If i*7 normalizes each of the two quater-
nion subgroups of φ, then since [F, $] Sg 0 , F induces inner automor-
phisms of each, so F induces an inner automorphism of φ. This is
not the case, since FίQ. Hence, g interchanges the 2 quaternion
subgroups of φ. This implies that |[£>, F]\ = 8, against [§, jP]gg 0 .
This contradiction completes a proof that ^ Π ^ D </>.

Since </> is the only minimal normal subgroup of $2, and since
1 c ®2 Π φ < β2, we get J e φ.

Set © = Si Π φ 2 </, J>. Since ^/<J> is elementary, SIJ1S is also
elementary. Let |(g| = 2% | ^ : (g| - 2Λ Since /)(©) S <J> Π <J> = 1,
@ and /̂Gf are both elementary. Since | !QG: ̂ 1 = 2, we have e +f= 2w.

Let Qί = Sf(@) be the set of all non central involutions £ of φ
which are fused to I in ©. Thus, J e $ . Suppose Tie 3ί, Λ = /F,
Γ G ® . Then C{IX) - @F and | § : C^{Iι)\ = 2. By the preceding argu-
ment we get Ie$γ, so that / G $ F . This implies that (7^(7) §@,
and |^)F: C9Y(I)\ = 2. Let ^ be the set of all ordered pairs (A, J5),
^ 4 ^ 5 ^ / , such that A e £$(C(B)). By what we have just shown, &
is symmetric. This symmetry is quite exploitable.

We now study ^ in greater detail.
Let 35 = Si x x 33/ be a subgroup of F(& mod φ) such that

(a) ISJ = ^ , an odd prime, (b) £33; admits St19 (c) C%(£33/£) = @.
The existence of 33 is guaranteed by Lemma 5.34. For each subset
SI of @, let % = a § / ^ . Let S5 be the subgroup of ^ containing ©
such that Si = C^SSi), 1 ^ i ^ / , so that | ί ϊ 1 :S ί | = 2. Let S* =
ΠίV* Si, and let S)< = <8% 33̂ , φ> Then ®̂  is dihedral of order 2pi9 and
if we set S = ^&St19 then S = 3^ x x ©/. Let V = φ/φ' so that
F is a faithful i^2S-module. This notation will be preserved throughout
the remainder of this lemma.

Case 1. β = w( — / ) .

By Lemma 5.14, p{ = 3 for all i

Since 33 is elementary of order 3W and 33 is represented faithfully
on φ, it follows that Q is the central product of quaternion groups
&i, ' ', ^w> each of which admits 33.
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Case la. w ^ 3.

Here we have e(3) ^ 3, so j ^ ( 3 ) £ ^ * ( ® ) . By Theorem 13.1, Sr

subgroups of @ Π ©^ are of order 1 or 3. Suppose &G Π S3 Φ 1. Choose
5 e @ G n S3*. Since S3 e J^(3), we get C(5) £ @ . Hence, Cβc(#) £@,
so S3-subgroups of @ n @G are non cyclic. We conclude that & Π S3 = 1.
Let J = & ••• Q^jQieQί Since f l i^ Cvi&s) ί s °f order 3 for each i,
we get that C^eG; — </>, all i Since J is an involution, w is even,
so w ^ 4.

Suppose J57G Gr — </>, and Ee^ Qw_2. Since C^Dx £iw_2) e
j ^ ( 3 ) , we get C(E)Q&,C(EI)Q&. In particular,

$* - <<>(#), <V(#I), C,σ(/)> £ @ -

Hence, § φ^7 is a 2-subgroup of @ whose center is contained in </> Π
</> = 1. This is impossible, so Ef lQi ^ - 2 = <-O For each ^
in ®, let £7 - ^ Ί ^ , ^ e O i Ow__2, ί72 e Q W _ A The map <?: g ->
&w-i&wKI), given by ^(-S) = <^> E2 is a homorphism with k e r φ =
<J>. Hence, |@: <I> | g 24, so that w — 1 ^ 4, w ^ 5. As w is even,
we have w = 4.

The preceding argument yields that @ Π Q^Oy = <J> for all i, y.
Since 33 acts faithfully on ^ and does not act faithfully on any proper
subgroup of φ, {Qi, D2, O3, D4} is the set of all quaternion subgroups
of φ which admit S3. Hence, iV£(33) permutes {DL, Q2, D3, O4}. Since
S = § JVS(S3), ^i permutes {£Xl9 Q2, O3, O4}. We can choose Ke^ such
that i£ inverts S3. Hence, K normalizes each d i y and i ί induces outer
automorphisms of each Q ί # We can choose generators Q i l? Qί2 of Q,
such that Qζ = Qί2. Let £1^ = (QnQizϊ Since iΓ centralizes / =
Qi Qw, we have Qx Qw = J = Qf Qξ, so that Q̂  e Cl̂ , all i.
Hence, J centralizes Q = QnQ2i> since J does not centralize either Qn

or Q21. Hence, Q e &, so that [Q, K] £ φ σ Π © - @. But

[Q, IΠ = QΪΪQTΪKQKQKK = Q^Q^QuQ^e (® - </» n Q A .

This contradiction shows that this case does not arise.

Case lb . w rg 2.

Here we get w = 2, as 2 € ττ4. Since / — 2, a S2 -subgroup S3 of
S is elementary of order 9, and $S3 permutes $ transitively. First,
suppose that for some A e © — @, ίgA Π φ = S is elementary of order
8. Since £> has just 6 elementary subgroups of order 8, S3 contains
a subgroup S30 of order 3 which normalizes g. Hence, A®(%) contains
the stability groups of % 3 </> z> 1 and % Z) <I^> 3 1 and contains
^s(S) ^ l Hence, A&(%) is non solvable. We may therefore assume
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that whenever IA — i Ί e , ^ © ) , then !ξ)Λ f] $ is a four-group.
Suppose ^23^! c @. In this case, %/$ is dihedral of order 8, and

it follows as in a previous argument that S^^^Λ^^) — 0 . Hence,
@ = £ 3 3 ^ is of order 27.32. Since φ = </> x S2, where S2 is dihedral
of order 8, we can choose non commuting involutions A , A of $)2.
Let Q !, d 2 be the quaternion subgroups of £>. Suppose D x <] @. Let
Bi be an element of @ of order 3 which is inverted by A , i = 1, 2.
If A and A both induce outer automorphisms of S^ and £}2, then
A A induces an inner automorphism of $, against A A ί Φ Hence,
we may assume that A induces an inner automorphism of Ox and an
outer automorphism of £}2. Choose generators Qn, Qz2 of D* such that
Qn2 = Q12, Qiϊ1 - <222. Now / = &&, with Q,eQ, - </>. Since A
inverts Q21Q22, A inverts ζ>2, so A inverts QL Since A induces an
inner automorphism of D 1 ? we get Q?;1 = Qf?, ĉ  = ± 1, i — 1, 2. Since
Qt is a generator for <QnQ12>, we get Q%Qdj = Q^Qΰ1 = QHQΓ/ Hence,
dyd^— — 1 . Thus, we can choose ie { l , 2} such that Q?i

1=Qϊiί. Let
g = <(A, /, J) S ^^ Then QH normalizes fj and does not centralize /.
Let SX — A9(j§). Thus, SX does not centralize J . Since 4̂@G(g) permutes
transitively % — </>, it follows that §1 permutes §* transitively.
Hence, St is non solvable. We conclude that Πj. <! @.

We may assume notation is chosen so that A interchanges O :

and D 2 . Let Q, - <QU, Q12> and set Q2ί = Q?*9 F, - Q14Q2i, i = 1, 2.
Then set % = <A, -ϊ̂ i, ̂ 2, ^>J an elementary group of order 16. Let
5ΐ = AM, SI* - Ae(%). Let go = <^, F2, I). We argue that g - C6(g0).
In any case, C8(g0) is a 2-group, and Ce(g0) = So Since ^ x contains
an element if which induces an outer automorphism of both Qx and
G2, it follows that C^(K) is contained in an abelian group of typs
(2, 4). This implies that no element of ίgK centralizes any elementary
subgroup of φ of order 8. Hence, % — Cs(g0) Since S3 contains a
subgroup 23O of order 3 which normalizes %0, we get that 230 normal-
izes g.

We next argue that Z normalizes %. Certainly £> normalizes g.
Since g0 = C^DU J ) ) , we get that A normalizes g. Since £ =
φ<A, A>, g < S. Let 5Ji - N(%) 2 2:^0. Suppose 51 15R|. Since 9ΐ is
solvable, 9ί contains a subgroup 3ί0 of order 15. Since C(I) = @ is a
2, 3-group, 3̂o permutes g* transitively. Since % = C(g), we get g =
O2(%). But IS: g | = 23. It is easy to check that Aut (%) has no such
subgroups. Hence, 5 | |5Jl[, so 31 is a 2, 3-group, |sJi| = 27.3α, a — 1 or
2, so 191: 9ΐ Π @| ^ 3. Since Offi Π @) = g ^ is of index 2 in 2, and
since g£/g is a chief factor of 91 Γ) @, it follows that g φ - O2(9i).
Hence, Z(O2(3l)) - < ! > < % 9ig@, and \3l\ = 27.3.

On the other hand, % CΦ(J) ^@G, and ^ G Π g = <A, /, />, so
that $G normalizes %. Since $G C§(J) is a S2-subgroup of @G, it
follows that 9i contains a S2-subgroup of © c. Hence, J and J are
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conjugate in UK. This is absurd, since </> <\ Sΐ. Thus, this case does
not occur.

Case 2. e Φ w.

By Lemma 5.8, f^w, so that e >̂ w. By hypothesis, e Φ w, so
e^w + 1. On the other hand, φ is of width w, and @ is an ele-
mentary subgroup of φ of order 2e. Hence, e ^ w + 1, so that e =
w + l , / = w — 1 . Since $ contains an elementary subgroup of order
2W+1, φ is the central product of w dihedral groups.

Case 2a. w — 2.

Since § is the central product of 2 quaternion groups, @ is a
2, 3-group, and | S31 = 3.

Case 2a (i). @ = 8. (Recall that 2 = $33^.)

Here the order of @ is 26.3. Since ^ = </> x Λ2, where B2 is a
dihedral group of order 8, we get 6c = <I> x SD0., where ®0 is a four-
subgroup of $2. Choose Deff i 2 -S 0 , I) 2 = l. We assume without loss
of generality that D inverts S3 = (B). Let £}lf Q.2 be the quaternion
subgroups of φ. There are several cases.

First, suppose D normalizes both SX and £ι2 and that D induces
outer automorphisms of £ιt and Π2. We can then choose generators
0<i, Qi2 of Di such that Qiί = Qί2, i = 1, 2. Hence,

so that J = QπQi2Q2iQ22̂ % where α = 0 or 1. We argue that $ g; ccl@(7).
Suppose false. Choose ii. e Qf. Then I± — /^ for some A in ©, so that
ii€$(@), yielding JeS(@^). Hence, ( ^ Π @) © is a S2-subgroup of
@, and $Λ Γi ® is elementary of order 8. Thus, |cclβ(ii)| = 6, and
every element of $ commutes with some involution of @ — φ. On
the other hand, if i ϊ e φ, then i£D is an involution if and only if D
inverts H, so that He (QnQ12, J). Hence, $D contains at most 8
involutions. Since | Q,Q\%(D) \ — 8, and involutions of % — ίQ are con-
jugate to D in X. Hence, every element of I is @-conjugate to an
element of </, J) — </>. This is not the case, since there are just
6 elements of $ so conjugate. Thus, in particular, we have i(®>) ^ 2.

We have determined the isomorphism class of 2, and it is straight-
forward to verify that X is isomorphic to a S2-subgroup of M12. Since
i(®) ^ 2, it follows from a result of Brauer and Fong [11] that © =
M12. But M12 is not an JV-group, since M12 contains an involution
whose centralizer (£ has order 240, from which it follows that (£ is
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non solvable.
Next, suppose D normalizes both £ιλ and d 2 , but that D induces

an inner automorphism of D 2 . Since D inverts 23, it follows that 33
centralizes D 2 and that <23, D} is faithfully represented on £}le We
can therefore choose generators Qn, Q12 of QL such that Q£ = Q12, and
then choose generators Q21, Q22 of D 2 such that Q£ = Q21, QS = Qίn
where d — ± 1.

Now J = &Q,, where Qi e Q, - </>, i = 1, 2. Thus, &Q, - Q? - Q2

D,
so that QτDQ1 = Q?Qιι eQif]Q2= </>. Hence, D fixes </>&,
so Qι = (QnQi2)

±1, and Qi is inverted by D. Hence, d = — 1, and
Q2 = Q*1. With a suitable choice of notation, we may therefore assume
that / = QnQ12Q22. Choose ί e g - <! ,/>. Then [£7, £>] = J, since
g € y ^ ^ ( § G ) . But [©, J D ] S Q I , while J 6 θ l β This contradiction
shows that this case does not arise.

We may now assume that D interchanges £tx and D 2 . Let J —
Q1Q2, Qi^&i — </>, set Qi_ = Qu, and choose Q12 such that <QU, Q12> =
D l β Let Q2i = QS, i = 1, 2, so that O 2 = <Q21, Q22>. We now get
J = JD = QfQf, so that Q? = Qf, Qf - Q2

d, where d = ± 1. Since D
inverts S3, we get Cϋ(B) = </>.

Let g0 - C,φ) = </, J, Q12Q22>, g - <go, D), so that S is elementary
of order 16. Since [ φ , D ] S g o , it follows that g < 2 . On the other
hand, f5S@G> so § is also normal in a >$2-subgroup of &G. Let 9̂  =
N(%). Thus, I and J both lie in the center of S2-subgroups of 9ΐ, so
there is N in Sίl such that J = J^, and we may assume that G = N.
Hence, @ Π @σ contains <g, ^ > . Let % be a S2-subgroup of Sfl Π C(J)
which contains <g, ^ ) . Then <ίE, S ) normalizes <g, ^ ) , so that
^ « J , J » = Aut «J , / » . Let % = Oa(5R) a δ If ^0 3 g, then 9ί0 s
Σ n f - <δ, Λi>, so that <δ,Λ1> = SR0, as |<Λ,Λ1>:δl = 2. Hence,
9£ = ίΣ<i2> for some subgroup <i2> of order 3 which permutes </, J>
transitively. Choose EeQί— </, J ) . Since i2 fixes %E, there is an
element F of δ such that R centralizes FE. Then (FE)2e(I,J},
so .PE' is an involution. The only involutions of %E are in </, />!?,
so we may assume that R centralizes E, as </, J)EaQr. In any case,
we get </, J > < SB.

We now examine </, J, J β > = @. Since C$(.B) = </>, @ is elementary
of order 8 and admits B. If (§ = ©, then since i? also normalizes ©,
it follows that 4̂(@) permutes @# transitively. This is impossible,
since JV(@) is solvable. Hence, @ Φ @, so that CΦ(J) = @@, recalling
that Λx = Cι(J)σ, we get ^ - <@, @ >̂, since we have taken N = G,
and since G? <] 5ft. Hence, X — § contains a conjugate of J. As all
involutions of £ — § are S-conjugate to D, we get D ~ I. Hence,
31 contains a S2-subgroup of C(Z)), so that Z) is in the center of a
S2-subgroup of 31. This is not the case, <I, J> = Z(O2QR)). We con-
clude that δ = O2(3l).
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Suppose 51 |9t|. Let $ be a S5-subgroup of 3i which is permutable
with 2. Since 15β | = 5 and 2/g is a four-group, we have O2(Sφ) ID g.
Thus, Z(O2(2;5β)) Π % admits φ. As 5β acts irreducibly on g, we get
that geZ(0 2 (2^)), so that O20β£) is abelian. This is not the case,
since g e y ^ ^ ) . Hence, 9ϊ is a 2, 3-group.

Since § = O2(9i), we see that a S2,-subgroup 9ΐ of Sft is elementary
of order 9. Let <£ = cclR(/). Since 9ΐ Π @ = %, we get that |(£| = 9,
and 9Ϊ permutes © transitively and regularly.

Let 3 = 3° x §S where each g* is a four-group which admits 9ΐ.
Let 3ί0 = C,®1), 3^ - 0,(3°), at, - <J?,>, i = 0,1. Hence,

Since Jg g°, we get %° <& 91. Let U = iVs(3ΐ) so that U is a four-group.
We can choose UoeVL such that Uo inverts 3ΐ. Then choose U16 U —
<Z70> Since Z70 normalizes §°, Z7i interchanges %° and g1 a n d so inter-
changes Sfto and 3 !̂. We may assume that K%1 = i2i

Since g is weakly closed in %, we get that % is normal in every
2-subgroup of ® which contains %. (We have used this fact earlier.)
Hence, cclΛ(7) = cclβ(Z) Π %•

Choose generators FQ0, F01 of %° such that F& = F01, and set
FH = J^i, i = 0,1. Thus, g1 = <F10, Fn>. Hence, § is a free F2VL-
module, so all involutions of Z — % are ^-conjugate to an element of U.

Suppose UeVL - tt0. Then CΛ(U) = (R} is of order 3. Suppose
also that U ~ I. Since ZΛ and E7ΌΪ7Ί interchange 5R0 and Six, it follows
that i? ί di0 U Sfti, so that ϋ? has no fixed points on %. Let T7 = Cΰ(U),
a four-group. Thus, U<ie>2SgC^(i7), and Ie2S. Hence, 2S x US
O2(C(U)). But A(2δ x <C7» contains the stability group of 2δ x
<Z7> D <Ϊ7> D1, since 3K x <ί/> S O2(U)), and also contains the stability
group of 2B x <ί7)D8B=)l, since g normalizes 2δ x <ί7>. Hence,
4̂©(3B x <£/» acts irreducibly on 2B x <Z7>, so is non solvable. We

conclude that if UeU— <Z70>, then TJΦ I. Hence, if V is any in-
volution of £ - g<C/o>, then V φ I.

Let F = JB, where S3 = (B) is a S3-subgroup of @ inverted by
D. Then <J, Γ, J> is elementary of order 8. If <I, Γ, J) = g0, then
since .D centralizes f̂o> so does B. This is obviously not the case, so
< J, Γ, J> ^ go Since g0 = % Π ̂ , we get F i g . By the previous
argument, Ye%U0. Hence, Y inverts some S3-subgroup of 31, so Y
normalizes both %« and %K Hence, Cβ(Γ) - Cδo(F) x CBi(Γ). But
Cδ(Γ) B </, J>, so </, J> - CAY) x Qi(Γ). Thus, Je g° U δ 1. This
contradiction shows that this case does not occur.

Case 2a(ii). @:DS.

Here we get that S2,-subgroups of @ are elementary of order 9.
Hence, @ permutes $ transitively. Since $ has just 6 elementary



NONSOLVABLE FINITE GROUPS 583

subgroups of order 8, there is a subgroup 3ΐ of @ of order 3 which
normalizes @. Let A = A&(jS). Then </> is the only proper subgroup
of @ which is normalized by -4S(©). Hence, 21 = As(®)> since otherwise,
21 acts irreducibly on G? so is non solvable. But 21 also contains the
stability group of Gc Z) </> Z)l, since © g £G . This contradiction shows
that this case does not arise.

Case 2b. w = 3 and S3 is a 3-group.

Since / = w - 1, S3 is elementary of order 9. Since |@| = 2W+1, £
is the central product of 3 dihedral groups. Hence, § is not the
central product of 3 quaternion groups.

Case 2b(i). Ca(33)z)<I>.

Let £>! - Q(93), £}2 = [£, S3]. Thus, S3 is represented faithfully
on G2, so that D 2 is the central product of 2 quaternion groups Q21, G2 2.
Hence, £lx is dihedral, and Qι<f Q2 admit ^ .

Suppose J € £IJCL21 U QiO22. In this case, some element B of 33*
centralizes J, so Be&G, [^, S ] g § G ί l £>33g£>. This is not the case,
since ^ fixes no non identity element of £>33/£>.

Write J = Q,Q2lQ22, where Qi e &l9 Q2i e Ώ2i - (I). Hence, Q\ = 1,
since J is an involution. Suppose Q1g(I}. Since ί^ normalizes £liy

and since | ^ : ©| = 2W"1 = 22, Λve can choose i Γ e ^ - ® such that
[Q l f K] s </>. Hence, [§, if] g D , But then [®, K] g <J> 0 ^ = 1,
against &e S^rέ?Λ^{ίQG). Hence, QiG<J>, so we may assume that
Qi — 1, after changing notation.

Suppose © Π O2=) </, />. Choose Ee O 2 - </, J> and set ©0 =
(I,J,E}. We can then choose 5 G 3 3 * such that B normalizes G?o.
Hence, |A3(@O)I = 23.3, so A&(&0) = ^@(@0) This is not the case, since
^4@(©0) contains the stability group of the chain G?o 3 </> Z) 1. Hence,

e n a - <J, J>.
Let Z7i, Z72 be non commuting involutions of G^ so that D x =

<C/Ί, ί72> Since |©: </, J> | = 4, we can choose El9 E2 in @ such that
E1 - C/ΊJJ1, £72 = U2U\ where I/1, f/ 2 eD 2 . Since [Bl9 @] - </>, it
follows that [Bly OJ S <-̂ ) Since ί/̂  ί72 are non commuting involu-
tions, U\ U2 are also non commuting involutions, which, however,
commute with J. Hence,

CG2(J) = <J> x (U\ U2) , and [(U\ U2), β j S <J, J> .

On the other hand, φ. = CΦG(I), SO that ^ = </> x S2, where ^ 2

is the central product of 2 dihedral groups. Hence, ^ 2 contains a
four-group 3?3 with ^ 0 ^ = 1 , ^ = ©?3. Let K be the uniquely
determined involution of ί£3 such that SQK inverts ^S3/§. Hence, K
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inverts some S3-subgroup of S, which we may assume is S3. Hence,
K normalizes both Q21 and Q22, and induces outer automorphisms of
each. Let Qiu Qi2 be generators of &2i such that Q£ = Qiif i = 1, 2.
Hence, Cθ2(ίΓ) = </, J> - <Q11Q12Q2ίQ22, />, so that

But [Q11Q12Q21, ̂ Π is a n element of Q22 of order 4, so is not in </, J>.
Thus, this case does not occur.

Case 2b(ii). C$(S3) = </>.

Since SB acts faithfully on §, we can choose distinct subgroups
S3*, S32 of 35 of order 3 such that jQ< - C(S3<) z) </>, i = 1, 2. If OXO2 c φ,
then Qi, Q2 are both quaternion groups, and Q is the central product
of ίQi, £X>, O3, where D3 is dihedral. This gives 0,(33) — d 3 . Hence,
φ is the central product of £it and D2, and we can choose notation
so that Oi is the central product of £}u and jQ12, where Q u is quater-
nion and ?Q12 is dihedral, and Q.2 is quaternion. This is impossible,
since we have assumed that CΦ(SS) = </>. So this case does not arise.

Case 2c. w = 3 and S3 is not a 3-group.

By Lemma 5.15, S3 = Ŝ  x S32, where IS3J = 3, |S32| = 5, and Q is
the central product of £iL and Q2, where O2 is a quaternion group
and A^Qi/DJ) is dihedral of order 10. As above, we get Jί OL (J Q2?
so J = QXQ2, QiGOί - </>, and Q2 is of order 4. Since | ^ : ©| = 4,
there is iΓ in ^ - © such that [O2, K] S </>, so that [@, ϋΓ] S <J) Π
Oi = 1, against @ e ^ ^ ^ f ^ ( φ G ) .

Case 2d. w ^ 4.

First, suppose § is the central product of d and O2, that £ι{

admits S, i = 1, 2, and in addition, the following hold:

(/9) fii/© does not act faithfully on
Let S3X = CβίQx). Suppose J G D X . Then S3X S @σ, so that [SB̂  ffij S

φ^ Π φS3£φ, against the fact that ^ has no non trivial fixed points
on £S3/£. Hence, Jί£ιlm Choose Ke^-® with [D2,
Such a choice is possible by (/3). Then [̂ >, i£]SQ<i> so [@, i
<J> = 1, against g e ^ ^ ^ Γ ^ ) . So no such Qx, O2 exist.

For each subset SI of @, let 21 = SI^/^. Let V = §/§', and, as
usual, S =

Case 2d(i). V is an irreducible 2-module.
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Since 5 acts faithfully on F, we get 2w = 0 (mod 2M7~1). Since
w ^ 4, we get w = 4. By Lemma 5.15, |S3| = 33. Let V = V, x F 2 x
F 3 x F4, where each F< is an irreducible S3-group. Let 33̂  = C^Vi),
Vi = &</$'• Thus, 135: 33<| = 3 and | F, | = 4, while φ permutes tran-
sitively {Fi, F2, F3, F4} and {»!, »2, »8, S j Furthermore, Ci, = £},- all
i, i, and Qj. is quaternion or elementary.

Suppose S3X = S32. Then S33 = S34, so that S^ Π S33 ^ 1, and S3X Π S33

centralizes φ This is impossible, so 33̂  = S3, implies i = j . Hence,
Q. — Cft(S5<), so that O< is quaternion and ^ is the central product of
SX, SX, SX, £i4. Also, I S3, Γ) S3, | = 3,1 ^ i < j ^ 4.

If J e Q A , then S3 Π @σ => S3, Π 952 =31, so that [93, Π S32, ΛJ S § G ί Ί
S3^g^>. This is not the case, so if 1 ^ i < j ^ 4, then JeO^Oy.
Hence, J = Q^Q^Q^, Qi e O<, and at least 3 of the Q* are of order 4.
Since J 2 = 1, we have Q { ε O { — </>, all i.

Since ^ = <7> x ^ 2 , where $ 2 is the central product of 3 dihedral
groups, $ 2 contains a subgroup $ 3 such that $ 3 is elementary of order
8 and $ 3 Π © = 1, $j. = ®^3. Let iΓ be the uniquely determined involu-
tion of $ 3 such that K inverts S3. We assume without loss of gener-
ality that K inverts S3. Thus, D4 has generators Qil9 Qi2 with Qft = Qi2.
Since K centralizes J, K inverts Qif 1 ^ ί ^ 4. Interchanging Q41 and
Qί2 if necessary, we may assume that Q{ = QuQi2. Suppose ί Φ j .
Then J centralizes QuQjl9 so [QϋQ^, £"] 6 %G D © = ©. Hence,

all i, y, i ^ i
By our construction, we have S3gF(@mod £>). Let K be a S2-

subgroup of F(@mod^>) which contains S3. Since £}< = C^SBi), Q<
admits Cβ(S5). Hence, O8/(©) = 1, so that K is a 3-group. Suppose
S3c C«(SB). Since C,S(S3) - Cs(93) x </>, if normalizes C,(S3). If Ce
Ce(a5) Π C(JBΓ), then C normalizes D< and [O^, JSΓ], so C centralizes each
O4, so C = 1. Hence, K inverts Ce(S3). This implies that CS(S3) is
elementary of order 34. But in this case

CUSS) n C(QnQί2Q2ίQ22) G ̂ r*(@) ,

so that C(QnQ12Q21Q22I
a) S @ for α = 0 and 1. This implies that £Gc@,

which is not the case. Hence, S3 e S^^^V^S). Suppose S3 c (£. Then
K/S3 is faithfully represented as permutations of {£ϋl9 D2, D3, O4}, since
if £ = Π U ε n iV(D,), then [<E, S3] centralizes φ, so that [K, S3] = 1,
e = S3. Hence, |E: SB| = 3. Suppose |Z(K)| - 32. Choose C
such that CΦ(C) 3 <I>. Then C (̂C) admits K, so K' centralizes
as Cz(C) has width at most 2. Since § = <C^(C)|CeZ((£)#>, we get
that (£' = 1. This is not case, so |Z(S)| = 3, <£ =; Z3 i Z3. But ^
acts faithfully on ^ , against m(E) = 2, m(^x) = 3. Hence, 33 = (£, so
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that F(& mod ξ>) =
It is a direct consequence of the preceding equality that @ is a

2, 3-group and that S3-subgroups of @ have order 33 or 34

We next show that if X is any non identity 2-subgroup of @,
then JV(Ϊ) is a 2, 3-group. Suppose p ^ 5 and j>| |iV(X)l By Lemma
13.1, O2,(iV(£)) = 1. Thus, p\ \A,<3))\, where 2} - O2(JV(Ϊ)). By Lemma
5.51, % contains a normal subgroup ZQ snch that p\ \A&(Z0)\. Since
%>SN(X0), N(%o) contains an elementary ^-subgroup pφl which is
permutable with %. Let 2K = £5β, %, = O2(SK). If φ S ^ , then J is
the central involution of X19 so that 23Ϊ£@. This is not the case,
since €5 is a 2, 3-group. Hence, φ§££i, but of course IeXlm Since
ϊiiρ/ϊi = £>/£> Π ϊ i is elementary, !β contains a subgroup % of order
p which is permutable with %,$. Let Z2 — OaίS^φβo)* so that

By Lemma 13.62, Ω^Z^)) has order at most 4, so is centralized by
$β0, as p ^ 5. Hence, ^β0 £ @. This contradiction establishes the as-
sertion.

Set E = QnQ12Q21Q22 e @. We will show that C(£?) £ @. Let S =
C(E)9 a 2, 3-group. Also, S5i Π S32 = S is contained in (£, and is of
order 3. We first show that 58 is a S3-subgroup of E. Namely,
S3£C(S), so that C@(S)G^r*(@), and so C(»)£@. Suppose X is a
3-element in (£ Π C(S). Then X normalizes § Π C(S3) = D A , since
J G @ . Since £Xί9 O 2 are the only quaternion subgroup of ίXDg, X
normalizes Q ! and D 2 . Since X centralizes Q11Q12Q21Q22, -X* centralizes

If <S, X> is non cyclic, then there is Ye φ, Xy such that
Q A . Thus, Q Γ ) = D A Q i for some ie{Z, 4}. However,

V is an irreducible S-group, and so Y centralizes V, yielding Y —1.
We conclude that SB is a S3-subgroup of £ Π C(S), so ΰ is a S3-sub-
group of K. Let X be a S2-subgroup of (£ Π @, and let 2* be a S2-
subgroup of © which contains 5£. Let J * * be a S2-subgroup of ©
which contains £*, and let I * be the central involution of £**. If
I * = /, then % = S*, so that K £ @ . Suppose I * ^ J. Then I * cen-
tralizes <£ Π φ = C^JS?), SO by Lemma 13.62, J* e <#, />. Thus, J* = J0
or EL In any case, we have E = Iγ for some Y in ©, since E γ EL
Hence, S £ @F. Since C(») £ @, we get that S2-subgroups of @ Π @F

are non cyclic, against Theorem 13.1. Hence, KS@. Since E γ El,
we also have C(J&/)£@. Hence, § G = <C9G(E), C9σ(EI), C^(J))g@,
so that £ φ σ is a 2-subgroup of @ whose center is contained in </> Π
<J> = 1. This contradiction shows that case does not occur.

Case 2d (ii). V is a reducible β-module and 2 acts faithfully on
no proper submodule of V.
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By Lemma 5.7, V is completely reducible. Let V = Vλ x F2,
where V{Φ 1, and F2 is irreducible. Let 82 be the subgroup of S
which contains ξ> and satisfies S2 = Cβ(F2). Thus, § c S 2 < ] S , so
S2 Π S3 =* 1. Let DL = [S2, £], Q2 = C,(82 n S3). Then &,/#' = Vif ί =
1, 2. Since C^(V2) Φ 1, and since F2 is irreducible, it follows that $,.
does not act faithfully on F l β Thus, (a), (β) hold. This contradiction
shows that this case does not occur.

Case 2d (iii). V is a reducible S-module and 5 acts faithfully on
some proper submodule of F.

Let W be a submodule of F minimal subject to C%{W) = 1. By
hypothesis, T7c F. Suppose | F: PΓ| = 2. Then ΐF = £/$', |Z(φ) | = 4,
and |> — Z(^)^i, where |>x is extra special of width w — 1. Hence,
Ie[S3, |>]c|>, and JB acts faithfully on [S3, !>]/£'c W. Hence, we
have I F: W\ ^ 4.

By Lemma 5.8, we get | TΓ| = 22(w~1), and TFis completely reducible.
Let W = ^/φ' . First, suppose |> is extra special. Then let φx = C^(§),
so that § ! has width 1 and admits S. Hence, F is completely reduci-
ble. If W is reducible, we get SO,l9 £ι2 satisfying (a), (β). If W is
irreducible then | W\ ^ 24, by Lemma 5.8, so that w ^ 3. This is not
the case.

It remains to treat the case where |> is not extra special. Let
3 = Z(|>) 3 <J>. Since β has no fixed points on W, we get \Q: </> | ^ 4.
Since | F: W\ = 4, we get 131 — 8, and since 3 is an abelian group
of order 8 admitting a non trivial automorphism of odd order, 3 is
elementary. Since Wis completely reducible, W= SKI} x 2B> with W=
O/φ', where O is extra special and admits 8. Let jD = Cd(O), so that φ
is the central product of O and Q and Π admits S. By construction,
the width of O is 2, so that the width of O is w - 2 ^ 2. Thus, 33
does not act faithfully on either O or Q, and Jtx/@ does not act
faithfully on jQ/φ'. Thus, the pair O, <D satisfy (α), (/S). This con-
tradiction completes the proof of this lemma.

LEMMA 13.64. ξ> e ^T*(@).

Proo/. Suppose false. Choose SR e ^ ^ ^ f ί © ) such that § S 5Ji g @,
and with this restriction, minimize |9fϊ| Let 9l2 be a S2-subgroup of
5Ti which contains Q. Then I is the central involution of 5β2, so 9ί2 S @.
Hence, 91 = 9^0, where D is a g-group for some odd prime q. Since
φ contains an element 11 of ^(2) , we get O2(5ft) ^ 1, so Je Offi).
Since H@(§; 2') is trivial, and since O2,(5R) e K®(£; 2'), we get O2,(9i) = 1.

Since IeO2($ΐ), we get that £O2(9£)/O2(9i) is elementary. By min-
imality of % we get 5ft = O2(5ft)D£, and | φ : Q Π O2(9̂ ) | ^ 2 . If φ s
O2(9Ϊ), then J is the central involution of O2(9Ϊ), so that Sftg®. Hence,



588 JOHN G. THOMPSON

I φ φ Π O2(5tt) I = 2. Choose Q e Q ~ a Then (φ n O,(9l))« S O2(9Ϊ) S
5R2£Θ, against Lemma 13.63 The proof is complete.

LEMMA 13.65.
( a ) <Z> is weakly closed in φ.
(b) w ^ 3 .

Proof. Suppose Γ = J G £, G € © - @. Let & = C^(J) Then
g i S S ^ C(J), so ©Γ'S®. Since G^e© - @, Lemma 13.63 gives
a contradiction. This establishes (a).

Suppose w = 2. By (a) and the Glauberman Z*-theorem [16],

Case b(i). | £ : φ | = 2.

Choose G e © - @ such that J= IGeZ. By (a), we get £ =
Let © = Cz(J) S @σ. If @ is not elementary, then Ie />(©) £ φ*, against
(a). Hence, @ is elementary.

Suppose I® I = 4. Then Λ « ® , J » is the stability group of the
chain <@, J> => @ => 1. Let g = <®, /> c @σ. Let ®0 = % Π ©ff, so that
Jg e 0, and -4β(?(g) is the stability group of % 3 @0 =) 1. Let (& = @ Π @0

Hence, [(gj = 2 and <iVe(S), NBG(%)} maps onto the subgroup of Aut (%)
which fixes G .̂ Hence, ©x is contained in the center of a S2-subgroup
of ©, @! = <#>, with E ' - /. This violates (a).

Suppose I©I = 8. Let % = <@, J>. Thus, ccl s(J) has four elements.
Let X be a S2-subgroup of @G which contains g. Then | cclj(7) | = 4.
Let U = ccU(I) Π g, so that U a ccl2(J) U {J} and l l Π S - {/}. Sup-
pose U =) ccl,(J) U {/}, C/G U - (ccl,(J) U {/}). Then [/£ (g, so | ccl,(ll) | =
4, and so |tt | ^ 9. Hence, U = ccls(J) U ccl£(ί7) U {I}, since IX n © = {/};
this yields |U | = 9. Hence, U = @J U {I}. Let ©* - % Π φ σ , so that
by symmetry U = (£*/ U {/}. Let Uo = U - {/, /}. If Ulf U2 e Uo, then
£7iZ72e©n@*, since ^ G e J n ® * / . Hence, © = (£*, since |U 0 | = 7.
This is false, since led, Z e e * . We conclude that U = ccl*(J) U {Z} =
ccls(Z) U {J}? so that |U| = 5. Since each element of U is in the center
of a £2-subgroup of iV@), it follows that N(%) permutes U transitively.
Hence, 5| |-4β(g)|. Let 5β be a S5-subgroup of iV(f?) permutable with
5E. Since |5β| = 5 and S/g is elementary of order 4, we get O2(£$β) z> g.
Hence, l c Z ( O 2 ( ^ ) ) c g , so that 5β centralizes Z(O2(X,ψ)), and so 5β
centralizes g. This is not the case, since 2 e 7Γ4.

Case b(ii). | S : φ | > 2.

Since όf&Λlφ) Φ 0, it follows as in an earlier argument that
is a four-group and that @ = SDB, where S3 is elementary of
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order 32. By the Z*-theorem, there is G in © — @ such that J =
IGeZ. By (a), J g £ . Let <£ = C$(J). If © is not elementary, then
IeD(&)ξΞ:ίQG, against (a). Hence, G? is elementary.

Suppose |@| = 4. Let g - <@, J>. Then 4,(g) contains .A(^)
and J l ( ^ * ) , where ^ : g D g D l , <iT*: g =)@* 3 1, @* - g n £ G . Since
9Γ =̂  ̂ * , it follows that 4B(g) is the subgroup of Aut (g) fixing
e Π @* - <#>. Thus, if £ is a S2-subgroup of iV(@), then <#> - Z(£),
so that E ~ /, against (a).

Suppose |@| = 8. Let g = <©, J>. Then Q normalizes g Since
|@| = 8, φ contains a four-group $ such that 5ϊz>@ = 1, ί£® = £ .
Since g = <J>ft, g is a free i^-module, so g is the only subgroup
of g φ which is isomorphic to g Hence, g <| £, | £ : SI = 8.

Let II = cclβ(7) Π g> so that \U\ = 5 or 9. If \VL\ = 9, then U =
@JU {/} = @*/U {/}, where ©* = g n φ β As above, we get @ - ©*,
so that J G @ g ^ , against (a). Hence, |XX| = 5. Hence, A&(%) is a
multiple of 23.5, and O2(A&(%)) = 1. This forces Λ(g) to be non
solvable. The proof is complete.

LEMMA 13.66. Suppose G e © - 6 . Then one of the following
holds:

( a ) [ £ ° : $ σ n @ | > 4 ,
(b) |φ:φn@Ί>4,
( c ) § Π @G does ^oί normalize $G Π Θ,
( d) § σ Π @ cίoβs ^oί normalize ξ> Π @σ.

Proo/. Suppose false. Let ^ = § n ΘG, ^ = &G Π 8 . By Lemma
13.63, we have \Q: ©J = | φ σ : ftj = 4. By Lemma 13.65, & and φ
are non abelian, and Lemma 13.63, ^L n ^i is centralized by both &
and Sj. and is elementary. Since J g ^ n ^ , and & Π ̂  <] ®i, w e g e t
that fli = § ! fl ^i x ^ 2 for some subgroup ^ 2 of $L which is non abelian.
Notice that $ Π ̂  S § Π ©^ = &, φ Π ̂  S ^i, so that © 1 1 ^ = ^ 0 ^ .

Since | φG: ftx | = 4, we have | Z ( ^ ) | ^ 8. Since <φ : Π K J) s ^(^i)
we have | & Π ®i | ^ 4 . Since ^ 2 is non abelian, we can choose K in
^ 2 such that K2 = J.

Let V — φ/^>', Vo = Φi/φ', so that | F: Vo \ = 4 and J centralizes

Since | QG: ί^ | = 4, S2 contains a subgroup ί£3 which is extra special
of width w — 2. Let 33 be a g-subgroup of O2,2 (@), q an odd prime
such that (a) $ 3 acts faithfully and irreducibly on £33/£>D(3S), (b) $ 3

centralizes £>D(33)/£>, (c) Z>(33) gZ(58), (d) 33 is of exponent #. We are
guaranteed that 33 exists since $ 3 Π § = 1. Since the absolutely
irreducible faithful representations of $ 3 over all fields of odd char-
acteristic have degree 2W~2, we get m(33) >̂ 2W~\ By Lemma 5.3 applied
to 33 acting on V, we get m(V) ^ 2W~\ Hence, 2w = m(V) ^ 2W"S
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SO t h a t W ^ 4.

Suppose w = 4. Then Lemma 5.3 gives # = 3 and forces 23 to be
elementary. In this case / inverts $33/$, so that V is a free F2(J)~
module, against | V: Vo\ — 4. Hence, w = 3.

If q φ 3, then Lemma 5.3 forces g = 7, |33| = 72, so that J inverts
$33/£. This forces V to be a free F2<J>module, against ( V: Vo\ = 4.
Hence, g = 3.

First, suppose |33| = 9. Then J inverts §33/£, and we may as-
sume that J inverts 33. Since [V, S3] is a free F2<J>-module, we get
that [§, S3] = |> is the central product of 2 quaternion groups on each
of which J induces an outer automorphism. Hence, (|): C-ζ(J)\ — 8,
against | φ : & | = 4, & £ @ G . Hence, |33| > 9.

Since S3-subgroups of SQ(2) are Zz\ ZZ1 we get that 33 is non
abelian of order 27 and exponent 3. Thus, S3 acts faithfully and
irreducibly on V. Let 33O be a subgroup of 33 of order 9, and let
S3i, 332, 3S3 be the subgroups of S30 of order 3 distinct from 33'. Then
C^i) is of order 8 i = 1, 2, 3, and 33' acts faithfully on each Cφ(33{),
so C$(33ί) = Q< is a quaternion group. Furthermore, £Xlf Oa, D 3 are
the only quaternion subgroups of $ which admit 33O.

We assume without loss of generality that J inverts S3,, Let
8 = £3S</>. Then Q. (71(330 = Φ33o<^>, so J normalizes £LL and inter-
changes O 2 and O 3. Since | $ : φ j = 4, we get that J centralizes £^
and that Cθ2θ3(/) is elementary of order 8. Hence, φL — ^ x φ 2,
where § 2 is elementary of order 4.

By symmetry, Bt is the direct product of a quaternion group and
a four-group, so $ 2 is quaternion.

Now Cί(33x) = 0133o<J>, so that J normalizes 33O. Since iVs(33o) =
</>33<J>, we get that J normalizes S3.

Suppose I & Π $i I ̂  2. Since [&, ^ J S Φi Π ̂ i, it follows that $ 2

has an element X of order 4 such that D x Π C(X) 3 </>. Hence,
<X, SSi) centralizes Qi Π C(X); since X2 = J, <X, 33^ contains a S3-
subgroup of S, against Ĉ (S3) = </>. Hence, | φ i Π Λ 1 | ^ 4 . Since
J ί & Π $!, it follows that C$(J) = D x x (& Π ̂ i).

Since J normalizes S3, J centralizes 33', so S3' normalizes CΦ(J), so
33' normalizes Ω^C^J)) = </> x ^ n β l β Hence, D ' normalizes % =
<J, §i Γl $i, </>, an elementary group of order 16, and [g, 33'] is a four-
group such that % = </, J> x [g, 33'].

Let @0 = iVβ(δ). Since Q 2O 3 normalizes g, it follows that g D
< ^ I Π ̂ i, I) D </> 3 1 is a composition series for g as @0-module. By
symmetry, % Z) <φx Π $tl9 J) 3 <J> 3 1 is a composition series for g as
-ΛΓβ(?(§)-module. Hence, N(%) acts irreducibly on $. Since g = <J, J> x
[f5, S3'], it follows that a &$-subgroup of A(%) normalizes </, J> and
[%, 33']. Since A@(g) is solvable, it follows that A@(g) is a 2, 3-group.
Since g is irreducible, O2(Λ(S)) = 1» so |Λ(g) l = 2α.32, with a ^ 2.
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Hence, A(S) is 3-closed, and <J, J), [g, S3'] are the only four-subgroups
of % which admit O8(Ae(S)). This is not the case, since [Π2D3, J] =
§ Π S is elementary of order 8. The proof is complete.

LEMMA 13.67. Suppose Xe& Let & = Cϋ(X). Then the fol-
lowing hold:

( a ) M(4?i>* 2') is trivial.
(b) &e.^r*(@).

Proof. Suppose (a) is false. Let Q be of minimal order in
M(&; 2') subject to Q Φ 1. Then £} is an elementary g-group for some
odd prime q, and & acts irreducibly on O. If Qg@, then [§ l f O ] S
g ( i p = l» so that £} stabilizes § z> & z> 1, so that D = 1. We may
assume that Q §£ @. Hence, I inverts £}. Since Z($x) is a four-group,
we can choose an involution Z of Z(φi) which centralizes £}. Let (£ =
C(Z) By Lemma 13.1, we get O2/((£) = 1. Let &2 be a S2-subgroup of (£
which contains & and let X be a S2-subgroup of © which contains
®2. Let T be the central involution of %. Then Γ centralizes Q19 so
Γ e Z ^ O S φ , by Lemma 13.62. By Lemma 13.65, we get T = I.
Thus, Ie Z(<£2), so /e Oa(K) Hence, [/, Q]gO2(g) Π O = 1. Since O
is inverted by J, we have the desired contradiction.

Suppose yie<9*<^^f(®), ^ s S ί g S , and % is minimal with this
property. Let ϋft2 be a S2-subgroup of 5Ji which contains φ1# Then
%2 £ @G for some G e ®, so ̂  S &G. By Lemma 13.63, we get &G = @.
Hence, 9ί2 c 9ΐ. By minimality of 9ϊ, we have 9ί = SljO for some g-
group D. By (a), O2,(SR) = 1. Let S = O2(SR). Then / e S , since
J e Z ^ ) . Hence, φiS/S = $i/§i Π 8 is elementary. By minimality of
% we get that O is cyclic and that 3i2 = 8&, |^L: ̂  Π S| ^ 2. Let
^ 2 = ^ n S, so that I φ: §21 ̂  4. Choose Q e O - @. Then φ2

ρ S S S
S^S®, and φf < S for all i. Hence, |φ Q : & n @| ^ 4, | § : φ n @Ί -
Iφ^""1: !QQ~1 Π @| ^ 4, so Lemma 13.66 gives a contradiction.

LEMMA 13.68. § is a T.L set in ®.

Proof. Suppose G e ® - @ and X is an involution of § f] &G.
Since </> is weakly closed in φ, we have J e S Hence, C(X)g@,
since CΦ(J5Γ) e ̂ T*(©) Hence, C$ί?(X)£@, against Lemma 13.63.

LEMMA 13.69. @ does not contain an elementary subgroup @ of
order 2W such that

( a ) © n φ = l ,
( b ) Cβ(jE7) - Cβ(@) / o r αίί £7 in &.

Proof. Suppose false. Let 95 = ̂  x x 23W be a subgroup of
02,2'(@) such that (a) |S5<| = p t , Pi an odd prime, (b) © normalizes
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l^i^w, (c) @ acts faithfully on £S3/£ Let V = Q/Q'. By Lemma
5.8, V = Vx x x V,9 where each Vt is an irreducible S-module,
£ = £33®, and where | 7*1 ^ 16, all i. Since w ^ 3, C^V,) =£ 1. Let
7, = &/$', so that [E, &] S £', for all © e C,{V%). Let &(#) - C,.(#).
Then I &: &(#) | ^ 2, and © centralizes &(JS), by (b). If 10,(7*) | > 2,
then & - <&(#) | # e C.ίV,)1), so that & S C(<£). Suppose |Cβ(7,) | = 2.
Then w = 3, | 7 4 | = 16, and |&: C .̂(©)| ^ 2. This is not the case,
since @ centralizes no hyperplane of V{. Hence, φ£C^(@), against

THEOREM 13.7. Hypothesis 13.6 is wo£ satisfied.

Proof. Suppose false. We use the preceding notation. By the
Z*-theorem, there is G in © — @ such that J — IG e @. First suppose
that C^(J) contains an element K of order 4. Then Ke&G. Also,
[<V(J), ϊ ] S φ n φ o = l. Let g e ^ ΐ f ^ ί φ * ) be chosen so that g
admits if. Then go = @i(%) is elementary of order ^ 2W. Since
C%0(K2) — CH{K), we get that J — K2 centralizes %0. Let @ be an
elementary subgroup of g0 of order 2W. Then @S@> and @ n φ = 1.
If ^6®*, then [C9(E), 8 ] S § n § f f = l. This violates Lemma 13.69.
Hence, Cθ(J) is elementary. Let 7 = φ/φ'. Since 7 is elementary
of order 22w, it follows that | CV(J) \ ̂  2W, and so | CΦ(J) | ^ 2W. Let
©o be a subgroup of CΦ(J) of order 2W, and let © = e?"1- Since ©0 S 6°,
we have @£@. If © Π φ ̂  1, then since @£ §G~\ we get φ = φ^"1,
G e @, against our choice of G. Hence, 6 f| $ = 1. If JB'e @*, then
[C<,(2£), ® ] S § ί l φG~x = 1. This violates Lemma 13.69. The proof is
complete.

THEOREM 13.8. e(@) ^ 2.

Proof. Suppose false. Then Hypothesis 13.1 is satisfied. Let
9ft be the subgroup given at the conclusion of Lemma 13.3. By
Theorem 13.3, every normal abelian subgroup of 93Ϊ is generated by
2 elements. Suppose 33 is a non cyclic normal abelian subgroup of
2K. Choose peσ. Then (7̂ (33) contains an element of J^(p)f so
C(B) S SDΪ for all J5 in S3*. Thus, Hypothesis 13.3 is satisfied, against
13.4. We conclude that every normal abelian subgroup of Wl is cyclic.
Theorems 13.5,13.6,13.7 yield a contradiction. The proof is complete.
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