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NONSOLVABLE FINITE GROUPS ALL OF WHOSE
LOCAL SUBGROUPS ARE SOLVABLE, IV

JOHN G. THOMPSON

In this paper, the simple N-groups are classified for which
¢e=3 and 2<nr,. This latter condition means that a Sylow
2-subgroup contains a normal elementary abelian subgroup of
order 8 and dees not normalize any nonidentity odd order
subgroup.

As in III, the proofs rely heavily on the fact that many sub-
groups of odd order are contained in just one maximal subgroup.
The numbering of the sections is a continuation of III. The biblio-
graphical references are to be found at the end of I. The predecessors
to this paper are: Nonsolvable Finite Groups all of whose Local
Subgroups are solvable, I, II, III: Bull A. M. S., 74 (1968), 383-43T;
Pacific J. Math., 33 (1970), 451-536; Pacific J. Math., 39 (1971),
483-534.

13. The case 2em,; first reduction.

THEOREM 13.1.

(a) If pem, then o7 (p)S . Z*(S). (o7 (p) is defined in Defini-
tion 2.10, and _Z*(®) is defined in Definition 2.7.)

(b)) If pem, P is a S,-subgroup of & and M is the unique ele-
ment of 7.7 (®) which contains B, then

(i) P,

(ii) for each G in & — M, S,-subgroups of M N M* are of order
1 or p.

Proof. Theorem 10.7 implies (a); (b)(i) is a consequence of (a)
and a standard transfer theorem; (b)(ii) can be established by imitating
the proof of Theorem 0.25.6.

Lemma 13.1. If X is mnon identity 2-subgroup of O, then
0, (N®)) = 1.

Proof. Set M = N(X) and let T be a S,-subgroup of N. Suppose
by way of contradiction that 0,(N) = 1. First, suppose |X| = 2. Let
LB be a minimal normal subgroup of 9 of odd order. Thus, P is a
p-group for some odd prime p. Let § be a maximal 2, p-subgroup
of & which contains TL. Let $,, H, be a Sylow system of § with
TS 9, PSS D).

First, suppose 0,(9) = 1. Let & = 0,(9). By the B x Q-lemma,
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P is faithfully represented on Cy(X). But [, C.(X)]| S [B, RIS B, so
B centralizes Cy(%).

We may assume that 0,(9) = 1. Suppose 0,(9) = 1. By Lemma
6.6, we get 2¢m,, against our basic assumption of this section. So
we may assume that 0,(9) = 1. Since £ is a S,-subgroup of %, Lemma
5.38 (a)(ii) implies that ¥ contains an element 11 of Z7(2). By Lemma
6.1 (b), U centralizes every element of MU(; 2). In particular, 1
centralizes 0,(9). This is also impossible, since 0,(9) = F(9).

We may assume that [£] > 2. Let 9 be a subgroup of order 2
in ¥NZ(E). By the first part of the proof, 0,(:) =1, where
N, = N©®). Hence, 0,.(N) is faithfully represented on 0,(MN) N C(X), by
the B x Q-lemma. Since

[0:(), O,(R) N CE)] S O0(N) N O(R) =1,
we get 0,(MN) = 1.

THEOREM 13.2. Let I be a solvable subgroup of & and let I,
be a S;-subgroup of M. Then either N(IN,) LM or M, contains an
involution I such that C(I) & .

Proof. Suppose false. Then I, is a S,-subgroup of & and M
contains the centralizer of each of its involutions. By Lemma 5.35,
9 has just one class of involutions. By Lemma 5.40, % has 2-length
1. Since 2em, we get M, <{M. Thus, I contains exactly 1 S,-
subgroup of ®, and every involution of I, is central. This implies
that M, is a T.I. set in . By a fundamental result of Suzuki [36],
we have ® = U,(q), Sz(q), Ly(q), for some g = 2" > 2. Since U,(q) is
not an N-group, we get that & satisfies the conclusions of the main
theorem. The proof is complete.

The next lemma begins to pinpoint some of the difficulties of this
section.

LEMMA 13.2. Let T be a S,-subgroup of S. Suppose T e _Z*(®).
Let MM be the unique element of 7. (8) which contains T. Then
there is a 2, 3-subgroup  of & such that

(a) SELM.

(b) NI contains a S,-subgroup 9, of 9.

(¢) 049 =1.

(d) . contains an involution I such that

(i) Cs(I) is a Si-subgroup of Cyu(I).
(i1) Cg(I) contains an element of Z (2).
(iii) CI) <L M.
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(e) If £,=MSM, and O, s not a S,-subgroup of WM, then
My e A *(O).

Proof. Let % be the set of all I in Z (2) with US M. Let
% be the set of all involutions I of N such that

(o) Cxp(I) contains an element of Z .

(8 CI) L.

We first show that % = @. Suppose false. Choose U,€ Z'(2), and
set T, = C(1,)). Since U,e 7z, it follows that C(I) = M for all [e Zi.
On the other hand, since Te_~Z*(8), we have NE)= I, so by
Theorem 13.2, there is an involution J, of I such that C(J,) £ M.
Let M, be a ,S'z-subgroup~ of Cy(J,). Choose M in I such that M =T,
and set J = Ji'. Thus, M, = M)’ is a S,-subgroup of Cy(J) and C(J) &
M. Hence, J¢ZT, and M, contains no element of %, since J¢ _%4.
By Lemma 5.38 (a)(ii), C(J) contains an element of % (2). Hence,
M, is not a S,-subgroup of C(J). Let M, be a 2-subgroup of C(J)
with |M,: M, | = 2. Choose Xe M, — M, so that X¢ M. Hence, C(X)
contains no element of $% On the other hand, D(V%) S I,, so D(D%,) = 1.
Since M, N L, is of index 2 in MW, it follows that C(X) N T, = <(JID.
Hence, 522 is a four-group. This implies that £ is of maximal class,
against 2ew,. We conclude that _% # (.

Let .~ be the set of all 2-subgroups £, of M with the following
properties:

(1) %, ¢ 72*O).

(2) There is at least one involution 7T of _% such that T, con-
tains a S,-subgroup of C(T).

We argue that 7 #+ @. Namely, choose I€. %, and let &, be a
S,-subgroup of Cyp(I). Since C(I)Z M, we get that T, ¢ 7.

Let §, be an element of .~ of maximal order. Since Te _Z7*(®),
it follows that 9. is not a S,-subgroup of M. By maximality of H.,
(e) holds. Let & ={8]|9.S6e ¥~ ¥ (®), SLM}. By definition
7, we have .&¥ #* . If &Se .97, the maximality of §, guarantees
that 9, is a S,-subgroup of &. Let 7 = {p|p is an odd prime, .&¥
contains a 2, p-group}. Thus, 7 += @. Choose pem and let $ be a
2, p-subgroup of & which is contained in .&”, and is maximal with
this property. Thus, $ is a maximal 2, p-subgroup of & which is
not a S, -subgroup of &.

By definition of .77, there is T in _% such that Cy(T) is a S;-
subgroup of Cy(7T). By definition of ._%, we get that £, contains an
element I of Z/. Thus, (d) holds.

By Lemma 6.6, either 0,(9) = 1, or 0,(9) = 1. By Lemma 6.1 (b),
1 centralizes 0,(9), so 0,(9) + 1. We thus get 0,(9) =1, so if p = 3,
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we are done. Suppose p = 5. Then by [43], we have

9 = Co(Z(D))Ns(J (D)) -

Since | Ny(®) |, > |9D.| for & = Z(9,) and for & = J(£,), the maximality
of &, forces $ = M, against our construction. The proof is complete.

For each odd prime p, let e(p) be the largest integer n such that
U(E; 2) is non trivial for some elementary subgroup & of & of order
p". Let

e = ¢(G) = max {e(p)} ,

where p ranges over all odd primes. Since & is simple, there is a
2-subgroup A of & such that A4®%A) is not a 2-group, by Theorem
14.4.7 of [21]. Hence, ¢ = 1.

Hypothesis 13.1. e = 3.
LEMMA 13.8 through 13.38 are proved under Hypothesis 13.1.

We use the following notation: 7, denotes an odd prime such that
for some elementary subgroup R, of & of order i, UR,; 2) is non
trivial; &, is a maximal element of U(R,; 2).

LEmmA 13.3. &7 (1) & Z*(G).

Proof. If r,em, we may apply Theorem 13.1. Thus, we may
assume that r, ¢ 7,. Since R, is elementary of order 7}, we conclude
that r,enw,. If r,=5, we may apply Lemma 10.6. Thus, we may
assume that », = 3.

By Lemma 13.1, R, acts faithfully on 0,(N(T,)). Thus, 0,(IN(Z,))
contains a non cyclic abelian group of order 8. Since R, is elementary
of order 3%, we get 2~ 3. If the center of a S,-subgroup of ® is
non cyclic, then & = E,(8), by Theorem 8.1. If the center of a S,-
subgroup of ® is cyclic, then & = S,(8), by Theorem 9.1. Since @ is
an N-group, both of these possibilities are excluded. The proof is
complete.

We now set M = M(R,). Let ¢ ={p|per, Ur, PN contains a
S,-subgroup of &}. Thus, €0, and if pex, then peo if and only
if M contains an element of .o~ (p). Choose p in ¢ and let P be a
S,-subgroup of M permutable with the S,-subgroup ¥ of M.

LEMMA 13.4. O,(BZ) = 1.

Proof. If T is a S,-subgroup of ®&, we are done, since 2¢7,.
We may assume that T is not a S,-subgroup of ®&.



NONSOLVABLE FINITE GROUPS 515

Since Pe _Z7*(®), PT is a maximal 2, p-subgroup of &. Suppose
0,(PI) = 1, 0,(PI) = 1. Then Lemma 6.6 (iii) yields a contradiction.
Thus, proceeding by way of contradiction, we may assume that
0,(PIT) = 1, 0,(PIT) = 1. Since O,(PT) = 1, it follows from Lemma 6.1
that T contains no element of % (2). We will show that this is
false. Since R, e _Z*(®), it follows that N(T,) &M, and that N(T,)=M
for every non identity characteristic subgroup £, of £,. Since M con-
tains no element of Zr (2), it follows that %; is elementary.

Since R, is elementary of order 7}, we can choose a subgroup R,
of N, of order 72 such that T, N C(R,) = 1. Let I be an involution in
T, N C(R,). By Lemma 5.38 (a)(ii), C(I) contains an element of Z (2).
Since N, S C(I) and since R, .o (1), it follows from Lemma 138.2
that C(I)S M. This contradiction completes the proof.

LEmMA 13.5.

(a) If &, is a S;-subgroup of & which contains T, then T con-
tains every element of zz (&,).

(b) O,(M) = 1.

(c¢) 0,(M) =1.

Proof. Let T* = 0,(BT). Since N(T*) < IR, it follows that Z(G,) =
T. Since 0,(BL) = 1, it follows that Z(®,) =T*. Hence, N(T*) con-
tains every element of % (&,), proving (a). Lemma 6.1 together with
(a) yield (b).

Since & is an N-group, Me _~.&7 (®), and 0,(IN) = 1, it follows
that M = N(O,(IN)). Thus, Lemma 18.1 implies that (c) holds.

In Lemmas 13.6 through 13.38, we use the following notation: T
is a S,-subgroup of M, B = Q,(R,(M)), B* = V(ecly (V); 2). Also, o
has its previous meaning. We also introduce the set .7 of all involu-
tions I of M such that Cy(I)e _Z*(®). This set plays an important
role in much of the following discussion.

By Lemma 5.9 (iii), ¥ is 2-reducible in IN.

LEMMA 13.6.
(a) If |B] > 2, then C(B) S I for every hyperplane B, of V.
(b) Oune of the following holds:

(1) IB]=2.

i) If B, is a subgroup of index 2 in B and I is an involu-
tion of M such that Cy(I) = By, then [B, Il = {J> is of order 2, and
Je 7.

(¢) If |B| > 2, then B contains a mnon cyclic subgroup X such
that ¥* =S 7.

Proof. Let € be an elementary subgroup of I of order p?, p€a.
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Assume that |8B|> 2. Since B <] M, there is a subgroup &, of ¢ of
order p* such that C(&) N B = %X is non cyclic. This proves (c), since
G e Z7*(®). Let B, be of index 2 in B. Then B,NZE =1, and
C(B,) = C(B, N %), proving (a).

In proving (b), we may assume that |B| > 2. Let ¥ play the
role of & in Lemma 5.21. We conclude that Cu([8, I]) contains an
element of .o (q) for some geo. This yields (b).

LeMMA 13.7. B < Z(TB*).

Proof. Suppose false. Thus, |B| > 2. Choose G in & such that
X =B°=%, XL C(B), and define d by 2¢ = |X: X N C(B)|, so that d = 1.
Let N = M/C(V), and let £ = XC(BV)/C(V) = %/X N C(B). Since B is 2-
reducible in M, Lemma 5.34 implies that M contains a subgroup
A=A X oo X U, where U, is of odd prime order p;, admits X, and
such that % is faithfully represented on L.

Let B; = [B, 2], £, = £ N C(,), and let %, be the inverse image in
X of %, Thus, |%:%|=%:%=2 1<i<d.

By construction, we see that ¥U; is faithfully represented on %,
and that B; admits A¥. Let BF = B; N C(X;). By Lemma 3.7 of [20],
U, is faithfully represented on B}, so in particular, ¥ does not cen-
tralize Bf. Choose V; in Bf — BF N C(X). By Lemma 13.6(a) applied
to M4, we get C(X;) = M. Hence, V;e M’ By Lemma 138.6(b) applied
to M7, we get C([%, V;]) = Cye([%, Vi]) € ~Z*(®). Choose W, in [, V;]%
Then C(W,)< M° Since W,;eL and L is abelian, we get L <= MC.
Hence, [8, X] =%, since ¥ <{ M In particular, [B;, £;] is centralized
by %, so [OB;, &;] is centralized by ;. As ¥U; has no fixed points on
B:, we conclude that [B;, X;] = 1. Since B; admits U, we conclude
that <;|7 #= 1) = W’ centralizes B;, and in particular centralizes T5;.
Now 2 = &/C(B) for a suitable subgroup 8 of I, so ¥ centralizes
W.. Since C(W;) = I° we conclude that [&, X] S [IN°, X]=X. Thus,
[2, ¥] = C(LB). Hence, A* is centralized by X. By construction, we
conclude that d = 1, that is, |X: XN C(B)| = 2.

Since B M and [B, X] = 1, we conclude by symmetry that
[B:BNCE)]=2. Choose Vin B—-CENLZ, X in ¥—CB)NEXE.
Thus, [V, X] is an involution and is a generator for [B, X] = [V, %].
We may apply Lemma 13.6 (b) twice to conclude that I = M Thus,
L = X = B¥ which is absurd. The proof is complete.

Lemma 13.8.

(a) M= C(BV).Ny(B*).

(b) Ome of the following holds:
(i) For each V in B*, Cy(V)e Z*(®), that is BLFS 7.
(il) Ng(B*)e 2*O).
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(¢) % is a S;-subgroup of .

Proof. By Lemma 13.7, ¥* & C(8). Since V* is weakly closed
in TN CEB), (a) holds.

Let P be a S,-subgroup of M, peo. Suppose P N C(V) is non
cyclic. Since PN C(W) < B, it follows that PN C(BV) contains an ele-
ment of .o (p). Thus, in this case, (b)(i) holds. Suppose ¥ N C(B)
is cyclic. In this case, the argument of Theorem 0.24.9 shows that
N, (B*) contains an element of .o~ (p), so that (b) (ii) holds.

Let ®, be a S,-subgroup of ® which contains . Since 0,,(M) = 1,
it follows that Q,(Z(S,))=S%0, by Lemma 5.40. If (b)(i) holds, then
we may choose V in 2,(Z(®,)) and conclude that T = &,. If (b)(ii)
holds, then N(B*)= M, so that T = &,, since B* is weakly closed in
Z. The proof is complete.

LEMMA 13.9. N(T)< IR,

Proof. Choose N in N(¥). First, suppose (b)(i) of Lemma 13.8
holds. Choose Zin 2,(Z(%))NB. Then Z¥=Z, e Z(T). Since 2,(Z(T))=T,
we conclude that Z, € ®B. Since (b)(i) holds, Cy(Z) = Cy(Z) e Z*(®),
Cu(Z) = Cy(Z)e 7*(®). But C(Z)= C(Z)", so M = IMY, Ne k.
Suppose (b)(ii) holds. Then N(B*)= M. Since N normalizes B*, the
proof is complete.

LEmMA 13.10. Suppose A is a four—subgw}cp of M,ANCEB) =1
and CA NB contains a subgroup B with |B:B| = 4. Then for each
element V of B — B, there is an element A in A such that C([V, A]) < .

Proof. For each subset & of M, let & = SC(BV)/C(B). Thus,
A = A. By Lemma 5.34, we may choose a subgroup B = B, x B, of
M such that B, is of prime order p,, B; admits A, 2 = 0, 1, and such
that A is faithfully represented on B. Let 2; be the subgroup of
o such that ¥; = C(B,) N A. Thus, ;| =2,7= 0,1, and A = A, x A,

Let ¥, = [L, B;]; thus, B; has no fixed points on Vi and the
dihedral group B,3; is faithfully represented on %, 4,5 = 0,1, 7+ j.
Thus, |B;| = 2%, where d; is an integer. Also, |C(;) N B;| = 2%,
Suppose d; = 2. Since I centralizes B, it follows that d; = 2, and
that CQH NV, = BN V,. Since B, N CQL) admits B,Y;, and since
B N B, does not admit B, it follows that B; N C(;) properly contains
BN B;. The only possibility is that 9, centralizes B;. But since B
is of index 4 in B, we have B = BB, so A, < C(V), against the hy-
pothesis that €A N C(L) = 1. We conclude that d; = 1.

Since [B;| = 4, it follows that B = B, x B, x X, where X = Cy(B).
Furthermore, since L is of index 4 in B, it follows that B =B, x
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B, x %, where B, =8NSV, is of order 2. Let I, = {A;>. Then
BNCA) =% x B, x B, is of index 2 in B, and so by Lemma 5.21,
we conclude that Cy([A4;, B]) contains an element of .o (¢;) for some
¢; in 0. Suppose now that Ve®B — 8. Then V = V,V.X, where
V.e®;, XcX. Since Ve¢B, there is an index ¢ such that V,e¢B..
Hence, [4;, Vi] = [4;, V], where j == 1, so that C([4;, V.D& M, as
required.

LeEMMA 13.11. Omne of the following holds:
(a) [B]=4.
(b) CEB) =M for every subgroup B, of B of index 4.

Proof. We may assume that |B| = 8. Let & be an elementary
subgroup of I of order p? peo, and let B, be a subgroup of index
4 in B such that C(B,) £ M. Hence, BN~ = J.

Let B =L, x -+ x B, where each B, is an irreducible &-group.
Let €, = @ N C(B;). Since §; is non cyclic, it follows that Vi< . 7.
Hence, B, NL, =1, 1 <i<f. Since |BV:B,| =4, it follows that
1B;| =4, 1 =i f.

Clearly, & does not centralize B. Suppose |%B;| = 2 for some 1.
Choose j so that [B;| > 2. Then (B,B;,)'<S . 7, against BN 7 = @.
We conclude that 8N C(@) =1, and that & is of order 3°. Let U =
(B.LB,) N B,. Thus, |A| =4, since |B:B,| =4. Since ANYB; =1, 1=
1, 2, it follows that || = 4. Let &* be a complement to & N &, in
@. Thus, |G*| = 3 and &* is faithfully represented on B,L,. By
Lemma 5.31, &* has a subgroup &} of order 3 which normalizes .
Thus, <€, N G, €)= N@Q). Since <G, N &, G;) e o7 (3) it follows that
N = M. Since C(B,) S CA) S N & M, we have the desired con-
tradiction. The proof is complete.

LemmA 13.12. Suppose € is an elementary subgroup of AgB)
of order 8. Then B does not contain any subgroup X of index 2 such
that [X, €] s of order 2.

Proof. In accordance with Lemma 5.34, choose B< A44(B) such
that B = B, X B, X B,, where B, is of prime order p;, B; admits €,
and CB)NE=1. Let €, =€ NCESB), sothat |€:C;| =2,7=1,2,3.

Let ¥ be a subgroup of B of index 2 such that [%X, €] =9 is of
order 2. Let €, be any subgroup of € of order 2. Then B =B, X -+ X B,,
where each %B; is an indecomposable €,-group. Thus, [B;|<4,1 =<
i <s. Suppose |B;|=4,i=1,2,3. Let B =B, x B, x B, and let
B, = %N B. Thus, |B,|=2°. Since |BN CE,)| = 2% it follows that
[[B,, €,]| = 2%, against [B,, €] =Y. We conclude that there are at most
2 values of 7 such that |8;|=4,1<1=<s.
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On the other hand, € contains an element C which inverts .
Since |B| = p.p.p, and since B is faithfully represented on B, it fol-
lows that |[®B, B]| = 2°. Thus, the preceding argument with €, = {C>
yields the desired contradiction.

LEMMA 13.13. Omne of the following holds:

(a) IB|=4. ‘

(b) If Ge® and |B*: BN M| < 2, then BES .

(c¢) |B] =2 and Ay«(B) contains a subgroup of index at most
2 which is isomorphic to X, X X,.

Proof. Suppose neither (a) nor (b) holds. Choose G in & such
that B VN M| <2 and VYL M. Set £ = BN M, so that X is of
index 2 in B¢ Let %X, = XN C(B), and let Y be a complement to %,
in X. Suppose |Y| < 2. Then %, is of index at most 4 in V. Since
|B| = 8, it follows from Lemma 13.11 that C(X,) S IN° In particular,
LS M. By Lemma 13.7 applied to IN°, we get [B, V¥] = 1. This
yields B¢<= C(B) = N(B) = I, against our choice of G. We conclude
that |9] = 2 = 4.

Since L is 2-reducible in I, Y acts faithfully on O, (M/C(V)). By
Lemma 5.34, we can find abelian subgroup % of F(I/C(V)) such that
A =9 X «-o x A, A; is of prime order p;, ¥A; admits P,1 < iy,
and such that 9 acts faithfully on 2. Let 9, = Cy(), so that
[9: 9:| = 2. Let B, = [B, A], Bf = B, N C(D))-

Suppose B} contains a four-subgroup B such that 3N C®) = 1.
We will derive a contradiction from this assumption.

Since 9%, centralizes B} and since 9%, is of index 4 in B it
follows that LB} = M% by Lemma 13.10 applied to IM° In particular,
B3 M4 In Lemma 13.10, let the pair (8, MF) play the role of (A, ).
Now B3NCE®% =1, since 3NCH) =1 and Y=V, Also, 3 cen-
tralizes 9,%X,, a subgroup of L¢ of index 4. Choose Y in X — 9,%,.
Then by Lemma 13.10, we can find Z in 3 such that C([Y, Z]) & I°.
But [Y, Z] € B, so we get BS M Thus, Lemma 13.7 implies that
[B, BC] = 1, against our choice of G. We conclude that 3 is not available.

Let Y; be an element of 9 — ;. Since BF N CQ) = B} N C(Y)),
it follows that Bf N C(Y;) is of index 2 in BF. Since Y; inverts 2,
we can find an element A; of M such that A, = (4;,C(B)>, and such
that Y; inverts A;. Since A4; has no fixed points on LB}, it follows
that B} | = 4.

We next argue that BF < B,. By construction, Bf = B,, so suppose
by way of contradiction that Bf = B,. Then Lemma 5.20 implies that
C(X)= MM for all XeBi. In particular, C([B}, Y;]) S M. But B} cen-
tralizes %,9);, so BFf < M¢. This yields [V}, Y;] = BF so we get B = I,
against our choice of G.



520 JOHN G. THOMPSON

We next show that |B;| = 2% Since B} cB;, it follows that
[B;| = 2. Suppose by way of contradiction that |B;| > 2.

Set €, =B} NCOY) =3, N COH) =2B;N CX), so that |€;|=2. Also,
set D, = B, N N(B), so that D, 2Bf. Since [D,, B] = B?, it follows
that [D, X]= B, NV =B, N C(X) =€, and so [D;, X] = €,. By Lemma
13.12 applied to M, it follows that |D;: €;| < 4.

By Lemma 18.6(c), B¢ contains a four-group J such that C(Z) = In¢
for all Z in 3% Hence, ¥ contains an element X with C(X)< IM°.
Hence, C(X) N B, &D;, so that (C(X) N B;,)B} has order at most 8.
First, suppose X € %,9);. Since |B;| > 2¢, it follows that |C(X) N B;|=8.
Since C(X)NYB; admits A;, we get |C(X) N B;| = 2. We have just
seen that this is not the case. Suppose X ¢ %,9),. Since X does not
centralize B¥, and since BF =D, it follows that |[C(X) N B;| < 4.
This is impossible, since |%B;| > 2% Both possibilities yield contradic-
tion, so we conclude that |[B;| =2 1 <1< y. Notice that among
other things, we get that 2 is an elementary of order 3?, since ¥; is
faithfully represented on the four-group B:.

Suppose by way of contradiction that y = 2. Since we have
already shown that y = 2, we get that y = 3.

Let & = 0, (). Since ¥ is is faithfully represented on %, a
3-group, it follows that YN & = 1. Thus, 9 is faithfully represented
on O, ,(M)/K. By Lemma 5.34, O, ,(M) contains an elementary sub-
group of order 3% and so 3eo.

Now 2 = &/C(8) for some subgroup £ of M. Since €, = B, N B
is of order 2 and since C(€;) £ I it follows that C(L) has cyclic S;-
subgroups. Thus, a S,-subgroup &, of & has a cyclic normal subgroup
€, N C(B) such that the factor group L/¥ N C(B) = A is elementary
of order 8. It follows that each non cyclic subgroup of &, of order
9 is contained in &7 (3).

Since CE,)Z M, it follows that |Cy(@€,)| <3,1<17=<y. Since
|B;] = 2¢, we have also |: Cy(€,;)| = 3% We conclude that |Cy(B,)| = 3,
|U: Cu(B,) | = 8% vy = 3.

Since 9 acts faithfully on %, the only subgroups of U of order
3 which admit 9 are 2, %, 2,. Thus, we may assume that notation
is chosen so that ; = Cy(B,). Thus, A, does not centralize B,. Sup-
pose B, N CA,) = 1. Then B, N CQL) and [B,, ;] are both non trivial
and both admit €. Thus, LB, N C®) is non cyclic, since B, is the
direct product of B, N CQL) and [LB,, W]. This is impossible, since
|€]=2,1541=y. Hence, B,NCHE,) =1. Since |B,| = 2%, we con-
clude that 9B, = B,. By symmetry, we have B, = B, = B,. This is
absurd, since ¥, centralizes B,. We conclude that y = 2.

We next show that 8e€o. Suppose false. Let 9§ be a S,.-subgroup
of M. Since $ has no elementary subgroup of order 3, it follows
from Lemma 0.8.5 that § has a normal 3-complement. Let ©, be a
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S,-subgroup of $. Since A <J<] M/C(B), we have AZ H,C(V)/C(V).
Let peo, and let §, be a S,-subgroup of § permutable with £,.
Thus, 9, <1 9:9,.

By construction, A< F(IM/C(B)). Thus, $,C(B)/C(B) centralizes
A. In particular, £, normalizes B,. Hence, £, N C(L,) contains an
element of .%7 (p). This is impossible, since C(€,) £ M. Hence, 3 o.

Let 83 = BN CQAD. Since 3ea, it follows that C(Z)= M for all
Z in B%. Since C(%X,) 2 T, it follows that C(X,) £ M°. Hence, X, N 3% =1.
This implies that |3| < 8, since |¥L“: %X,| = 8.

We next show that B, = B,. Suppose false. Since |L,| = |LB,| = 24,
and since 6, admits 20, it follows that B, N C(2,) = 1. Since B, N C(Y) =
€, is of order 2, it follows that ¥, centralizes B,. Hence, ¥, N B, = 1.

Since B, N B, = 1, it follows that BB, = B, x B, = [B, A]. Thus,
B =B, xB, x 3. Let D= 0, (F(M/C(B))). We will show that D
centralizes B,,7 = 1,2. Since |L,| = 2% and since ® centralizes %I,
we may assume by way of contradiction that |D: DN CEB)| = 5.
Since /D N C(B,) admits P, there is an element Y in Y which cen-
tralizes ®/ N C(B,). Thus, D normalizes B, N C(Y). Since P acts
faithfully on 9B, it follows that |8, N C(Y)| < 2¢, so that © centralizes
B,NC(Y). Hence, © centralizes ¥,,7=1,2. Since F(M/CV)) is
faithfully represented on B, it follows that O,.(F(IN/C(L))) is faithfully
represented on 3. Hence, O, (F(I/C(B))) =1 or 7, since |J|=8. In
particular, O, (F(IM/C(B))) is cyclic. Since 3ea,3 ) |MM: M’'|. This
implies that a S,-subgroup of IM/C(L) centralizes O, (F(IN/C(V))).

Let = 0,(M/C(V)) 2, and let , = N (). Thus, O, admits 2.
Hence, A N C(H,) admits Y. Suppose AN C(H,) < A. Since A, A, are
the only subgroups of U of order 3 which admit ¥, we may assume
notation is chosen so that 9N C(H,) = .. Hence, §, normalizes T,.
Since 2, centralizes B, and since C(B) N H, <] o, it follows that
[, £ <= C(B). But [, ] =W, since U, = CH)NA. This is
absurd, since 2, does not centralize B,. Hence, §, centralizes A. Sup-
pose §, contains an elementary subgroup U* of order 3°. We may
assume that Y A* and that A* admits §. Let A; be a subgroup
of A* of order 3 which admits 9 and is a complement to A in A*.
If 9, is not centralized by ¥, then by replacing % by another subgroup
of order 9 which contains %[, and on which 9 acts faithfully, we see
that we get [, 2] = 2%, Thus, 2, centralizes either B, or B,. But
in this case, A* N C(B,) or A* N C(B,) is of order 9. This is impossible,
since 3€c0. Hence, 9 centralizes ;. Since |€;| =2,7=1,2, it fol-
lows that 9, centralizes €, and €,. Thus, Cy(€) or Cy(€,) contains
an element of .o~ (8). This is impossible, since C(€,) £ M. It follows
that £, contains no elementary subgroup of order 3°. Since A= Z(9,),
it follows that U = 2,(9,) char H,. Hence, H, = O, which implies that
A I M/C(B). Also, since |[B,| = 24, 1 =1, 2, it follows that 2, is not
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contained in any cyclic subgroup of  of order 9. This in turn implies
that %A = $.

Let B* be a S,-subgroup of M/C(B). As we have already shown,
B* centralizes O, (F(M/C(V))). Now A, A, are the only subgroups 1l
of % of order 3 which satisfy |[®, 11]| = 2'. Hence, B* centralizes
. Thus, B* centralizes F(M/C(B)), so B* = A

Since A is a S;-subgroup of M/C(V), and since 3eca, it follows
that C(L) contains a non trivial cyeclic S;-subgroup. This implies that
the inverse image of %, in I contains a non cyclic S,-subgroup, so
contains an element of .o~ (8). This violates C(€,) £ M. We conclude
that B, = B,.

Suppose U <] M, NEVB, and |N| < 8. We will show that U = 1.
Suppose false. Since || < 8, Cu(11) contains an element of .o (3),
so W . ~”.

Case 1. 0| = 2.

Since C(X) = M¢, we get US ME. Since C) & M, we get U= M.
Hence, WS %X. Since CU°) = M% we get N ZLZXE,, Thus, we may
assume that U¢<S 9. Thus, either U = ), or U = Y,. Suppose nota-
tion has been chosen so that 1° = §),. Then U does not centralize
B = B, N CH),). But B} = M¢ since C(X,Y,) = M?. This contradiction
shows that this case does not occur.

Case 2. || = 4.

Since ¥ normalizes U, ¥ contains a subgroup % of index 2 such
that N C(F) is non cyclic. Since CX) < M?, we get NN CE) = M°.
Since 1N C(¥) is non cyclic, we can choose an involution Uin 1 N c%)
such that C(U) N U¢ is non cyclic. Hence, ¥ N 1¢ is non cyclic. Since
% NU% =1, we may assume that § = X N 1% Then since B} = I;°,
we get €, = [, Bl = 1°. This gives C(€,) S M¢, which forces B & IM°.
This contradiction shows that this case does not occur, and completes
a proof that 1 = 1.

Suppose B, is a subgroup of F(M/C(B)) of order 3 which admits
9) and is not centralized by 9. Let 9, = Cy(B,) so that |9,| = 2.
Since 9, is faithfully represented on O,(M/C(V)), Y, is faithfully repre-
sented on C(B,) N O,(M/C(BV)). Thus, B, is contained in a subgroup
B of F(IM/C(B)) of order 9 on which 9 acts faithfully. Replacing
by B, we see that |[B,, B]| = 2~

Set O = 0,(M/C(V)). Suppose B, is a subgroup of H’' N Z(9H) of
order 3 which admits 9. If [B,, Y] +# 1, then B = [L, B,] x BN C(B,)
and § normalizes both [B, B,] and B N C(B,). Since [[B, B)]| = 24, &’
centralizes [B, B,]. This is absurd, since B, does not contralize [T, B,].
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Suppose [B,, Y] = 1. Since B, = Z(9), B, centralizes B, so B, normalizes
B,. Hence, B, centralizes B, N CY) = €,, and so B, centralizes Vf
and BF. Since (BF, V) = 8, B, centralizes B,. Since [[B, By]| <8,
it follows that &’ centralizes [%, B,]. This is also a contradiction.
Thus, B, does not exist. This implies that § is abelian. Since |B| < 27,
it follows that either % = § or § is elementary of order 3.

Now U = &/C(B) for some subgroup & of M. We argue that &
contains an element of .o~ (8). If § = 2, then a S,-subgroup of ¥ is
normalized by some S,-subgroup of MM, so we are done. Suppose AL 9,
so that § is elementary of order 3°. If 3 t |C(B)|, we are done.
We may assume that a S,-subgroup of C(®) is a non identity cyclic
group. Thus, a S,-subgroup & of £ has a cyclic normal subgroup
g, N CB) with ¥,/L N C(B) elementary of order 3. It follows that
every non cyclic subgroup of &, of order 9 is in ¥ (8). To obtain this
conclusion, we have used the fact that 9) acts faithfully on 2.

We next show that 8 = 1. Suppose false. Let |3| =2 1=<2<3.
Since M contains no non identity normal subgroup 1 of order =8,
it follows that z = 2, |B| = 2°.

Since A centralizes 3, we see that C(Z)< M for all Z in 3.
Since | 3| = 4 and since $) normalizes 3, we can find a subgroup £ of
index 2 in ¥ which centralizes 8. Since C(¥) < M’ we get Z< MC.
Since (B}, B> = M, it follows that BN M is of order 2°. By all
the previous argument with (B N M¢ M° in the role of (X, M), we
conclude that BN M N C(B°) is of index 4 in L N M°. Now €, = G,
since B, = B,. Hence, |V}, Bi>: €,| = 4. Hence,

BN M = (BN M N CEBY), B, B> .

Choose Z in 8°. Then Z = CV with Ce®8B N C(BV), Ve BiLVs. Hence,
[X, Z] = [X, V]S %,. Since X normalizes 3, we get [Z,X] =¥, N3 =1.
Hence, 3 centralizes X. Since 3 N C(BV¥) = 1, 8 is faithfully represented
on 0, (MF/C(B)). This is impossible, since 3 is a four-group which
centralizes a hyperplane X of B¢ We conclude that 3 = 1.

Since 8 =1, we have T = B, of order 2‘. Since Aut (8) has no
element of order 8, it follows that a S,-subgroup I, of M/C(BV) is of
exponent 2 or 4. Since M, is isomorphic to a subgroup of Aut (),
it follows that 9, is either a four-group or a dihedral group of order
8. In any case, M/C(BV) has a subgroup of index at most 2 which
is isomorphic to X, x ¥,. The proof is complete.

LEMMA 13.14. If [B| = 2%, then for each V in B, B 0(C(V)).

Proof. Suppose false, and V in B* is chosen so that 8 Z 0,(C(V)).
In particular, we have C(V)Z M. Let G be an elementary subgroup
of M of order p* peo. Let A =CB)NE. Since C(V)ZM, A is
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cyclic. Thus, || = 3, since [B| = 2'. Since C(B) has cyclic S,-sub-
groups, it follows that if P is a S,-subgroup of I which contains ,
then € = 2,(). Hence, every non cyclic 3-subgroup of ® is in _2Z*(®).
This implies that if & is a solvable subgroup of & which contains
9 and also contains non cyclic S;-subgroups, then 8= IR. Namely,
since C)S M, we get that K N M has non cyclic S;-subgroups,
whence R < .

Let &, be a complement to A in & Thus, with a suitable choice
of notation, & = €, x &,, B =B, X LB,, and &V = B, x B, = A4, X A,.
There are exactly 8 orbits of ¥ under the action of &, namely,
B, BE, and BIBE. Clearly, Ve BiBE. Furthermore, BiLE is a conjugacy
class of M, since C(V)Z M. This implies that each element of BiB}
is centralized by a S,-subgroup of IN. Let § be a S,;-subgroup of
Cy;(V) which contains ¥, and let $* be a S,;-subgroup of C(V) con-
taining . Since C(Y) =M and since S;-subgroups of C(V) are cyclic,
it follows that § = $*. Since BLL 0,(C(V)), there are a prime p =5
and a S,-subgroup €, of € = C(V) such that €, is permutable with
$ and such that BZL 0,(9€,). Let ., $;. be Sylow subgroups of $
which are permutable with €,. We assume without loss of generality
that A= Q.. Since §, is eyclic, we have €, <] H,6,. Let D be a sub-
group of $, which is permutable with $, and with §, and is minimal
subject to BLZL O0,(HD). Let F = 0,(9D). Since BVBLYF, and since
0,,(9D) =1, it follows that B acts non trivially on 0,,(9D)/F.
Minimality of © forces D < 0,,.(9D). Hence, FD <] $D.

Choose Ie B — F. Since |B| =2*, we have BN F| = 2% Since
p =5, Ve Z(€), and B <] VY, it follows that p = 5 and that [FD, I]1ND
has order 5, while |BNF| =2% Thus, I, F/Fec Z(9./%), and so
I, BIFE Z(H/F), since 9, centralizes B. Thus, [FD, I] admits 9,
and so |®D| = 5. This implies that , centralizes ®, so D= C(N) = M.
This is false, since by construction, DZ IN. The proof is complete.

LemMA 13.15.  Efither (a) or (b) of Lemma 13.13 holds.

Proof. Suppose false. Then by (c¢), |B]| =2' Choose G in &
such that X = M N B° is of order 8. Let X, = £ N C(B). Thus, [%,| = 2.
Also, C(X) N B = € is of order 2. Thus, € is in the center of a S,-
subgroup of M. Since B N M¢ is also of order 8, it follows that €
is in the center of a S,-subgroup of M°. By Lemma 13.14, we have
B S 0,(C(B)), B S 0,(C(€)). Since C(C) contains a S,-subgroup of M,
we have 0,(C(€)) = M. Hence, B <= M, against [V : X| = 2.

LEMMA 13.16. Omne of the following holds:
(a) [B|=4.
(b) N@®B*) .
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(c) M = Nu(B*) - Np(T,), where B, = Z(W,) arnd W, s the sub-
group of T generated by its subgroups W with the property that for
some G in &, U is a subgreup of B of index at most 2.

Proof. Suppose neither (a) nor (b) holds. Since (b) does not hold,
it follows that (b)(i) of Lemma 13.8 holds. Suppose that (c) fails,
too. By Lemma 0.7.7, it follows that for some odd prime ¢, M con-
tains a g¢-group Q with the properties that

(i) £ is permutable with %,

(i) TO # Nyo(TF)Neo(B),

(iii) the 2-length of T is at most 2.

We assume that notation is chosen so that & is of minimal order
subject to (i), (ii), (iii). Let = 0,(TQ). Thus, HQ < TQ, and HQ/
HD(Q) is a chief factor of TQ.

Since W, <] L, it follows that N, (W,) = TQY,, where O, = QN
N(,). Also, N,o(B*) = ITQ,, where Q, = Q N NEB*). Since HQ/HD(Q
is a chief factor of TY, it follows that O, Q, & D(X). This is so
since $Q,D(Q) < TQ, 1 =0, 1.

Let B¢ = 9 be a conjugate of XL with Y= T, YL H. Thus, Y acts
non trivially on 9Q/9D(Q). Let QF be a subgroup of L which is
minimal subject to

(i) 9 normalizes HQ*,

(i) [90F, DL ODR).

Since ¥ is an elementary 2-group, Q¥ is cyclic. Let ¥ = $Q*9), and
let & = 0,(¥). Thus, |99:%]| =2. Let Y be an element of ¥ — &,.
Thus, Y inverts some S,-subgroup of £, so we assume without loss
of generality that Y inverts Q*. Let 9, =% N%Y so that 9, is a
hyperplane of B9 = 9. Let & =S L%. Since L, ST, and since L,
is generated by conjugates of 9),, it follows that % & 2,. Let € =
C..(8), so that & normalizes €. Since € centralizes ¥),, it follows
that € = IMM°. Thus, € is a subgroup of M which centralizes the
hyperplane ¥, of B¢, and so |€: € N CVBY) | < 2. Thus, Y centralizes
a subgroup of € of index 2. Hence, QF centralizes a subgroup of €
of index at most 4. Now L, &€, since L S W,. Since Q*Z D(Q),
it follows that ©* does not centralize ¥,. Hence, [€, Q*] = €* is a
four-group, ¢ = 3, and D(Q*) centralizes €. Let €F = [€*, Y] so that
€] =2, CFr=B% Let Q be a generator for Q*. Then €}¢ <= B9,
and €<= €*. By Lemma 13.8 (b)(i), it follows that 9,< M. By
Lemma 13.15,we get LY < M. Hence, [BY, B“] =1, by Lemma 138.7
applied to V. In particular, [Y, Y?] = 1. This is not the case,
since [Y, Y?] = Q* The proof is complete.

LEMMA 13.17. One of the following holds:
(a) [B]=4.
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(b) There is V in B¥ such that C(V)Z .
(¢) If Ge® and BN M = 1 then VS IN.

Proof. Suppose (a) and (b) fail. Choose G in & such that BN
M=1. Let X = BN M. We must show that X = L. Choose X in %*.
Since C(X)< M, it follows that B N MY = 1. Choose V in (B N M%),
Since [BY| =8, it follows that LN C(V) is not cyclic. C(V)= M,
it follows that ¥ is non cyclic. Let %,, %, be distinct subgroups of
X of order 2, and let X, = (X;>,7=1,2. Let X, = X X,. For each
1=1,28, let LT, =BV NCX;). Thus, BL,S MY Suppose by way of
contradiction that X == B, Let X, = X N C(B). Suppose X, = 1. Then
CX,) S M?, so LS MP. By Lemma 13.7, we get [B, TF] = 1, so B,
against ¥ C B¢ Hence, X, = 1. Since [%;, B;,] =BV N B, it follows that
[%;,B;] =1,1 <4,5 <3. This is clearly impossible since X,%, is faith-
fully represented on O, (IM/C(B)). The proof is complete.

LEMMA 13.18. Omne of the following holds:
(a) B[ =4.
(b) ZTe 7*®).

Proof. Suppose false. Let © be a solvable subgroup of & which
contains ¥ and is minimal subject to § L M. Thus, H = TQO where
L is a g-group for some odd prime q. Let 9, = 0,(9). Minimality
of Q yields .2 <19, and also implies that D{Q) = QN M, while
H:2/9.D(Q) is a chief factor of 9.

Suppose B*Z H,. Let B =2 be a conjugate of BV such that
DX, DL H,. Let QF be a subgroup of O which is minimal subject to

(i) 9 normalizes H %,

(i) [92%, Y] & LD(Q).

Since ¥) is an elementary 2-group, OF is cyclic. Let 9, = 9 N 0,(2),
where £ = $,2%%. Thus, ), is a hyperplane of . Let Q be a generator
for Q*. Then <= 0,(Y) =T = M, so by Lemma 13.15, we get Y2 < M.
Thus, <9, 9 =M. Since <P, P> contains a S,-subgroup of ¥, we
have = M. This violates D(Q) = QN M. We conclude that B* = §,.
Hence, B* < 9.

Since LM, and since B* <1 H, we conclude that N(B*) L M.
By Lemma 13.8, we get C(V)S M for all V in L. Thus, (c) of
Lemma 13.16 holds. We conclude that N(28,) contains an element of
& (p) for some p in g, so N(LB,) = M. Since LW, char W,, we conclude
that W, £ §,. By definition of W, there is an element G in & such
that B¢ N W, is of index at most 2 in V¥ and such that B¢ N W, & H,.
Let 9 =B NW,. Since B*¥<= 9, it follows that [L: Y| = 2.

Let Q* be a subgroup of Q which is minimal subject to

(i) 9 normalizes Q*§,,
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(i) [92%, DI £ D.D(Q)-
Thus, Q* is cyclic. Let 9, = 0,(9.2*Y). Thus, [9: 9N .| =2 and
$, =%, Since |B| =8, we have YN 9, = 1. Let Q@ be a generator
for ©*. Then YN HY)?# 1, and PN HI)SH. ST M. Thus, by
Lemma 13.17, we get L IN. In particular, <9, P> = M. Since
D22*Y = (D5, D, DO, we get QL*S M, against QL N M = D). The
proof is complete.

We can at last obtain some important information about 2.

LeEMMmA 13.19. || < 4.

Proof. Suppose |B|=8. Then by Lemma 13.18, we get N{B*)= M.
Let 77 be the set of 2-subgroups of I which contain L.

We will show that 7 & _#Z*(®). Suppose false, and U is an ele-
ment of 77 — _#Z*(®) of maximal order. Let £ be a solvable sub-
group of & of minimal order subject to

(1) A=,

(i) H L.

By maximality of |9, 2 is a S,-subgroup of . By minimality of
9, 9 = AL where Q is a ¢g-group for some odd prime q.

Let Ue zz (T), 1 = U; U exists since BT, 2,(Z(T)) SV and | V| = 4.
Then 1l centralizes 0,(9), so 0,(P) = NI). Since T& N1), we get
0,(9) =M, by Lemma 13.18. By minimality of §, we get

0,5(9) = 0,9) x 0(9) -

Let W* = V(cel, (B); A). If W*<=0,(9), then maximality of U
forces A to be a S,-subgroup of &. This violates Lemma 13.18.
Hence, I5* £ 0,(9).

Let B¢ = 9 be a conjugate of L such that Y=A, L 0,(H). By
minimality of ©, we have 0,(9)Q <] H, QLN M = D(Q). Let Q* be a
subgroup of & which is minimal subject to

(i) 9 normalizes 0,(H)Q*,

(i) [0.(D)2*, DI £ 0.(9)D(Q).

Thus, Q* is eyclic and 9, = 9 N 0,(L) is of index 2 in ¥, where &, =
0,(9)0*Y. Let Q be a generator for Q*. Then YIS, so by Lemma
13.15, we get Y?S M. Since &, = (0.,(9), D, 9%, we get L* <=M,
against QN M = D(Q). This contradiction shows that 7" = _Z7*(®).

We next show that if BN M = 1, then Ge M. Namely, if Ve T,
then C(V)Z IR, since Be 7°. Hence, (¢) of Lemma 13.17 holds. Since
BN M == 1, we have BES M. Since Ve _~#Z*(S), we have IN = M?,
G e In.

Let I be an involution of M. We will show that C(I) = IN. Let
% be a S,-subgroup of Cy(I), and let A* be a S,-subgroup of C(I)
which contains %. Suppose A < A*. Choose A€ A* N NE®) — A. Then
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1BNASM N M4, so M = M4, Ae M. Thus, A = A*. By Lemma
13.1, 0,(C(I)) = 1. Let A, = O,(C(I)). It suffices to show that N(U)=
M. Now A, NV #= 1, since Z(W,) = Cu(W,). Hence, if Ne N(,), then
WA NBSIMY, so that M = MY, Ne M. This completes a proof that
C(I) = M for every involution I of M. Now Lemma 13.9 and Theorem
13.2 are in conflict. The proof is complete.

LEemMmA 13.20. Suppose Ne 7. (&) and the following hold:

(a) 0y =1,
(b) NNIM contains a S,-subgroup of N.
(c) = M.

Then N does not contain an elementary subgroup of order p* for any
odd prime p.

Proof. Suppose false. Let p be an odd prime such that 3 con-
tains an elementary subgroup § of order p°®. Hence, N = M(F). Let
LB, = Q(R,MN)). By Lemma 13.8(c) applied to N, N contains a S,-
subgroup of &, so by (b), ’#N M contains a S,-subgroup T* of ©.
By Lemma 13.19 applied to M, we get |B,| < 4. By Lemma 5.7,
BLNL,202,(Z(Z*)). Choose Z in LN B Since Cyu(Z) contains an
element of .7 (q) for all ¢ in o, we get C(Z)S M. Since Cy(Z) is
non cyclic, we also get Cy(Z)e _#*(®). Hence, M = N, against (c).
The proof is complete.

Let 7 be the set of all odd primes ge z(M) — ¢ such that Cyu(Q)c
#Z*(®) for all elements @ of M of order g.

LEMMA 13.21. Suppose ge v and Q is a S,-subgroup of M. Then
one of the following holds:

(a) Q s eyclic, gex, and N(Q)< M.

(b) qgem, and Que #Z*(®) for every mon cyclic g-subgroup Q,
of G. ‘

Proof. Suppose Q is cyclic. Choose @ in Q of order q. Then
T C(RQ)S M, since Cyu(Q) e Z*(S). Hence, L is a S,-subgroup of &.
Choose Ne N(Q). Then (C(Q), N> is solvable, so <C(Q), N) S M,
and (a) holds.

Suppose Q is non cyeclic. Let Q* be a S,-subgroup of & which
contains Q. Choose @ in Q of order ¢, Z in Z(X*) of order g. Since
C(Q S M, we have Ze IM. Since C(Z) S M, we have O = Q*. Since
g¢o, it follows that gem,. Let £ be any non cyclic g-subgroup of
®. Then QS M¢ for some G in ®. Let O be a S,-subgroup of &
which contains £. Then Q< ¢, as above. Let R be a subgroup
of & of type (¢, ¢). Then C(R)< M? for all R in R¥, so every element
of UR; ¢) is contained in M. Let QS He .7~ (B). Thus 0,.(9) <=
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M, and H N I contains a S,-subgroup $, of § with f)g@q. Let
B, = 9,N0,,,(9), so that § = 0,.(9) - Ny(®,). Choose Ne Ny($,), and
let H be an element of , of order ¢. Then C(H)< M¢, C(HY) < M7,
and C(H)e _2*(®). Hence, M¢ = M, Ne M¢, and so Qe 7*6).
The proof is complete.

LEmMMA 13.22. Suppose g€ n(M) — 0, q¢ is an odd prime, and for
some p in g, an S,-subgroup P of M does not centralize every element
of Nu(B; @). Then gem, N,

Proof. Let Q be a S,i-subgroup of I permutable with P, and
let Q, = 0,(PLQ). Thus, Q, is a S,-subgroup of 0, (M) and B does
not centralize Q,, as Q, is a maximal element of Yu,(P; ¢). Since Pe
A*©®), Q is a S-subgroup of N(Q,). Since q¢ o, FE A47(Q) = @.
Since P S I, so also P < N(Q,)', since M = 0,,(M) - N(Q,). By Lemma
10.6, we have

(1) 22 &,

(ii) Q is a S,subgroup of &,

(iili) g€ m,.

Let 28 = 2,()/D{Q,(Q)), so that W is of order ¢°. Since each element
of B induces a linear transformation of W of determinant 1, it fol-
lows that LN C(R(Q)) is non cyclie. Since P N C(R2,(Q)) <] B, we get
BNCRIEQY) e . Z7*(@). Choose Q€ 2,(Q). Then C,(Q) contains an
element of .o (p), so Cyu(Q) € Z*(G). This gives ¢ € v and completes
the proof.

LEMMA 13.23. Suppose pco U7t and £ is a 2, p-subgroup of ©.
If N WM contains a non cyclic p-group, then L= IN.

Proof. If pet, then by Lemma 13.21 (b), we get € N M e 2 *(O)
and we are done. Suppose pEa.

We assume without loss of generality that ¢ is a maximal 2, p-
subgroup of .

By Lemma 6.6 (iii), either 0%) =1 or 0,(8) =1. Let 2, be a
S,-subgroup of 2 which contains a S,-subgroup 2, of &N M. By
hypothesis, &, is non cyclic. Since pe o, it follows that Ny(&,) con-
tains an element of .o (p). Hence, Nyu(R,)e_~*(®). This implies
that &, = €,. We may assume that £, contains no element of .o/ (p).
Thus, 8, contains a cyclic subgroup of index p, so that the p-length
of € is 1.

If 0,(8) =1, then &, <]¥% As & is a maximal 2, p-subgroup of
S, we get that 8, is a S,-subgroup of &, against peo. Hence,
0,(8) # 1, so that 0,%) = 1.

Let & = 0,(8), B = 2,(8,). Since B¢ .7 (p), there is an element
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B, of B such that C(B,) does not contain an elementary subgroup of
order p°. Thus, if P is a S,-subgroup of C(B, which contains B,
then B = (). By Lemma 5.25, if &¢ ¥ (®), B S, then
every element of Y(B; p’) is in 0,(S). Let L* be a S,-subgroup of &
which contains . Then P = (B,> x %, where %, is cyclic and B, =2
2(Z(L*)). It follows that N,.(PB) permutes transitively the subgroups
of B of order p distinct from Q,(Z(P*)). Thus, if XeB — Q2,(Z(P*)),
then P is a S,-subgroup of C(X).

Since B is faithfully represented on &, 2,(Z(3*)) does not centralize
K. Since & = (Cy(B)|Be B, it follows that for some X in B —
QUZ(P*)), C(X) & C(R,(Z(B*))). Thus, Co(X) £ 0,(S), where S=C(X).
Hence, 1 is not the only element of Y(PB; 2). Let K, be a maximal
element of Y(B; 2) which contains a S,-subgroup of 0,(&), and let &,
be a maximal element of WY(B;2) which contains &,. Since K, is a
S;-subgroup of 0, (N(R,)) and since N, ()< 0, (N(K,)), we get that
& = &. Hence, P normalizes some maximal element &, of Y(B; 2)
which is not centralized by Q.(Z(L*)).

Let B = {X|Xe ¥, Cy(X) = 1}, B, = (X Xe®, C,(X)=+1}. Thus
%gQL(Z(EB*)), %OgQI(Z(SB*)). Since N;.(P) permutes transitively the
subgroups of B of order p distinct from Q,(Z(PB*)), we can choose P
in Ny (P) such that BN %0 # @. By Lemma 6.3, & and &, are con-
jugate by an element of C(B). Hence, N(®) contains an S,-subgroup
of C(®B). Thus, we may choose 4 in C(B) such that &, 2 P4. Replacing
P* by $**, we may assume that 2,2%. If &, D%, then &, is a S,-
subgroup of N(P), so contains an element of .o (p). This is not the
case, so &, = .

Suppose Co(2,(Z(P*))) = 1. Since N(P) S N(Q(Z(H*))), it follows
from Lemma 6.3 that % is not a S,~subgroup of N(&). Since & is a
S,,,~subgroup of N(8), this is impossible. Hence, Cy(2,(Z($*))) = 1.
Hence, & = (Cy(B*) [B* is of order p, B* < B, B* = 2,(Z(V*))>. Since
B acts faithfully on &, there are B, B,, B, = B, of order p in B such
that Cy(B,) = 1,7 =1,2. We can then choose P in N,.() such that
B’ = B,. Hence, Cy(B,) = 1, Cyr(B,) #+ 1. Hence, K = K for some
C in C(B). Hence, P is not a S,-subgroup of N(®). This contradic-
tion completes the proof.

For each p in o, let Eﬁép = {P|Pe i, P is of order p, Cp(P) con-
tains an elementary subgroup of order p°}, and for each p in 7, let
M, = (PIPeM, P is of order p}.

LEMMA 13.24. Suppese peo Uz, and X, is an elementajw sub-
group of M of order 8. Then (X, Pyec #*(®) for all P,cIN,.

Proof. Let & be a S, ,-subgroup of (%, P,y, and suppose by way
of contradiction that <%, Py e _Z*(@). Since L= (&%, Py, it follows
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that €¢ _Z*(®). In addition, & contains an elementary subgroup %
of order 8 and an element P of I,.

Let 4" ={N|Ne L. (@), L& NL M}, sothat 4/~ +# @. Among
all elements of _#~, let ! be chosen so that [N N M|, is maximal,
and with this restriction, |9| is minimal.

Case 1. M is a 2, p-group.

Let 5, be a S,-subgroup of M NN and let N, N, be a Sylow
system of ! with N, &N, PeN,. If N, is non eyelic, so is N, N C(P),
so by Lemma 13.23, we get S M. This is not the case, so N, is
cyclic. In particular, S,-subgroups of (%, P,y are cyclic. Since P,
is of order p, S,-subgroups of (X, P,> are of order p. Hence, N, = (P,
by minimality of |9¢].

Let & = 0,(N). Thus, N = &+ N,(N,), since [N,| = p. Also, %,/&
is faithfully represented on &J,/8, so 9,/® is ecyclic. Since N, LM
and NR,) S M, it follows that REZ M. Let & =N M K. Since
¥ is non cyeclic, and since "2 2%, it follows that &, = 1. Let &
be a S, ,-subgroup of N(®, which contains Ny(,). Since Ny (&) <Z M,
we have SZ M. By Lemma 13.23, S,-subgroups of & are cyclic.
Let &, be a S, ,-subgroup of N(&,) which contains J,3t, and also con-
tains a S, ,~subgroup of Ny(&,). Since N, =S N S,, there is A in
N(&) N N(X,) such that © = &{. Since Aec N(,) = I, we have &, ZIN.
By maximality of [t N M|, it follows that |[S, N M|, = [NN M|,
Hence, %, is a S.-subgroup of &, N IM. Hence, & is a maximal ele-
ment of YUp(M,; 2). In particular, K 20,(M). Let &, be any sub-
group of & with 0, (M) = R, = K. Since C(O,(M)) = Z(Q.(M)), it follows
that Z(8,) S Z(0,(M)).

Let M, = 0,(M). Since &, is a maximal element of pu(MN,; 2},
it follows that I, N &, is a S,-subgroup of M,. Let B, = 2,(R,(INy)),
so that B, is 2-reducible in ,. Let M, = Cp(B,). We will show
that M, = M,. Suppose false. Let & =& N M, so that & 20,(M)
and &, is a S,-subgroup of M,. By Lemma 5.10, {L,i12 2,(Z(&)). In
particular, B,22,(Z(R®)). Since M, <] M, and M, L M, it follows
that p||MM,|. Hence, p|M, N C(Q2(Z(R)))|. Let R be a S, ,-subgroup
of N(2,(Z(®))) which contains . Thus, RZL M, so by Lemma 13.23,
S,-subgroups of R are cyclic. Let %, be a subgroup of M, N C(Q,(Z(K)))
of order p, so that L, & N(2.(Z(R))). We can choose B in N(Q,(Z(8&))),
so that N, = P Hence, N, =M N M2, Since N(N,) <=M, we get
that one of the following holds:

(i) S,-subgroups of I N M? are non cyclic.

(ii) S,-subgroups of M are cyclic.

If (i) holds, Lemma 13.23 implies that I = M?, so that Be M. If
(ii) holds, then pez. But then Lemma 13.21 implies that Be IX.
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Hence, Be M, so that N, = M,. Since S,-subgroups of M, are cyclic,
it follows that M, is contained in a S,-subgroup T* of M which is
permutable with ,. Since &, is a maximal element of Y,(MN,; 2), it
follows that &, 20,(T*N,). Hence, & = 0,(T*N,), since 0,(T*N,) is a
maximal element of M., (%,; 2). Hence, TN, & N(R,). Since S N(&),
we can choose C in N(&,) N N(M,) such that &°2E*. Since Ce N(N,)<
M, we get that & contains a S,-subgroup of M. This is not the
case since S Z IM. We conclude that M, = M,. Hence, O,(IN mod IN,) =
NM,, since M, = 0,.(M) and O,(M mod IM,) is a normal p’-subgroup of
M. Since LB, is 2-reducible in M,, this implies that O,(M mod M,) =
M,, so that B, is 2-reducible in PM. Hence, BLL,LEB. On the other
hand, B,22,(Z(R)), since & N M, is a S,-subgroup of IM,. Since
Bt . 7, we get R M. This contradiction shows that this case does
not arise.

Case 2. N is not a 2, p-group.

Let 9t be a S.,,-subgroup of 9 which contains €. Let %, 9N, be
a Sylow system for 8 with Pe N,. Choose g 7(N), ¢ # 2, p, and let
Q be a S,-subgroup of N which is permutable with %, and with 9,
such that QZ M. Such a choice of ¢ is possible since ML M. By
minimality of ||, we have N = NN, Q.

Suppose Ge® and = M. Then Pe M. Since Pe Eﬁl,,, it fol-
lows that I = IM°, against NRZ M. We conclude that N is contained
in no conjugate of M.

We next show that M, = (P). This is clear if N, is cyclic, by
minimality of ||. Suppose by way of contradiction that N, is non
cyclic. By Lemma 13.21, we get p¢ 7, so by construction, we have
peo. Since N, ¢ .7 (p), it follows that N, contains a cyclic subgroup
of index p. Hence, the p-length of M is 1. By minimality of |N]|,
we get N, = 2,(N,), since Pe 2,(N,). Since N, ¢ .7 (p), it follows that
R, contains an element P, such that Cy(P,) contains no elementary
subgroup of order p®. Hence, N, = (P> x (P, since Pc EUAEP. This
implies that Ny(,) permutes transitively the subgroups of 9, of order
p distinct from <{P). Hence, {P) <] Ny(:,). But Ny(N,) contains
an element of .o~ (p), and so NN, =M. Since N = 0,.(N) - N(N,),
it follows that R.(P>Q is a group, so by minimality of ||, we get
N = N,(PYQ. This contradiction shows that N, = {(P).

Since N(,) = M, and since N ZL M, it follows that N, 4 N. Hence,
0,MN) =1, since |N|, = p.

Suppose by way of contradiction that 0,(0) = 1. Since 0,(N) = 1,
it follows that F(M) = 0,(MN). Thus, X is faithfully represented on
o,M), so by Lemma 5.11, &L= _#;(0,N) + @. Hence, gex, U7,
Also, 2 ~ g, since X is a non cyclic abelian group of order 8. Hence,
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() S 7 *(®), either by virtue of g ez, or by virtue of ¢ = 5, ¢gér,.
Here we are once again invoking Theorems 8.1 and 9.1 to conclude
that if ¢ =3, then gem,. Let IN* = M®). Thus, IM* = IN. By
maximality of | N N}, it follows that N, is a S,-subgroup of IM*.
Let IR} be a S,subgroup of IM* permutable with %,. By Lemma
6.6, either O,(M:9,) =1 or O,(NLM) = 1. Suppose O,(M;N,) = 1.
Since X &N, it follows that for some X in ¥*, 0, (M;N,) N C(X) con-
tains an element of .27 (¢). Hence, C(X)= M*. By Lemma 13.1,
0,(C(X)) = 1. This is impossible since 0,(M ) N C(X) & 0,.(C(X)).
Hence, 0.(M;I,) = 1. Hence, N(O,(MN,)) < M*, so that M* contains
an element U* of %/(2). Hence, O,(IM*) = 1, by Lemma 6.1. Hence,
M* = N(0,(IM*)), since M*e 2 (®). By Lemma 13.1, we get
0, (M*) =1. Hence, Up-(I;2) is trivial. This violates 0O,(N) e
(N5 27). We conclude that O,() == 1. By maximality of |9t N D},
together with the fact that Case 1 does not hold, %, is a S,-subgroup
of N(O,(M)). This implies that 0, (M) = 1, by Lemma 13.1. By Lemma
13.20, we get & A45(Q) = @.

Let T* be a S,-subgroup of I which contains 9,. By maximality
of ||, it follows that Z(T*)=MN,, and so Z(T*) S Z(0,(N)). Hence,
Q does not centralize Z(0,(M)), since Q(Z(E*)iSBVr = 7.

By minimality of ||, % N M is a maximal subgroup of . Since
[N, ]| = p, and N(N,) & M, it follows that 0T <IN. Hence, M N N =
NR,D(Q), and O,(JYQ/0,(IND{L) is a chief factor of . Since
e AN = @, (0.8.4) implies that either O is abelian or is a non
abelian group of order ¢° and exponent ¢. Since [Q, N,] # 1, we get

= 1 (mod p), so ¢ = 5.

Let T8 be a minimal normal 2-subgroup of 9t which is not cen-
tralized by Q; T exists since 1 = [R,(I), O] <{N. Let N, = Cp(WY).
Thus, R, S LN, D), and so I, S ILD(Q), since O = [Q, N,]. Since
¢ = 5, Theorem 1 of [43] implies that 94,0 = Co(Z(I)). Ny (J(IL)).
Since C(Z(M,)) & M, and since M N QO = DQ), it follows that O normal-
izes JO,), so that J) S0, (N) = 0,N). It follows that JO) <IN, so
by maximality of |9t N I}, we conclude that N, is a S,-subgroup of
M. Clearly, W N Z®L,) # 1. Since W N Z(,) S, and since D(Q)SIN,
it follows that D(Q) centralizes W N Z(I,). Since T is a minimal
normal subgroup of N, we get [D(Q), W] = 1. Let N = NN, and for
any subset 9 of N, let 9 be the image of 9 in . Thus, L is 2
normal abelian subgroup of % and [Q, N,] = 1. Let W, = W N Z(N%,).
Since N, is a S,-subgrecup of M, we have W, <Y, by Lemma 5.10.
Thus, |2, £ 4, by Lemma 13.19. By Lemma 5.46, we get [IG,| = 4,
whence B, = BL. But B M, against Lemma 5.46. This contradic-
tion completes the proof of this lemma.

Let &, be the set of all the normal elementary 2-subgroups of
M of order = 8. Thus, &, is partially ordered by inclusion. Let
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% be the set of all minimal elements of #,.

Hypothesis 13.2.

(a) Hypothesis 13.1 is satisfied.

(b) = 0.

Let ¥ be an element of # . Choose & such that ¥/ is a chief
factor of M. Let M, = Cyu(¥), € = Cp(F), D = 0,(M, mod €). This
notation is preserved in Lemmas 13.25 through 13.38.

LEMMA 13.25.
(a) |CG]=4.
(b) &=1.

Proof. Since Fe &, (a) holds. If & =1, then § is 2-reducible
in M, against Lemma 13.19 and Lemma 5.9 (i).

LEMMA 13.26. .
(a) If I is an tnvolution of M and Cyx(I) NIM, = & for some
peoUrt, then Ie 7.
(b)) E=. 7.
(¢) One of the following holds:
(i) Fe~.
(i) B is generated by subgroups A of order 16 such that W= 7.

Proof. Since 2¢ 7, it follows that Cy(I) contains an elementary
subgroup of order 8. Thus, (a) is a consequence of Lemma 13.24.
Since |E| < 4, (b) is a consequence of (a). If |§| = 8, then (a) yields
(e)(i), so suppose || = 16.

Choose peo and let B be an elementary subgroup of I of order
. Let =% X F X +++ X F, where each F; is an irreducible B-
group, 1 <i=s, and P = Cy(B). Let B; = Co(F), By = B; N By.
Thus, B;; # 1. By Lemma 138.24, it follows that (ZB¥F)c.”. If
s <1, then B is not faithful on ¥, and so F< .7, so that (c¢)(ii)
follows. If s =2, then |FF:F;| =16 for L <7 < j < s. Since FHd:d;
is generated by its subgroups of order 16, (c)(ii) holds and the proof
is complete.

LEMMA 13.27. Suppose F, is a subgroup of F of indexr 2 and A
is an elementary 2-subgroup of M such that

(a) ANCE) =1.

(b) C;Q) = Fo.
Then AW AND| < 2.

Proof. First, suppose that U does not centralize & Choose
Ec@ — C). By (b), we get T =T X <E>. By (a), no element of
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A* centralizes €. Thus, U is faithfully represented as automorphisms
of &, a four-group. Hence, || < 2, and we are done. We may as-
sume that € =%, so that A = I,

Let 2, be a complement for A ND in A, and let || =2°. We
must show that ¢ < 1. Since I, ND =1, no element of 2, stabilizes
the chain ": §>E>1. Since U, centralizes &, it follows that no
element of ¢ centralizes W = F/E. Let W, = F/E, so that I, is a
hyperplane of &, and T, = Cx(A4) for all A in AL Since M,/Cy (T)
has no normal 2-subgroup and is solvable, we conclude that || < 2.

LEMMA 13.28. One of the following holds:
(a) s 7.
(b)) Cu(®) 1s a (o UT)-group.

Proof. Suppose (b) does not hold. If Cyu(¥) is not a t’-group,
then (a) holds by Lemma 13.24, together with the fact that for each
pin T, Eﬁﬁ,, contains every element of It of order p. Suppose peoa,
and p||Cn(®)|- Let B be a S,-subgroup of C(F), and let P* be a
S,-subgroup of M which contains P. Then 1P = P* N CB) <] B*.
Since P <] P*, P contains an element of Sj%p, so (a) holds by Lemma
13.24. The proof is complete.

The next lemma is the heart of the matter.

LEMMA 13.29. Suppose J is an invelution of I — Cu(F). Let
’Cgo = Cﬁ(J)y 27 = i% %o{'
(a) If CZLF, then [F,J]N A #= Q.
{b) Suppose € = F..
(i) If f =2, then [§, Jf=7.
(i) If f=38 and §, is a subgroup of T of index 2 which
contains So, then [F, J1 N7~ # O.

Proof. By Lemma 13.28, we may assume that C(3) is a (¢ U 7)'-
group, since the conclusions of this lemma are obvious if FS . ~.

If €L, then we get [F, J]2[E, J]>1. Thus, (a) holds, by
Lemma 138.26(b). For the remainder of the proof, we assume that

(13.1) C=Bo, JeW,.

For each subset & of M, let © = &D/D. Let & be the set of
all K in M, such that [K, J]€D, so that R2D, and & = C5,(J).

Since F/C is a chief factor of M which is centralized by D, we
may view F/C as a module for M,. Hence, & normalizes [, J]G.

Suppose ¥ is a subgroup of & such that for each p in o U7,
every element of X of order p is in 9521, and such that [X], .= 1,3, 1.
Since & normalizes [, J|€, so does X. Since
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[, JI€/€ = [3, JIIS, JINE,

it follows that |[3F, J]C: & = 2%, where a < 3. Hence, for some p in
o U7, some element of £ N I, centralizes [T, J]&, and we are done.
We may assume that no such subgroups ¥ exist.

Case 1. 9N, contains a subgroup R such that

() ROD, | N:D|=9",peo Ur.

(B) J normalizes R.

(v) Every element of R of order p is in Eﬁ@,.

(60) One of the following holds:

(i) p=38,r =3, R/D is elementary.

(ii) p=3,r=4.

(i) »p="17,r=3.

(iv) p =17, contains an element R of order 7 which is in-
verted by J and such that for some prime ¢ in o — {7}, Cy(R) con-
tains an element of .o~ (g).

_(v) p#3,7,p">5.

Let t = (R, J) and let &, &, &,, X be the images in Ag () of R, R,
D, J respectively. If (8)(i) or (4)(ii) holds, then we may apply Lemma
5.48 or Lemma 5.49 with § in the role of the F,&-module M. Trans-
lating the conclusions of these lemmas to the present situation, and
then using (v) and Lemma 13.24 yields this lemma. Suppose (0) (iii)
holds. If J inverts a subgroup of R/€ of order 7%, then there is a sub-
group P of RN/C(F) N R of order 7> which is inverted by J, by Lemma
5.36. In this case, [F, B] = § is a free F,(J)-module, and since f < 3,
we get || = 20, Also, P is represented faithfully on §. Thus, ¢J, B>
is isomorphic to a subgroup of GL(2,6). This is impossible since
GL(6, 2) has S;-subgroups of order 7° and also has elements of order
7 which are not real.

Let R/D = Cy5(J). Thus, R, normalizes [F, J]E. Since R, cen-
tralizes ¢ and since f <38, we get |R; R, N C(F, J|E/E)| =1 or 7.
If |R: D] > 17, then R, contains an element of order 7 which centralizes
[F, J] and we are done. On the other hand, R, DD, since J does not
invert R/D. Hence, |Ry: D] = 7. Since J inverts no subgroup of R/D
of order 72, and since |R:D| = 7, it follows that N/D is a non abelian
group of order 7 and exponent 7, and that J inverts the Frattini
quotient group of RN/D. This is impossible, since f < 3.

Suppose (9)(iv) holds. Let § = [®, R]. Thus, || =2°, f = 3.
Let 9 be an element of .7 (¢) which centralizes :R. Then & admits
91, and since ¢ = 2, 7, it follows that 9 centralizes §. But §2[%, J1,
so we are done.

Suppose (0)(v) holds. Again, let Ry/D = Cye(J). Then R, nor-
malizes [F, J]€, so a S,-subgroup of R, centralizes [T, J]E, since
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1S, JIG: G| =2 and p=3,7. If R,DOD, we are done, so suppose J
inverts RN/D. Since p” > 5, we get f = 4. Thus, if any of the above
possibilities occur, we are done.

Let £/ be the Fitting subgroup of 9,/D. Thus, £/D is of odd
order. Let £, be a S,,.-subgroups of £, so that @ = . Let p be
the largest prime in o, and let ¥ be a S,-subgroup of M. Since
BS P, P centralizes every cyclic factor of M.

Case 2. p = 5.

Since neither (6)(i) nor (d)(ii) hold, either the S,-subgroup of Z,
contains no elementary subgroup of order 3 or 3¢c. If 3¢, then
B centralizes every chief 3-factor of MM, since M has no elementary
subgroup of order 3°. If 3eo, then we still get that L centralizes
the S,-subgroup of £, since |¥,|; < 3%, and %, contains no elementary
subgroup of order 3°.

Suppose ¢ is a prime such that ¥ does not centralize the S,-
subgroup of 8. We will show that ¢ = p. If ¢ # p, we get q +# 3,
and by Lemma 13.22, we have gqeo U 7. Since p is the largest prime
in ¢, and p = 5, it follows that one of (6)(iii), (iv), (v) is satisfied for
a suitable subgroup R/D of €. We may assume that P centralizes
the S,-subgroup of . Hence, P centralizes 0,.(M,/D), from which
we conclude that £/® contains an elementary subgroup of order p°.
It follows that one of (9)(iii}, (iv), (v) holds for a suitable p-subgroup
of €.

Case 3. p = 3.

In this case, we get o = {3}. If B does not centralize the S,-
subgroup of ¥, then one of (0)(iv), (v) holds and we are done. We
may assume that ¥ centralizes the S,-subgroup of .

Let B, = BN L, so that P, is the S;-subgroup of L. First, suppose
that 9B, contains an element P of order 8 which is not in EIARS. Choose
NezZ(P) and let P, = C;,(W). Thus, P, = PKP). Since (0)(), (ii)
fail, it follows that |3, | < 3° and P, contains no elementary subgroup
of order 3°. Hence, U = 2,(B)). Suppose in addition that P, containg
a non cyclic characteristic abelian subgroup. In this case, we get I
char %, so that 11 is a factor of M. But then [I, T, is a chief factor
of M so that PD centralizes every chief 3-factor of I which is between
D and L. This forces BN I, = Py, and also gives PD <] IN. Since
J normalizes %, (6)(i) is satisfied for a suitable subgroup R of PD.
We may assume that every characteristic abelian subgroup of %, is
cyclic, and that P 1 M. This forces 2,(P,) to be non abelian of
order 3°. Since P does not centralize Q,(B,)/D(2,(F,)), owing to LD I,
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we get that all elements of B, of order 3 are in 9523.

It remains now to consider the case where every element of P,
of order 3 is in M,. As 0)(), (6)(ii) do not hold, P, is of order at
most 3° and if || = 3%, B, is not an elementary. Since DP 4 M, it
follows that LB, is non abelian of order 3° and ¥ = Z, § Z..

We next show that & = §,. Suppose false. Let » be the largest
prime divisor of |2], so that » > 5. Let R be a S,-subgroup of k.
Then R centralizes the S,.-subgroup of £, and so R =8. By definition
of 7, together with ¢ = {38}, we get rer. Suppose r # 7. Then
|R| = 5, since otherwise (3)(v) holds. If J inverts R, then I has an
element R of order 5 inverted by J, and [§, R] = § is of order 2.
But §€ <] M, against the presence of %, together with the fact that
/G is a chief factor of M. If J centralizes R, then R normalizes
[§, J1€, so that a S,-subgroup of I centralizes [F, J]. This is im-
possible, since EUA% contains every element of IN of order 5.

Suppose » = 7. If J inverts some element of RD of order 7, we
are done, since (9)(iv) holds. We may assume that J centralizes R.
Hence, RD normalizes [F, J]E, so we may assume that |R| = 7. Hence,
Q is the direct product of P, and R. Now F/E is a chief factor of
M, so P/ and R have no non trivial fixed points on F/E. Since J
does not centralize %, it follows that |F: €| = 2% owing to f < 3.
But no element of GL (6, 2) of order 7 centralizes any extra special
subgroup of order 3°. Hence, & = B,, from which we get that I is
a 2, 3-group.

We now get DL, <] IN. Let I, = M,P. Since /MM, is 3-closed,
we get I, <JW, |P: M| < 2. Also, 0,(M,/D) =1, and the 3-length
of M/D is 2. If J€0,,(M mod D), then since S,-subgroups of
0,,(I, mod D)/¥ are quaternion, it follows that J normalizes PD. This
is impossible since (o)(ii) does not hold. Hence, we may assume that
J ¢ 0,,(M, mod D). In this case, S,-subgroups of IN,/L are isomorphic
to S,-subgroups of GL (2, 8). Every involution of GL (2, 8) normalizes
some S;-subgroup of GL (2, 8), and so J normalizes some S;-subgroup
of M,/D, against the fact that (6)(ii) does not hold. The proof is
complete.

LEMMA 13.30. Suppose GeS and F°S M. Then F°<C.

Proof. Let F* = F°, M* = MC, §* = €%, D* = D¢, €* = €¢, 7* =
7% Since ¥ is abelian, we may assume that G ¢ I, so that M = M*,
Hence, .~ N .7* = Q.

First, suppose §S.”. Then F¥<=._7*. Let F, = C4F*), and
suppose by way of contradiction that %, F. Let F,/F, be a chief
factor of FIF* with F = F. Choose FeF, — F. Since |F| = |F*], we
get |Tol <|F*|. Hence, there is F* in §* — {1} such that [F, F*] = 1.
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Since F*e _7*, we get Fe IM*. Hence, 1 = [F,F*1 =T N T*, against
NI =0.

We may now assume that F*Z . 7. By Lemma 13.26 (c), it fol-
lows that if ¥ is any subgroup of T* of index at most 8, then
C(FH <= M*. We will show that F* centralizes €. Let Ff = C;(6G),
so that |§*: ¥ < 2. Suppose |F*: G| = 2. Choose E in & — C(F™*).
Thus, Ec M*. We may apply Lemma 13.29 (¢), with E in the role
of J, M* in the role of I, ¥ in the role of F,. We get [¥*, EP = ™.
But [§*, EJf& .7, against ./ N _7* = . Hence, F* centralizes €.

Suppose F*E=D, but F*ZLE. Choose F in § — C(F*), and let
% = Cy(F). Then |F*: 35| < 4, since [F, F|=C. Hence, Fe I~
Hence, [G*, F1ISENE* =1, so E*=Fy. By Lemma 13.29 (b)(i), we
get [¥*, FPS 7%, against 1 C [F*, F]S6.

Thus, in proving this lemma we may assume that §* = I, F* £ D.
Let B/D be a subgroup of M,/D of odd prime order p which admits
#%* and is not centralized by F*. We will exploit B/D to show that
¥ M*, introducing a powerful symmetry.

Namely, let JF = Co(P/D), so that |F*: FF| = 2. Let § = F/C,
and ¥, = %./C be a subgroup of § which admits (P, F*)> and is minimal
subject to [, B] == 1. Then FiD centralizes F, and F* does not.
Choose F' in $, such that $* does not centralize F. Let FF = i N
C(F). Since [F, F]1SE, we get |Ff: 3| = 2%, with a < 2. Hence,
5% ¥ < 8, so that C(FF) = M*. Hence, F e IM*.

Since Fe dM*, we get [F,E*]=FNCE*. If FNE* =1, then F&
C(% N E*) = IN*, as we are trying to show. So suppose F N E* = 1.
In this case &* = %i.

If o =2, we apply Lemma 13.29 (b)(ii) with F in the role of J,
IM* in the role of M, FF in the role of T, Ty in the role of F,. We
get [§F, F1N7* = O, against 1C [T, F]=C®. If a <1, we apply
Lemma 13.29(b)(i) and get [F*, FFS._.7*. Thus, “*NT+* O in
both cases, so that < Di*.

We now define the integer b by 2° = |F*: F* N D|. As we have
seen, b=1. Let M, = M/D. Thus, X is a F0,-module. Since
TS M*, we get [F, A, Bl =1 for all A, BeF*. Let X/D be a sub-
group of 9, which admits §*D/D, such that /D = £/D X -+ x £/D,
where each %X; admits §* and C;.(X/D) = §* N D, and where [X: D|=p,,
a prime. We can then choose elements F*, ... F}* of §*, such that
F7 inverts %,;/9 and centralizes X,;/® for j=14. Thus, * =F*ND x
(FFY X oooe X (FY¥Y. Also, since F inverts %,/®, ¥; contains an ele-
ment X; of odd order which is inverted by F;* and satisfies X; = (D, X,>.
Let ¥, = %,/ be an irreducible subgroup of § as F,(¥, F*>-module
such that ¥ does not centralize {,; I, exists since X/ acts faithfully
on ¥ and b= 1, and since § is a completely reducible ¥/®-group.

Suppose %,/D centralizes §, for some i. Then X, stabilizes F, O
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E>o1, so since X; has odd order, X; centralizes §,. On the other
hand, we can choose j such that X;/® does not centralize %,. Thus,
letting %,/® play the role of R/D in the first part of the lemma, it
follows that §, N._#* = @. Thus, X;eM*. This is absurd, since
F¥ inverts X;, while §* <{I*. We conclude that X,/9 has no non
trivial fixed points on §,, 1 <4 < b.

By Lemma 5.47 with (&, §*, )/ in the role of &, F, in the role
of M and with k& = F,, we conclude that b = 1.

By symmetry, we get |F TN D*|=2. Also, [N D*, T*ND]s
ENE* =1, so FND* F*N D) is abelian.

We next show that G*=%* N D. Suppose false and E* e E* —
FFND. Since FSM*, we get |F: C3(E*)| = 2. By Lemma 13.29(a)
with E* in the role of J, we get [§, E*<.#. This is impossible,
since [§, E*]=G*. Hence, G*=¥* N D. By symmetry, €S D* N F.

Since E*=DNF*, we get [F, E*]=C. Since [F, E*]=C*, we
conclude that @* centralizes . By symmetry, & centralizes F*.

Choose F'e¥ — N D*. Then F centralizes G*. Let &* = F* N
C(F). Since [F*ND, F]<E, it follows that |F*: §*| < 8. Suppose
[§*: §*| = 8. By Lemma 13.29(b)(ii) with F in the role of J, M* in
the role of M, F* in the role of T, F* N D in the role of F,, we get
[B*ND, FlN7*+# @. This is impossible, since [F*N D, F]<C.
If |§*: @*| = 4, then Lemma 13.29(b)(i) yields a contradiction, since
[F*ND, F]l+1. Hence, we may assume that F*NDESE, since
otherwise, [§*, FIFS . 7%, against 1C[F* N D, F1<=E.

Now F centralizes a hyperplane of §*. Choose F'* e F* — F* N D.
Then by symmetry F'* centralizes a hyperplane of ¥. Hence, [F, ] =
[F, %] = [T, F*] = [F, F*]) is of order 2, so by two applications of
Lemma 13.29(b)(i), we get [F, F*]e.” Nn.7*. This contradiction
completes the proof.

LEmMA 13.31. Omne of the following holds:
(a) s 7.
(b) CF)ESM for every subgroup F, of index 16 in F.

Proof. Suppose (a) fails. Choose p € g, and let P be an elementary
subgroup of M of order p°. Thus, P is represented faithfully on &,
by Lemma 13.28. Let § =%, x X, X --- X X,, where X, = Cy(B) and
X, -+, X, are irreducible P-groups. Thus, XXX, =7 for all 7,7,
so we may assume that XXX, NG, =1 for all 4,5,1<i<j<s.
Since |F:;%;] =16 whenever 1 <1< j<s, wegetp =3,% =1, |%;| =
4,1 < i < s. Since P acts faithfully on ¥, s = 3. Let Ul = &, N X.X.X,,
so that (U] = 4. If Un%X, # 1, for some %,J, we are done. Hence,
we may assume that 1 = (U, U,), where U, = X;, X, X;, X;; € %;, X351,
1=<7=<38,7=1,2. Since U,U, ¢ %X.%; for all 4, j, we get X; = <U,;, U;).



NONSOLVABLE FINITE GROUPS 541

Now P =, X By, X B, where |B;|=3 and [¥;, %] =1,7+7,1=4,7<3.
We can therefore choose P; in B, such that P X,,P, = X,;, 1 <7< 3.
Let P = P,P,P,. Then U} = U,, US = U,U,, so that P normalizes 1.
Hence, C(¥,) S C)= NU) =M, the last containment holding by
Lemma 13.24.

LeMMA 13.32. Omne of the following holds:
(a) Fs. 7.
(b) If Ge® and [F=F N M| < 2, then 9= .

Proof. Suppose (a) and (b) fail. Choose G in & such that
I FENI| =2, Let M* = M4, F* = %%, and let §F = F* N I. By
Lemma 13.30, we get FZLM*. Hence, “*NF =0, NT = .

Let & = §NM* so that F,cF. Choose FeF — F. Let FF =
C(F)NGF and let 27 = |FF:§r . If £ <3, then |F*: FF| =< 16, so that
by Lemma 13.31, C(F:) =IN*, against F ¢ IN*. Hence, f =4. In
particular, §F<ZD, since FCF. Also, we get S I*, so that
[TF, E]=$* N E =1, the equality holding since .7 N F* = O.

Let R/D be a subgroup of M,/D of odd prime order which admits
% and is not centralized by $F. Let FF = &FF N CHR/D) so that
[ B | = 2. Let %,/€ be a subgroup of %/¢ which admits RFF and
is minimal subject to [, R]ZL E. Then [FF, F]=E, and FF does not
centralize %,/6. Choose F' in §, such that GF is not centralized by
B, Since [FF, F1< 6, it follows that §F = §F N C(F') is of index at
most 4 in , so is of index at most 16 in F*. Hence, C(F;) <= I*,
so that F'e IM*. Hence, [T, FISENF* =1, so that FF = FF. Now
FeM* and F*NCEF)2FF, so that [F*:F*NCEF) 4. On the
other hand, €<= IN*, so that &* = F°<= M. Hence, E* =¥, so that
[G*, FI=S& N 6* = 1; that is, G* =7

By Lemma 13.29(b)(i) applied with F in the role of J, I* in the
role of M, F¥ in the role of Fy,, T* in the role of F, we get [F*, F] =
& *. In particular, [§F, F'] S 7* But 1cC[F F]SPH, so we get
NG # @. This contradiction completes the proof.

LemmA 13.33. . _~.

Proof. Suppose false. By Lemma 13.28, C{%) is a (¢ U t)’-group.
Let W = V(cely(F); ), where T is a S,-subgroup of M. By Lemma
13.30, W= Cp(F) = €, 50 Ny,(W) contains a S, .-subgroup of M. Hence,
NE) S M, since Ny(W) e _7*(O).

Since F*Z 7, we can choose F e F* — 7. Hence, Cy,(F) € _7*(®).
Let %, be a S,-subgroup of Cyu(F). Thus, T,¢._2*®). Let 9 =
{Z,|Z, is a 2-subgroup of M, T, 23 for some M in M, T, ¢ Z*(®)}.
Thus, 9~ # @, as Z,€. 9 . Let T, be a maximal element of 7.
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Since .7~ = 7 for all M in M, we assume without loss of generality
that £, & %. Since F&T,, every element of .7 contains F.

Choose e 7.7 (9), T, =6, + M. Since FE&S, we can choose
a four-group & of ¥ with ¥ <.#. Hence,

0.(®) = €0,(®) N C(F)|Fef,

and so0 0,,(&) S M. In particular, F centralizes 0,(S), and so 0,(&) = 1.
Since G e 7. (®), we have & = N(0,(S)), and so by Lemma 13.1, we
have 0.(8) = 1.

By maximality of £,, it follows that &, is a S,-subgroup of &.
Let B, = V(cely(B); T). Since FSW,, we have W, = 1. We argue
that N(2B,) S M. This is clear if T, <, since in this case, N(BW,) D
T, so that maximality of &, forces N )&M. If T, =T, then
W, = W, and again we have N(TB,) = I, by the first paragraph of the
proof.

Let © be a subgroup of & which is permutable with £,, and is
minimal subject to L Z M. Then Q is a g-group for some odd prime
g, and W, < O, = S,, say. By minimality of Q, it follows that the
g-length of &, is 1, and that 0,(&,)Q/0,(&,)D(X) is a chief factor of &,.

Since W, £ 0,(8,), we can choose G in & such that F° = F*=<,,
T* L 0,(®). Let Q, be a subgroup of Q which is minimal subject to

(a) 0,(8)Q, admits F*,

(b) [Q, B £ M.

Since Q satisfies (a) and (b), owing to QN W = DRQ), O, exists. By
minimality of Q,, 0,(&,)Q,/0,(S)(Q, N D(Q)) is an irreducible F*-group.
Since F* is an elementary, we get that [Q: O, N D(Q)| = ¢, so that Q,
is cyclic. Hence, if §F = Cy(0.(8,)2,/0,(8,)), then FF is of index 2
in §*. Let @ be a generator for Q, Since F0,(3,) <] 0,(5)Q,F*,
we get FrY= M. Hence, |F=F°N M| < 2. By Lemma 13.32, we
get TS M. Hence, <F°, T -0,(6) = M. But since

D& B, 0.8 ,

we have a contradiction, since Q,Z . The proof is complete.
Again, let T = V(cely(P); T), T being a S,-subgroup of M. Let
BW* = (V(cels(Fo); DT Bol = 2D, and let £ = Q2,(Z(T*)).

LEMMA 13.34. One of the following holds:
(a) Ny WB)e 7*(6).
(b) NpX)e 7%®).

Proof Let § = 0,(IM), 8 = F(IM mod ). Let Q be a S,-subgroup
of &, so that Q is nilpotent. We first show that there is a subgroup
P of Q such that
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(i) P is a p-group of exponent p for some prime peo U <.

(ii) B is non cyeclic.

i) P,

(iv) OB M.

Namely, for each prime » in ¢ U7z, let Q, be the S,-subgroup of Q.
Suppose L, contains a non cyclic characteristic abelian subgroup 8.
Take B = 2,(B). Then (i), (i), (iv) are satisfied. If pez, so is (iii)
since every element of IN of order p is in Eﬁé,,. If peo, then (iii)
holds if m(PB) = 3, while if m(PB) = 2, then C(P) contains an elementary
subgroup of order p°, so again (iii) holds.

We may therefore assume that if p € ¢ U 7, then every characteristic
abelian subgroup of L, is cyclic. Hence, Q, = 3,2.(X,), where 3, =
Z(Q,), and 2,(X,) is either extra special or of order at most p. If
[2,(2,)| > p°, we take P =2,(Q,). In this case, for each Pe ¢, Cy(P)
contains an elementary subgroup of order % since [2,(Q,)] = p°.
Thus, SB”;Eﬁ?,,, and (i)-(iv) hold. Suppose |2,(X,)| = p*. If per, we
may take 2,(Q,) = P, since all elements of M of order p are in iﬁ?,,.
Thus, in our search for 3, we may assume that for each p in 7, Q,
is cyclic, while if peo, then Q, is either cyclic or is the central
product of a cyclic group and an extra special group of order pd.
Let p be the largest prime in o. Since Q, is cyclic for all gez, it
follows that a S,-subgroup I, of M centralizes HL,/H, as M, = I’
By definition of v and Lemma 13.22, it follows that M, centralizes
$2,/9 for all r¢o. If geo,q+# p, then p > q, so M, centralizes
$2,/9, by the special shape of Q,. Since IM,S I, it follows that
I, centralizes $,/92,(L,) and also centralizes $2,(Q,)'/9, both these
factors being cyclic. Hence, I,/Q, is faithfully represented on
92,(0,)/92,(L,). Furthermore, the chain $2,(Q,) < $2,(L,) must
be part of a chief series for 2N, since otherwise MM, centralizes every
chief factor of I between $ and R, which in turn forces IM, = R,
which is false. Since [2,(2,): 2,(X,) | = p*, we get p = 3. Since
D = H2,(2,)/92,(2;) is a chief factor of I, the four subgroups of
9 of order 3 are permuted transitively by Ax(¥), so that Ql(&)“gﬁﬁls.
Thus, in all cases, P is available satisfying (i)-(iv).

If we now choose P of least order satisfying (i)-(iv), it follows
that P is either elementary or extra special. So we assume in addi-
tion to (i)-(iv) that P satisfies

(v) B is either elementary or extra special.

Let € = $PWX, and for each subset & of &, let & = &H/H. If
C5(B) + 1, then Nyu(W)e _2*(®), since Ny(TW) contains an element of
952,, in this case. So we may assume that

(13.2) C;(B)=1.

We may in addition assume that
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(13.3) BNCE) =1,

since otherwise (b) holds.

Let & = {§1GeG,FSW,[3% PIL9}). By (13.2), & = 0.

The first task is to show that if §*e &, then |F*: F* N H| = 2.
Since §* e &, there is Ge ® such that F* = F°. Let P, be a sub-
group of P of order p such that P, admits XF* and [P, F*1 £ 9. Note
that since X centralizes 2B, XF* is an elementary, so that 9B, exists. Let
B = Cp(P,) so that FF is a hyperplane of F*. Let X, = C.(B), so
that |%:%,|] < 2. Let 9 be the normal closure of FF in HP,F*X.
Since (13.3) 9F; < OP.F*X, we get Y=2I. Hence, 9 is generated by
conjugates of FF, so Y= W*. Hence, X centralizes ¥. If X, C %, then
C(9) contains P,. But F¥=.7¢ so that C(YP)= M This is impos-
sible, since [§*, B,] is not a 2-group. Hence, %, = X%.

Let €* = C(®)) N 9FX, so that €* is a normal 2-subgroup of
OFFXP, which contains X. Also, €* = MF, since FF = 1, and F* = 7 C.
Choose Fe$* — FF. Then F inverts an element P of §F*XDB, of order
p. Let ® = (P, F'), so that ® is dihedral of order 2p. Let €f =
[€*, {(P>], so that D normalizes €}, and €} = IN°. Let €} = [}, F].
Since (13.3) holds, we have € £ 1, and so €F = 1. Since €} = M?, we get
Cr=Q° Since €* N F¢ = 1, it follows that C(E*) = M, as F*=. 7°.
Let Ul = C(€*) N $Fi%, so that © normalizes U, FF<YS U, and NS
ME. Let U* =[U, <P)], so that U* == 1, since P, Z M. Let U} =
[0*, F']. Since U*/D{*) is a free F,{F)-module, it follows that
n* = A, 1Y, Now U is a normal elementary subgroup of 1*
contained in §*, so U* = WU, U = [UF, W= F*. Since F cen-
tralizes §*, we get that F centralizes U*’, so P centralizes *'. Since
n* = {*, we get U* =1, so that U* = 11} x ",

Since P centralizes U/U*, we get U = U*Cy(P), U* N CP) = 1.
Since F normalizes Cy,(P) and since P ¢ I’ we get

[F, Cu(P)lSCu(P)NF* =1.

Choose F'*e . Then F* = AB, where Ae C,(P), Be l*. Since
F centralizes F'* and A, we get Be C,.(F') = 1F. Hence, Ac 3}, so
that A =1, as P¢ M% Thus, U} = F<U* = [U, P]= 9D, so we get
the desired conclusion:

(13.4) Xe.7 implies |F:FNH| =2.
Retaining our notation §* = F°e &7, let
B = (Vieel, (F); D) 113:Bol = 2) .

Thus, &< &B* and Fr=F*NHS W, since Fr e ccly(B,) for some sub-
group %, of index 2 in .
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Since W <M, so also B < OPWX = L. Now Pe 952,], so that
PN M =1. Hence, CS(QNB) is a 2-group with %gCn(fB). Let § =
CQ(fS), so that § <1 &, and §< M¢. Let B, be a subgroup of P of order
% B, is available by our construction of B. Choose FeF* — F°N H.
For each A in B, we get C3(A) NG =1, since A ¢ MC.

Now @CEIRG and §) centralizes the hyperplane & of F". Further-
more, 19, F1e 9 N Fr. But P centralizes W and Fr= W, so PN Fre
2(Z(®)). Hence, F centralizes §/2.(Z(D)), and since § centralizes the
hyperplane §; of §°, F' centralizes D). By (18.2), it follows that P
centralizes §/2.(Z(®)) and D). Thus, P is faithfully represented
on QL(Z@)) = U, say.

Let P be an element of HPIBX of order p inverted by F. Thus,
setting € = {Xec 9PW|P* = P or P'}, we see that € normalizes
B = [, P] and € contains F. Let B, be a minimal normal subgroup of
€ with 8, =9. Thus, (P) is faithfully represented on B,, as P has no
non trivial fixed points on B. Hence, B, is a free F,{(F )>-module, so
B, N F? = 1. Hence, a S,-subgroup of € is non cyclic and is faithfully
represented on B,. By minimality of B,, § N € centralizes B,, and so
Az(®B) is p-closed. Let F, be the image of F in A3z (®B,) and let B, be
a S,-subgroup of Az(B,). Thus, F, normalizes B, and P, is non cyeclic.
Suppose By, N C(F) = By, = 1. Then B, is faithfully represented on
Cq,(Fo), by the P x Q-lemma. But C,(F) = [B, F]SM° Since
TS 7Y, it follows that NV(C, (F)) S M°. Since HP N M* is a 2-group,
we have P, = 1. Hence, F, inverts P,. Choose P,e ;. Then B, N
C(P,) admits F,. Since 9PN MY is a 2-group, it follows that B, N
C(P)NF" =1. Since [B, N C(P), F'1=F, it follows that F centralizes
B, N C(P,). Since B, =B, N C(P,)| Py e B, it follows that F centralizes
B,. This is not the case, since B, is a free F,{(F>-module. The proof
is complete.

LEMMA 13.35. Suppose the following hold for some G in &;
(a) BB NM| = 2.
(b) TN M centralizes a hyperplane of F.
Then one of the following holds:
(i) I8l =8.
(i) |IF| =16, €] = 4.

Proof. Let A =N, F =FNCW, so that F, contains a
hyperplane of §. If F< M then by Lemma 13.30 applied to I,
we get F=C(B°), and so FFS I, against our assumption. Hence,
BEL MY, and so F, is hyperplane of F. Since C(X)<= IM? for every
X in §%, it follows that §, = Cy(X) for every Xe 2 By Lemma
13.22, | AND| < 2. Since AN D acts faithfully on § and stabilizes
the chain FOE D1, we get |A N D| £ |E|, whence
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I3 =2[A[ =2 [AN D] = 2°[C] .

Since |E| < 2%, the proof is complete.
LeMMA 13.36. If TE&C e . F 7. L (B), then F S 0,(8).

Proof. Suppose false, and that & is a minimal counterexample.
Thus, © = TQ for some ¢-group Q. By Lemma 13.20, &% 45(Q) =Q.
Let $=0,(®). By minimality of &, we get $Q <|S, and F <= 0.(TD(Q)),
while $Q/9D(LQ) is a chief factor of &.

First, suppose that Q is cyclic. In this case, /9 is cyclic and
BNY =53, is of index 2 in . Choose FeF — F. Then we may
assume that F inverts a generator Q for Q. Since F= 0.(TDQ)),
we get |[Q] = q.

Let $, = [9, Q]. Thus, $./D(,) is a free F,{(F)-module. Let
9, = [9, F'], so that §, = 9,-9?, and 9, =F. Hence, ' = [, 7]
is centralized by F, so is centralized by Q. Since Q¢ M, and F'<=. 7,
it follows that 9, = 1.

Let §, = Cy(Q), so that § = 9,9, $.N H, = 1. Since [, FlS
9. NG =1, the equality holding since Q¢ M and F<=.7, we get
that for each F; in %, F, = AB, where A€ ,, Be ,. Since F cen-
tralizes F, and A, F centralizes B, so Be 9, = C;(F'), which then
gives A€, NF =1. Hence, F, = 9, is a hyperplane of F. Let
B = H?, so that F*N M = B, and B centralizes the hyperplane H, of
%. By Lemma 13.35, it follows that |F| < 16.

Suppose |F| = 8. Here, we get |9, =16, 9, = . x $?, and
|©.| =4. Hence, ¢ =8 or 5. Let 9, = $,N C(H,). Then ;< S.
If §,+1, then 9,N Z(L) #+ 1, against Q(ZR)) <. 7, and Q¢ M.
Hence, $, = 1. Since @ centralizes ©,, it follows that 9, is faithfully
represented on 9,. Hence, |9,/ <2, as |9, =4. If ¢ =3, we get
|T] £ 64. Since O0,(M) =1 and M contains an elementary subgroup
of order p* for some odd prime p, we get T = O,(M), p =3, and T
is an elementary. This is clearly not the case, since [,(&) =2. If ¢=25,
then 9, is an irreducible Q-group, so §, = 1. Again, we get [T <
64, a contradiction.

Suppose |F| = 16. Here we get ¢ = 3 or 7, since |9,| = 64, and
since £ has no non trivial fixed points on §,. If ¢ =7, then 9, is
a minimal normal subgroup of &, so that ., =1, |Z| = 128. Since
M has an elementary subgroup P of order p* for some odd prime p,
and since P is represented faithfully on O,(IN), it follows that either
0,(M) is an elementary of order 64, or 0,(IM) = L. The first case yields
0,(M) = 0,(8), against SZL M. The second case is impossible since
T =9, is of order 8.

It remains to treat the case || =16,q¢ = 3. Here we get £ =
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H{Fy. Since 9, is faithfully represented on 9,, and since N C(F') =
9.9, it follows that § = 9, X (F) is a self-centralizing normal sub-
group of T. Consider O,(IN). Since |&| =4, and F/C is a chief factor
of M, it follows that [F, 0.(M)] = E. Since M contains an elementary
subgroup of order p*® for some odd prime p, it follows that I contains
a2 subgroup P of order p which centralizes %. Hence, [0.,(IN), B] =
CE NO,M =F, so B stabilizes 0,(M) >F >1. This is impossible
since O, (M) = 1.

We may now assume that Q is non cyclic. Let Q, be a subgroup
of & of order ¢ such that $Q, admits § and [F, Q£ H. Let &, =
HAF, O = 0,48), and F =FN Y. Then |F:F.l =2. Choose Fe
T — . We assume without loss of generality that F inverts a
generator @ of Q,. Let $, =[D, 2], & = [D, F]. Then $, = H, x
5?, élg%’, and 85 = 50352, where 352 = Cz(Q,). As in the earlier part
of the proof, we have §, = H.. Since F.=[H, Q] = [9, Q.], it follows
that F.= 9, = H. Hence, FH/$ is a central subgroup of IT/H of
order 2. Since $Q/HD(Q) is a chief factor of &, it follows that F
inverts 9L/9QD(Q). Since F centralizes $D(Q)/9, it follows that QO
is either non cyclic of order ¢* or extra special of order ¢° and ex-
ponent q.

Suppose Q is abelian. In this case, since F inverts /9, we
may assume that F inverts L. Thus, Cy(Q,) admits F for all @, e .
Since &N M = 1, it follows that F N Cy(Q) = 1 for all Q, e Q. Hencs,
[C5(Q), F1S T N C5(Q) = 1. Since $ = (C3(Q) Qe %), we get that
F centralizes ©. This is not the case, so Q is extraspecial.

Let €, = Ci(Q,). Thus, S,-subgroups of €, are of order ¢*. Also,
G, normalizes §, = [D, Q] = [9,2,]. Let &, be a S,-subgroup of C,.
Thus, F normalizes $Q,, and F centralizes $,/HQ,. We may assume
that notation is chosen so that Q, & Q. Then Q, = Q, x Q'. Thus,
F centralizes $Q'/9. We will show that Q'S M. Namely, $Q'(F')
normalizes §,. Let 9, be a minimal normal subgroup of 9QV(F)
with SZ)OO.C:I@O. Since C;,(F) = o, we are done in case Q' centralizes
Doy S0 suppose that [Py, O] == 1. Since HPQFD is 2-closed, we get
P S ZIDCFY), 50 9 SF. Since FS.7, we get Ny(Do) S M, so
Q'S MM, as required.

Suppose ¢ = 7. Here we get |5, = 8, |§] = 16, |€]| =4, by Lemma
13.35. Thus, A4,4(F) is a 2, 3-group, so L' centralizes $§. Hence,
centralizes §,. This is not the case, since $, = [9, Q] and Q is an
extra spscial group which acts faithfully on . Hence, ¢ = 3 or 5.
If ¢ =5, we get |B.] =4, |9,] = 16, so that Q' centralizes .. This
is impossible, since 9, = [D, Q] and QO is represented faithfully on
9. Hence, ¢ = 3.

Let & =[9, Q7], so that & <{S. Since Q is represented faithfully
on & D(R), and L’ has no fixed points on & — D(R), it follows that
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[8: D(R)| = 2%, with k= 1. If k=2, we get that
[[®, Q]D&®): D(&) | = 2°,

against |9,| < 2°. Hence, k =1. Since |[R, QID&®): DR)| = 2, it
follows that |§ N D(R)| < 2. Hence, QO centralizes D(f), since other-
wise [[Q,, D(®)|D(D{®)): D(D(R))| = 2*. Suppose D(®) + 1. Since L
is a S;-subgroup of M N &, it follows that C(DR) N Q = Q'. Since
DL/HOD(RX) is a chief factor of &, it follows that - F is a square in
T/$. This implies that [D(®): D{®) N C(F')| = 4, so that |[D(R), F]| = 4,
against |[D®) N F| < 2. Hence, D(®) = 1. Hence, |FNR| =4, so
that ¥ centralizes a subgroup of $/ of index at most 2. This implies
that Q centralizes §/&, so that § = KK,, where &, centralizes &, so
H =8 x &. Since K, NF =1, and K, S, we get & = 1.

We next argue that 3¢o. Suppose false. Then since |Qf = 3?
and L is of exponent 3, we get Qe .97 (3). Hence, L& M(Q) = N7
for some G in ®, the equality holding by Lemma 13.20. Since QL Z M,
we have I = M. On the other hand, we have already shown that
Q'S IM, and so S,-subgroups of Cu(XQ') are not cyclic. This violates
Theorem 13.1. Hence, 3¢o0. Since o = ¢, it follows that

10:(): D{O,(M)) | = 2° .

Since = K is of order 2°, and since T/H acts faithfully on HQ/9,
it follows that every subgroup of £ can be generated by 6 elements.
This contradiction completes the proof.

LEMMA 13.87. Suppose S,¢ & (®) and the following hold:
(a) 0.4(&) =1.
(b) FS0,(S,).
(¢) TNG, =6, is a S,-subgroup of S,.
(d) If 1c &< S, then either N(®) =M or &, is a S,-subgroup
of N(&).
Then &, IN.

Proof. Suppose false. Let & be a subgroup of &, which contains
©&, and is minimal subject to SZ M. By (a), 0,(8) =1. By mini-
mality of &, we have & = &,Q for some ¢-group Q, and I N O = D(Q),
while if § = 0,(&), then HQ/HD{Q) is a chief factor of &. Suppose
Ge® and NS, is non cyclic. We will show that F°N S, 9.
Suppose false. Then G ¢ M, since FE 0,(8). Let F*F = FN S..

Let Q, be a subgroup of L minimal subject to (a) Q, & D(Q),
(b)y 2, admits F*, (¢) [Q, F*1ZLH. Then L, is cyclic. Let &, =
DQF*, 9, = 0,(S,), and let FF = F* N 9,.. Thus, FF is of index 2 in
B*, so is not 1. Since O, Z M, Q, does not centralize Z($,). Choose
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Fre®* — FF. We assume without loss of generality that F'* inverts
a generator @ of Q,. Now Z(9,) <= CEF) = MM Since L, does not
centralize Z(9,), neither does F'*, so [Z(9,), F*] = 1. Hence, Z(9,) N
[ =1, so H, = M°.

Let & =[9,Q], & =9.NCQ), & =[&®, F*]. Then 9, = &K,
and & NF° =1, so that F* centralizes K,. Also, £ = &, x & is
elementary. On the other hand, F= H= 9, so F= M. By Lemma
13.30, [, §°] = 1. Hence, TS &KK,. Since |F| = |F°| > |K.], it follows
that § N & = 1. Since Q, centralizes &, we get O, S M, contrary
to our contruction.

By the previous argument, we get V{cely(Fo); &,) <] S for all non
cyclic subgroups &, of §. By (d), we get that &, = . Hence, both
W and W* are normal in &. Since X = Q,(Z(W*)), we get X < S.
By Lemma 13.34, we get &< IN, against our construction.

LemMMA 13.38. If Ge®, then one of the following holds:

(a) FNM=1.

(b) F°NIM is of index 2 in F° and F° N M centralizes a hyper-
plane of F.

(c) =

‘Proof. Suppose LCF NMCF. SetF* =[5, Fr =" NI, T, =

F NI Since FFS.# and FH¥S. 7°, we get FNF =1. If Fre
#, then [FF, C,(FH]ISF N F* = 1, while if F,e F, then [F,, C,(F)] S
FNF* =1. Since F*Z M, so also FZL M, by Lemma 13.30. Let
B = N;(@FBD), T = Np(BiS), so that FDOPF, 3 OFF. Choose
F,e @, — .. Then [F,, i1 =B, and C(F,) N B =1. Hence [F.]| = [BF .
By symmetry, we get [FF|=[B.l, so |Bl = (B[ Let & =FJr =
B X Bi. Let &, € * be the chains $ DF, D1,  DFF D1, respectively.
Then ¥,/%. maps isomorphically into A4(Z”) and ¥y /FF maps isomor-
phically into 44(&”*), and if F,e B, — B, then the map P(F,): FF — T,
given by F*— [F,, F*] is an isomorphism of F;} onto F;. Since N(9) is
solvable, it follows that |[F.: &l = |Gl =2. If . =F, we are
done, so suppose FHCH. Let B = F x (Fp. Choose F in §F— B
with [F, F1 = S.. Since F does not normalize F.FF, we can choose
F*e$®f such that [F, F*]¢&.. Hence, [F, F*] = F,F, with F,e ..
Let $7* be the largest subgroup of ¥ such that [F, F*] = F.. Hence,
S = FF* X (F*). Since |FF| = 4, we have Fi* = 1. Choose F**¢
F*%,. By the Jacobi identity, [F, F*, F¥*||[Fy*, F, F*] =1, since
[F¥, F**] = 1. This is not the case, since [F, F'[*, F'**]| = [F,, F/*] #1,
while [F**, Fle %, so that [F* F, F*] = 1. The proof is complete.

THEOREM 13.3. Hypothesis 13.2 is mot satisfied.
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Proof. Suppose false. If T&6&,€ &2 (@), then by Lemma
13.36, &, satisfies the hypotheses of Lemma 138.37, so &,& IR, that
is, Te #Z*(®). Thus, we may apply Lemma 13.2. Let $ be the group
given in Lemma 13.2. We may then choose M in M such that $ NI
is a S,-subgroup of $¥. Thus, we may assume at the outset that
ONET =9, is a S;-subgroup of H. Let I be an involution of I such
that Cy,(I) = T, is a S;-subgroup of Cy(I).

Let $=6e¢ 75 (®). By Lemma 13.2, $ contains an element
1 of Zr (2), s0 0,(&) # 1. By Lemma 13.1, we get 0,(8) = 1, since
& = N(0,(®)). By Lemma 13.20, & has no elementary subgroup of
order p* for any odd prime p.

By Lemma 13.2, § = £,Q, where Q is a 3-group. By the preceding
paragraph, & 45(Q) = @. We assume without loss of generality
that if .29 cC9, then $,=IM. Hence, MNQ = D) and if
0,(9) = &, then KQ/KD(V) is a chief factor of 9.

Let % =¥NH, T =FNR = NK. By Lemma 13.37, . CF.
We argue that §, < &,. For suppose § = F. Let F/F. be a chief
factor of §9., with F.EF. Then [], FT]ET = FHER, so that F.&
N(R). Since 9. is a S;-subgroup of N(&), we get F.S 9. NF = & = Boy
against §, = F, < F.- Hence, F CF S B-

Since Cy(I) is non cyclic, and since £, contains a S,-subgroup of
Cu(I), it follows that %, is non cyeclic.

Now FR/& <] 9./R, so that K[Q, Fo]D(Q) <] H. Since KQ/KD(Q)
is a chief factor of 9, we get &2 = &[Q, FJDK), so that & =
R[Q, Bol. Since D) = M, it follows that [DEQ), F] ST N KD(Q) =
FNR =F. By Lemma 0.8.7, D)= Z(X). This implies that Q is
of exponent 3, and either |Q] < 8% or Q is non abelian of order 3%
If Q is non abelian, then each element of F, induces an automorphism
of KQ/KD(Q) of determinant 1, since F, centralizes KD(Q)/K. In this
case, we get |Fo: B.] = 2. The same equality clearly holds if |[Q] = 3.
Suppose |Q] = 3°. Then B, contains an element F, such that F, inverts
KQ/K, and we assume without loss of generality that F, inverts Q.
If QeQ, then Cy(Q) admits Fi, so [Ce(Q), F]S T N Ce(Q) = 1. Hence,
F, centralizes {C;(Q)|Q€ Q) = &, against F,¢ & We conclude that
Q] =3 or 3 and that [Ty F.| = 2.

Choose F,eF, — . Then §, inverts a subgroup Q, of QK of
order 3, and we may assume that Q,&Q. Let & =[], Q], & =
[R, Fo], & = Co(X,). Thus, &SP, so that & = K, x &, where Q is
a generator for Q,. Since K, NF =1, we get F, = K, # 1. Suppose
|8 ] = 2% In this case, it follows that J(9,) & &, so that J((9.) <1 9.
This is not the case, since | N(J(D,))]. > |9.]. Hence, |& ] = 2% |Bo] =
2* |8 = 2. This in turn implies that |Q|=3,Q =2, and so
9 =& X KU (Fy, with RQEFy = 2,.

Since no non identity characteristic subgroup of §, is contained
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in &, it follows that D(R, is elementary and central in &, Thus,
D($,) = D(R) x F. Choose Xe€ Ny(,) — .. Then Z(&) N C(X) =1,
since 9, is a S,-subgroup of N(¥) for every non identity normal sub-
group 9 of . Hence, |[DR)| <2, |Z(R)| < 2. Now X normalizes
9. N CF) = K x Fo. Hence, &, is elementary, so [&|=<2. If & =1,
then 9, is dihedral of order 2°, against the presence of I. So suppose
|&| = 2. In this case, 9, has exactly 2 elementary subgroups of order
2, namely, & x ¥, and & Since X normalizes &, X F,, X also nor-
malizes & This contradiction completes the proof.

REMARK. Theorem 13.3 is one of the watersheds of this work.
While there is still a great deal to be done, we are now reduced to
examining a succession of explicit groups. The “generic case” is com-
pleted.

HypoTHESIS 13.3.

(a) Se #Z(©).

(b) 0.(©) =1.

(c) m@) =<2 for every normal abelian subgroup % of &.

(d) ©& contains a non cyclic normal abelian subgroup B such
that C(B)=® for all B in B¢

Lemmas 13.39 through 13.53 are proved under Hypothesis 13.3.
We use the following notation: ¥ is a normal abelian subgroup of
& which contains B and is maximal with this restriction, and L, =
2,(B). By {(c) and (d), we get m(B) = m(B) = 2, so that 2,(B) = L,
is a four-group. Since Se _~ F(®), S = N(L,). Let T be a S,-sub-
group of &.

LEMMA 13.39. T is a S,-subgroup of & and N(ZT)<=S.

Proof. Let 3 = 2(Z(F)). Since 0,(8) =1, we get 3= 0,().
Thus, {3, By S B, Z(0,(®))>, and the group on the right is a normal
abelian 2-subgroup of &. Hence, 3=, by Hypothesis 13.3 (¢). If
3 =9, then we get & = N(3), and we are done. Suppose 3 L,
so that | 3| = 2. Hence, N(B) = C(3) &S, by (d), and we are done.

LEMMA 13.40. B is a T.I. set wn O.

Proof. Suppose false. Then there is G in @ — & such that
L N B9~ 1. Let V be an involution of B N B By Hypothesis 18.3(d),
c(Vyesne-

Case 1. C(V) contains an S,-subgroup T* of . Since T*=SN &,
we get =&, Hence, T =3*° for some S in &. Hence,
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SG e N(Z*). By Lemma 13.39, we get N(T*) =&. Hence, Ge S7'S =S,
against our choice of G.

Case 2. C(V) does not contain a S,-subgroup of ®.

Let &, be a S;-subgroup of C(V), so that T, &&S. Let T* be a
S,-subgroup of & which contains Z,. Since Ve B, <]{ZT* it follows
that [T*: %, =2, and that T, = Co(V) = Co(By). Since V is not
contained in the center of any S,-subgroup of &, & does not permute
Bi transitively. Hence, I*/T, maps onto A44(LB,). Hence, Cy(V) =
C. (V) = Coe(V) (S, &°, against S e _#Z.5”(8). The proof is complete.

LEMMA 13.41. Suppose Ge ® and BLSS. Then [B, B = 1.

Proof. Let 8 = BN C(BY), and suppose by way of contradiction
that 8 B. Let B,/B be a chief factor of LB with B, = V. Since
[B| < |B?], and since [B,, BB, it follows that there is V in B
such that B, = C(V). By Hypothesis 13.3 (d), ¥, =&, so that [T, B]=
BNYBY By Lemma 13.40, BN B¢ =1, so B, = B, against our con-
struction.

LEMMA 13.42. Suppose Ge® and [V BN S| < 2. Then one of
the following holds:

(a) BcS@.

(b) LB is a four-group.

(e¢) B s of type 2,4) and BN S s a four-group.

Proof. Suppose |B°: BN S| = 2. Let B be of type (27, 2°) with
1 =<a=>5b Wemust show that a =1, b < 2, and that if b = 2, then
BN S is a four-group.

Let B* = B Bf = V* N S. Let B, =BT N CY). If B, = B, then
LSS so by Lemma 13.41 applied to &%, we get [T, B] = 1. Thus,
BY= S, against our assumption. Hence, B, cB. Let L,/B, be a chief
factor of BB} with B, &B. Choose V,€ B, — By, If BLENC(V,) =1,
then V,e@&% so that [V,, BF] =8NV = 1. This is not the case, by
definition of L, so LF N C(V,) = 1. Since [V, B = L,, we get |B,| =
|B¥| = |B|/2. Hence, B, =B, and |B: B,| = 2.

Let © = BB} =B, x BF. Since BLSY we get B, =BV N S°.
For each V in 8 — B,, we see that V normalizes B} N B}’, since
V2eB, = C(BF). If VN V" =1, choose V* an involution of BF N
B:" N C(V), and conclude that Ve C(V*) = &7 against &NV = B,.
So BN V" =1. Since |V} | = |VF| = |YB,], it follows that

9 = BF x B,
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Since Ve B, = 9, we have
Vi=X*. X5, X* X*eQBF.
Hence, V* = V¥ = X*. X*" = X*". X*, so that
X* e X = (X* XYW eBrnB =1,
whence
X* =Xx, Vi=X*. X* = X*¥[X* V].
Since V* and [X*, V] are in V, we get
X*¥eVnVr=1.

Hence, V* =1, and V = X*7'V'X*. Since B, is of index 2 in ¥, Y
is generated by 8 — L,, and so b<2. If b =1, then a =1 and we
are done. We may assume that b = 2.

Case 1. a =1.

Here we must show that B} is a four-group. Since |%B,| = 4,
and B,= B4, it follows that some V of B! centralizes 2,(B°). Hence,
QEBH S C(V)SS. Since & N B = B, we get B = 2,(TY).

Case 2. a = 2.

In this case, it follows that for suitable V, We %8, 8 = (V) x (W),
B, =<V x (W). For each X in B}, we get V¥ =V.V*W?, for
suitable z, y. Since X centralizes V?*, we get y = 2z for suitable
integral z. Thus, B} stabilizes BL > B, 51 and also stabilizes L O L, D 1.
As the intersection of the two stability groups is of order 4, B does
not act faithfully on L. This contradiction completes the proof.

LEMMA 13.43. Suppose S&Ne S22 F(®) and NLS. Then N
contains no elementary subgroup of order p* for any odd prime p.

Proof. Suppose € is an elementary subgroup of N of order % p
an odd prime. Since 2em,, we get 0,(N) =1, so 0,(N) = 1. Hence,
U(E; 2) is not trivial, so e(p) = 3. Hence, Hypothesis 13.1 is satisfied.

Let * = M(G) 2N. Let 8= 2,(R,(N*)). By Lemma 13.19, | 3| =4.
Hence, &N C(8) e &7 (p). Let Z be an involution of 3N Z(T). Thus,
Z e B,. By Hypothesis 13.3 (d), we get C(Z) =&. Hence, € N C(Z2) =&.
Since € N C(Z)e _7*(®), we get SSN*. Since S e 275 (G), we have
& = N* 2N, against our assumption that NZL S. The proof is com-
plete.
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LeEMMA 13.44. If T&We L7 7 (B), then B S O,(N).

Proof. Suppose false. Then ML S. We assume without loss of
generality that if T= N, N, then LS 0,(N,). Hence, N = TQ, where
2 is a g-group for some odd prime ¢. By Lemma 13.43,

FEN Q) =D .

Let & = 0,(%Y). By minimality of 9, we get Q0 <{N, and W =
9Q/HD(Q) is a chief factor of M. Let X, = BN Y, so that X, V.
Let %,/%, be a chief factor of £ with ¥,=%8. Choose Ve¥%, — X,
Since B is a chief factor of ! on which B acts non trivially, and
since §V is central in T/9, it follows that [DQ), V]S 0.(TD(Q)) N
HDQ) = . Let Q = $0/9. Thus, V inverts Q/D(Q) and V cen-
tralizes D(Q). This implies that D(Q) < Z(Q), and that Q is of ex-
ponent ¢q. Thus, |Q] < ¢° or else Q is extra special of order ¢

Let § = $/D($). We will show that B/%, is elementary. Suppose
false. Let V,e® satisfy Vi¢%, VieZX. Since [T, V), V] =1, the
minimal polynomial of V;, on § divides (z — 1)}, so B! centralizes H.
This is impossible, since V¢ $. Hence, B/X, is elementary.

We next show that |B: %,] = 2. Suppose false. Since % is abelian,
m(B) = 2 and B/X, is elementary, we may assume that LB/X, is of
order 4.

Let £, be a subgroup of £ = $Q/$ of order ¢ which admits B
and is not centralized by B. Let 8 = 8N C(,), so that |B: B| = 2.
Let Qo = $Q,/9, where Q,=9Q, and let Q be a generator for Q..
Then $°< 0,(HQV) =T =S. Suppose B°SS. Then

DB = (0,(H2B), B, BH =S,

so that O, &&. Hence, [T, Q=B N 0, S O, against our choice of
Qo So B°ELS. By Lemma 13.41, we get that B is of type (2,2
where b < 2. Since |B:%B,| =4, and since Z(%) <= 0,(9), it follows
that %X, # 1, so that |8B| = 2°. Henece, b = 2. By Lemma 13.42 (b), (c),
B is a four-group.

On the other hand, B/X, is faithfully represented on Q, so we
can choose &, above, with additional property that 2,(8) does not
centralize . In this case, 8 is necessarily cyclic, against Lemma
13.42 (¢c). We conclude that |B:%,| = 2.

Recall that Ve®L — %X,. Choose Q€ QFf such that V inverts $Q.
Hence, Q¢&, so that BN S = %¢ is of index 2 in B9 By Lemma
13.42, we get that L is of type (2, 2% with b < 2.

Case 1. b=1.

In this case, [B, T]=ZX, a group of order 2. Since BV does not
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centralize ©, we get [, 9] = X,, so that ¥, = Z(¥), the equality holding
since by construction, Z(Z)=B. If X, D(H), then TV centralizes
S = 9/D(9), against BZ 9. Hence, X, Z D(P). Since %, is the only
minimal normal subgroup of <, we get D(9) = 1.

Since V centralizes, a hyperplane of £, and since V also inverts
SL/OD), it follows that |[Q] =3,[2:9H| =2,T = H<KV). Since
X, = Z(%), it follows that ¥ is dihedral of order 2°, against 2€ x,.

Case 2. b =2, and 9 is not elementary.

Let ., =D®)+1, and let X, = H, NV = H, N %X,. Since H, N
Z(I) =V, we get ¥, = 1. If ¥, = %,, then we get that [, B]SHN
B =% =%< DY), against V¢ H. Hence, |X,| = 2, since X, is a four-
group and 1 C %, C¥,.

Let ©, = [9, VID®)/D(D) S %.D(9)/ D), so that §, is of order 2.
Since V centralizes a hyperplane of § and V inverts §Q/DD(Q), we
again get |[Q] =3, = H<VO.

Let §, =[9,Q]. Since N = HYN,(Q), we get O, <{N. Let §, =
Cy(Q), so that $ = £.9,, and H. N . S D(D,)-

First, suppose 9, is not elementary. In this case, we get D{(9,) N
L = X, of order 2, and V centralizes a hyperplane of ©,/D{9,). The
only possibility is that §, is a quaternion group. Hence, X, = D{($H,) <N,
against C(%X,) = ©.

We may therefore assume that 9, is elementary. Let £, = . N
C(9.). Then Ny(9y) 24Dy, §, Wa(Q)) = N. If §; # 1, then H, NV = 1,
so that Q= C(Vy)=& for some V, in ¥, This is not the case, so
9, = 1. If $, is a minimal normal subgroup of M, then O, centralizes
D1y 80 O, = 9, =1 and T is dihedral of order 2°. This is not the case
since $ is not elementary. Hence, §, is not a minimal normal sub-
group of M.

Since [9,, V] =¥, it follows that [9,| =2* 9, = X, X X, where
Q is a generator for Q. Since §, = 1, it follows that |9, < 2. Since,
9 is not elementary, we get |9,| = 2. Hence, |[T|=2° Let 9, 09H.D1
be a composition series for §, as N-module. Thus, [D, O.] = H.. By
Hypothesis 18.3 (¢), we have T &. Let & = TR, where R is a S, -
subgroup of &. Suppose T <|&. Since B is of type (2,4), N centralizes
B. Since R is faithfully represented on T/T' R is also faithfully
represented on T/T'V. By the preceding paragraph, T'V 2B, 9.,
a group of order 2‘. Hence, |T'V| = 2¢, and T/T'V is a four-group.
Hence, |R| =38. Since R centralizes VT and normalizes T'V, R cen-
tralizes $'B. Thus, TV = C,(R). Let T, = [T, R] <{T. Thus, I, is
a quaternion group, and T = I, where T, = C,(N) = TV. Hence,
TNCE) 2K, T, since T,N <, = T is of order 2. Hence, | 4,(B)| = 2.
This is not the case, since C; () =%, and |9,| = 2!, Hence, T ¢ &.
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Let & = 0,(8), so that B= K. Since R centralizes B and R is
faithfully represented on &, we get [®] = 2°, [R| = 3. Let & = [], R].
Since every normal abelian subgroup of & is generated by 2 elements,
it follows that &, is a quaternion group. Let R, = C,(R), so that
& =88, 8 NK, =K. Hence, R = B, since LS C,(R) = K,, and since
[B| = |!| =2 Since & = B, and K, centralizes &, we get | 44(B)|= 2.
This is not the case, since C; (V) = %,, and |9,| = 2.

Case 3. b =2 and 9 is elementary.

We will show that |[Q| =8 or 5. Namely, [9, B]<ZX, so ¢ =3
or 5. Hence, it suffices to show that |[Q| = ¢q. Suppose Q is ele-
mentary. Then V inverts $Q/9, so if Qe Qf, C;(Q) admits V. Since
QNS =1, it follows that [Cs(Q), V]ISC:,(Q NV =1. If |Q] =4,
we get that § = (Cy(Q)|Qe 0H S C(V), against V¢ . Hence, if Q
is elementary, then |Q| = ¢q. Suppose Q is not elementary, so that
L is extra special of order ¢°. Since B centralizes L'/, it follows
that Q' normalizes [, ¥] = X, Hence, Q'S S, since L is a T.I. set
in @ Since B is of type (2,4), Q' centralizes B, in particular cen-
tralizes %,.

Let &, = [9, Q']. Since Q'+ 1, §,+ 1. Since X,&C(Q’), we get
N %, =1. Hence, N Z(Z) =1, since Z(T)=BV. This is impossible
since §, <]ZT. We conclude that Q] =3 or 5.

Since C4(Q) <IN, and since C,(Q) N B =1, it follows that C,(V) =1.
Since [B, $]=B, and B, is a four-group, it follows that [H| = 2%
Hence, |$| =2°% with 5<a<6. If a=05, we get T<]|S, since
|Z:B| =4 and a S,-subgroup &, of & is represented faithfully on
0,(3). But 9 is the only subgroup of ¥ of its isomorphism type, so
9 <1S. This is impossible, by Hypothesis 13.3(c), so we get a = 6.
Thus, |Q| =5, and /9 is cyeclic of order 4.

Suppose S 0,(S). Since 9 is the only subgroup of T of its
isomorphism class, we get § <| S, against Hypothesis 13.3 (¢). Thus,
O L 0,(3). This implies that [0,(8)| = 2°. Let &, be a S,-subgroup
of &, so that |&, | =38. Let J be an element of § — 0,(8). We may
assume that J inverts a generator S of &,. Thus, £, = [0,(S), &,]
admits J. Since [T, J]SZ, N 9, it follows that T, is not a quaternion
group. Since [T: T, N CS,)]| <4, it follows that T, is a four-group.
This is impossible, since T, <], and since &, centralizes L 2 Z(T).
The proof is complete.

Let & = 0,(®), and let § = & N C(V). Since B is a normal abelian
subgroup of & of maximal order, it follows that B = Z(9). Let ¢ be
the class of nilpotency of . If ¢ > 2, then C,_,(9) is abelian, so that
BC,_(9) is a normal abelian subgroup of & which contains 8 properly.
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This is impossible by maximality of B, so ¢ < 2. Let &, be a S,-
subgroup of &.

LEMMA 13.45.
(a) /B is elementary.
(b) &, is faithfully represented on $.

Proof. Since ¢ < 2, /8 is abelian of typs (2%, +++,2%), q, < a, <
eee < a,. Suppose a, = a = 2. Let §, = 0 (HPmod V) >V. If H, H,€
9, then

[nga—l’ sza—-ll — [nga’ H;E—Z] — 1 ,

since H*e B. Thus, 9, is abelian, against the maximality of 2.
This establishes (a).

Let 8 = § - Ci(9), so that & <]&. Thus, 0,(%) = 0,(®) = & Hence,
9 is the S,-subgroup of & Thus, & = § X 0,(2), since 4,(9) = I(D).
Since 2e 7, 0,(3) =1, so 0,(%) = 1, establishing (b).

LEMMA 13.46. Suppose LD, <9 and |D: .| = 2. Then every
wnvolution of Cs(9,) is contained in &K.

Proof. Suppose X is an involution of C.(9,) — & Then & con-
tains an element Q of odd prime order which is inverted by X, by
Lemma 5.36. Let © =<Q, X), & = 9. Let 9* = [9, (@], $F =
C,(Q). Thus, $* and H admit D, and B Y. Since Q) is repre-
sented faithfully on , we get $* =+ 1. Thus, $* N 9, is of index 2
in $*, asis §* N 9?2 Since (X, X9 = D centralizes H* N H, N H¢, it
follows that @ centralizes a subgroup of $* of index 4. Since @ has
no non identity fixed points on £*/D(9H*), it follows that H* is either
a four-group or a quaternion group. If $* is quaternion, then C,.(X)
is of order 2, as is well known. Hence, $* is a four-group. On the
other hand, £* |9, so 9 = * x HF, which gives H* = Z(9) = T,
against LS . The proof is complete.

The next easy lemma is important, and perhaps will admit of
interesting generalization in later work, since it involves the explicit
construction of non solvable local subgroups.

LEMMA 13.47. If Ge© — &, then one of the following holds:
(a) B &%
(b) BELSD.

Proof. Suppose false. Let 9 = (B, BE>. Thus, B, <] Y, BE < Y,
since Y= H N H° Since B is a T.I. set in &, we get P = B, x BV,
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an elementary group of order 2‘. Since the normal closure of 9 in &
is a subgroup of ©, Hypothesis 13.3 (¢) implies that 9° is non abelian.
Choose S in & such that <9, 9°) is non abelian.

Since D(Q) =B = Z(9), it follows that ' =B, = 2,(B). Thus,
P <1<9, D°> and P stabilizes the chain &:9P>B,>1. Choose Ae
BI* = Y. Suppose C(4) N BE = 1. Then A e &%, by Hypothesis 13.1(d).
Hence, [®BS, A]SBE NV, =1, so that A centralizes 9). If VIS =B,
then GSe N(B,) = &, so that Ge&. This is not the case, so B N
LB, = 1. This implies that BFS centralizes Y. Since PS5 = B x L,
we get that <9, 25> is abelian, against our construction. Hence,
C(A) NV =1 for all Ae B, Let B = Ay(T) 2 ABIS(E).

Similarly, let &* be the chain 9 >B 51. We can choose S* in
&% such that <2, 9% is not abelian. Hence, 9" stabilizes &* and
does not centralize 9. It follows that A4(Q) is non solvable. This
contradiction completes the proof.

LEMMA 13.48. Suppose Ge® and the following hold:
(a) BENGS =1,
(b) BiLe.

Then L = B,

Proof. Let ¥ =N, so that X+ 1. Suppose XeX* and
IBNCX)| =4, Since CX)=6% we get BNCX)=&° Since
BN CX)| =4, we can choose V in BN C(X) N C(BS)*. Hence, B =
C(V)<©, against (b). Hence, |X| = 2 and |[Cyx(X)| = 2. This implies
that BX is of maximal class, forcing B = LB,.

LEMMA 13.49. Assume that Ge® — & and the following hold:

(a) BISTE.

(b) BENH =%, 1s of order 2.

(c) §. = CyZXy) is of index 2 in 9.

(d) The normal closure of TS in T is abelian.
Set & = 0,,(0)/0,(8), B = X, x X, where X, = (X;) ts of order 2.
Then the following hold:

(i) If R is any subgroup of & inverted by X, then 8| =1

or 3.
(il) If Q 1is any nmon identity element of & of odd order which

is inverted by X, then [9, Q)] = O* contains X, and is the central
product of 2 quaternion groups. Furthermore, $ = L*C,(H*), and
C(9%) & C(TBy).

(il) B = B,.

Proof. Let @ and $* be as above. Let §F = $* N H.. Since
C(X)=©% we get [DF, X ]=H NV =Z%,. Since <Q) =21 has no
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non identity fixed points on ©*/D{9*), it follows that £*/D{$*) is a
free Fy,{(X >-module. Let ¢ = [9* X|]. By (d), ¢ is elementary, and
by the preceding remark, we get * = (€, €%, since (E, G?> covers
O*/D(9¥).

First, suppose & is of order 2. In this case, |9*: D(*)| =4,
and since 9* is generated by involutions, we get that $* is a four-
group. Since $* = [9, Q] <] H, we get H* = Z(H) = B. On the other
hand, ¥ = C(X,) =% so that [BY L¥] =1, by Lemma 13.41 applied to
&° Thus, X, centralizes B, so Q also centralizes B. This contradic-
tion show that |€| = 4. In particular, since [9], X]]&SX, we get
that |9*: 9| = 2, and [}, X|] = X,. Hence, * contains Z%,.

Let &, =CNo*. If |E E | L2, then (9% 9| = 4, against our
previous argument. Hence, |C: & | = 4. Let € = €, x &, where X, ¢
G,; G, is available since X, ¢ *" and X, e &, while € is elementary.

Choose He $* — $F. Thus, ([H, X|], X,» covers E/E,, and so
|G, | = 4. Hence, |9*: D(©*)| = 2, since (G,, € = $*. Since $} < H*,
it follows that ©* is non abelian. Let ¥ be a subgroup of $* of
index 2. Then CGF/F is elementary of order 8, and so */F is the
central product of 2 quaternion groups. Hence, Aut (9*/3F) is a 2, 3-
group whose S;-subgroups are elementary, and so @ has order 3.

Since @ has no fixed points on H* — $*', it follows that for each
He * H-H?- H” ¢ *. This implies that for each involution I of
OF I, 1] =1. Let G = (Xp x (Y. Then $* = (G, € and

[Xo; XOQ] = [Yo, YOQ] = [XoYo, (XOYO)Q] =1,

so that ©* = ([X,, Y¢]) is of order 2, so that § = 1.

Since VLN H* = $*', it follows that £ stabilizes H* D H* O 1.
Hence, Cy(Q) centralizes 9*, and Cy(Q) = C,(9*), & = $*C:(H*). Since
C.(9*) = C(X,) =& we get [Cy(D*), BE1=%, N C(H*) = 1. This estab-
lishes (ii).

Set X = X¢. Thus, @ normalizes (X,, X¢, 9*'>, an elementary
group of order 8. Since @ does not centralize <X, X;*, $*'>, it follows
that [X, X§] # 1. Thus, XfeC(X)=&% but VILS"¢, this last
relation holding since [Bf, X,*] S B, while B == B¢, this final inequality
holding since X, inverts @. By Lemma 13.48 with &% in the role of
& and our present G in the role of G, we get B = B;; so (iii) holds.

It remains to prove (i). Since @ has order 3, it follows that ¥,
is an elementary 3-group. Since X, inverts £, it follows that £, =
N0,(®)/0,(), where U is a 3-group inverted by X,. We assume
without loss of generality that Qe . Thus, $* admits U. Since
C(X,) is elementary of order 2°, X, interchanges the 2 quaternion
subgroups of 9*. If [A]| = 3% we can choose A in 9 such that
C(A) N $* is a quaternion group. Since C(4) N * admits X;, we have
a contradiction. Thus, |[%| = 3, and (i) holds.
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LEMMA 13.50. Assume that Ge S — & and the following hold:
(a) H°NZ is of index 2 in HC
(b) B L.
(e) BENHD =X, 1s of order 2.
(d) 9, = Cy(%,) s of index 2 in 9.
(e) The normal closure of Bf in T is abelian.
Set R=9°NT, R =RNK. Then
(i) R, IR, and R/R, contains no abelian subgroup of order 2.
(i) 8 = 0,,(S) contains no elementary subgroup of order 3.

Proof. Since & <{ S, so also R, <] R. Suppose (i) is false. For
each subset &, of &, let S, = S,&/R. Thus, R and R/R, are incident,
so R contains a subgroup R, DR, such that R, is abelian of order 22

Since the hypotheses of this lemma are stronger than those of
Lemma 138.49, we get T = LB,. Hence, $ is of exponent 4, so R is of
exponent at most 4. Hence, R, is either elementary or of type (2, 4).
We assume without loss of generality that X = B¢ R, This assump-
tion is permissible, since X is a central subgroup of R of order 4.
Let R, = Q,(R, mod R,), so that R, 2 2,(R,) o%,. Here we have written
X = %, X X,, where ¥, = (X;) is of order 2, and ¥%, is given in (c).

Let & = F(&mod 0,(&)). By Lemma 13.49, [&,, %] is a 3-group.
We first show that [, R,] is a 3-group. Suppose false. Let Q be a
subgroup of &, of order 3 such that £ admits R, and such that %,
does not centralize L. We assume without loss of generality that
X, inverts a generator @ of Q.

Let 9* =[9,Q], so that by Lemma 13.49, $* is the central
product of 2 quaternion groups. Since &, is nilpotent C.,(Q) contains
a Sz -subgroup © of ¥,. Hence, © centralizes $*, since Aut (9*)
is a 2, 3-group. Since X, € 9*, we ge D=, so that [R, D= HN
LS ®. Hence, [, R,] is a 3-group.

We next show that if &, is a S,-subgroup of &,, then

FE N () #= D .

Suppose false. Then Aut (2;) does not contain any non cyclic abelian
subgroup of order 8, against the fact that R, acts faithfully on &,.
Hence, &% 4;(%,) # ©@. In particular, Hypothesis 13.1 is satisfied.

We next observe that since (R,, &) is supersolvable, €, contains
an elementary subgroup 2 of order 3° such that ¥ admits R, and
such that R, acts faithfully on %. We may assume that X, inverts
the element @ of 2! Hence, $* = [9, (@] admits A, so Cy(H*) = 1.
Choose Ae W N C(H*). Since X, € *, we get A& Since C(4) =
C.(4) e _#7*©), it follows that &,-subgroups of & N &% are non cyclic.
This violates Theorem 13.1 (b)(ii) with & in the role of M. The proof
of (i) is complete.
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Suppose ¥ contains an elementary subgroup of order 3% Since
2 < &, & contains a S;-subgroup B which is permutable with £. Thus,
X, normalizes 8. By Lemma 13.49, X, centralizes a S,-subgroup of
&, so X, does not centralize 5. Hence, P contains an elementary
subgroup @ of order 3* such that X, normalizes € and X, does not
centralize G. Let & = KE(X,>. We assume without loss of gener-
ality that X, inverts Qe @*. Let $* = [9, <@>]. Thus, <F, X,> nor-
malizes $*. By Lemma 13.49, Cy(9*) = &, = 1. Since X, € 9*, we
get & = &% Since C(E,) 26, we get C5(€) € _Z*(®). Hence, C.e(€)=S.
Hence, S,-subgroups of & N &% are non cyclic, against Theorem 13.1
(b)(ii). The proof is complete.

LEMMA 13.51. Assume the hypotheses of Lemma 13.50 hold. Then
the following hold:

(a) [&, &)] is of order 3.

(b) R/R, is elementary of order 2'°, where e = 0 or 1.

(¢) 9 contains a subgroup H* such that $* is the central pro-
duct of 2 quaternion groups, O = H*C,(D*), and |C,(H*)| < 24

(d) 9N H¢ is elementary and <B, N H is of indexr at most
2% in 9.

Proof. The difficult step is to show that if Q is a non abelian
subgroup of 0,,(&) of order 3° and exponent 3, and X, normalizes £Q,
then [Q, %] < ®. Suppose this assertion is false. Let Q = {Q|QeQ,
X, inverts 8Q}, and let Q,={Q|Qe Q, [X,, Q] &}. Thus, QN = @.
Since & is non abelian, £, = 1. Since [Q, X|]Z R, O, Q, and so
|Qed = 8. If Q, # L, then Q* = [Q, X||R N Q is elementary of order
* and X, inverts Q*®/R, against Lemma 13.49 (i). Hence, Q, = Q,
and X, inverts KQ/8Q.

Let .@ =[9, Q]=[{&, QJ, the second equality holding since [&: §| < 2.
Let § = $Q%,, so that B, 90 1F, and & = 0,F). Let & be
the set of subgroups of & of order 3 which are inverted by X,.. We
will show that & contains elements Q' QF such that Q' Q% is a
S;-subgroup of %. Suppose this too is false.

For each % e <z, let (@) = [P, ¥U]. By Lemma 13.49, H(2) is the
central product of 2 quaternion groups. Since X, inverts $Q/9LY, it
follows that if A, A, are elements of & whose images in ¥/H are
distinet, then <, A,> contains a S,-subgroup of ¥F. Hence,

B, HaL)y =,
since (D(2,), J)Y <|§ and (W, W) centralizes H/KHEL), D).

Hence, § is the product of 4 or fewer quaternion groups. On the
other hand, $(,) contains [D, X,], by Lemma 18.49, and [9, %] is
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elementary of order 2°. Hence, |H(I) N HW)| = 2%, so that | S =<
27 = 2%, Since L is faithfully represented on “{)/D(@), it follows
that § is extra special of order 2.

Choose a fixed element 2 of & and choose notation so that 9lc Q.
Let = 92 - B, where B = H N C(®®)). Thus, B is non abelian of
order 8. Let D= N (2), where §, = $%,. Thus, |D|=4 and .850@ &
is of order 2. Choose De® — §. Then D = X,H with He $. Hence,

HPXAXH=N"=Q,

so that HeB. Now Co(2) = U x L, so O normalizes B = H N Cc).
Since Q' has no non trivial fixed points on /D), it follows that
B is a quaternion group. By Lemma 13.49, X, centralizes 8. Let @
be a generator for Q. We will show that [X, Q]e®B. Namely,
.@Q’/@ is a central factor of ¥, so D centralizes @, and X,QX, = QH,
with H, e 55 Since D = X, H, we get Q = H'QH,H, or equivalently,

= Q@*HQH™. Since He®B, and Q normalizes B, we get H,eB.
Hence, & = BQKX,) is a group. Thus,

BXY =B xE=B-C;B) IF .

Since B’ x (X)) = 2,(BLXD), it follows that @ centralizes X,. Hence,
@ centralizes H, so He 5’, which gives X, €¢®. We have therefore
succeeded in showing that X, lies in a systemizer of .

Since L'&C(X), it follows that Q' normalizes LBf. Hence, Q'
centralizes Bf since Q' stabilizes £ DX, D1. This is impossible, since
X, is a non central element of § and © N C(Q') = Z($). This estab-
lishes the first reduction of the proof.

We turn to (a). Let & =[%,%]R and suppose [Q.|= 3. “We
already know that | &, is a power of 3, so suppose |2,/ > 3. By Lemma
13.49, &, is non abelian. Let ¥, be a subgroup of ¥, such that &,D
C5(X), 12: C5(X)| =8 Let & =[8, %], so that |&: DR)| = &,
and X, centralizes D(X,). By Lemma 13.49, &, is non abelian, so &,
is of exponent 3 and order 3°, against the first part of the proof.
This establishes (a).

Since DR)S % = BE, it follows that DR)<X,. By (a), £, is not
a square in R, so DAR) =1. By Lemma 13.50, (b) follows.

We let © = <Q> be a subgroup of ¥, of order 3 inverted by X,
and we define $* = [§, Q]. By Lemma 13.49, $ = 9$*C;(H*), so it suf-
fices to show that |C,(9*)| £ 2. Let 9 = Cy;(9*). Thus, Z(H}) =
L = Z(9) is of order 4. By (b), we have |R,| = |H¢|-27° = |H|-27°.
Let R, = Co(B) =R, N Y, so that [R, [ = [H]-27°°. Now DR)&SBN
B¢ =1, and %, centralizes R,, while R, %> =R, X %,. Hence, 9°
contains an elementary subgroup of index at most 8, so $ contains
an elementary subgroup ¢ with [: €| < 8, L= E. Since H* is extra
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special of order 2°, we get that $*¢ is of index at most 2 in §. Let
8 = 9*, so that $*E/3 is an elementary subgroup of /8 of index
at most 2. First, suppose $*E = . In this case, D(9) = 3, so that
9 =9 x 3, where [8,/=2, 8, 8. Since Z(9) =L, we get § is extra
special, so the width of © is at most 8, since G exists. The proof
is complete in this case. We may assume that $*¢ c . This implies
that |$* N E| = 8§, since |*| = 2° and |H: | < 8. Hence, $* N C¢
S A (D*). Hence, ES(9* N E)HF, so that [HF: OF NE| £ 2; the
inequality holding since [9: (9* N &)H| = 4. Suppose [H;| = 2° > 24,
Since Z(9;) = B, and since H; stabilizes the chain H NEDODV D1,
and since |97: HF N E| = 2, we get that b = 5, and that } contains
exactly 1 elementary subgroup of order 2¢, namely, $; N &. Hence,
|&] = 2°, every elementary subgroup of § of order 2° is contained in
H*E, and H*E is generated by such subgroups. Hence, $*E char
9, against m(Z(H*E)) = 4. The proof is complete.

LEMMA 13.52. The hypotheses of Lemma 13.50 are not satisfied.

Proof. Suppose false. Let Q = <> be a subgroup of ¥, of order
3 inverted by X,, and let ¥ be a S,-subgroup of &, which contains
Q. By Lemma 13.51, [, %] =L, and so Q is a direct factor of
B = Q. Hence, P =20 x P, for a suitable subgroup B, of L. Since
P has no elementary subgroup of order 3% a S,-subgroup of T, is
cyclic.

Let 9* =[9, 2], and let B be the S,-subgroup of P. Since
Aut (%) is a 2, 3-group, B centralizes $*. Since [C,(H*)| < 2* and
since L C,(H*), it follows that B centralizes C,($*). Hence, B cen-
tralizes § = H*Cy(H*). Since |R: 9| < 2, B centralizes K, so B =1,
as 0,(8) = 1.

Since a S;-subgroup of Aut (9*) is elementary of order 3%, U'{B)
centralizes $* and since |Cy(D*)| = 2¢, 0'(P) also centralizes C,(H*),
hence centralizes  and &, so that &(¥) = 1. Hence, P is elementary
of order 3 or 3%

First, suppose || = 3. By definition of &, and by 0.3.3, we get
S =LX,. Let R =R NH so that [Re: R, =2. Since DR)E=XN
B =1, it follows that (R, %) is an elementary subgroup of 9H¢ of
index 2'7%, where 2° = |R; R,|. Since H* is extra special of order 2°,
we get @ = 1. Thus, § has an elementary subgroup ¢ of index 4,
so § = ©*C. This implies that C.(9*) is elementary, so Cy(H*) = L,
since T = Z(Cy(H*)). Let W = Cy(V), so that W is dihedral of order
8and & = 9W, H N W = V. Since W admits X, and X, centralizes
LB, it follows that [, X]SZ(B) = $*'. Choose WelB — LB with
W?* =1. If W induces an inner automorphism of $*, then T cen-
tralizes %, since $* N C(W) admits Q. But in this case, B, X,, X
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is a normal elementary subgroup of & of order 16. Hence, W does
not induce an inner automorphism of $*. Let

OF ={H|[W, H]e ', He 9"} .

Since & = 9 - R,, it follows that X,e HF. Thus, ¥ is not a quater-
nion group, and §F admits Q. The only possibility is that §F is ele-
mentary of order 8. Thus, H <] S, again a contradiction.

It remains to treat the case || = 8°. We first show that [9, L] =
©*. Suppose false. Set 9 = Cy(9*), $F = [DF, B], so that $F +1,

>=9F. Since [B,P] =1, BS O, |97V =<4, and Z(§F) =T, it
follows that §F is a quaternion group. If = £} x *, then 2,(9) =
¥ x ©*, so that 9 has no elementary subgroup of index 8. If
D+ OF x *, then HIH*C H, so that HFH* is the central product
of 3 quaternion groups, and § = 9;9* x 8, for some subgroup Z of
B of order 2. Again, we see that § has no elementary subgroup of
index 8. Thus, Lemma 13.51 (d) yields a contradiction.

Now & = & - No(PB), and since H* = [9, B] = [R, B, we get H*<S.
Since 9*P permutes transitively the non central involutions of $*,
it follows that <{9*, X,) is normal in some S,-subgroup T* of &, with
X cZ*. Thus, T* = H* - Cu.(X,). Thus, [T*, X,] S 9%, since [Co(Xy), X, &
X,, due to C..(%,) &©&“ Thus, X, is a central subgroup of T* of order
2. Hence, O admits &*. This implies that &* is elementary of order
2° with b < 2, which in turn implies that & = T*p. Hence, D(T*) S &,
and since D(T*) obviously centralizes LB, we even get D(T*) < §.

We next show that L is weakly closed in . For suppose Ye
® — & and B'= 9. Let A4, 4,, A, be the involutions of B*. Thus,
A;= A, A, where A; € %, A€ Cy(D*). Since [C4(4), BB NB=1,
we get Cy(4;) = Cy(BY), 1 =1,2,3. Since H* is extra special, it fol-
lows that $* & Cy(B¥), that is, B S C,(9*). Since |Cy(9*)| < 16, we
Cy(9*) = B x B¥, against Z(Co(H*)) = B. So BV is weakly closed in 9.

Let & be a S,-subgroup of &¢ which contains a S,-subgroup of
Co(X,). Thus, 8cZ. If 8= D®X), we get BS 9°, since D) = H°.
Hence, B = B¢, since BY is weakly closed in $¢ This is absurd, so
%gD(i). In particular, ¥LEZL D(Cy(%X,)). Now C,.(%,) is the direct pro-
duct of <(X;> and a dihedral group of order 8. Hence, $* = C..(X,)".
This implies that $*' = D(Cy(X,)). Let §F = Co(H*) € Cy(X,). Thus,
D{HF) = H*. Hence, O = 8 x O, where |8] =2, 8L =3 x $*/, and
D(HF) = H*. Hence, H = $*HF x 8. Since Z(9) = B, 9*H; is extra
special of width 2 or 3.

Since 9* = [9, B], we get [, P] = [R], Q]. Let T, = Ny(P), so
that & = $*PT,. We can thus choose S, in £, such that X, = H*S,
with H* e $*. Since Q <] Ns(B), it follows that both X, and S, nor-
malize Q. Hence, H*e $* N N(Q) = $*’. Hence, X, normalizes PB.
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Let P =20 X Q,, where Q, = Cy(X,). Thus, Q,&C(X)=LB% so Q,
centralizes B¢ Hence, X, Cy(Qy). This is impossible, since the
centralizer in §* of every non identity element of ¥ is contained in
a quaternion subgroup of $*. The proof is complete.

LEMMA 13.53. T e Z*(©).

Proof. Suppose false, and T Ne ¥ ¥ (@), NcS. We assume
without loss of generality that if TN, N, then N,=S. Hence,
N = TQ, where O is a g-group for some odd prime gq.

By Lemma 18.44, L= 0,(N) = N,, say. Since N, =T =S, it fol-
lows from Lemma 13.41 that BY is abelian. Thus, for each G in N,
the normal closure of B in T is abelian.

By minimality of M, 9.0 qN, and N,/N.D(Q) is a chief factor
of 9. Suppose H=N,. By Lemma 13.45(b), we get C(9) = Z(9) = L.
Hence, Z(N)=B. By Lemma 13.40, B is a T.I. set in &, so that
N<&. This is not the case, and so HELN,. Since H <2, we get
N2 = N[Q, ], and since D(Q) &S, we get [D(Q), DISNDRQ)NH S
N,. By Lemma 0.8.7, D(Q) = Z(Q), and so Q is of exponent g.

Since $ NN, 2B, and since H/BV is elementary, it follows that
SN/N, = H/O NN, = H/BV/H N /B is elementary. Henee, O contains
a subgroup O, of order ¢ such that £ normalizes ., and $ does
not centralize 98,Q,/M,. Let & = NO,H, & = 0,2), 9, = $ N ¢,. Thus,
[9: 9. =2, and Q, = (@), with Q* = 1.

Let B = 2,(Z(8)) <|8® Then W2 Q,(Z(T)), so that WNV += 1.
Hence, O, does not centralize . Let W, = Cx(Q,). Suppose T, = 1.
Then W, <| &, and so W, N C(H) = 1. But Z(Y) = BV = C(9), against
2, E£S. Hence, Cx(Q) = 1.

Suppose |TW| > 4. Let &, = 2.9, &, = &/, = $/9,, so that || = 2.
Since W is a free F,2-module, we get [T N C(L,)| = 4. Hence, WN
C(2) = 2,(B) and |W| = 2*. By Lemma 13.46, we get W= H. Thus,
BIS D, B = 9, or equivalently, VS H, B, = H°. This violates Lemma
13.47. Hence, || =4,q = 3.

By Lemma 13.47, either BYZL $ or B, & H?. Replacing Q by Q@
if necessary, we may assume that B¢ Z .

We now let @ play the role of G in Lemma 13.50, and proceed
to verify the hypotheses of that lemma. First, . is of index 2 in
9, and 9, =8,. Hence, Q= =T, If H°< T, then €, 9, H» is a
subgroup of ¥, against (¥, 9, 9% = L. Hence, (a) is satisfied. Since
B < 0,(MN), we get VS 0,(N) =2, so (b) holds. By our construction,
BENH VY. By Lemma 13.46, WS . Since Cyx(P) = BN W is of
order 2, we get ({,LN WS H, so that (¢) holds. By construction,
(d) holds, and we have shown that (e) holds, in the first part of the
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proof. Now we have a contradiction with Lemma 138.52, completing
the proof.

THEOREM 13.4. Hypothesis 13.3 is not satisfied.

Proof. Suppose false. By Lemma 138.53, £ _#Z*(®). Let § be
the subgroup given in Lemma 13.2. Let , =3I N 9, and let H, be
a S,-subgroup of §, so that § = 9,9,.

Since 0,(9) = 1, it follows that Z(T) <= Z(0,(9)). Hence, 9, con-
tains every element of Z/ (%), so , contains B,. Let

A = V(eels (Bo); 92) # 1.

Thus, 2 4 9, since 9, is a S,-subgroup of N(B) for every non identity
normal subgroup B of 9.

We assume without loss of generality that if $,=$,c 9, then
9 =&. Thus, with §, = 0,9), we get that $,2/9.D(Q) is a chief
factor of § and D(Q) = QN ES.

Choose G in @ such that B =X=9,, XL H,. Let O, be a sub-
group of £ minimal subject to (a) X normalizes $,Q,, (b) [Q,, X] £ ..
Since %X is elementary, Q, is cyclic. Let & = ,0,X. Let £, = 0,(3),
X, =%XN%,, sothat |X,| = 2. Let 9 = [2(Z(%)), Q,]. Since 2,(Z(T)) =
2.(Z(8,)), it follows that § == 1. We assume without loss of generality
that ¥ = %, X %, ¥, = <X,), and that X, inverts a generator @ of Q.
Since X, centralizes 9, we get [9), X.]=%,. Hence, |J| =4, [9, X|] =
X,. Hence, [, X|] = %,, since L S C(X,)=S% Thus, @° centralizes
Y, so @*c &% Since X, inverts, @, we get @ = 1. Hence, [, Q,] =
[, Q.] =9, a four-group.

We now look again at §. Let Q, = QN $,[Q, X]20,. Since X,
centralizes a subgroup of §, of index 2, we get Q,=Q,, s0o Q, is a
direct factor of Q. Thus, 2,(Z(Q)) is permutable with $, and

DL2(Z(Q) £S .

Hence, Q is elementary.

Suppose |Q| = 8°. Then Hypothesis 13.1 is satisfied and &7 (8) &
A*¥(®)., Let M= MQ)29. Thus, $, is a S,-subgroup of & by
Lemma 13.8(c). Hence, 9, = £, against Te _7*(®). Hence, |Q] = 39,
with a =1 or 2.

Suppose by way of contradiction that ¢ = 2. Since 9 admits Q,
we get Q=2, X Q, where Q,=C,(Y)=SCX,)<=&% Hence, Q,
stabilizes £D%,D51, so Q, centralizes X. Hence, X,S N,,(Q) = T,,
say.

Since $,2/9, is a chief factor of §, Q is an irreducible Z,-group.
Thus, we can choose T in ¥, such that Qf = Q,. In particular,
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9$.X./9, is not central in £,/9,, so ¥ # B,. Since X may be chosen as
any conjugate of B, which lies in &, but not in $,, we get B, & H..
Since a =2, we have Q =Q, x Qf. Let W = [9, L] = [9,, Q] X
[9,Q27] =9 x 9", of order 2. Thus, T does not normalize X. Let
B, = WB <] H. We argue that |,;: W| < 2. Suppose false. In any
case, I, is abelian. Since W, = W x Cgx (L), it follows that O cen-
tralizes U'(W,) = 0'(BV). Hence, B = B,, so that W, = W x B. Let

;= Cy,(Q). Thus, W, =Vand W, N BL=1. Wenow get W, =9 x P" X
B =P x P x W, Thus, for each V in B, we have V = V,V,W with
V.€9, V,eQ", Wed,. If V,=1, then Q, centralizes V, against
QN&=1. If V,=1, then QF centralizes B, against QNS = 1.
Hence, V; = 1,47 =1, 2. Hence, B, = B x P’ x W,. This is impossible,
since X, centralizes B X Y7 x W,. Hence, |W,: W| < 2.

Suppose |[,: W| = 2. Then W, = W x 3, where 3 = Cux () is
of order 2 and is centralized by T,Q = N,(Q). Since W, = WP, it
follows that [B,, §,] = [, 9.], since W = P X P"<= Z(H,). Thus, [BW,, $.]
is a normal subgroup of § of order at most 2, so O centralizes [, 9.].
Since W N C(Q) = 1, we get W, = Z(9,), 3= Z(DH).

Let 8 =1<Z) and choose VeB — . Let B, =WNB = (V.
Furthermore, let 9 = <Y, Y,) with Y = Y,. Thus, B = Y,y X
YD X (YP> x (YF>. Hence, ®NCH,) = Y.V, Y7Y. Since B, is
a normal subgroup of §, of order 2, we get V,= Y, Y,Y7Y7. Now
V=ZW with We. Let W= W,W,, with W,e¥9, W,e9". If
W;,=1for t=1o0r ¢=2, then QNS ==1. Hence, W;=1,7=1,2.
Since [%X,B] =1, by Lemma 13.41, we have [X;, W] = 1. Hence,
W, = Y.Y,. Since [¥",8] =1, weget W,= YTY}. Hence, Z= VV,¢
B, against SN QO = 1. We conclude that B < 28.

Again, let =Y, Y,) with Y 1= Y,. Since B W N CX) N C(¥7),
we get B Y, Y,, YTY) = W N CE)N CE). But then this contain-
ment is an equality, since |B| = 4. Hence, Y7Y7 e B. Hence, (&
C(Y?'Y!) =, against O, &C®"),8NQ =1. Hence, a=1,8 =9,
Q=2Q.

Suppose B H,. Then by Lemma 13.41, we get B < H, N CE) =
C;,(Q) x X,. Hence, BN C, (1) # 1, against QLS. Since BEL 9,, we
may assume that B = X. Choose Ue€ N,(D.) — D, with U?e $,. Then
U normalizes B, and also normalizes C,(B,) = C; (L) x By If C;(TBy)
is not elementary, then N(D(C; ())) 2 (U, $), against the maximality
of ©,. Hence, C;(Q) is elementary and so is central in §, If
[Cs, ()] = 4, then C(U) N Cy(Q) # 1, and if Ae C(U) N C; (L), then
C(A4) 2<(U, ). This is impossible, by maximality of §,, so |C, (Q)| < 2.
If Cs, () = 1, then 9, is dihedral of order 8, against 2 ¢ ,, and Lemma
13.2(d)(i). Hence, |C;, ()| = 2. In this case, §, has precisely 2 ele-
mentary subgroups of order 8, namely, $, and C;,(,). Since U nor-
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malizes C;,(B,), U also normalizes $,. This contradiction completes
the proof of the theorem.

HypoTHESIS 13.4.

(a) Se Z7(9).

(b) 0,©)=1.

(¢) Every normal abelian subgroup of & is cyeclic.

(d) 9 = 0,(®) has a characteristic abelian subgroup 3 of order 8.

Lemmas 13.54 through 138.57 are proved under Hypothesis 13.4.
¥ denotes a S,-subgroup of &. We observe that if (a), (b), (c) of
Hypothesis 18.4 hold, then 2,(Z(%)) = 2,(Z(0,(S))), so that & is a S,-
subgroup of & and N(¥)< ©.

LemMMA 13.54. 3 is a cyclic weakly closed subgroup of ©.

Proof. By Hypothesis 13.4 (¢),  is of symplectic type, so 3 = {Z)
is cyclic. Suppose Ge® — & and 3° = X = (X) & &, where X = Z°.
Let 9 =9n% If |9|>2, then 2,(I) = 2(DQ)) = AU(D(9)) = {Z%,
so X*=7* GeS. Hence, Y| 2.

Let = 9.9,, where 9, is either cyclic or of maximal class and
9. is extra special, and [9,, §.] = 1. Let $, be the unique normal
subgroup of 9, of order 4, and let & = $,9, char . Let & = Co(X?),
so that & c & The containment is proper since C¢ (&) = C4(&), this
equality holding since every chief factor of & between § and & is
central. Let & /8, be a chief factor of & with & S &.

Suppose X* centralizes 8. Then [&, X]S% N & = <X*), so that
X stabilizes & D& N<X*>21. This implies that X* centralizes &,
against our construction. Hence, ¥ acts faithfully on £,. Choose
Ke® — R, Let X'KX = KK,, where K, &. Let X'K,X = K,K..
Thus, X*KX* = KK,K,K, = KK!K,. Since K,c C(X?*) & N(%X), we get
K, e{X*. If K, =1, then X* centralizes K, so centralizes &,. This
is not the case, so K, = X* Since D) = 2,(Z(3)), we get K;e
2.(Z(®)). Hence, X*KX*= X*KKX*X* = KK!X*K?X* = K, against
XN CR) = 1. This contradiction completes the proof.

LEMMA 13.55. <{Z%* = 3, is weakly in ©.

Proof. Suppose Ge® — & and Y%e S, where Y = Z%. Since
Aut (3) is elementary, Y?* centralizes 3. Hence, 3= C(Y? = &¢.
Hence, 8 = 3% since 3¢ is weakly closed in &% This yields Ge&.
The proof is complete.

Let Y=2°1=Y*= Z"

LEMMA 13.56. <{I) is weakly closed in C4(Y).
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Proof. Suppose Ge® — S and I¢ = Je Cg(Y). Then YeC{J) =
&°. Since (Y°) is weakly closed in &% we get (Y) =(Y%,Ge&.
The proof is complete.

LeMMA 13.57. If J is an involution of Ce(B), then C(J) < ©.

Proof. Suppose false. Let
N ={NNe L (@), 3N, 0,(N) =1, NLES}.

Thus, C(J)e .4, by Lemma 13.1. Choose %€ _#" such that | N S|,
is maximal. Let £* be a S,-subgroup of N S. Thus, 3= T*. Let
€ = N(¥*). By Lemma 13.1, 0,(%) = 1. If T* is not a S,-subgroup
of M, then LL S, so that Le 77, 8N S|, > [N N|,. This violates
the choice of N, so T* is a S,-subgroup of N. Since Y = (Z* is
weakly closed in &, we have PZ0,N). Hence, 0,0 NY = I).
But O,(N) =3T*= &, so [0,(N), BI=0.N) N 3= ). This implies that
Z*® centralizes 0,N), so Z* = Y e 0,(N). This contradiction completes
the proof.

THEOREM 13.5. Hypothesis 13.4 is not satisfied.

Proof. Suppose false. By a basic result of Glauberman [16],
there is G in ® — & such that I¢ = JeZ. Let & = Cy(J). Thus, &
normalizes 3 and 8% Let &, = Cy(Z), € = C¢(Y ). Suppose & N &, = 1.
Choose Ec E,N Ef. By Lemma 13.56, C(E)S©&. Hence, Y°e&.
Sinece (Y is weakly closed in &, we get (Y = Y), I = I°. Hence,
G NE =1. Since DE) =E N E, we get that D) = 1. Since

[Aut (8)] = 4, [Aut KY))| =2,

we get |¢] < 8. Since 2€ 7w, we conclude that |E| = 8.

Let * = Cy(Z). Thus, |9* N CJ)| = 2, since * N C(J) is faith-
fully represented on (Y°). Hence, $*{J) is of maximal class. Thus,
H* is either of maximal class or is cyclic. Since Ze Z(H*), we get
that * is eyclic. This is not the case, since the width of § is at
least 1. The proof is complete.

HypOoTHESIS 13.5.

(a) Se Z77O).

(b) 0.©) = 1.

(¢) Every normal abelian subgroup of & is cyclic.

(d) & = 0,(®) contains a characteristic subgroup 3 of order 4.
Lemmas 13.58 through 13.60 are proved under Hypothesis 13.5. Set
8=KZ>,1=2%3,= ). Let T be a S,-subgroup of &. Let w be
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the width of . Thus, $ is the central product of 3 and an extra
special group of width w, by Theorem 13.5. Since 2¢m,, we have
w = 2, so that m(9) = 2w +1 = 5.

LEMMA 13.58. If ©, is a subgroup of O of index 2 which con-
tains 3, then for each Ge® — S, HF LS.

Proof. Suppose false. Let & = ¢, &, = 97, X = 3%, J = I¢ = X?,
X =<(X.

Case 1. J¢9.

Since |R: & | = 2, &, contains an extra special subgroup &, of width
w— 1. Thus, & N Y = 1, since J is the only minimal normal sub-
group of &,. Let & = 0,,(©), $* = [9, &]. Thus, * is extra special
of width w* < w. By Lemma 5.13, we get w < 2. Hence, w = 2,
since 2e7,. However, &% is the central product of &, and X and
KX is faithfully represented on /9. Let & = 8, where 2, is a
S.-subgroup of 8. Thus, &, is faithfully represented on $*, an extra
special group of width 2. Thus, |%,] = 3,5 or 9. This is impossible,
as &% is isomorphic to a subgroup of Aut (%).

Case 2. Je$.

Let $,= Cy(J), so that [H:9,]=2. Let €E=9N&K. Then
D@ =JI> N> =1. Thus, |G| < 2+, since 2¥*' is an upper bound
for the order of every elementary subgroup of . Let |§| = 2°. Since
&/J) is elementary, so is & /€. Thus, & /€ is elementary of order
2+~ Now &/C = 89/9 = &, and R, is represented faithfully on
R=0,,()/9. Set f =2w +1—e Thus, & contains a subgroup
B=2%B,x ++- x By, such that |B;| = p; is a prime, B; admits &,,
1=i=f, and C5, (®B) = 1, and where we have chosen B as an abelian
subgroup of 0,,(S) of odd order, such that B = BH/H, B;:=B, B; =
B:9/9-

Let V= 9/9’, so that V is elementary of order 2**!, Let V =
Vo X Vi, where V, = C,(B), V, = [V, B]. Thus, 3/9'SV,, so|V,|=2"
with a < 2w.

Since e < w + 1, we get f‘g w. Let U, =B, H, 8>, and let
U = Ay (V). Thus, A =AU, X +++ X Ay, where A, is dihedral of order
2p;, and we choose notation so that ; is the image of ¥, K;, )
in %, where K;e&. Let V= W.DoW,D+--DW,,;,=1 be a com-
position series for V, as U-group. Let Wi= W;/W;.,,t =1,2, +++, s,
and let A = Cy(W?). Since A, - .-, N, exhaust all the minimal normal
subgroups of ¥, we get that %* = A, ;, for some subset J(¢) of {1, ---, f},
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and where we define U, = Q;|jeJ) for all JE({1, ---, f}. Thus,
each W* is a free F,®-module, where R is a S,-subgroup of /.
Hence, | Wi| = 2'*"! for all 7, so that | W,| = 2%, where k& = 35, |®|.
Since |&| = 2 for each 7, it follows that if |&¢| = 2¢, then |&*| = 20,.
Hence, 2w = k= 2>,b,. Since >, b, = f = w, we conclude that &k =
2w, 2b; = |&'] for all <. Hence, b, = 1 or 2 for each 4. This implies
that B is a 3, 5-group, and that for each 4, a S;;-subgroup of /A’
is of order 3 or 15.

We can do a little better, however. Namely, U is not represented
faithfully on any proper submodule of V,, as the inequalities show.
Let %A(2) be the S,;-subgroup of A N C(W,), so that A(2) = 1. Let
B(2) be the preimage of A(2) in B. Then set V, = H*/9’. Hence,
$* = Co(BR)[O*, BR), W, = C,(B(2)/9’ and [9*, B@)]/Y’ is a com-
plement W' to W, in V, = W,. Hence, W, = W' x W, as A-module.
Repeating this argument suitably often implies that V, = W' x W?* x
e X WE, 9% = OF --- OF, where each 9} is extra special, admits
HBR,, and W* = /9’ is an irreducible A-module. Since | W*| < 24,
it follows that Aut (9}) does not have a subgroup of order 15. Hence,
B is a 3-group, and ; is the central product of b; quaternion groups,
1 <17 <s. By the inequalities, we get 3 = C4(B), so that

=239 --- 97 .

Case 2a. w = 3.

Since f= w and B is elementary of order 3“, we get ¢(3) = 3.
Henece, . &v8)= _~2*(®) and so & = M(B). Also, since e = w + 1,
€ = & N 9 is an elementary subgroup of  such that 3¢ e & _+(9).
Suppose Ee @ — (I) and Cy(F) is non cyclic. Let § = (&, I>. Thus,
C,(F') is non cyclic for each Fe%’. Since .7 (3)= . 2*(S), we get
C(F)&® for all Fe%®. By Case 1 applied to &% we get Ic H°.
Hence, F<= 9°, and so 9% =(H° N C(F)|FeFH»=S. Hence, H¢ is
a 2-subgroup of & whose center is contained in 8N 3% = 1. This is
impossible, so no such E exists.

Again, since f = w, it follows that © is the central product of
8 with quaternion groups Q,, -+-, Q, such that each Q, admits B.
Let €, =B N CQ,), so that |B: €, =3,1 <7< w. For each subset
Jof {1, .-, w}, let Q, =<8,Q;|teJ). As J ranges over all the
subsets of {1, ..., w}, the groups Q, range over all the subgroups of
$ which contain 8 and admit 8.

Suppose 4, je{1, -, w}, 1= J. LetJ = {3,7},J ={1, «+-, w} — J".
Then €N Q; = {I), as we have shown, since
n ¢
k=1

k4,5
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is non ecyclic and centralizes Q,. Thus, for each EFe@, FE =
EJ)E(J’"), where E(J)eQ,, E(J')eQ;, and E(J’')e 3 if and only if
Ec{I). Thus, the map ¢: E+— E(J')3 is a homomorphism of ¢ into
Q,./8 with ker @ = (I>. Since [Q,: 3| = 2¢, we get |E| < 2°. Since
|@| = 2**, we have w = 3 or 4.

We next show that & NB = 1. Namely,

[NV, R]SHBNHSH .

Since &, has no non trivial fixed points on $B/9, by construction,
we get &°NB = 1. We may rewrite this equation in the equivalent
form Cy(J) = 1. Hence, we have J = Z2°Q.,Q, - -+ Q,, where Q;eQ,; —
I, 115 w.

Now B = B9/9 = € x D, where X = X inverts € and centralizes
D. Suppose |€|=9. Let € be a subgroup of B incident with C.
Thus, X normalizes [9, €] = H, and 89 = Q, for some J. Since
[9: 9.1 =2, (B = Cy(J)) we get |©: Cy(X)| = 4. Since [9, €]/D" is a
free F.{X)/{J)-module, it follows that |[€]| =9, and that © is the
central product of two quaternion groups. Since w = 3,J¢[9, C].
Hence, [X, C5(J NeHn > =1, so that X centralizes a subgroup of
& of index 2. This is not the case, so |€| < 3.

Since w = f =3, we get [D|=9. Let ® be a subgroup of B
incident with ®. Thus, (X, 9) <{<(X, 9, D). Hence, DX, $>) =
(X2, &', [9, X]> is normalized by D. Since [9,, X]S<(X>D = ), it
follows that | DX, $>)| < 8. Hence, DN C(J) = 1, against BN S = 1.
This contradiction shows that this case does not occur.

Case 2b. w < 2.

Here we get w = 2, since 2¢ 7,. Hence, |&| = 2%, where, as above,
E=9%nN8K.

Let & = N.(B). Since S/-subgroups of Aut ($*) are of order 9,
it follows that B is a S,-subgroup of &. This implies that & = $,
since Aut (9) has no elements of order 15, and by hypothesis, & is
solvable. Thus, $* <] &. Since $* has exactly 2 quaternion subgroups,
it follows that /9 is isomorphic to a subgroup of a dihedral group
of order 8. Since R&/H = & /€ is a four-group, T/9 is dihedral of
order 4 or 8.

Choose generators B,, B, for B such that Cy(B;) = Q; is a quater-
nion group, ¢ = 1,2. Suppose JecBQ,. Then B; centralizes J, so
B;e &% Hence, [®, B;]< 9° against the fact that £ has no non
trivial fixed points on $B/H. Hence, J¢ 30, U 39,. Let J = Z°H H,,
where H;€Q,;. Thus, H, and H, are both of order 4, so H.H, is an
involution. Hence, Z* ¢ {(I), and replacing H, by Z°H, we get that
J = H.H, with H;e€ Q, — {I).
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Since &9/9 is a four-group, &, contains an element K, such that
K, inverts $%8B/9. The coset €K, is uniquely determined by this con-
dition, since K, lies in a uniquely determined coset of § in HRK,. Since
K, inverts 9B;, 1= 1,2, it follows that K, normalizes Q,, ¢ =1, 2.
We can therefore choose L,;eQ,; such that (L, L&) = Q,. Since
D(R) = {J), we get Kze {J).

Let Y = 7% We will show that &Y = GK,. Suppose false. In
this case, Y does not invert 9$B/9. First, suppose Y normalizes Q.
Since Q, and L, are the only quaternion subgroups of £*, Y normal-
izes Q,. If Y induces an inner automorphism of Q;, then J = Y*
centralizes ;. This is not the case, so Y induces outer automor-
phisms of both Q, and Q,. Hence, YK, induces an inner automorphism
of Q, and of Q,, so YK, induces an inner automorphism of $*, so
YK, e, which gives YK, c@. We may therefore assume that Y
does not normalize Q,. Let Q, = {H,,, H,y, and set H, = H}, 1=
1,2, so that Q, = (H,, H,y. Thus, HX = HY = H’. We assume
notation is chosen so that H, = H,, recalling that J = H,H, with
H;eQ; — {I>. Hence, H,= H?', and H) = H/ = H,, while H} =
H} = H3'. Since H,H,,c C(J), we get [H,H,,, Y] {J), as (Y) <{&".
But H;'H;'Y 'H,H,Y = I¢{J). We conclude that €Y = GK,, so
that Y inverts $8B/9.

Since Y inverts 9B/H, it follows that Y normalizes Q, and Q,
and Y induces an outer automorphism of each. Hence, we can choose
generators H;, H;, of Q; such that HY = H,,7 = 1,2. Hence,

C@*{ Y) g <H11H127 H21H22> ’

an abelian group of type (2,4). Since [9,, Y]=<J), it follows that
C,.(Y) = <{H,H,,, H,H,,). Since Y centralizes ¢, we conclude that
CZL H*. Sinee H, H, 9, we get

[Hu}Im, Y] = J = HZTLHJI Y_lHnHmY = HleHJ_lemsz = HquszfIzz ’

an important equality.

Since Cy(Y) = <Z, H,H,,, H,,H,,y, and since {I,J)CE, we get
that £ = ZH, H,,e &. Choose Kc & — G(Y)>. Then K does not cen-
tralize F, since Z(®) = (Y, I). Hence, [E, K] = J, and so Qf = Q..
Also, however, we conclude that £ normalizes & and psrmutes
€ — (I, J) transitively.

Let € = (Cy(E), B, Y> S Cs(E). Now Cy(E) = (E)> x 9, where
$ is the central product of 8 and Q,. We can choose He such
that HY inverts B, since Y inverts <9, B)/D. Hence, (H Yredn
C(B) =<E) xZ). Let H= E°Z'H;H, so that

(HY)Y = HIY'HY = HJ - E*Z'H H;* = JZ*H; HLHLH;" .
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Hence, ¢ + d is odd, which implies that (HY)* = I. Hence, I is a
fourth-power in C.(E). Let & be a S,-subgroup of Cs(E). We argue
that <I) = 0%%). Namely, Cs(E) does not contain a S:-subgroup of
&, since 3 = Cy(B). Hence, (B is a S;-subgroup of Ce(E). This
implies that £/9 N € = £$/9 normalizes <9, BQ/@ So E/1XN G is
elementary, from which we get (&) &9, OZ(T)CG‘(Q) =<{I>, as
required. Since {I) = OZ(E), we get that € is a S.-subgroup of
C(E) = €, say. Hence, <I)® is elementary, since Ie Z(0,(€)). Since
A, (€) permutes transitively €& — <1, J), it follows that for each Fe
€ — I, Iy, {I)" is elementary.

We now exploit the symmetry between & and &° Namely,
. =C(J)=6°NYHis of index 2in ® and H. N Y =&, $*° N H, =
I, J)y. By all the above applied with the pair (9, &°) in the role
of the pair (8, &), we get that {(JH>?¥ is elementary for all Fe§ —
I, J). This is not the case, since Q,= (J)°“’. The proof is complete.

LeEMMA 13.59. (I) is weakly closed in 9.

Proof. Suppose Ge® — & and J = I¢e . Let &, = Cy(J) so
that |9: §,| = 2, 9, =&° By Lemma 18.58, we get G'e&. This is
not the case, since Ge® — &.

LEMMA 13.60. T e _Z7*%(®).

Proof. Suppose false and 3 is minimal subject to
TeNe SO ©), NLS.

Thus, as usual, = TQ, where Q is a ¢-group for some odd prime
q. Let %, = 0,MN). We argue that 3=N,. Suppose false. Then
B3NN, =) =2Z() and N,Z is central in T/N,. By minimality of
RN, NQ/NDE) is a chief factor of N, and D) = 0 NS. Thus, 7
inverts R,Q/N.DQ) and Z centralizes N,D(LQ)/MN,. Since

NN NCZ) =2,

we get that Q] =3, T = 9,3, N, = N, () x [N, Qf, and [N, Q] is a
fourgroup. Hence, Z(%) is non cyclic. As this statement is false, we
conclude that 3=, Let $,=9NN, 23, so that H/H, = HN/N,
is elementary. If © = $,, then ZR)=Z(H) = 3, so that NE=&,
against our choice of t. Hence, $, < 9, and we can choose a sub-
group Q, of QO such that (a) [Q,] = ¢, (b) $ normalizes N, (c)
does not centralize R,Q,/%,. Let € = N9, 8 = 0,9), H,. =2, N H,
so that |9: §,| = 2. Clearly Q,Z£ &, since [Q,, §] is not a 2-group.
Let Q, = (). Then H$9?=8, =%, so by Lemma 13.58, @€ &. This
contradiction completes the proof.
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THEOREM 13.6. Hypothesis 13.5 is not satisfied.

Proof. Suppose false. By Lemma 13.60, £ _#*(S). Let § be
the subgroup given in Lemma 13.2. Let 9, =9 N<. Thus Z®)=
Z(0,9)), so that 3= 9,. Let BV = V(ccly(8); ). By maximality of
D,y we get B « . Hence, there is G in @ such that X = 3°< 9.,
XL 0,(9).

We assume without loss of generality that if 9, =9, 9, then
$, 6. Thus, § = $,Q,Q is a 3-group, SN Q = DQ), and if H, =
0,(9), then $,2/9,D(Q) is a chief factor of .

Let ¥ = (X), and let Q, be a subgroup of Q minimal subject to
(a) Q, & D(Q), (b) ¥ normalizes $.Q, (¢) X does not centralize /Q.
Let 8 = §,Q.%, &, = 0,(8) and let W, = 2,(Z(8)) 2 2,(Z(T)). Thus, L,
does not centralize 2B,. Let T8 be a minimal normal subgroup of £
which is not centralized by Q, Since £,2,/8.D{Q,) is a chief factor
of 8, it follows that C, (W) = D(Q,). We argue that X*e ¥,. Suppose
false. Then the minimal polynomial of X on W is a multiple of
(x — 1)®. Hence, X does not centralize T N C(X?*. But

[X, BN XY =X,

so X*e WS L,. Hence, X*e ¥, so Q, is cyclic. Since X*e C(W), we
get [, X] = <X®, so that |[W| = 4, D(Q,) S C(X?. Hence, X cen-
tralizes D(X,), and X inverts £.D(Q,)/€,, so || = 3. Since X*e Z(L),
we get [8, X] = (X*). Hence, 8, = C, () X W.

Since T is not of maximal class, C, () # 1. Suppose 3<E ..
Then since L, centralizes 0'(%,), we get Q,& C(I) = &. Hence, 3Z 9.,
and we may assume that 8 =%. Hence, O, =2,9 = 9,Q, 9, =
DLZy. Let 0(8)N §, = U, and let L be an involution in Z($H). Thus,
9, is a S,-subgroup of C(L), so C(L) N 0,(©) S $,. Hence, 0,(&) N $, D
{I). Suppose 0,(®) N C; () # 1. Then 0,(©) N C;, (L) N Z(9) contains
an involution L,. Hence, C(L,) N 0,(S)< $,. Hence, 0,) N C(L,) is
abelian, since

0,(©) N C(Ly) = (0:(®) N C(Lo) N £)<Z)> and 0y(&) N C(Lo) N Qo

is elementary. This is not the case, since the width of 0,(&) is at
least 2. Hence, 0,(&)NC;(Q) =1. Let U= 1% Z(9,). Thus,
0,(®) N C(U) S N(W), so that 0,() N C(U)< H. and Z ¢ 0,) N C(U),
since [U,Z] = Z* = 1. Since 0,®) N C,(Q) =1, and since 0,(S) N
C(U) € 9., it follows that 0,(9) N C(U) is a four-group. But m(0,(S)) =
5, 80 |0,(3) N C(U)| = 8. This contradiction completes the proof.

HyproTHESIS 13.6.
(a) ©&e 7Z.7(0).
(b) 0.,(®) =1, and every normal abelian subgroup of & is cyclic.
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(c) O.®) is extra special.

Lemmas 18.61 through 13.69 are proved under Hypothesis 13.6.
Let © = 0,), let w be the width of &, and let £ be a S,-subgroup
of &. Let & = <I) = Z(9). These equations show that N(X)= S,
so that € is a S,-subgroup of ®. Let & be the set of non central
involutions of $. Since 2ew,, we have w = 2.

LEMMA 13.61. If Xe& and 9, = Ci(X), then C(Q,) = Z(9,) =
d, X>.

Proof. Since Ie §,, we have C(9,) = Cs(9,), so it suffices to show
that Co(9,) = 9. Now 9, = (XD x §,, where 9, is extra special, and
Cy(9,) = 9;, where , is dihedral of order 8.

Choose Ce C(9,). Then C stabilizes § D H, D1, so C is a 2-element.
Also, C normalizes Cy(9,) = 9, and C centralizes the four-subgroup
(I, X) of $,. Hence, C induces an inner automorphism of £, so C
induces an inner automorphism of . Since Cy(9) = <{I), we have
Ce 9.

LeMMA 13.62. If 9, is any subgroup of index 2 in 9, then 9,
contains every involution of C(9,), and C(9) is a 2-group.

Proof. Since 9 is extra special, |Z(9,)| = 4. If Z(9,) is a four-
group, we are done by Lemma 13.61, so suppose Z(9,) is cyclic. Let
X be an involution of C(9,). Then Xe&, and 9, = Z(9)9,, where
9. is extra special, and X normalizes Cy(9.) = 9. If 9. is a quater-
nion group, then X induces an inner automorphism of ©,, so that X
induces an inner automorphism of § and we are done. We may as-
sume that §, is dihedral and that X induces an outer automorphism
of .. Hence, X¢ 9, so by Lemma 5.36, X inverts an element @
of & of odd prime order. Let Q = {(Q). Since X centralizes $,, and
[9: ©,] =2, we get |Q] =3, and [, Q] = $ is a quaternion group.
Thus, X induces an outer automorphism of .6, against |9: 9.| = 2.
The proof is complete.

The next lemma is somewhat elaborate, and is the nub of the
matter.

LEMMA 13.63. Suppose XS, H, = Co(X) and Ge® — S. Then
OTLS.

Proof. Suppose false. Let & = 9= S. We assume without loss
of generality that & =<%. By Lemma 13.61, C(9,) = (X, I>. Set
J = I% so that C(8) = (X%, J). Since Ic Z(S), we get Ie<{X° J).
Hence, & = <I> x R,, where &, is extra special of width w — 1.
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Suppose N &, = I>. Then YN K =1. By Lemma 5.12, w = 2.
Since &, is represented faithfully on 0,,(&)/9, it follows that A4(H)
contains a S,-subgroup of Aut (). It follows that ¥ does not nor-
malize any elementary subgroup of § of order 8. On the other hand,
2em, so T contains a normal elementary § of order 8. Let ¥, =
FNH. If § = I), then F stabilizes $ DIY>1. This is not the
case since &/9 is represented faithfully on £/9’. Hence, &, is a four-
group. Choose Fef — 5. If F normalizes each of the two quater-
nion subgroups of §, then since [F, 9] = F., F' induces inner automor-
phisms of each, so F induces an inner automorphism of §. This is
not the case, since F'¢ . Hence, § interchanges the 2 quaternion
subgroups of $. This implies that |[9, F']| = 8, against [9, F'] = F..
This contradiction completes a proof that & N 9 D <ID.

Since <{J) is the only minimal normal subgroup of &,, and since
1c&nN 9 <8R, we get Je 9.

Set € =& N H2<KI, J). Since &/{J) is elementary, &,/€ is also
elementary. Let |G| =2° |R:F| =2/, Since DEUI>NJI) =1,
Eand &,/€ are both elementary. Since | H%: &, | = 2, we havee + f = 2w.

Let 3 = (&) be the set of all non central involutions I, of §
which are fused to I in &. Thus, JeJ. Suppose L e, I, = I,
Ye®. Then C(I,) = & and |$: Cy(I)| = 2. By the preceding argu-
ment we get Ie ', so that IeJ¥. This implies that Cyr(I) &S,
and |9": Cyv(I)| = 2. Let & be the set of all ordered pairs (A4, B),
A ~ B~ I, such that AeJ(C(B)). By what we have just shown, .7
is symmetric. This symmetry is quite exploitable.

We now study R, in greater detail.

Let B =B, X +++ X B, be a subgroup of F(Smod ) such that
(@) |B;| = p;; an odd prime, (b) §B; admits R, (¢) C, (9B/9) = C.
The existence of B is guaranteed by Lemma 5.34. For each subset
A of &, let A = AH/H. Let & be the subgroup of K, containing
such that & = Co(B),1 <i=<f, so that |R:8|=2. Let &=
Niz &, and let D, = (8, B, $>. Then D, is dihedral of order 2p;, and
if we set 2= 9BR, then L= D, x +++ x D;. Let V= $/9 so that
V is a faithful F,%-module. This notation will be preserved throughout
the remainder of this lemma.

Case 1. e¢= w( = f).
By Lemma 5.14, p; = 3 for all <.
Since B is elementary of order 3” and B is represented faithfully

on §, it follows that § is the central product of quaternion groups
Q,, «++,Q,, each of which admits 9.
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Case la. w = 3.

Here we have ¢(3) = 3, so .&7(3)= _~Z*(®). By Theorem 13.1, S,-
subgroups of & N &° are of order 1 or 3. Suppose &° N B == 1. Choose
Be@“NYB. Since Be .7 (3), we get C(B)=S. Hence, C,¢«(B) =S,
so S,-subgroups of & N &¢ are non cyelic. We conclude that &° N B = 1.
Let J= Q.-+ Q,,Q;€Q;. Since ;.: C5(Q;) is of order 3 for each <,
we get that Q;eQ,; — {I), all 7. Since J is an involution, w is even,
so w = 4.

Suppose Eec G — (I), and EcQ, --- Q,_,. Since Cy(Q, --+- Q,_,) €
7 (3), we get C(E)= S, C(EI)=&. In particular,

97 = (Cy(E), Co(EI), Coe()) &S -

Hence, - 9% is a 2-subgroup of & whose center is contained in {I) N
(JY = 1. This is impossible, so €N Y, -+ O, , =<I). For each F
in & let E=EE, EecQ, ---Q,., F,ecQ,,2, The map #:¢—
Q,1Q,/{I>, given by @(E) = {I) E, is a homorphism with ker ¢ =
{I>. Hence, |&:<I>| =2 so that w—1=<4, w=5. As w is even,
we have w = 4.

The preceding argument yields that €N Q,Q; = {I) for all 1, j.
Since B acts faithfully on © and does not act faithfully on any proper
subgroup of 9, {Q,, Q,, Q,, Q,} is the set of all quaternion subgroups
of  which admit B. Hence, N,(B) permutes {Q,, Q,, Q,, O,}. Since
L = - N(B), 8 permutes {Q,, Q, O, Q). We can choose K e R, such
that K inverts 8. Hence, K normalizes each Q;, and K induces outer
automorphisms of each Q;. We can choose generators @, Q;, of Q.
such that QX = Q,,. Let @i = {Q:,,Q:.>. Since K centralizes J =
Q. - Q,, we have Q,-+-Q, = J = QF --- QF, so that Q; e@,, all <.
Hence, J centralizes Q@ = @.,,Q.,, since J does not centralize either @Q,,
or @,. Hence, Qe&° so that [Q, K]S H°N H = E. But

[Q9 K] = IinKQuQmK Q~1Q111Q12Q22€ (G - <I>) N M1M2 .

This contradiction shows that this case does not arise.
Case 1b. w < 2.

Here we get w =2, as 2em,. Since f = 2, a S,-subgroup B of
S is elementary of order 9, and $B permutes JF transitively. First,
suppose that for some Ae® — &, $* N H = F is elementary of order
8. Since $ has just 6 elementary subgroups of order 8, B contains
a subgroup B, of order 3 which normalizes . Hence, A4({) contains
the stability groups of FoOU> D1 and F>O>I4 D1 and contains
Ay(B) = 1. Hence, A4(F) is non solvable. We may therefore assume
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that whenever 4 = [, € J(S), then $*N $ is a four-group.

Suppose 9BR, < S. In this case, T/H is dihedral of order 8, and
it follows as in a previous argument that &=z 7;(%) = @. Hence,
S = OBR, is of order 27.3°. Since & = {I)> X K,, where &, is dihedral
of order 8, we can choose non commuting involutions D,, D, of &,.
Let Q,, £, be the quaternion subgroups of $. Suppose Q, <] &S. Let
B; be an element of & of order 3 which is inverted by D, i=1,2.
If D, and D, both induce outer automorphisms of Q, and Q,, then
DD, induces an inner automorphism of §, against D,D,¢ §. Hence,
we may assume that D, induces an inner automorphism of Q, and an
outer automorphism of L,. Choose generators @, @,, of Q; such that
Q= Qn, Q7 = Q. Now J = @QQ, with Q,eQ; — {I[). Since D,
inverts @,@®., D, inverts @,, so D, inverts @,. Since D, induces an
inner automorphism of L, we get Q@ = Q%, d; = = 1,7 =1,2. Since
Q. is a generator for (Q.Q.», we get QQ = QZ'QL = Quy'. Hence,
d.d, = —1. Thus, we can choose i¢€{l, 2} such that Qi = Q3'. Let
T =D, I,J>= 9% Then @, normalizes ¥ and does not centralize J.
Let % = A4(F). Thus, U does not centralize J. Since A.+(F) permutes
transitively § — (J), it follows that U permutes F* transitively.
Hence, % is non solvable. We conclude that Q, 4 &.

We may assume notation is chosen so that D, interchanges
and Qz- Let Dy = <Q11, Q12> and set in = Qﬁ‘, Fz = QLini, 1= 1, 2.
Then set § = (D, F,, F,, I, an elementary group of order 16. Let
A= A(F), A = 4.(F). Let §, = F,, F,, I>. We argue that F = C.(F,)-
In any case, Cs(%,) is a 2-group, and Cy(F,) = T Since K, contains
an element K which induces an outer automorphism of both Q, and
L,, it follows that Cy(K) is contained in an abelian group of typz
(2, 4). This implies that no element of $K centralizes any elementary
subgroup of © of order 8. Hence, F = C.(F,). Since B contains a
subgroup B, of order 3 which normalizes F,, we get that B, normal-
izes .

We next argue that T normalizes §. Certainly £ normalizes .
Since §, = C(D,, J)), we get that D, normalizes . Since T =
9D, Dy, F <] L. Let N = N(F)2IB,. Suppose 5] |N|. Since N is
solvable, N contains a subgroup ¥, of order 15. Since C(I) = & is a
2, 3-group, N, permutes F* transitively. Since F = C(F), we get F =
0,(MN). But |T:F| = 2% It is easy to check that Aut () has no such
subgroups. Hence, 5/} [Jt], so 9 is a 2, 8-group, [N| = 2".3°,a =1 or
2, s0 [N NS|<3. Since O,MNNGS) =FH is of index 2 in T, and
since FH/F is a chief factor of NN S, it follows that FH = 0N).
Hence, Z(0,(N)) = I> N, NE&S, and |N] = 27.3.

On the other hand, F-Cy,(J)ESS% and £°NF = <D, I,J), so
that $° normalizes . Since $°-Cy(J) is a S,-subgroup of & it
follows that M contains a S,-subgroup of &°. Hence, I and J are
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conjugate in M. This is absurd, since {I) <M. Thus, this case does
not occur.

Case 2. e+ w.

By Lemma 5.8, f = w, so that ¢ = w. By hypothesis, ¢ # w, so
e=w + 1. On the other hand, § is of width w, and & is an ele-
mentary subgroup of § of order 2¢°. Hence, ¢ < w + 1, so that ¢ =
w+1 f=w-—1. Since § contains an elementary subgroup of order
2v+ . ©§ is the central product of w dihedral groups.

Case 2a. w = 2.

Since © is the central product of 2 quaternion groups, & is a
2, 8-group, and |B| = 3.

Case 2a (i). & = & (Recall that & = $BK..)

Here the order of & is 2°.8. Since & = <I) x &,, where &, is a
dihedral group of order 8, we get € = {I) X D,., where D, is a four-
subgroup of &,. Choose De &, — D,, D* = 1. We assume without loss
of generality that D inverts B = (B). Let Q,, Q, be the quaternion
subgroups of §. There are several cases.

First, suppose D normalizes both £, and Q, and that D induces
outer automorphisms of £, and Q,. We can then choose generators
Q;1, Qi of Q; such that Q) = Q,,, 7 = 1, 2. Hence,

C@(D) = <I, @1:Q1:Q: @z

so that J = @,,@,,@Q,@:,1°%, where a = 0 or 1. We argue that J & celg(l).
Suppose false. Choose I,€ Y. Then I, = I“ for some 4 in &, so that
I, € (&), yielding I J(S4). Hence, (91N S)- 9 is a S,-subgroup of
&, and 4N  is elementary of order 8. Thus, |cels(l)| = 6, and
every element of ¥ commutes with some involution of & — . On
the other hand, if He §, then HD is an involution if and only if D
inverts H, so that He<Q.Q., J)>. Hence, D contains at most 8
involutions. Since |cely(D)| = 8, and involutions of £ — & are con-
jugate to D in T. Hence, every element of I is S-conjugate to an
element of <{I,J) — {I>. This is not the case, since there are just
6 elements of I so conjugate. Thus, in particular, we have #(®) = 2.

We have determined the isomorphism class of £, and it is straight-
forward to verify that ¥ is isomorphic to a S,-subgroup of M,,. Since
#®) = 2, it follows from a result of Brauer and Fong [11] that & =
M, But M, is not an N-group, since M,, contains an involution
whose centralizer € has order 240, from which it follows that € is
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non solvable.

Next, suppose D normalizes both Q, and Q,, but that D induces
an inner automorphism of L,. Since D inverts B, it follows that B
centralizes Q, and that (B, D) is faithfully represented on {Q,. We
can therefore choose generators Q,, @, of Q, such that Q5 = @, and
then choose generators Q,, @, of Q, such that Qf = Q., Q2 = Q%,
where d = + 1.

Now J = @,Q,, where ;€ Q, — {I>,i=1,2. Thus, Q.,Q.= Q7 — @7,
so that Qr7Q, = @7Q;'e@Q. N Q.= <I). Hence, D fixes <(I)Q,
0 @, = (Q.Q,)*, and @, is inverted by D. Hence, d = —1, and
Q. = QE'. With a suitable choice of notation, we may therefore assume
that J = @Q,Q:,Q:.. Choose Ec@ — (I,J). Then [E, D] = J, since
Ce. e 4 (9%. But [9, D=L, while J¢Q,. This contradiction
shows that this case does not arise.

We may now assume that D interchanges Q, and Q,. Let J =
@.Q,, Q: € Q; — (I), set @ = Q,,, and choose @, such that (Q,, Q) =
Q.. Let Q;=Q57=1,2, so that Q, = {Qu, Q). We now get
J=J? = QPQP, so that QP = Q¢, Q7 = Q¢, where d = = 1. Since D
inverts B, we get Cy(B) = {I).

LetF, = Co(D) = I, J, Q:Q:, T = {&o, D), so that F is elementary
of order 16. Since [9, D]=F,, it follows that F <. On the other
hand, FE& &% so § is also normal in a S,-subgroup of &°. Let N =
N(Z). Thus, I and J both lie in the center of S,-subgroups of N, so
there is N in M such that J = IV, and we may assume that G = N.
Hence, & N &° contains (g, &>. Let & be a S,-subgroup of N N C(J)
which contains (g, 8. Then (g, i> normalizes (&, &>, so that
AT, I>) = Aut I, J)). Let N, = 0, 2F. If N, OF, then N =
TNE =G, 8, so that F, &> =N, as [R, &>:F| = 2. Hence,
N = T(R) for some subgroup (R) of order 3 which permutes <{I,J)
transitively. Choose Ec @ — <I,J). Since R fixes $E, there is an
element F of §§ such that R centralizes F'E. Then (FE)e<l,J),
so F'E is an involution. The only involutions of FE are in {I, J)E,
so we may assume that R centralizes E, as {I, J)E C €. In any case,
we get I, JJ)y <|N.

We now examine <{I, J, J% = &. Since Cy(B) = <I), € is elementary
of order 8 and admits B. If & = &, then since R also normalizes G,
it follows that A(®) permutes &* transitively. This is impossible,
since N(®) is solvable. Hence, € = &, so that C,(J) = G€, recalling
that & = C,(J)% we get & = (G, ), since we have taken N = G,
and since E <{N. Hence, T — § contains a conjugate of I. As all
involutions of £ — & are T-conjugate to D, we get D ~ I. Hence,
N contains a S,-subgroup of C(D), so that D is in the center of a
S,-subgroup of M. This is not the case, (I, J) = Z(0,N)). We con-
clude that ¥ = O,(N).
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Suppose 5| [N|. Let B be a S;-subgroup of N which is permutable
with Z. Since || = 5 and T/F is a four-group, we have 0,(TP) O F.
Thus, Z(0,2P)) N F admits P. As P acts irreducibly on §, we get
that F<= Z(0,(TP)), so that O,(PL) is abelian. This is not the case,
since e L% 4"(2). Hence, N is a 2, 3-group.

Since § = 0,(N), we see that a S,-subgroup R of N is elementary
of order 9. Let € = cely(I). Since RN S = T, we get that (€| =9,
and R permutes € transitively and regularly.

Let § = ¥° x §', where each F* is a four-group which admits R.
Let R = Ca(F), R, = 0x(F), R: = <B:), 1= 0,1. Hence,

F = T UF U cely() -

Since I¢F°, we get F 4 N. Let U = N (R) so that U is a four-group.
We can choose U,c€ U such that U, inverts R. Then choose U, el —
{Uy. Since U, normalizes %, U, interchanges §° and %' and so inter-
changes R, and R,. We may assume that R’: = R,.

Since F is weakly closed in ¥, we get that ¥ is normal in every
2-subgroup of & which contains F. (We have used this fact earlier.)
Hence, cecl,(I) = cely(I) N 5.

Choose generators F, F,, of & such that FJo = F;, and set
F,=Fi,71=0,1. Thus, § = (Fy, F,». Hence, § is a free F,l-
module, so all involutions of £ — & are T-conjugate to an element of 11.

Suppose Uell — N,. Then Cx(U) = (R) is of order 3. Suppose
also that U ~ I. Since U, and U,U, interchange R, and R,, it follows
that B¢ R, UNR,, so that R has no fixed points on . Let W = C4(U),
a four-group. Thus, W(RIW= C(U), and IeTW. Hence, W x US
0,(C(U)). But A4 x (U)) contains the stability group of T x
CUY DU 21, since W x (U)Y S 0,(U)), and also contains the stability
group of W X U)DW>D1, since F normalizes W x {U). Hence,
AT x (U)) acts irreducibly on T x <UD, so is non solvable. We
conclude that if Uell — (U,y, then U+ I. Hence, if V is any in-
volution of T — F(U,», then V ~ L.

Let Y = J%, where B = (B) is a S,-subgroup of & inverted by
D. Then {1, Y,J) is elementary of order 8. If I, Y,J) = B, then
_ since D centralizes $, so does B. This is obviously not the case, so
I, Y,J) # B Since Fo=TN Y, we get Y ¢F. By the previous
argument, Ye$U, Hence, Y inverts some S;-subgroup of N, so Y
normalizes both $F° and F'. Hence, Cy(Y) = Cy;(Y) X Cu(Y). But
Cy(Y)2<K1,J), so {I,J) = C;o(Y) X Cu(Y). Thus, JeF UF'. This
contradiction shows that this case does not occur.

Case 2a(ii). &> 8.

Here we get that S,-subgroups of & are elementary of order 9.
Hence, & permutes & transitively. Since § has just 6 elementary
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subgroups of order 8, there is a subgroup R of & of order 3 which
normalizes €. Let A = 44(€). Then (I) is the only proper subgroup
of & which is normalized by A:(€). Hence, U = 4,(C€), since otherwise,
A acts irreducibly on & so is non solvable. But U also contains the
stability group of € > (J) D1, since = $° This contradiction shows
that this case does not arise.

Case 2b. w = 3 and B is a 3-group.

Since f = w — 1, B is elementary of order 9. Since |E| = 2"*, &
is the central product of 38 dihedral groups. Hence, § is not the
central product of 3 quaternion groups.

Case 2b(i). Cy(B) D I).

Let &, = Cy(B), 2, = [9, B]. Thus, B is represented faithfully
on L, so that Q, is the central product of 2 quaternion groups Q,;, T,
Hence, Q, is dihedral, and Q,, Q, admit &..

Suppose Je€ 0,0, ULQQ. In this case, some element B of &B*
centralizes J, so Be &% [], Bl 9N 9B . This is not the case,
since &, fixes no non identity element of HB/H.

Write J = @,Q.,Q,,, where Q, e Q,, @€y — {I>. Hence, @ =1,
since J is an involution. Suppose Q. ¢ (I>. Since & normalizes {,
and since [&:CE| =2 = 2% we can choose Kec &, — & such that
[Q,, K]1=<I)>. Hence, [, K]=Q, But then [§, K]=JI)>NQ, =1,
against Ce &% +7(9%. Hence, @, e<I), so we may assume that
@, = 1, after changing notation.

Suppose ENQ, D, J>. Choose EFeQ,— {I,J) and set &, =
(I,J, E>. We can then choose Be®B* such that B normalizes @,.
Hence, | 4.(€)| = 2°.3, so 44(&,) = 4.(E,). This is not the case, since
As(E,) contains the stability group of the chain &, > {(J)> 1. Hence,
EnQ,= <I, J>.

Let U, U, be non commuting involutions of L, so that Q, =
KU, Uy. Since |C:<I,J>| =4, we can choose E,, F, in € such that
E, = UU', E,= U,U? where U', U’cfQ, Since [&], C]=<J), it
follows that [&, Q,]< {I). Since U, U, are non commuting involu-
tiong, U', U* are also non commuting involutions, which, however,
commute with J. Hence,

C.(J) = J) x (UL U%, and KU, U, K] T .

On the other hand, & = C,;e(I), so that & = {I) x &,, where &,
is the central product of 2 dihedral groups. Hence, &, contains a
four-group &, with & NE =1, & = ER,. Let K be the uniquely
determined involution of &, such that K inverts HB/H. Hence, K
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inverts some S,-subgroup of £, which we may assume is B. Hence,
K normalizes both Q, and Q,,, and induces outer automorphisms of
each. Let @, Q.. be generators of Q,; such that QX =Q,, =1, 2.
Hence, Cg,(K) = <1, J) = {QuQ1:QuQ:, I), so that

CDZ(J) = <Q11Q12Q21Q22> X <Q11Q21, Q11Q12Q21> .

But [Q,,Q..Q., K] is an element of Q,, of order 4, sois not in {I, J).
Thus, this case does not occur.

Case 2b(ii). Cyx(B) = {I).

Since B acts faithfully on &, we can choose distinect subgroups
By, B, of B of order 3 such that O, =CB,) DI, 1=1,2. If 00, CH,
then Q,, £, are both quaternion groups, and § is the central product
of Q,, Q,, O,, where O, is dihedral. This gives Cy(B) = L,. Hence,
$ is the central product of Q, and Q,, and we can choose notation
so that Q, is the central product of Q, and Q,,, where Q, is quater-
nion and Q,; is dihedral, and Q, is quaternion. This is impossible,
since we have assumed that Cy(B) = (I>. So this case does not arise.

Case 2¢. w = 3 and B is not a 3-group.

By Lemma 5.15, B = B, X B,, where [B,| = 3, [B,| = 5, and 9 is
the central product of Q, and Q,, where Q, is a quaternion group
and A,(Q,/Q)) is dihedral of order 10. As above, we get J¢Q, U @,
so J = Q.Q,, Q;€Q; — {I), and Q, is of order 4. Since [&;: €| = 4,
there is K in &, — € such that [Q,, K]=<I), so that [¢, K]|={J) N
L2, =1, against e ¥ 17(H°).

Case 2d. w = 4.

First, suppose § is the central product of Q, and Q,, that Q;
admits 2,7 = 1, 2, and in addition, the following hold:

(@) Cy(Q) #1,

(B) R./€ does not act faithfully on Q,/{I>.

Let B, = Cy(Q))). Suppose J€Q,. Then B, =& so that [B, K] &
9N OB S 9, against the fact that & has no non trivial fixed points
on 9$B/H. Hence, J€Q,. Choose Ke& — € with [Q, K]=<(I).
Such a choice is possible by (8). Then [$, K]S, so [, K]S, N
{J) =1, against e % 7 (£°%. So no such Q,, Q, exist.

For each subset U of &, let A = AH/H. Let V= $/9’, and, as
usual, & = HBK..

Case 2d(i). V is an irreducible -module.
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Since & acts faithfully on V, we get 2w = 0 (mod 2°~!). Since
w =4, we get w = 4. By Lemma 5.15, |B| = 3% Let V=V, x V, x
V, x V,, where each V, is an irreducible B-group. Let B, = Cx(V)),
V:=,/%". Thus, |B:%B;] =38 and |V;| = 4, while & permutes tran-
sitively {Vi, V3, Vi, Vi) and {B,, B,, B,, B,}. Furthermore, Q; = Q; all
1,7, and Q, is quaternion or elementary.

Suppose B, = B,. Then B, = B, so that B, N B, # 1, and B, N B,
centralizes ©. This is impossible, so B; = B; implies 7 = j. Hence,
Q; = Cy(B;), so that O, is quaternion and & is the central product of
Q, 0, 9,0, Also, |B;NYB;|=8,11<j= 4

If JeQ,Q,, then BNG* DB, N B, D1, sothat [B,N B, KIS H°N
BHS H. This is not the case, so if 1 <7< j=4, then J¢ Q0.
Hence, J = Q,Q,Q,Q,, ;€ Q;, and at least 3 of the Q; are of order 4.
Since J* =1, we have Q;€Q,; — {I), all 1.

Since &, = {I) x &,, where K, is the central product of 3 dihedral
groups, &, contains a subgroup &, such that &, is elementary of order
8and & NE =1, & = ER,. Let K be the uniquely determined involu-
tion of &, such that K inverts B. We assume without loss of gener-
ality that K inverts 8. Thus, Q, has generators Q;;, Q. with Q% = Q..
Since K centralizes J, K inverts Q;, 1 < ¢ < 4. Interchanging Q;, and
Q;, if necessary, we may assume that @, = Q,,Q... Suppose 7 # J.
Then J centralizes Q;,Q;,, so [@:,Q;,, K]€ $° N $ = & Hence,

Q«uQiszlez € @ ’
all ¢,7,%+# J.

By our construction, we have B F(&mod ). Let € be a S,-
subgroup of F(& mod ) which contains B. Since Q, = Cy(B,), L,
admits C;(B). Hence, 0,(€) = 1, so that € is a 3-group. Suppose
B Cs(B). Since Cye(B) = Co(B) x {I>, K normalizes C¢(B). If Ce
C:(B) N C(K), then C normalizes Q; and [Q;, K], so C centralizes each
2;, so C=1. Hence, K inverts C¢(B). This implies that C (B) is
elementary of order 3‘. But in this case

CG(%) n C(Q11Q12Q21Q22) € /;//*(@) ’

so that C(Q,;Q.,Q..Q:,1*) =& for ¢ = 0 and 1. This implies that $°cS,
which is not the case. Hence, Be . &Y% _+7(€). Suppose B €. Then
€/B is faithfully represented as permutations of {Q,, Q,, Q,, Q.}, since
if € = N, €N NEK,), then [, B] centralizes 9, so that [, B] =1,
€ = ®B. Hence, |6:B|=3. Suppose |Z(€)| = 3. Choose Ce Z(C)
such that C;(C) > {I). Then C,(C) admits €, so € centralizes Cy(C),
as Cy(C) has width at most 2. Since 9 = {Cy(C)|Ce Z(€)*), we get
that € = 1. This is not case, so [Z(@)| =38, =2, ! Z. But &
acts faithfully on €, against m(€) = 2, m(®,) = 3. Hence, B =G, so
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that F(©& mod 9) = HB.

It is a direct consequence of the preceding equality that & is a
2, 3-group and that S,-subgroups of & have order 3° or 3.

We next show that if X is any non identity 2-subgroup of ®,
then N(X) is a 2, 3-group. Suppose p = 5 and p||N(¥)|. By Lemma
13.1, 0,(N(%X)) = 1. Thus, p||A4s®)|, where Y = 0,(N(¥X)). By Lemma
5.51, ¥ contains a normal subgroup £, snch that p||A44T,)|. Since
T N(E,), N(Z,) contains an elementary p-subgroup » % 1 which is
permutable with . Let M = TP, T, = 0,(M). If $=,, then I is
the central involution of ZT,, so that M=&S. This is not the case,
since & is a 2, 3-group. Hence, $ L Z,, but of course IeZ,. Since
TH/IT, = H/H NI, is elementary, P contains a subgroup B, of order
p which is permutable with £,9. Let T, = 0,(T,HB,), so that

1IT9: %2, [£:9NnT[=2.

By Lemma 13.62, 2,(Z(%,)) has order at most 4, so is centralized by
Boy as p = 5. Hence, P,=S. This contradiction establishes the as-
sertion.

Set F = Q,,Q.,,Q..Q,,€ €. We will show that C(EF)=&. Let € =
C(E), a 2, 3-group. Also, B,NB, = B is contained in €, and is of
order 3. We first show that B is a S;-subgroup of €. Namely,
B CB), so that C.(B)e _~Z*®), and so C(B)=S. Suppose X is a
3-element in € N C(B). Then X normalizes $ N C(B) = Q.Q,, since
Xe®. Since Q,,Q, are the only quaternion subgroup of Q,Q, X
normalizes O, and Q,. Since X centralizes @,,Q,.Q:Q:, X centralizes
Q,Q,. If (B, X) is non cyclic, then there is Y e (B, X>* such that
Cy(Y)DQ,Q,. Thus, Cyi(Y) = Q,0,Q; for some 7€{3,4}. However,
V is an irreducible R-group, and so Y centralizes V, yielding ¥ = 1.
We conclude that B is a S,-subgroup of € N C(B), so B is a S;-sub-
group of €. Let & be a S;-subgroup of € N &, and let T* be a S,-
subgroup of & which contains &. Let ** be a S,-subgroup of ®
which contains £*, and let I* be the central involution of T**. If
I* = I, then € = T*, so that €= &. Suppose I* = I. Then I* cen-
tralizes € N = C,(E), so by Lemma 18.62, I* e (K, I). Thus, I* = E
or EI. In any case, we have E = I” for some Y in &, since £ 7 EI.
Hence, 8BS ©". Since C(B) =S, we get that S,-subgroups of &N &
are non cyclic, against Theorem 13.1. Hence, € &®&. Since E  EI,
we also have C(EI)=&. Hence, $¢ = (Cye(E), Cyo(EI), Cye(I)) =S,
so that $H¢ is a 2-subgroup of & whose center is contained in (I) N
{J) = 1. This contradiction shows that case does not occur.

Case 2d (ii). V is a reducible @-module and & acts faithfully on
no proper submodule of V.
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By Lemma 5.7, V is completely reducible. Let V=V, x V,
where V; = 1, and V, is irreducible. Let ¥, be the subgroup of &
which contains § and satisfies 2, = C3(V,). Thus, H$ & <&, so
LNB+1. Let Q =[2, 9], Q2 =Ci(2.NMB). Then L,/ =V, 1=
1,2. Since C3(V,) # 1, and since V, is irreducible, it follows that &,
does not act faithfully on V,. Thus, (@), (8) hold. This contradiction
shows that this case does not occur.

Case 2d (iii). V is a reducible 2-module and & acts faithfully on
some proper submodule of V.

Let W be a submodule of V minimal subject to C3(W) = 1. By
hypothesis, W V. Suppose | V: W|=2. Then W = §/¢’, | Z(D)| =4,
and & = Z($)D., where 9, is extra special of width w — 1. Hence,
Ic[B, 9, and T acts faithfully on [B, §l/9’' < W. Hence, we
have |V: W| = 4.

By Lemma 5.8, we get | W| = 2**"", and W is completely reducible.
Let W = $/%’. First, suppose § is extra special. Then let §, = 6(55),
so that §, has width 1 and admits 8. Hence, V is completely reduci-
ble. If W is reducible, we get Q,, Q, satisfying (@), (8). If W is
irreducible then | W| < 2, by Lemma 5.8, so that w < 8. This is not
the case.

It remains to treat the case where 35 is not extra special. Let
8= Z($) > I>. Since  has no fixed points on W, we get | 3: <I>| = 4.
Since |V: W| = 4, we get |8| = 8, and since 8 is an abelian group
of order 8 admitting a non trivial automorphism of odd order, 3 is
elementary. Since W is completely reducible, W= 8/<I> x 8, with W =
0/$’, where Q is extra special and admits 8. Let £ = C(Q), so that §
is the central product of © and £ and Q admits . By construction,
the width of £ is 2, so that the width of Q is w — 2= 2. Thus, B
does not act faithfully on either & or Q, and &/G does not act
faithfully on £/%’. Thus, the pair Q, Q satisfy (@), (8). This con-
tradiction completes the proof of this lemma.

LeEMMA 13.64. He 7*(®).

Proof. Suppose false. Choose Nte.&¥ 7. < (®) suchthat S NL S,
and with this restriction, minimize |N|. Let N, be a S,-subgroup of
N which contains $. Then Iis the central involution of :,, so N, = S.
Hence, it = N,Q, where Q is a ¢-group for some odd prime ¢q. Since
9 contains an element U of Z/(2), we get O,(N) =1, so I< O,(N).
Since U (9; 2') is trivial, and since 0, (N) € Y(H; 2'), we get 0, (N) = 1.

Since I 0,(N), we get that $0,(N)/0,(N) is elementary. By min-
imality of R, we get | = 0,NQY, and [$:HNO,M| <2 If H <
0,(N), then I is the central involution of 0,(N), so that N=S. Hence,
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[9: 9N 0,MN)| =2. Choose Qe — S. Then (HN O0,M)°=0,N) S
N, =S, against Lemma 13.63. The proof is complete.

LeEmMmA 13.65.
(a) <I> is weakly closed in 9.
(b) w=3.

Proof. Suppose I¢=Jc 9, Ge® —&S. Let 9, = Cy(J). Then
$.S6° = C(J), so $7'=©S. Since G'e® — &, Lemma 138.63 gives
a contradiction. This establishes (a).

Suppose w = 2. By (a) and the Glauberman Z*-theorem [16],
HcCr.

Case b (). [Z:9|=2.

Choose Ge® — & such that J = I°eZ. By (a), we get £ = H{JD.
Let € = Cy(J) =&°. If € is not elementary, then I D(€) & 9%, against
(a). Hence, € is elementary.

Suppose |E| = 4. Then A4,((E, J)) is the stability group of the
chain (€, J>DE>D1. Let F=<CE J)c &% Let® = FN H% so that
I¢ @, and A.¢(F) is the stability groupof IO >1. Let € = En E,.
Hence, |€,| = 2 and (N(F), Ne¢«(F)> maps onto the subgroup of Aut (F)
which fixes &. Hence, & is contained in the center of a S,-subgroup
of &, €, = (E), with £~ I. This violates (a).

Suppose |&| = 8. Let F = <&, J)>. Thus, ccly(J) has four elements.
Let € be a S.-subgroup of &° which contains . Then |cel; ()| = 4.
Let 1 = cely(I) NS, so that UDeel,(J)U{I} and U NE = {I}. Sup-
pose UDcely(J) U{I}, Uell — (ccly(J) U{I}). Then U¢ E, so |ccl,(1) | =
4, and so || = 9. Hence, Il = cely(J) U cely(U) U {I}, sinceU N & = {I};
this yields [11] = 9. Hence, 1 = &J U {I}. Let &* = F N % so that
by symmetry 1 = G*ITU {J}. Let U, =U-— {I,J}. If U, U,el, then
U.U,e €GN E* since U;e@/NE*I. Hence, &= §*, since [U,|=T.
This is false, since Ie @, I'¢ E*., We conclude that I = ccly(J) U {I} =
cel;(I) U {J}, so that 1| = 5. Since each element of 11 is in the center
of a S,-subgroup of N(JF), it follows that N(F) permutes U transitively.
Hence, 5||A44(%) |- Let B be a S;-subgroup of N(F) permutable with
Z. Since |P| = 5 and T/F is elementary of order 4, we get 0,(TP) O F.
Hence, 1 Z(0,(TP)) = F, so that P centralizes Z(0,(TPH)), and so P
centralizes §. This is not the case, since 2€e7,.

Case b (i)). |<: 9| > 2.

Since & 4;(%) = @, it follows as in an earlier argument that
Z/9 is a four-group and that & = ITB, where B is elementary of
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order 3°. By the Z*-theorem, there is G in & — & such that J =
IfeX. By (a), J¢ 9. Let & = Cy(J). If € is not elementary, then
Ie D) S 9% against (a). Hence, & is elementary.

Suppose |G| =4. Let § = (€, J). Then Ay F) contains A(Z)
and A(Z’*), where :F2>C21, * FDOE* D1, E* = FN H° Since
& #+ & *, it follows that A4 %) is the subgroup of Aut (%) fixing
G N G* = (EY. Thus, if £ isa S,-subgroup of N(©), then <E> = Z%),
so that F ~ I, against (a).

Suppose |E] = 8. Let § = <(E, J>. Then $ normalizes F. Since
|G| =8, 9 contains a four-group £ such that KOE =1, KE = H.
Since F = J)%, F is a free F,®-module, so F is the only subgroup
of 9 which is isomorphic to . Hence, F < T, |T: F| = 8.

Let U = celg(I) N F, so that (| =5o0r 9. If U] =9, then U =
CJU{l} =CE*TU{J}, where G* = FN H° As above, we get € = E*,
so that Je@®< §, against (a). Hence, |1| = 5. Hence, A4(F) is a
multiple of 2.5, and 0,(44(%)) = 1. This forces Ay ) to be non
solvable. The proof is complete.

LEMMA 13.66. Suppose Ge S — &. Then one of the following
holds:

(a) [9:9°N6S|>4,

(b) [£:9NS% >4,

(c) 9N does not mormalize H° N S,

(d) 9°N S does not normalize $ N S°.

Proof. Suppose false. Let §, = H9NS% & = $°N S. By Lemma
13.63, we have | 9: .| = | 9% & | = 4. By Lemma 13.65, §, and &,
are non abelian, and Lemma 13.63, $, N K, is centralized by both H,
and ®, and is elementary. Since J¢ §, N &, and H, N K, <] &, we get
that & = $, N & X K, for some subgroup &, of K, which is non abelian.
Notice that N RS HNGS =9, HNRK. S K, sothat H N, =9, N K.

Since | 9% ®,| = 4, we have |Z(R)| = 8. Since (9, N, J) S Z(R)
we have |§, N K, | < 4. Since K, is non abelian, we can choose K in
&, such that K* = J.

Let V=9/9, Vo= $./9, so that |V: V,| =4 and J centralizes
Vo

Since [9%: & | = 4, &, contains a subgroup &, which is extra special
of width w — 2. Let B be a g-subgroup of 0,.(5), ¢ an odd prime
such that (a) R, acts faithfully and irreducibly on $B/9D(DB), (b) K
centralizes 9D(B)/9, (¢) D(B) S Z(B), (d) B is of exponent q. We are
guaranteed that B exists since & N H = 1. Since the absolutely
irreducible faithful representations of &, over all fields of odd char-
acteristic have degree 2“2, we get m(B) = 2*~% By Lemma 5.3 applied
to B acting on V, we get m(V) = 2“"'. Hence, 2w = m(V) = 2",
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so that w < 4.

Suppose w = 4. Then Lemma 5.3 gives ¢ = 3 and forces B to be
elementary. In this case J inverts $B/9, so that V is a free F{J)-
module, against |V: V,| = 4. Hence, w = 3.

If ¢ # 8, then Lemma 5.3 forces q¢ = 7, |B| = 7%, so that J inverts
$B/$H. This forces V to be a free F,{J)-module, against |V: V,| = 4.
Hence, ¢ = 3.

First, suppose |B| = 9. Then J inverts $B/H, and we may as-
sume that J inverts B. Since [V, B] is a free F,{J)-module, we get
that [§, B] = § is the central product of 2 quaternion groups on each
of which J induces an outer automorphism. Hence, |s5: C;(J)| =8,
against [9: .| = 4, $,=S° Hence, [B| > 9.

Since S;-subgroups of S;(2) are Z;§ Z;,, we get that % is non
abelian of order 27 and exponent 3. Thus, B acts faithfully and
irreducibly on V. Let B, be a subgroup of B of order 9, and let
B, B,, B; be the subgroups of B, of order 3 distinct from B’. Then
C,(B;) is of order 8 ¢ =1, 2,3, and B’ acts faithfully on each Cy(B,),
so Cy(B;) = Q; is a quaternion group. Furthermore, Q,, Q,, Q, are
the only quaternion subgroups of § which admit %B,.

We assume without loss of generality that J inverts B,. Let
L= 9B(JI). Then $-Ci(B) = 9BJ), so J normalizes O, and inter-
changes Q, and Q,. Since |9: .| = 4, we get that J centralizes Q,
and that C.,(J) is elementary of order 8. Hence, § = Q, X &,
where §, is elementary of order 4.

By symmetry, &, is the direct product of a quaternion group and
a four-group, so &, is quaternion.

Now C¥(B,) = Q,B,{(J), so that J normalizes B,. Since N (B,) =
{IYBLJT), we get that J normalizes B.

Suppose |9, N K, < 2. Since [9, K]S H, N &, it follows that &,
has an element X of order 4 such that Q,N C(X)><I). Hence,
(X, B,) centralizes 2, N C(X); since X*=J,{(X,B,) contains a S,
subgroup of %, against Cy(B) = (I)>. Hence, |, N K| = 4. Since
I¢$, N8K, it follows that Cy(J) = Q, X (H. N K).

Since J normalizes B, J centralizes B, so B’ normalizes Cy(J), so
B’ normalizes 2,(C,(J)) = {I> X $, N &. Hence, Q' normalizes F =
I, % N&K,J), an elementary group of order 16, and [F, B'] is a four-
group such that § = I, J) x [T, B'].

Let &, = Ne(B). Since Q,Q; normalizes &, it follows that >
{H: N&, I>DOLI)>D1 is a composition series for F as S-module. By
symmetry, FOLH, N K, JY DJ) D1 is a composition series for F as
Neo(F)-module. Hence, N(F) acts irreducibly on §. Since § = I, J) x
[B, B'], it follows that a S,-subgroup of A(F) normalizes <I,J) and
[B, B']. Since A4(H) is solvable, it follows that A4(F) is a 2, 8-group.
Since F is irreducible, 0,(44(®)) = 1, so |44 | = 2.8}, with a = 2.
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Hence, A4(%) is 3-closed, and <1, J), [, B'] are the only four-subgroups
of § which admit 0,(44(F)). This is not the case, since [Q,Q,, J] =
$NF is elementary of order 8. The proof is complete.

LEMMA 18.67. Suppose XeJ. Let © = Cy(X). Then the fol-
lowing hold:
(a) MU;2) is trivial.

Proof. Suppose (a) is false. Let & be of minimal order in
U(9,; 2') subject to © #= 1. Then Q is an elementary ¢-group for some
odd prime ¢, and 9, acts irreducibly on Q. If Q& &, then [$, Q]=
HNQA =1, so that Q stabilizes $ > $, o1, so that Q = 1. We may
assume that Q Z&. Hence, [ inverts Q. Since Z(§,) is a four-group,
we can choose an involution Z of Z($,) which centralizes Q. Let € =
C(Z). By Lemma 13.1, we get 0,.(€) =1. Let €, be a S,-subgroup of €
which contains $, and let & be a S,-subgroup of ® which contains
€,. Let T be the central involution of . Then T centralizes 9, S0
TeZ($)= 9, by Lemma 13.62. By Lemma 13.65, we get T = I.
Thus, 1€ Z(€,), so I€ 0,€). Hence, [I, Q]S 0,€) N =1. Since Q
is inverted by I, we have the desired contradiction.

Suppose Ne F > F(®), D, =SNELS, and N is minimal with this
property. Let M, be a S,-subgroup of 9 which contains §,. Then
N, =% for some Ge®, so H, =S¢ By Lemma 13.63, we get &° = &.
Hence, M, cN. By minimality of N, we have N = N,Q for some ¢-
group Q. By (@), 0,(%) =1. Let &= 0,MN). Then I[c@, since
IcZ®). Hence, .2/ = §./9, N ¢ is elementary. By minimality of
N, we get that Q is cyclic and that N, = 8LH, |H.: H. N ¥ = 2. Let
9. = 9. NE, so that [H: §,| < 4. Choose Qe — &. Then HIS LS
N, =S, and 9 <] for all i. Hence, [ 9°NS| <4, |9:H NS =
|99 997 N S| < 4, so Lemma 13.66 gives a contradiction.

LEMMA 13.68. & is a T.I. set in ©.

Proof. Suppose Ge® — & and X is an involution of $ N HC.
Since {I) is weakly closed in §, we have XeJ. Hence, C(X)= &,
since Cy(X)e . 7 *(®). Hence, Cyo(X) =S, against Lemma 13.63.

LEMMA 13.69. & does not contain an elementary subgroup & of
order 2" such that

(a) ENH=1,

(b) Cy(E) = Cy4@) for all E in G

Proof. Suppose false. Let B =3B, x .- x B, be a subgroup of
0,,.,(®) such that (a) [B;| = p;, p; an odd prime, (b) & normalizes $%;,
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1 <7< w, (¢) € acts faithfully on $8/9. Let V = $/9'. By Lemma
5.8, V=V, X «++ X V,, where each V,; is an irreducible 2-module,
f = $BE, and where | V;| <16, all 4. Since w =3, C;(V;) = 1. Let
Vi= §:/9', so that [E, §,]= §', for all €€ C(V). Let $.(E) = C, (E).
Then |9:: $:(E)| < 2, and € centralizes $.(F), by (b). If |C(V)| > 2,
then 9; = {9:(E)|E e C(V,)*, so that ;= C(€). Suppose [Ce(V5)| = 2.
Then w =3, |V;| =16, and |9:: C;,(®)| < 2. This is not the case,
since € centralizes no hyperplane of V.. Hence, $ < C,(€), against
HNE=1.

THEOREM 13.7. Hypothesis 13.6 is wmot satisfied.

Proof. Suppose false. We use the preceding notation. By the
Z*-theorem, there is G in & — & such that J = I &. First suppose
that Cy(J) contains an element K of order 4. Then Ke@&°¢ Also,
[Coo(), KIS O N ¢ =1. Let e FSZ47(9° be chosen so that F
admits K. Then g, = 2,(F) is elementary of order = 2“. Since
Ci(K?) = Cy(K), we get that J= K* centralizes . Let € be an
elementary subgroup of ¥, of order 2°. Then €=&, and €N H = 1.
If Ec@, then [Cy(E),Cl=H N $° = 1. This violates Lemma 13.69.
Hence, Cy(J) is elementary. Let V = §/9’. Since V is elementary
of order 2, it follows that |C,(J)| = 2, and so |Cy(J)| = 2°. Let
@, be a subgroup of Cy(J) of order 2*, and let € = G§'. Since &, = &°,
we have 6= &. If €N 9 # 1, then since E= H°', we get H = 9%,
G €®, against our choice of G. Hence, €N $ =1. If Fe @, then
[CAE), Gl $n 9" = 1. This violates Lemma 138.69. The proof is

complete.
THEOREM 13.8. ¢(®) < 2.

Proof. Suppose false. Then Hypothesis 13.1 is satisfied. Let
M be the subgroup given at the conclusion of Lemma 13.3. By
Theorem 13.3, every normal abelian subgroup of I is generated by
2 elements. Suppose B is a non cyclic normal abelian subgroup of
M. Choose peo. Then Cyx(B) contains an element of .7 (p), so
C(By =M for all B in B*. Thus, Hypothesis 138.3 is satisfied, against
13.4. We conclude that every normal abelian subgroup of I is cyclic.
Theorems 13.5, 13.6, 13.7 yield a contradiction. The proof is complete.
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