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COMBINATORIAL STRUCTURES IN LOOPS
II. COMMUTATIVE INVERSE PROPERTY CYCLIC

NEOFIELDS OF PRIME-POWER ORDER

E. C. JOHNSEN AND THOMAS STORER

In this paper we construct a large family of commutative
inverse property, cyclic (CIP) neofields of prime-power order.
Our purpose in doing so is to produce a class of algebraic
systems which shall be useful in certain combinatorial construc-
tions. One of these constructions is that of power-residue
difference sets in the additive loops of finite CIP neofields
which is a natural generalization of the corresponding con-
structions in the additive groups of finite fields. Another is
that of cyclic Steiner triple systems, i.e., Steiner triple systems
with a cyclic group of automorphisms sharply transitive on
elements, which we discuss in the last section of this paper.

CIP neofields may be thought of as a first generalization of finite
fields in that they share all of the familiar properties of the fields
with the possible exception of additive associativity. The present
approach, accordingly, is to begin with a finite field and modify the
additive structure thereon so as to preserve these properties. We
show that the number of nonisomorphic CIP neofields of prime-power
order v — pa goes to infinity with v and we exhibit proper (i.e., not
the field) CIP neofields for every prime-power order v = pa ^ 11
(every CIP neofield of order v < 11 is a field). For p = 2 the latter
implies that there exists at least two nonisomorphic cyclic Steiner
triple systems of order 2a — 1 >̂ 15. The constructions of power-
residue difference sets in finite CIP neofields appears in [5], the cor-
responding constructions in finite fields in [6], [9].

2* Preliminaries. A neofield of order v is a triple Nv = <iV,
+ , •>, where N is a set of v elements including 0 and 1, and + and
• are binary operations on N such that N( + ) is a loop with identity
element 0, N*( ) (where iV* = N — {0}) is a group with identity
element 1, and is both left and right distributive over +. We
also write Nv for N and N* for N*. It is easily verified that 0 x =
0 = x 0 for every x e Nv. The neofield Nv is said to have the right
inverse property (RIP) if for each yeNυ there is an element ze Nv

such that (x + y) + z — x for all x e Nv, and to have the left inverse
property (LIP) if for each y e Nv there is an element we Nυ such that
w + (y + x) = x ΐor all x e Nv. If Nυ has both the RIP and LIP then
Nυ is called an inverse property (IP) neofield. It is readily verified
that in an RIP or LIP neofield Nv every yeNυ has a unique two-sided
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116 E. C. JOHNSEN AND T. STORER

negative — y e Nv. In fact, in the above definitions the elements z and
w are this element — y. In an RIP or LIP neofield Nv, x + (—l)x =
(1 + ( — l))x = 0 = (( — 1) + l)x = (—l)x + x, hence the negative of x is
— x = (—l)α? for every a eiV,,. ' We call a neofield Nv commutative
if -ZV̂ (-f-) is commutative. The following result is probably known.

LEMMA 2.1. An IP neofield is commutative.

Proof. Let iVv be an IP neofield and let x, ye Nv with x + y = z.
By the RIP we have x = (x + y) + (-2/) = s + (-2/), by the LIP this
becomes (—z) + x=(—z) + (z + (—y)) = —y9 and by the RIP again
we obtain —z = (( —s) + α?) + ( —s) = (—2/) + (~») o r (--1)3 = (—1)2/ +
(—l)a? = (—1)0/ + a?). Since — l e N* we obtain z = y + x. Hence
x + y = y + x, and we see that Nυ is commutative.

We call a neofield JV, c^/ciic when iV?( ) is cyclic. Let JV, be a
cyclic neofield. A presentation of iV, based on the set N is the
expression of N in terms of a multiplicative generator a, N = {0, 1,
α, α2, , av~2} where ά"~ι = 1, together with a function T: N—> N,
called the presentation function^ which is related to the addition in
Nv by 1 + x = T(#) for all xe N. In a cyclic neofield the element
1 has a unique two-sided negative — 1 where — 1 = 1 if v is even
and - 1 = α("-1)/2 if v is odd ([7], p. 49, Theorem 112). Using the
presentation of a cyclic neofield Nυ we can construct the addition
table Nυ for Nv( + ) . We choose the natural order 0, 1, a, a2, , av~2

for the first row and first column of Nv. Then the second row of
Nυ consists of the elements Γ(0) = 1, Γ(l), Γ(α), T(α2), ••-, T(av~2) in
this order. By the distributive laws we have

( 2 . 1 ) a r + a s = a r ( l + a s ~ r ) = a r T ( a s ~ r ) O ^ r , s ^ v - 2 ,

hence the table JV* is completely determined by its first and second
rows. A cyclic neofield Nv is thus completely determined by its pre-
sentation; henceforth, we shall give a presentation of Nv in terms
of the first two rows of Nυ. Note, however, that an abstract cyclic
neofield of order v may have more than one presentation. For ex-
ample, the unique finite field of order 7 has the presentations

and

Different presentations of a cyclic neofield Nv9 of course, correspond
to different definitions of addition on the set N. Finally, we call a
cyclic IP neofield a CIP neofield.
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3* Construction of a family of CIP neofϊelds* Let Fv = (F,
+ , •> be the finite field of order v — pa Ξ> 11, p prime, a Ξ> 1 integral,
with presentation given by F = {0, 1, α, α2, , αv~2} and the presenta-
tion function T for which T(x) = 1 + a; for all .α? 6 F. We define the
functions T" and To on ί 7 as follows:

(3.1) Γ'(a?) ΞΞ (-1) + αj, α e F ,

(T(α>),s = 0, - 1(

(3.2) Γo(») Ξ j , otherwise ,

and define a new addition φ o n ί 1 according to

(3.3) ^_._\y,veF,x =

Also, we define

(3.4)

We note that FJ0) = (F, 0 , •> is also the field of order v = pa which,
as the image of the mapping 0 —> 0, x —• or1 for all x Φ 0 in F, is an
isomorph but not an automorph of Fυ( + , •). We let the corresponding
presentation of F ( 0 ) be given by F = {0, 1, a, a2, •••, α*~2} and the
presentation function TQ. We shall be concerned with compositions
of the functions T, T, and TQ on the set F. We need the following
two results for the neofield construction which is to follow.

LEMMA 3.1. For all xeF, (TT0Y(x) = x.

Proof We easily verify that T'T0(0) = 0 and T'T0(-ϊ) = - 1,
hence the lemma holds for x = 0, — 1. We now take x Φ 0, — 1.
Then a straightforward computation yields TT0(x) = — (1 + x)~ι.
Since - ( 1 + x)~ι Φ 0, - 1 , a second application of T'T0 yields (Γ'Tϋ)

2(x) =
— (1 + a^ίtΓ1. Finally, since — (1 + a^aΓ1 ^ 0 , - 1 , a third application
of TT0 yields (T'T0)

3(ί*;) = a?; hence the lemma.
We now determine those xeF for which TrT^(x) = x.

LEMMA 3.2. We have (T'T0)(x) = x (i.e., T(x) = Γ0(α;)) m ίΛe sβί
F v, v = pa, precisely when

( 1 ) α; = 0, — 1 . (This includes 1 = —1 when p = 2.)
(2 ) p = S and x = l. (Here T(l) = -1.)
(3 ) pa = 1 (mod 3) ami a; iδ a primitive cube root of unity in

Fv. (Here T(x) = —x2 is a primitive sixth root of unity in Fυ when
PΦ2.)



118 E. C. JOHNSEN AND T. STORER

Proof. We already have (1) from the proof of the previous
lemma. When 1 Φ - 1 v is odd and Γ'TO(1) = 1 if and only if p =
char (Fv) = 3 and Γ(l) = - 1 . When x Φ 0, 1, - 1 we have T'T0(x) =
x if and only if 1 + x + x2 = 0. Here x is a primitive cube root of
unity in Fvf and xs = 1 implies that 3|v — 1 or pα = 1 (mod 3). Also,
T(x) = 1 + a = -a;2 satisfies (1 + a;)2 - (1 + x) + 1 = 0 and is thus a
primitive sixth root of unity in Fv when p Φ 2.

COROLLARY 3.3. Let S = {#e F\(T'TQ)(x) Φ x). Then S is parti-
tioned into triples {y, T'T0(y), (T'T0)

2(y)}, whence \S\ = 0(mod3).

Proof. The elements y, T'T0(y), and (T'T0)
2(y) are distinct except

when y is one of the elements given in Lemma 3.2 and thus satisfies
T'T0(y) = y. Hence S is partitioned into triples and |S | = 0(mod3).

We now change viewpoint and assume that Nv — (F, ffl, •> is a
cyclic neofield of order v = pa with presentation given by F and the
presentation function T* satisfying

(i) T* ξέ T and Γ* ^ To on F,
(ii) for each xeF, either T*(x) = T(x) or ^(a;) = T0(x). We

inquire as to what other conditions T* must satisfy on F. Immediate
restrictions are obtained in the following result.

LEMMA 3.4. The function Γ* is bijective on F, and for all x, ye
F we must have

(1) T*(x)Φx,
(2 ) xT*(y) Φ T*(xy) for x Φ 1.

Furthermore, Nv is commutative if and only if
(3) xT*(x~ι) = T*(x) for all xΦ 0 in F.

Proof. That T* is bijective and satisfies (1) and (2) is obvious.
In Nv we automatically have x ffl 0 = 0 ffl x for all xe F. Suppose
x, y e F where x Φ 0 Φ y. Then

x ffl y = α?(l ffl a ry) = y(xy-l)T*({xy-lYl)

and 7/ ffl a; = 7/(1 ffl a^"1) = yT*{xy~ι). Hence xE\y = y£Bxif and only
if {%y~ι)T*{{xy~ιyι) = T^^?/"1)- Let « = .τ?/"1. As a? and y run over
iV* εo does z, and as a; runs over iV* all pairs x, ye N* are obtained.
Hence, Nv is commutative if and only if zT^(z~ι) — T*{z) for all z Φ
0 in F, which is (3).

For y e S = {x e F\ T'T0(x) Φ x} we define the orbit of y to be the
set θ(y) = {y, T'TQ{y), (T'TQ)2(y)}. A simple computation shows that
Θ(V) = {V, (~l)/T(y), (-l)/T0(y)}. We now show that T* is identically
T or TQ on the orbits in S.
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LEMMA 3.5. If T* agrees with T (or To) at y e S, then T* agrees
with T (or To) on θ(y).

Proof. We first note that for yeS, the two sets

T(θ(y)) = {T(y\ T(T'TQ)(y), T(T'TQY(y)}

and

Uθ(y)) = {TQ(y), T0(T'T0)(y), T0(TT0Y(y)}

are equal, since

T0(y) = T(TT0)(y\ TQ(T'T0)(y) = T(TT0Y(y),

and T0(TT0Y(y) - T(TT0Y(y) = T(y). Suppose T*(y) - T(y). If
T*(TT0Y(y) = T0(TTQY(y) then T*(T'T0Y(y) = T(y), contrary to the
fact that T* is injective. Hence T*(T'T0Y(y) = T(T'T0Y(y). Further,
if T*(TT0)(y) = T0(T'T0)(y) then T*(T'T«)(y) - T(TT0Y(y), again con-
trary to T* being injective. Hence T*(T'T0)(y) = T(T'T0)(y). Thus,
if T* agrees with T at y e S then Γ* agrees with T on #(2/). Similarly,
if T agrees with To at ye S then T* agrees with To on #(?/).

When iVv is commutative the condition xT(x~x) — T(x) (or xT^x'1) =
TQ(x)) effects a further agreement of T* and T (or To) on the orbits
in S.

LEMMA 3.6. Suppose Nv is commutative. If T* agrees with T
(or %) at yeS, then T* agrees with T (or TQ) on θ(y) U θ(y~ι). Thus,
the orbits in S are paired except when 1 e S. In the latter case 0(1)
is paired with itself

Proof Suppose T*(y) = T(y). Then, by Lemma 3.5, T* agrees
with T on θ(y). Since Nv is commutative we have, by Lemma 3.4(3),
that yT^y-1) - T*(y), whence yT*(y~ι) = T(y) = yT(y-1) or T^y'1) -
T(y~ι). Again, by Lemma 3.5, T* agrees with T on θ(y~x). Hence
T* agrees with T on θ(y) U θ(y~ι). Now, θ(y) = θ(y~ι) if and only if
one of y - y'\ y = T'T^y-1) = - 1/Γ^-1), or

holds.

1. 7/ = 2/"1. Here τ/2 — 1, hence y = 1 since — 1 g S, whence

Case 2. 1/ - (-lyΓGΓ1). Here y - -1/(1 + ŷ"1) = (-y)/(y + 1)
o r i / = -2, whence % ) - {-2, 1, -2"1} - ί(l).
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Case 3. 1/ = (-lJ/Γoίl/"1). Here y = (-y)(l + y'1) = - y - 1 or
y = - 2 " \ whence 0(y) - {-2"1, - 2 , 1} - 0(1).
Clearly, when leS, θ(l) is paired with itself. A similar argument
goes through when TJy) = T0(y).

We now show that if Nv is commutative then it inherits the IP
from the field. Since Nv is cyclic —1 is also the negative of 1 in NV(R);
whence, —y = ( — ϊ)y is the negative of y in NV(S) for every yeNυ.

LEMMA 3.7. If Nυ is commutative, then Nv is an IP neofield.

Proof. Since Nv is assumed to be commutative, we only need to
prove that Nv has the LIP. Now ( — y) ffl (y ffi 0) = 0 for all yeF
and (— 0) EH (0 ffl x) = a? for all a? 6 ί7, hence we are left with proving
( — y) ffl (y ffl a?) = x for all a? Φ 0 ^ y. Now, (—y) ffl (2/ ffl a?) = x if
and only if (-1) ffl (1 ffl xy'1) = a?!/"1 or Γ; T^xy'1) = xy~\ where
T* is defined by T*(w) = ( — 1) ffl w for all weF. Let « = ajy"1.
As a? and 2/ run over iV* so does z, and as 2 runs over N* every
pair x, ye N* is obtained. Hence JV* has the IP if and only if

^ j . %\&) — z 101 d i i z ψ= u i n iv^ J-i JL JLOV^/ — <v I/Hen i^yzj — •L\6) —

T0(z), and regardless of whether T* agrees with T or To on T*(z)
we have T* T*(z) = z. Otherwise, T'T0(z) Φ z and z has an orbit θ(z) =
{z, (-1)/T(z), (~l)/TQ(z)}. For such z, (-1) ffl (1 ffl z) - (1 ffl z) ffl (-1) -
(1 ffl z)(l ffl (-1)/(1 ffl z)) or T'*T*(z) = ^ ( ^ ^ ( ( - l ) / ^ ^ ) ) , and, by
Lemma 3.5 and the commutativity and IP of Fv( + ) and F;o)(0), we
have

_ ιΓ(«)Γ((-l)/Γ(2)) - ΓT(2) - 2 if Γ^^) = Γ(β)
Γ* r*(«) - \τo(z)To((-l)TQ(z)) - ϊYΓoίί?) - z if T (z) - Γ0(ί8) .

Hence T* ϊ7*^) = s for all 2 ^ 0 in iVv, whence JV, has the IP, as was
to be shown.

We now have enough information on the neofield Nυ = (F, ffl, >
obtained from Fv and Fi0) according to (i) and (ii) to give a construction
of CIP neofields for every prime-power order v — pa ^ 11.

THEOREM 3.8. Let Fυ = (F, +, •> and F<0) = (F, φ, •>, F = {0,

1, a, a2, •••, av~2}, a°~ι = 1, be two copies of the finite field of order
v ^ 11 with presentation functions T and T09 respectively, where To is
related to T by

T{x\ x = 0,
(3.5) T0(x) = λ

" -, xΦ 0, - 1 .

Let T* be any mapping on F satisfying
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/(a) T*Έ£T and T* =£ To on F,

(b) for each xeF, either T*{x) = T{x) or T*(x) =

(3.6) \ T0{x) ,

(c) if T* agrees with T {or To) at xe S, then T* agrees

with T {or To) on θ{x) U θ{x'1) .

xThen T* is the presentation function for a CIP neofield Nv = (F, ffl, •>.

Proof Let Nv(tB) be the groupoid on F defined by

(3 7» ffl»-Γr, •/: !
for all x,yeF. Now, by (3.7), Offl^-T/andα fflO^ αTJO) = xT(0) =
#T0(0) — sc l = α; for all a;, y e Nυ; hence 0 is the identity element in Nv(Bi)
and 0 commutes with every element in Nv. Let x Φ 0 in iV<, and
suppose that Tt\x) = T(x). Then, by (3.6)(c), T*{x~ι) = T{χ-% hence
xT*(x~ι) - xT(x~ι) = T{x) - Γ*(α;). If T*(x) = Γ0(a;) we again obtain
a T^αΓ1) = ^(α?). By the proof of (3) of Lemma 3.4, this implies that
iV (̂ffl) is commutative. Now, 0 EB x = b has the unique solution x — b
for any δe Nv. By (3.7), a ffl x = 6 for α, 6e JV̂ , α ^ 0, has a unique
solution OJ e iVv if and only if T*{a~ιx) = a"1^ has, that is, if and
only if T* is bijective on Nv. Suppose for w, ze NVf w Φ Z, we have
T*(w) = Γ*(»). Now T* agrees with one of Tand TQ at w and, since
both T and Γo are bijective, T* must agree with the other at z. We
may assume that T*{w) = T{w) and T*(z) = TQ{z). Then T0(z) = T{w)
or T'T0{z) = w Φ z, hence z has an orbit θ(z) and we 0(s). By (3.6)
(c) this means that T* agrees with To at w, whence TQ{w) = T*{w) =
ϊ7^^) = Γoί̂ )? which contradicts the fact that TQ is bijective. Hence,
T* is bijective on Nv and, by the commutativity of iV̂ (BB), x ffl α =
α EB α? = & always has a unique solution xe Nv for every choice of
elements a, beNv. Hence JVw(ffl) is a commutative loop. Now, for
any w Φ 0, a;, y e Nv we have, by (3.7), that 0 {x\By) = 0 = 0-xϊB
O y and

w ' (x EH 2/) j
l Γ ( V) = wxT*{{wx)~ι{wy)) = wx ΪB wy, x Φ 0 ,

hence, since iVv( ) is commutative, S3 is both left and right distribu-
tive over . Thus iVw(ffl, •) is a cyclic commutative neofield. By
(3.6) (a) and (b), Nv satisfies the implicit conditions of Lemma 3.7,
hence Nv — (F, EB, •> is a CIP neofield with presentation function T*.

For Fv and F{

v

0) of order v = pa ^ 9 we have |S|/3 ^ 2, and so
condition (3.6) (a) cannot be satisfied. For v = 11 and 13 we have
|S|/3 = 3 and Θ{1) is paired with itself. Here, fixing T* = T (or To)
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on S — θ(l) and T* = To (or T) on 0(1) yields what we shall call a special
CIP neofield. We remark that special CIP neofields exist for every
order v = pa ^ 11 where p Φ 2, 3. The construction produces non-
special CIP neofields for every order v = pa Ξ> 16. At this point we
do not know whether this construction produces neofields which are
not isomorphs of the corresponding field. This question is taken up
in the next section.

4* Proper CIP neofields* A neofield is called proper if it is
not a field. It is natural to inquire as to which of the CIP neofields
constructed by Theorem 3.8 are proper and how many nonisomorphic
proper CIP neofields are obtained. So far we do not have the complete
answer to these questions; however, we can obtain some information
of value. Let φ denote the Euler phi-function. We need the follow-
ing preliminary result.

LEMMA 4.1. A cyclic neofield Nv = <ΛΓ, +, •>, N= {0, 1, α, a2, ,
av~2}> of order v > 1 has at most φ(v — 1) presentations based on the
set N.

Proof. Let To be the presentation function for N(

υ

0) = (N, 0 , •>,
where N{

v

0) is isomorphic to Nv. Let Ψ denote the isomorphism from
JVί, onto JVJ0) Then Ψ induces an isomorphism from iV*( ) onto JViO)*( )
In terms of the generator a of JV?( ) we have F:α-->αr where ar is
a generator of Nίo)*( ). Since |iVlO)*( )l = v — 1 we must have gcd(r,
v — 1) = 1. Since Ψ is completely determined by its effect on a
multiplicative generator, the number of different presentations of Nv

on the set N is at most the number of different integers r, 1 ^ r ^
v — 1 such that gcd (r, v — 1) = 1, which is φ(v — 1).

THEOREM 4.2. The number of nonisomorphic CIP neofields of
order v = pa constructed by Theorem 3.8 goes to infinity with v.

Proof. In the construction of Theorem 3.8, let u denote the
number of elements x such that T'T0(x) Φ x and x$ 0(1) if θ(l) exists.
Then u/6 is the number of orbit pairs θ(x) U θ{x~x) on which a choice
of either T or To can be made. If θ(l) exists then the total number
of neofield presentations constructed is 2(M/6)+1 - 2 and if 0(1) does
not exist, this number is 2%/6 — 2. Now, the value of u is 3α — 3 =
i; - 3 if p = 3, 2 α - 4 = ^ - 4 if p = 2 and pa = 1 (mod 3), pa - 7 =
v - 7 if p Φ 2 and pa

 Ξ 1 (mod 3), 2a - 2 = v - 2 if p = 2 and p α
 Ξ

2 (mod 3), and pa-5 = v-5ifpΦ2 and pα Ξ= 2 (mod 3). Since θ(ΐ)
exists only for p Φ 2, 3, the resulting number of neofield presentations
is, respectively, 2(*-3)>6 - 2, 2(*~4)/6 - 2, 2("~1)/6 - 2, 2(1)-2)/6 - 2, and 2(v+1)/6~2.
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Now, by Lemma 4.1, a given neofield of order v can occur among
these presentations at most φ(v — 1) times, hence the construction
yields at least

2^-*")/6 2 2ι

{v~r)iQ 2

φ(v — 1) v — 1

nonisomorphic neofields of order v, where r = —1, 1, 2, 3, or 4. In
any of these cases we clearly have

O(«—r)/6 O

lim i ^— 1

hence the theorem.
In the case of a field Fυ of order v = pa the number of different

presentations given by the various isomorphisms Ψr: a —> αr, gcd (r,
v — 1) = 1, is a~^(pa — 1) since the mappings Ψvι\ a-^av\ i = 1, 2, 3, ,
α, are all automorphisms and automorphisms preserve presentations.
The number of presentations of neofields of order v = pa construc-
ted by Theorem 3.8 is larger than a~ιφ{pa - 1) - 2 for all pa ^ 11
except 11, 13, and 17 and for these orders the theorem constructs
proper neofields by inspection. Hence, for all orders v >̂ 11, proper
CIP neofields are constructed by Theorem 3.8. In the following
theorems we give actual constructions of proper CIP neofields for
each order v = pa ^ 11, divided into the three cases where p > 7,
^ = 3̂ 5̂  7, and p = 2. The three analyses are rather distinct; each
is based on particular properties of the case involved.

THEOREM 4.3. Let v = pa >̂ 11 where p > 7. Then 2$ 0(1) and
any neofield Nv of order v constructed by Theorem 3.8 with T* = T
on 0(1) and T* = To on 0(2) has the property that

(4.1) 1 ffl (1 ffl (1 ffl 1)) =£ (1 ffl 1) S (1 ffl 1)

and is, hence, not the field of order v.

Proof We note that Fp s JF> = Fv and that for xeFv,xeFp if
and only if θ{x) S Fp. Since p ^ 2, 3, 0(1) exists and 0(1) = {1, -2"1,
-2}; hence 2e 0(1) iff 5 = 0 or 4 = 0, i.e., p = 2 or p = 5. Thus,
choosing ϊ7, - T on 0(1) and T* = To on 0(2),

l ffl (l ffl (l ffl l)) = r j j * ( i ) - n

and

(1 ffl 1) E (1 ffl 1) = (1 ffl 1)(1 ffl 1) - Γ#(1)Γ#(1) - Γ(1)Γ(1) = 4
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If T*(2/3) = T(2/3) - 5/3 then T*(2/3) - 4 implies that 7 - 0 , and if
T*(2/3) = Γ0(2/3) = 2/5 then T*(2/3) - 4 implies that 2 = 0 or 3 = 0,
all of which are contradictions. Hence 7^(2/3) Φ 4, which is (4.1).

THEOREM 4.4. Let v = pa > 11 where p = 3, 5, or 7. Let x e Fv

where x<£Fp and x Φ - 1 ± V^Λ, x Φ 2~1(-1 ± τ/ΊΓ), % Φ 2~1(-3 ±
i / 5 ) , x Φ 2~1( —3 ± τ/^3) , m case <mτ/ of these elements exist in FΌ

and are not in Fp. Then T(x) g Θ{x) U 0(aΓ1), and any neofield Nv of
order v constructed by Theorem 3.8 with T* = T on 0(1) U θ(x) U θ{x~ι)
and T* = To on θ(T(x)) U θ{(T(x)Yι) has the property that

(4.2) 1 ffl (1 EB x) Φ (1 BB 1) ffl x

and is, hence, not the field of order v.

Proof. We first note that the element x must be different from
at most p + 8 elements of Fυ. Since the minimal values of 3α, 5β,
and V are 27, 25, and 49 and p + 8 <̂  15, such an element x exists.
Since T(x) $ Fp we have T(x) g 0(1). Furthermore, T(aO e θ(x) U ̂ (α;-1)
implies that either x e Fp or x is one of the first six forbidden values.
Thus, choosing Γ* = Γon 0(1) U 0(α?) U 0(a;~1) and Γ* = Γo on 0(Γ(α?)) U
θ({T{x)Γ),

1 ffl (1 EB α?) = T*T*{x) = T0T(x) = (x + ΐ)(x + 2)"1

and

(1 ffl 1) B3 x = x ffl (1 ffl 1) = x(l ffl (a;"1 ffl a;"1))

If Γ;,(2a;-1) = ^a?" 1 ) - 1 + 20Γ1 then xT^x-1) = (x + l)(x + 2)"1 implies
that x2 + Sx + 3 = 0 or x is one of the last two forbidden values,
and if Γ#(2a?-1) = Γo(2^~1) = 2(a? + 2)"1 then xT^x'1) = (x + l)(x + 2)' 1

implies that x = 1, both of which are contradictions. Hence (α? +
ί)(x + 2)-1 ̂  xT^Zx'1), which is (4.2).

THEOREM 4.5. Let v = 2α > 11 αmZ Zeί a; 6e απ?/ element in Fv

which is not in the largest of the subfields F2, F^ or FQ contained
in Fv. Then x2 ί 0(α?) U θ(x~ι) and any neofield Nυ of order v constructed
by Theorem 3.8 with T* = T on θ(x) U θ{χ-χ) and Γ* = TQ on θ{x2) U
θ{x~2) has the property that

(4.3) (x m 1) ffl x2 Φ % EB (1 BB x2)

and is, hence, not the field of order v.

Proof. Since x is not in any subfield F2, F4, or F8 of Fv, x satisfies
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no cubic or lower degree equation over F2. If x2 e θ(x) U θ(x~ι) = {x,
— (1 + x)~\ — (1 + x)x~\ x~\ —x(l + x"1), — (1 + x)}, this condition is
clearly violated. Thus, choosing Γ# = T on θ(x) U θ{χ-χ) and Γ* = Γo

on θ{x2) U θ(x~2),

(χmi)mχ2 = χ2m(imχ) = χ2τ*{χ-2τ*(χ))

= x2T*(αr2T(£)) - a 'T^ar 1 + x~2)

and

a? ffl (1 ffl α;2) - αΓ^aΓ 1 ! 7*^ 2)) = ^ Γ , ( r T 0 ( f ) ) - ^ ( . τ ( l + .τ2)-1) .

If x2T*{x~" + x~2) = x2T(x~ι + x~2) = x2 + x + 1 and xT*(x(l + x2)"1) =
α?Γ(α?(l + a?2)"1) = α? + x\l + α;2)"1 then x2T*{x~ι + x~2) = xT*(x(l + x2)"1)
implies t h a t x2 + x + 1 — 0, a contradiction. If

r T ^ a r 1 + x'2) = x2T(x~ι + x~2) = x2 + x + 1

and e^T^xίl + x2)~ι) = xT0(x(l + a;2)-1) = x\l + x + x2)"1 then

implies that ^ + 1 = 0, another contradiction. If x2T*(x~1 + ^~2) =
^Γoίa;-1 + χ-2) = (x2 + £3)(1 + a? + x2)"1 and xT*(x{l + x2)"1) - xT(x(l +
a;2)"1) = a? + a?2(l + x2)'1 then x2T*{x~} + x~2) - ^ ^ ( ^ ( 1 + x2)~ι) implies
that α;3 + x + 1 = 0, also a contradiction. Finally, if x2T*{x~ι + x'2) =
x2T,{x'1 + χ-2) = (x2 + x3)(l + α; + x2)"1 and a Γ^α Cl + x2)"1) = xTQ(x(l +
a;2)-1) - x\l + x + x2)"1 then ^ Γ ^ x " 1 + x~2) = xT*(x{l + ίK2)"1) implies
that x = 0, again a contradiction. Hence x2T*(x~1 + a;~2) ^ ^7^(^(1 +
af)"1) which establishes (4.3).

It is natural to inquire as to the orders for which CIP neofields
exist. The order need not be a prime-power as the following pre-
sentation for the lone CIP neofield of order 14 shows:
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Recently, John R. Doner has obtained CIP neofields for all orders v ^ 2
satisfying v ^ 0, 6, 12, 15, 18, 21 (mod 24) and v Φ 10 and has shown
that no CIP neofields exist for these forbidden orders. Hughes [4]
had earlier shown that the orders v = 0, 6, 12, 18 (mod 24) were for-
bidden, and the authors, among perhaps others, had earlier observed
that order v = 10 is also forbidden.

5* Cyclic Steiner triple systems* A Steiner triple system of
order n, S(n), is an arrangement of a set of n elements into triples
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such that every pair of elements occur together in precisely one triple.
A necessary and sufficient condition that an S(n) exist is that n =
1, 3 (mod 6). An S(ri) is called cyclic if it has a cyclic group of auto-
morphisms which is sharply transitive on the elements. For an
excellent historical discussion and introduction to the literature on
Steiner triple systems in general and cyclic Steiner triple systems
in particular, the reader is referred to the first section of Doyen [3].
Here we note that a cyclic Steiner triple system S(n) is known to
exist for all orders n = 1, 3 (mod 6) except n = 9 [8]. Now, a CIP
neofield Nv = {0, 1, α, α2, •••, av~2} of order v = 2a has the property
that x + x = 0 or — x = x for all x e Nv, and so if x, y, zeNv satisfy
x + y = z then also y + x = z, x + z = z + x = y, and y + z = z +
y ~ x. This means that Nv( + ) is a totally symmetric loop. The set
of elements N£ = Nυ - {0} formed into the triples {x, y, z) where
x + y = z thus yields a Steiner triple system S(w) of order n —
v — 1 [2]. Furthermore, the right regular representation of JV?( )
is a cyclic group of automorphisms of Nv( + ), hence also of S(n)9

which is sharply transitive on the elements of S(n). Hence, a CIP
neofield of order v = 2a ^ 4 naturally yields a cyclic Steiner triple
system of order n = v — 1. Now, CIP neofields of order v = 2a with
nonisomorphic additive loops yield nonisomorphic cyclic Steiner triple
systems of order n = 2a — 1, and by Theorem 4.5 there exists both
the field of order v and a proper CIP neofield of order v for every
order v = 2a Ξ> 16. Hence, we obtain the following result, which is
a more specific version of a theorem of Assmus and Mattson [1].

THEOREM 5.1. There exists at least two nonisomorphic cyclic
Steiner triple systems for each order n — 2a — 1 ^ 15.

Although the number of nonisomorphic CIP neofields of order
v = 2a goes to infinity with v, we cannot immediately conclude from
this that the number of nonisomorphic cyclic Steiner triple systems
of order v — 1 does the same, since we must ascertain the number
of nonisomorphic additive loops among the nonisomorphic CIP neofields
of order v. By further investigation, however, the authors have
determined that this number does go to infinity with v. This will
be presented in a subsequent paper.
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