CONSTRUCTION OF 2-BALANCED (n, k, λ) ARRAYS

F. K. HWANG AND S. LIN

Let I_n denote the set of positive integers $\{1, 2, \dots, n\}$, and I_n^{λ} the multiset consisting of λ copies of I_n . A submultiset S of I_n^{λ} is t-balanced if S can be partitioned into t parts such that the sums of all elements in each part are all equal. A t-balance (n, k, λ) array is a partition of I_n^{λ} into m multisets S_i , i = $1, \dots, m$, which are all of size k and t-balanced. In this paper, we give a necessary and sufficient condition for the existence of 2-balanced (n, k, λ) arrays. Furthermore, we show how 2-balanced (n, k, λ) arrays can be used to construct a class of neighbor designs used in serology, or to give coverings of complete multigraphs by k-cycles.

I. Introduction. Let I_n denote the set of positive integers $\{1, 2, \dots, n\}$, and I_n^{λ} the multiset consisting of the multiset union $(^+)$ of λ copies of I_n . Here we follow the notation of Knuth [1, Volume 2, p. 420 ex. 19] where multisets are defined as mathematical entities like sets, but may contain identical elements repeated a finite number of times. If A and B are multisets, we define their multiset union A^+B as a multiset in the following way: An element x occurring a times in A and b times in B occurs a + b times in A^+B . Submultisets of a multiset are similarly defined, with $A \subseteq B$ if x occurs a times in A implies x occurs $b \ge a$ times in B. The cardinality of a multiset A, denoted by |A|, is the sum of the number of occurrences of all elements in A as k-multiset.

If $S \subseteq I_n^{\lambda}$, let ||S|| denote the sum of all elements in S. For example, if $S = \{1, 2, 2, 4\}$, then |S| = 4 and ||S|| = 9. S is t-balanced if S can be partitioned into t submultisets $S^{(1)}, S^{(2)}, \dots, S^{(t)}$, such that $||S^{(j)}|| = 1/t ||S||$ for $j = 1, 2, \dots, t$.

A *t*-balanced (n, k, λ) array is a partition of I_n^{λ} into *m k*-multisets S_i , $i = 1, \dots, m$ which are all *t*-balanced. Thus a *t*-balanced (n, k, λ) array may be considered as an arrangement of the $n\lambda$ numbers in I_n^{λ} into an $m \times k$ matrix such that each row of the matrix is a *t*-balanced multiset.

As illustrations, we exhibit below a 3-balanced (14, 7, 1) array and a 2-balanced (8, 3, 3) array. The partitions of the S_i 's into balanced submultisets are indicated by ";".

A 3-balanced (14, 7, 1) array:

$$S_1 = (14; 1, 2, 11; 3, 5, 6)$$

 $S_2 = (9, 12; 8, 13; 4, 7, 10)$

A 2-balanced (8, 3, 3) array:

$$S_{1} = (1, 2; 3)$$

$$S_{2} = (1, 6; 7)$$

$$S_{3} = (1, 6; 7)$$

$$S_{4} = (2, 4; 6)$$

$$S_{5} = (2, 5; 7)$$

$$S_{6} = (3, 5; 8)$$

$$S_{7} = (3, 5; 8)$$

$$S_{8} = (4, 4; 8)$$

Note that the S_i 's need not be distinct and the partition of each S_i into $S_i^{(j)}$'s needs not be uniform in sizes.

From the definition of a *t*-balanced (n, k, λ) array, it is clear that $k \ge t$ and $\lambda n = mk$. Furthermore, since each S_i is *t*-balanced, $||S_i|| \equiv 0 \pmod{t}$ and hence

$$\sum_{i=1}^{m} \|S_i\| = \|I_n^{\lambda}\| = \frac{\lambda n(n+1)}{2} \equiv 0 \pmod{t}.$$

For t = k, each S_i must consist of a single element occurring t = k times and hence $\lambda \equiv 0 \pmod{t}$. Clearly t-balanced $(n, t, t\lambda')$ arrays exist for all positive integers $n, t, \text{ and } \lambda'$. Also, 1-balanced (n, k, λ) arrays are just arrangements of λn integers into an $m \times k$ matrix and hence exist for all (n, k, λ) provided $\lambda n \equiv 0 \mod k$. For n = 1, we must have $k \equiv 0 \pmod{t}$ and $\lambda \equiv 0 \pmod{k}$. Clearly, t-balanced $(1, k, \lambda)$ arrays exist trivially for those parameters.

In this paper, we deal mainly with the case t = 2, and establish necessary and sufficient conditions for the existence of 2-balanced (n, k, λ) arrays. The sufficiency proof will be constructive in nature. Furthermore, we show how 2-balanced (n, k, λ) arrays can be used to construct a class of neighbor designs used in serology, or to give coverings of complete multigraphs by k-cycles.

II. Necessary and sufficient conditions for the existence of 2-balanced (n, k, λ) arrays. In the rest of the paper we assume t = 2 and denote 2-balanced (n, k, λ) arrays by $A(n, k, \lambda)$. From the remarks made in the previous section, we further assume $k \ge 2$ and n > 1. We shall prove:

THEOREM 1. Let $k \ge 2$ and n > 1, then $A(n, k, \lambda)$ exists if and only if n, k, λ satisfy the following conditions:

- (a) $\lambda n \equiv 0 \pmod{k}$.
- (b) $\lambda n(n+1) \equiv 0 \pmod{4}$.
- (c) $\lambda \equiv 0 \pmod{2}$ if k = 2.
- (d) n > 2 if k = 3.

The necessity of (a), (b) and (c) had already been shown. For k = 3, n = 2, the only possibility for the S_i 's is (1, 1; 2) and I_n^{λ} cannot be so partitioned, and hence (d) is also necessary. We prove below that conditions (a), (b), (c), (d) are also sufficient constructively. For clarity, the work is divided into a number of smaller steps.

First, in order to reduce the tedious effort of construction, we establish below a set of lemmas where we can deduce the construction of large classes of $A(n, k, \lambda)$'s from some "previously" constructed ones. For convenience, we introduce the following notations:

1. $N(k, \lambda) \equiv$ the set of all positive integers n > 2 such that n, k, λ satisfy the conditions (a), (b) and (c) in Theorem 1. (The construction of $A(2, k, \lambda)$ will be treated separately.)

2. While $A(n, k, \lambda)$ stands for a 2-balanced (n, k, λ) array, we shall also refer to the list of multisets S_i associated with $A(n, k, \lambda)$ as the rows of $A(n, k, \lambda)$.

3. $A(\{n\}, k, \lambda) \equiv a \text{ set of } A(n, k, \lambda)$'s for all $n \in N(k, \lambda)$.

4. We let $H_1 \Rightarrow H_2$ where H_1 and H_2 are various collections of $A(n, k, \lambda)$'s denote the statement: If we can construct the $A(n, k, \lambda)$'s in H_1 , then we can construct the $A(n, k, \lambda)$'s in H_2 .

Let $g = (k, \lambda)$ denote the g.c.d. of k and λ , $k^* = k/g$, $\lambda^* = \lambda/g$. The following lemma characterizes $N(k, \lambda)$:

LEMMA 1. $N(k, \lambda)$ consists of all positive multiples of k^* which are > 2 if λ is even and all positive multiples of k^* which are congruent to 0 or 3 mod 4 if λ is odd, except for k = 2 where $N(2, \lambda) = \emptyset$ if λ is odd.

The proof follows from (a), (b) in Theorem 1 and the definition of $N(k, \lambda)$.

From Lemma 1, we see that $N(k, \lambda)$ depends only on k^* and the parity of λ . Hence we have

LEMMA 2. Let $k \ge k' > 2$. 1. If $k/\lambda = k'/\lambda'$ and $\lambda \equiv \lambda' \mod 2$, then $N(k, \lambda) \equiv N(k', \lambda')$. 2. If $\lambda \equiv g \mod 2$, then $N(k, \lambda) \equiv N(k, g)$. 3. If $\lambda \equiv 0$, $g \equiv 1 \mod 2$, then $N(k, \lambda) \equiv N(k, 2g)$.

LEMMA 3. { $A(n, k, \lambda_1), A(n, k, \lambda_2)$ } $\Rightarrow A(n, k, \lambda_1 + \lambda_2).$

Proof. The rows of $A(n, k, \lambda_1)$ together with the rows of $A(n, k, \lambda_2)$ form $A(n, k, \lambda_1 + \lambda_2)$.

COROLLARY 1. $A(n, k, \lambda) \Rightarrow \{A(n, k, r\lambda), r = 1, 2, \cdots, \}.$

COROLLARY 2. 1. $A(\{n\}, k, g) \Rightarrow A(\{n\}, k, \lambda)$ if $\lambda \equiv g \mod 2$, and 2. $A(\{n\}, k, 2g) \Rightarrow A(\{n\}, k, \lambda)$ if $\lambda \equiv 0, g \equiv 1 \mod 2$.

Proof. From (2) and (3) of Lemma 2 and Corollary 1.

LEMMA 4. If $k_1/\lambda_1 = k_2/\lambda_2$, then

 $\{A(n, k_1, \lambda_1), A(n, k_2, \lambda_2)\} \Rightarrow A(n, k_1 + k_2, \lambda_1 + \lambda_2).$

Proof. From $k_1/\lambda_1 = k_2/\lambda_2$, we see that $A(n, k_1, \lambda_1)$ and $A(n, k_2, \lambda_2)$ have the same number of rows. Let $\{S_i\}$ and $\{T_i\}$, $i = 1, 2, \dots, m$ be the rows for $A(n, k_1, \lambda_1)$ and $A(n, k_2, \lambda_2)$ respectively. Then $\{R_i\} = \{S_i^+, T_i\}$, $i = 1, 2, \dots, m$ form the rows for an $A(n, k_1 + k_2, \lambda_1 + \lambda_2)$ with $R_i = R_i^{(1)+} R_i^{(2)}$ where $R_i^{(j)} = S_i^{(j)+} T_i^{(j)}$, j = 1, 2.

COROLLARY 1. $A(n, k, \lambda) \Rightarrow \{A(n, rk, r\lambda), r = 1, 2, \dots\}.$ COROLLARY 2. $A(n, k^*, \lambda^*) \Rightarrow A(n, k, \lambda).$ COROLLARY 3. Let $k^* \ge 3$, $g \equiv 1 \pmod{2}$, then

$$A(\{n\}, k^*, \lambda^*) \Rightarrow A(\{n\}, k, \lambda).$$

Proof. Since $g \equiv 1 \pmod{2}$, λ and λ^* have the same parity and hence $N(k^*, \lambda^*) \equiv N(k, \lambda)$ by (1) of Lemma 2. Hence Corollary 3 follows from Corollary 2.

Looking at $A(n, k, \lambda)$'s as $m \times k$ matrices of elements from I_n^{λ} , we may view the constructions by Lemmas 3 and 4 as vertical and horizontal compositions respectively, as illustrated by the following diagrams:

1.
$$\begin{bmatrix} A(n, k, \lambda_1) \\ A(n, k, \lambda_2) \end{bmatrix} \Rightarrow \begin{bmatrix} A(n, k, \lambda_1 + \lambda_2) \end{bmatrix}$$

2.
$$\begin{bmatrix} A(n, k_1, \lambda_1) \\ A(n, k_2, \lambda_2) \end{bmatrix} \Rightarrow \begin{bmatrix} A(n, k_1 + k_2, \lambda_1 + \lambda_2) \end{bmatrix}$$

440

Corollary 3 states that we can reduce the construction of $A(\{n\}, k, \lambda)$ to the construction of $A(\{n\}, k^*, \lambda^*)$ provided $k^* \ge 3$ and $g \equiv 1 \pmod{2}$. The condition $g \equiv 1 \pmod{2}$ may be removed by the following lemma:

LEMMA 5. (even-even lemma).

If
$$g \equiv 0 \pmod{2}$$
, then we can construct $A(\{n\}, k, \lambda)$.

The construction is trivial since the rows of $A(n, k, \lambda)$ can consist of elements from I_n^{λ} occurring in pairs.

The following two lemmas take care of the situation when $k^* < 3$.

LEMMA 6. Let
$$k^* = 1$$
 so that $\lambda = k\lambda'$. Then

$$A(\{n\}, 3, 3\lambda') \Rightarrow A(\{n\}, k, \lambda)$$

Proof. We may assume k is odd, otherwise $A(\{n\}, k, \lambda)$ can be constructed by the even-even lemma. Lemma 6 is obvious if k = 3, hence we may assume $k \ge 5$. Since k - 3 and $(k - 3)\lambda'$ are both even, we can construct $A(\{n\}, k - 3, (k - 3)\lambda')$ by the even-even lemma. From Lemma 1, we have $N(k, \lambda) \equiv N(3, 3\lambda') \subseteq N(k - 3, (k - 3)\lambda')$ and hence $\{A(\{n\}, 3, 3\lambda'), A(\{n\}, k - 3, (k - 3)\lambda')\} \Rightarrow A(\{n\}, k, \lambda)$ by horizontal composition, and the lemma follows.

LEMMA 7. Let $k^* = 2$ so that k = 2g, $\lambda = g\lambda'$, λ' odd. Then $A(\{n\}, 6, 3\lambda') \Rightarrow A(\{n\}, k, \lambda)$.

Proof. We may assume g is odd and >3 as in the proof of Lemma 6. The lemma then follows by the following horizontal composition:

$$\{A(\{n\}, 6, 3\lambda'), A(\{n\}, k-6, (g-3)\lambda')\} \Rightarrow A(\{n\}, k, \lambda).$$

Details are similar to the proof of Lemma 6.

Lemmas 8 and 9 below reduce the construction of $A(\{n\}, k^*, \lambda^*)$ to the construction of $A(\{n\}, \bar{k}, \bar{\lambda})$ for $3 \le \bar{k} \le 6$.

LEMMA 8. Let $(k, \lambda) = 1$. Determine the integer l so that $3 \le k - 4l < 7$. Then

$$A(\{n\}, k-4l, \lambda) \Rightarrow A(\{n\}, k, \lambda).$$

Proof. Let $n \in N(k, \lambda)$. Then $\lambda n = km$. Since $(k, \lambda) = 1$, we must have n = ka and $m = \lambda a$. For $l \ge 1$, let n' = n - 4al = (k - 4l)a,

then $n' \in N(k-4l, \lambda)$ since $\lambda n' = (k-4l)a\lambda = (k-4l)m$ and $n' \equiv n \pmod{4}$. (The case n' = 2 cannot occur since $n' = (k-4l)a \ge 3$.) From an $A(n-4al, k-4l, \lambda)$, which by assumption we can construct, we construct $A(n, k, \lambda)$ as follows:

The elements in the multiset I_n^{λ} which are not in I_{n-4al}^{λ} , namely, λ copies of each of the 4*al* integers from n - 4al + 1 to *n*, are placed into an $m \times 4l$ matrix *B* such that every row of *B* is 2-balanced. One way this can be done is to fill the rows of *B* sequentially by λ strings of integers from n - 4al + 1 to *n*. Then every row of *B* consists of *l* sets of four consecutive integers. Since for every four consecutive integers x, x + 1, x + 2, x + 3, x + (x + 3) = (x + 1) + (x + 2), the rows of *B* are clearly 2-balanced.

From B and $A(n-4al, k-4l, \lambda)$, we construct $A(n, k, \lambda)$ by horizontal composition where row i of $A(n, k, \lambda) = row$ i of $A(n-4al, k-4l, \lambda)^+$ row i of B.

When $\lambda \equiv 0 \pmod{2}$, Lemma 8 can be strengthened to:

LEMMA 9. Let $(k, \lambda) = 1$, $\lambda \equiv 0 \pmod{2}$. Determine the integer l so that $3 \leq k - 2l < 5$. Then

$$A(\{n\}, k-2l, \lambda) \Rightarrow A(\{n\}, k, \lambda).$$

The proof of Lemma 9 is similar to that of Lemma 8 except that n' = n - 2al and the rows of the $m \times 2l$ matrix B can merely consist of numbers from $I_n^{\lambda} - I_{n-2al}^{\lambda}$ occurring in pairs.

LEMMA 10. $\{A(\{n\}, k, \lambda), k = 3, 4, 5, 6\} \Rightarrow A(n, k, \lambda) \text{ for all } n \ge 3, k, \lambda \text{ satisfying the conditions of Theorem 1.}$

Proof. The proof of Lemma 10 sums up the applications of the reduction lemmas given above.

- 1. If $g = (k, \lambda) = 1$, use Lemma 8.
- 2. If $g \equiv 0 \mod 2$, use the even-even lemma.
- 3. If g > 1 and odd, use
 - (a) Lemma 6 if $k^* = k/g = 1$,
 - (b) Lemma 7 if $k^* = 2$, and

(c) Corollary 3 of Lemma 4 if $k^* \ge 3$ to reduce the construction of $A(n, k, \lambda)$ to $A(n, k^*, \lambda^*)$, and use Lemma 8 to construct $A(n, k^*, \lambda^*)$.

In the following, we shall construct $A(2, k, \lambda)$, and $A(\{n\}, k, \lambda)$ for k = 3, 4, 5, 6.

III. Construction of $A(2, k, \lambda)$. Let n = 2, then λ must be even, say $\lambda = 2\lambda'$. From $\lambda n = km$, we have $4\lambda' = km$. If $k \equiv$

0 (mod 2), we can construct $A(2, k, \lambda)$ by the even-even lemma. Hence, we may assume $k \ge 5$, is odd, and hence $m \equiv 0 \pmod{4}$. The rows of $A(2, k, \lambda)$ can then consist of 1, 1, 2, and (k-3)/2 pairs of 1's or 2's, which are available since both $\lambda - 2m = (k-4)(m/2)$ and $\lambda - m = (k-2)(m/2)$ are even. (These are the number of 1's and 2's left for the third to k th columns of $A(2, k, \lambda)$.)

IV. Construction of $A(n, 3, \lambda)$.

Case 1. $(3, \lambda) = 1, \lambda \equiv 1 \pmod{2}$.

From Corollary 2 of Lemma 3, we need only construct A(n, 3, 1) for $n \in N(3, 1)$. From Lemma 1, $n \in N(3, 1)$ if $n \equiv 0 \pmod{3}$ and $n \equiv 0,3 \pmod{4}$. We have two subcases:

1. $n = 12w \ w = 1, 2, \cdots$ The S_i 's $(i = 1, \cdots, 4w)$ are:

> $(1+2j, 11w - j; 11w + 1 + j) \qquad j = 0, 1, \dots, w - 1.$ $(2+2j, 8w - j; 8w + 2 + j) \qquad j = 0, 1, \dots, w - 2.^{1}$ (2w, 6w + 1; 8w + 1) $(3w + 1 + 2j, 6w - j; 9w + 1 + j) \qquad j = 0, 1, \dots, w - 1.$ $(3w + 2 + 2j, 3w - j; 6w + 2 + j) \qquad j = 0, 1, \dots, w - 1.$

It is easy to see that all the S_i 's are 2-"balanced", and in the following, we verify that the S_i 's are indeed a parition of $I_n^{\lambda} \equiv (1, 2, \dots, 12w)$. We shall leave similar verifications for subsequent constructions to the reader.

The S_i 's may be expanded into the following schematic diagram:

$$(1, 11w; 11w + 1)
\downarrow (1-2) \uparrow (11) \downarrow (12)
(2w - 1, 10w + 1; 12w)
(2, 8w; 8w + 2)
\downarrow (1-2) \uparrow (8) \downarrow (9)
(2w - 2, 7w + 2; 9w)
(2*) (6*) (8*)$$

¹ Here and in all subsequent lists of S_i 's vacuous if the range of j is empty.

F. K. HWANG AND S. LIN

$$(2w, 6w + 1; 8w + 1)$$

$$(3w + 1, 6w; 9w + 1)$$

$$(4, 5) \uparrow (6) \downarrow (10)$$

$$(5w - 1, 5w + 1; 10w)$$

$$(3w + 2, 3w; 6w + 2)$$

$$(4, 5) \uparrow (3) \downarrow (7)$$

$$(5w, 2w + 1; 7w + 1)$$

Where ψ_b^a means increasing from *a* to *b* by steps of two and ψ_b^a increasing from *a* to *b* by steps of one. Similarly for \uparrow_a^b . Following the indicated order in parenthesis, we have $\psi_{2w-1}^1 (1-2)$, $\psi_{2w-2}^2 (1-2)$ account for numbers from 1 to 2w - 1, followed by 2w in (2^*) , 2w + 1 to 3w in $\bigwedge_{2w+1}^{3w} (3)$, etc. until $\psi_{12w}^{11w+1} (12)$ where all numbers in $I_n^{\lambda} = (1, 2, \dots, 12w)$ are accounted.

2. $n = 12w + 3 \ w = 0, 1, \cdots$ The S_i's $(i = 1, \cdots, 4w + 1)$ are:

 $\begin{array}{ll} (1+2j,\ 11w+3-j;\ 11w+4+j) & j=0,1,\cdots,w-1.\\ (2+2j,\ 8w+2-j;\ 8w+4+j) & j=0,1,\cdots,w-1.\\ (3w+2+2j,\ 3w+1-j;\ 6w+3+j) & j=0,1,\cdots,w-1.\\ (3w+3+2j,\ 6w+1-j;\ 9w+4+j) & j=0,1,\cdots,w-1.\\ (2w+1,\ 6w+2;\ 8w+3). & \end{array}$

Case 2. $(3, \lambda) = 1, \lambda \equiv 0 \pmod{2}$.

Again from Corollary 2 of Lemma 3, we need only construct A(n, 3, 2) for $n \in N(3, 2)$. From Lemma 1, $n \in N(3, 2)$ if $n \equiv 0 \pmod{3}$. Although when $n \equiv 0, 3 \pmod{4}$ we can construct A(n, 3, 2) from A(n, 3, 1), we give another construction below which is simple and uniform for all n = 3w, $w = 1, 2, \cdots$.

The S_i 's $(i = 1, \dots, 2w)$ are:

$$(1+j, 3w-1-2j; 3w-j) j = 0, 1, \dots, w-1.$$

$$(1+j, w+1+j; w+2+2j) j = 0, 1, \dots, w-1.$$

From the schematic diagram below, it is easy to see that each of the numbers from 1 to 3w is used exactly twice.

 $1 \qquad 3w - 1 \qquad 3w$ $\downarrow \qquad \uparrow \qquad \uparrow$ $w \qquad w + 1 \qquad 2w + 1$ $1 \qquad w + 1 \qquad w + 2$ $\downarrow \qquad \downarrow \qquad \downarrow$ $w \qquad 2w \qquad 3w$

Case 3. $(3, \lambda) = 3, \lambda \equiv 1 \pmod{2}$.

We need only construct A(n, 3, 3) for all $n \in N(3, 3)$. N(3, 3) consists of all numbers $\equiv 0, 3 \pmod{4}$. Again, we have two subcases. 1. $n = 4w, w \ge 1$. The S_i 's $(i = 1, \dots, 4w)$ are:

> $(1+2j, 3w - j; 3w + 1 + j) \qquad j = 0, 1, \dots, w - 1,$ $(1+2j, 3w - j; 3w + 1 + j) \qquad j = 0, 1, \dots, w - 1,$ $(2+2j, 3w - 1 - j; 3w + 1 + j) \qquad j = 0, 1, \dots, w - 1,$ $(2+2j, w - 1 - j; w + 1 + j) \qquad j = 0, 1, \dots, w - 2,$ (w, 2w, 3w).

2. n = 4w + 3, $w \ge 0$. The S_i 's $(i = 1, \dots, 4w + 3)$ are:

$$(1+2j, 3w+2-j; 3w+3+j) \qquad j = 0, 1, \dots, w,$$

$$(1+2j, 3w+2-j; 3w+3+j) \qquad j = 0, 1, \dots, w-1,$$

$$(2+2j, 3w+1-j; 3w+3+j) \qquad j = 0, 1, \dots, w,$$

$$(2+2j, w-j; w+2+j) \qquad j = 0, 1, \dots, w-1,$$

$$(w+1, 3w+2; 4w+3).$$

Case 4. $(3, \lambda) = 3, \lambda \equiv 0 \pmod{2}$.

We need only construct A(n, 3, 6) for all $n \in N(3, 6)$, which consists of all positive integers >2. Again, we have two subcases:

1. $n = 2w, w \ge 2$. The S_i 's $(i = 1, \dots, 4w)$ are:

 $(1+2j, w-j; w+1+j) j = 0, 1, \dots, w-1,$ $(1+2j, w+1-j; w+2+j) j = 0, 1, \dots, w-2,$

$$(2+2j, w-2-j; w+j) j = 0, 1, \dots, w-3,$$

$$(2+2j, w-j; w+2+j) j = 0, 1, \dots, w-2,$$

$$(1, 2w-2, 2w-1) (1, 2w-1, 2w) (2, 2w-2, 2w) (w-1, w+1, 2w).$$

2. n = 2w + 1, $w \ge 1$. The S_i 's $(i = 1, \dots, 4w + 2)$ are:

Note that we could have constructed most of the A(n, 3, 6)'s from A(n, 3, 1), A(n, 3, 2), and A(n, 3, 3)'s, leaving us with those values of n = 12w + 1, 12w + 2, 12w + 5, 12w + 10 which do not belong in $N(3, 1) \cup N(3, 2) \cup N(3, 3)$. However, the unified construction here is actually simpler.

This completes the construction of all $A(n, 3, \lambda)$'s for $n \in N(3, \lambda)$.

V. Construction of $A(n, 4, \lambda)$. We may assume λ is odd and $(4, \lambda) = 1$ otherwise $A(n, 4, \lambda)$ can be constructed by the even-even lemma. Hence we need only construct A(n, 4, 1) for n = 4w, $w \ge 1$.

The S_i 's are $(i = 1, 2, \dots, w)$

$$(1+4j, 4+4j; 2+4j, 3+4j)$$
 $j = 0, 1, \cdots, w-1.$

Note the similarity of this construction and the construction of matrix B in Lemma 8. Another equally simple construction is

$$(w-j, 4w-j; 2w-j, 3w-j)$$
 $j = 0, 1, \dots, w-1.$

VI. Construction of $A(n, 5, \lambda)$.

Case 1. $(5, \lambda) = 5$, $\lambda = 5\lambda'$. We can construct $A(n, 5, \lambda)$ from $A(n, 3, 3\lambda')$ by Lemma 6.

Case 2. $(5, \lambda) = 1$, $\lambda \equiv 0 \pmod{2}$. We can construct $A(n, 5, \lambda)$ from $A(n', 3, \lambda)$ by Lemma 9.

Case 3. $(5, \lambda) = 1$, $\lambda \equiv 1 \pmod{2}$.

From Corollary 2 of Lemma 3, we need only construct A(n, 5, 1) for $n \in N(5, 1)$. From Lemma 1, $n \in N(5, 1)$ if $n \equiv 0 \pmod{5}$ and $n \equiv 0, 3 \pmod{4}$. We have two subcases:

1. $n = 20w, w \ge 1$. The S_i 's $(i = 1, \dots, 4w)$ are:

$$(1 + j, 10w + 1 + j, 14w + 2 + j; 6w + 1 + j, 18w + 3 + 2j)$$

$$j = 0, 1, \dots, w - 2.$$

$$(w + 1 + j, 11w + 1 + j, 15w + 1 + j; 9w + 1 + j, 18w + 2 + 2j)$$

$$j = 0, 1, \dots, w - 1.$$

$$(2w + 1 + j, 4w + 1 + j, 13w + 2 + j; 3w + 1 + j, 16w + 3 + 2j)$$

$$j = 0, 1, \dots, w - 1.$$

$$(5w + 1 + j, 7w + j, 12w + 2 + j; 8w + 1 + j, 16w + 2 + 2j)$$

$$j = 0, 1, \dots, w - 1.$$

(w, 11w, 12w + 1; 8w, 16w + 1).

For example, let w = 2, the 8 S_i 's are:

(1, 21, 30; 13, 39)
(3, 23, 31; 19, 38)
(4, 24, 32; 20, 40)
(5, 9, 28; 7, 35)
(6, 10, 29; 8, 37)
(11, 14, 26; 17, 34)
(12, 15, 27; 18, 36)
(2, 22, 25; 16, 33).

2.
$$n = 20w + 15, w \ge 0.$$

The S_i 's $(i = 1, \dots, 4w + 3)$ are:
 $(2 + j, 10w + 7 + j, 14w + 11 + j; 6w + 6 + j, 18w + 14 + 2j)$
 $j = 0, 1, \dots, w - 1.$
 $(w + 2 + j, 11w + 7 + j, 15w + 11 + j; 9w + 7 + j, 18w + 13 + 2j)$
 $j = 0, 1, \dots, w - 1.$
 $(2w + 3 + j, 4w + 3 + j, 13w + 10 + j; 3w + 3 + j, 16w + 13 + 2j)$
 $j = 0, 1, \dots, w - 1.$
 $(5w + 5 + j, 7w + 6 + j, 12w + 10 + j; 8w + 7 + j, 16w + 14 + 2j)$
 $j = 0, 1, \dots, w - 1.$
 $(1, 5w + 3, 5w + 4; 2w + 2, 8w + 6)$
 $(6w + 5, 12w + 7, 16w + 12; 14w + 10, 20w + 14)$

(12w + 8, 12w + 9, 16w + 11; 20w + 13, 20w + 15).

For example, w = 1 gives the following A(35, 5, 1):

(2, 17, 25; 12, 32)
(3, 18, 26; 16, 31)
(5, 7, 23; 6, 29)
(10, 13, 22; 15, 30)
(1, 8, 9; 4, 14)
(11, 19, 28; 24, 34)
(20, 21, 27; 33, 35).

VII. Construction of $A(n, 6, \lambda)$. We may assume $\lambda \equiv 1 \pmod{2}$, otherwise $A(n, 6, \lambda)$ can be constructed by the even-even lemma. We have two cases.

Case 1. $(6, \lambda) = 1$.

Again from Corollary 2 of Lemma 3, we need only construct A(n, 6, 1) for $n \in N(6, 1)$. From Lemma 1, $n \in N(6, 1)$ if n = 12w, $w \ge 1$. It is easy to construct A(12w, 6, 1) and one simple way is as follows:

448

Let (a, b, c; d, e, f) and (a', b', c'; d', e', f') be the rows for any A(12, 6, 1), such as

$$(1, 3, 7; 2, 4, 5)$$
 and $(6, 10, 12; 8, 9, 11)$.

Then the rows for A(12w, 6, 1) may be

$$(a + 12j, b + 12j, c + 12j; d + 12j, e + 12j, f + 12j),$$

 $(a' + 12j, b' + 12j, c' + 12j; d' + 12j, e' + 12j, f' + 12j)$
 $j = 0, 1, \dots, w - 1.$

Case 2. $(6, \lambda) = 3$.

We need only construct A(n, 6, 3) for $n \in N(6, 3)$ which consist of all numbers n = 4w, $w = 1, 2, \cdots$. The construction again is easy and analogous to case 1. Let A(4, 6, 3) be (a, b, c; d, e, f) and (a', b', c'; d', e', f'), say, (1, 1, 4; 1, 2, 3) and (2, 3, 4; 2, 3, 4). Then the rows for A(4w, 6, 3) may be:

$$(a + 4j, b + 4j, c + 4j; d + 4j, e + 4j, f + 4j),$$

 $(a' + 4j, b' + 4j, c' + 4j'; d' + 4j, e' + 4j, f' + 4j)$
 $j = 0, 1, \dots, w - 1.$

This completes the proof of Theorem 1.

VIII. Applications.

A. Construction of neighbor designs. Rees [2] introduced the concept and name of neighbor designs for use in serology. He wrote, "A technique used in virus research requires the arrangement in circles of samples from a number of virus preparations in such a way that over the whole set a sample from each virus preparation appears next to a sample from every other virus preparation." Figure 1 shows such an arrangement of a set of antigens (virus preparations) around an antiserum on a circular plate. On the plate, every antigen has as neighbors two other antigens.

More generally, a neighbor design is an arrangement of v kinds of objects on b such plates, each containing k objects, such that, each object is a neighbor of every other object exactly λ times. The same object may appear more than once in a plate but adjacent (neighboring) objects must be distinct.

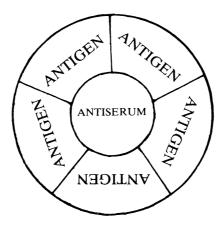


Figure 1

It can be easily shown that each object must appear exactly $r = \lambda (v - 1)/2$ times on the *b* plates in a neighbor design. By simple counting, we also have vr = bk, hence $b = \lambda v (v - 1)/2k$. Thus a necessary condition for a neighbor design with parameters v, k, λ to exist is that k > 1, and both *r* and *b* be positive integers. Denoting such a neighbor design by $ND(v, k, \lambda)$, it is clear that $ND(v, k, \lambda) \Rightarrow ND(v, k, t\lambda)$ since we can duplicate each plate of $ND(v, k, \lambda)t$ times.

Rees constructed $ND(v, k, \lambda)$ for every odd v with k = v, and for every $v \le 41$, $k \le 10$, $\lambda = 1$; some by using Galois field theory and others just by trial and error. Hwang [2] constructed some infinite classes of neighbor designs with parameters as follows:

1. $k > 2, v = 2k + 1, \lambda = 1.$

2. $k \equiv 0 \pmod{2}, v = 2^{i}k + 1, i = 1, 2, \dots, \lambda = 1.$

3. $k \equiv 0 \pmod{4}, v = 2jk + 1, j = 1, 2, \dots, \lambda = 1.$

We show below how 2-balanced (n, k, λ) arrays may be used to construct a new class of $ND(v, k, \lambda)$'s.

Without loss of generality, we may let the set of v kinds of objects be designated by $V \equiv \{1, 2, \dots, v\}$ and a plate B containing k objects b_1, b_2, \dots, b_k , (not necessarily all distinct) from V, and arranged circularly in that order, by the sequence (b_1, b_2, \dots, b_k) . For convenience, let $b_{k+1} = b_1$ so that the k pairs of neighbors in B are (b_{j+1}, b_j) , j = $1, 2, \dots, k$. Let $B^{(l)} = (b_1^{(l)}, b_2^{(l)}, \dots, b_k^{(l)})$, $l = 0, 1, \dots, v - 1$, be a set of vplates cyclically generated from B by the rule $b_j^{(l)} = b_j + l$ where $b_j^{(l)}$ is reduced mod v if necessary to an element of V. We call $B = B^{(0)}$ the base plate and the set of plates $B^{(l)}$, $l = 0, 1, \dots, v - 1$, the full cyclic set of plates generated by B and denote it by [B]. We may also view [B] as a $v \times k$ matrix where the *l*th row is $B^{(l)}$. The columns of [B] are then some cyclic permutations of $(1, 2, 3, \dots, v)$. For example, if v = 7 and B = (1, 2, 4), then

$$\begin{bmatrix} B \end{bmatrix} = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \\ 3 & 4 & 6 \\ 4 & 5 & 7 \\ 5 & 6 & 1 \\ 6 & 7 & 2 \\ 7 & 1 & 3 \end{pmatrix}$$

For any pair of distinct objects a and b in V, let d(a, b), the distance between a and b, be the smallest positive residue mod v which is congruent to either (a - b) or (b - a). For example, if v = 7, then d(2, 6) = 3, d(1, 7) = 1. We may also visualize d(a, b) as the distance between a and b on the Hamiltonian cycle $(1, 2, \dots, v, 1)$.

It is clear that $1 \leq d(a, b) \leq [v/2]$ and that in [B], $d(b_{j+1}^{(l)}, b_j^{(l)}) = d(b_{j+1}, b_j)$ for all $l = 0, 1, \dots, v-1$. Furthermore, every pair $v_1, v_2 \in V$ with $d(v_1, v_2) = d(b_{j+1}, b_j)$ appears exactly once as neighbors in the j + 1th and jth column of [B], except when $d(v_1, v_2) = d(b_{j+1}, b_j) = v/2$, (v must then be even), where every such pair appears exactly twice. We state this result as

LEMMA 11. Given any plate $B = (b_1, b_2, \dots, b_k)$, let $D_B \equiv \{d(b_{j+1}, b_j), j = 1, 2, \dots, k\}$. If v_1, v_2 are any two distinct objects in V, then the number of times v_1, v_2 appear as neighbors in [B] = the number of occurrences of $d(v_1, v_2)$ in the multiset D_B , except for $d(v_1, v_2) = v/2$, where it is doubled.

With Lemma 11, we prove:

THEOREM 2. $A(n, k, \lambda) \Rightarrow ND(2n + 1, k, \lambda)$.

Proof. For each row $S = (a_1, a_2, \dots, a_k)$ of $A(n, k, \lambda)$ let $S = P^+ N$ be a balanced partition of S. (The order in which the a_i 's are written is immaterial.) Define $S^* = (d_1, d_2, \dots, d_k)$ where $d_i = a_i$ if $a_i \in P$, and $d_i = -a_i$ if $a_i \in N$. Let $b_1, b_2, \dots, b_k, b_{k+1}$ be constructed from S^* as follows:

$$b_1 = 1,$$

 $b_{j+1} = b_j + d_j = b_1 + \sum_{i=1}^{j} d_i$ $j = 1, 2, \dots, k,$

reduced mod v if necessary so that $b_{j+1} \in V$. We have clearly, $b_{j+1} \neq b_j$, $b_{k+1} = b_1$ (since $||S^*|| = 0$), and thus $B = (b_1, b_2, \dots, b_k)$ form a plate with $D_B \equiv S$ since $d(b_{j+1}, b_j) = |d_j| = a_j$.

We assert that the vm plates $[B_1], \dots, [B_m]$ constructed from rows S_1, \dots, S_m of $A(n, k, \lambda)$ in this manner do indeed form a $ND(2n + 1, k, \lambda)$. Since v is odd, by Lemma 11, every two distinct objects v_1, v_2 in V appear as neighbors in $\{[B_i], i = 1, 2, \dots, m\}$ exactly the total number of times $1 \leq d(v_1, v_2) \leq n$ appears in $\{S_i, i = 1, 2, \dots, m\}$, which is exactly λ .

B. Coverings of Complete Multigraphs by k-Cycles. By a complete multigraph K_v^{λ} we mean a multigraph on v vertices without self-loops and having exactly λ edges joining every pair of distinct vertices v_1, v_2 . When $\lambda = 1$, this reduces to just the complete graph K_v . A plate B of a neighbor design $ND(v, k, \lambda)$ may be interpreted as a k-cycle $(b_1, b_2, \dots, b_k, b_1)$ on K_v^{λ} and thus the b plates of $ND(v, k, \lambda)$ induces an edge cover of K_v^{λ} by b k-cycles. If the objects in B are distinct, then the cycle $(b_1, b_2, \dots, b_k, b_1)$ is elementary. If the B's are constructed from the S's of an $A(n, k, \lambda)$ as described in Theorem 2, then the objects in B and all v plates in [B] are distinct if and only if no proper substring T of $S^* = (d_1, d_2, \dots, d_k)$ has $||T|| \equiv 0 \mod v$. Thus we have:

THEOREM 3. Let (n, k, λ) satisfy the necessary conditions of Theorem 1. Then K_{2n+1}^{λ} can be covered by $b = \lambda n(2n+1)/k$ kcycles. In particular, for $\lambda = 1, 3 \le k \le 6$, the b k-cycles can be chosen to be elementary.

Proof. The first part of the theorem follows the previous discussions and we need only verify the last statement. An inspection of the constructions for A(n, k, 1) for $3 \le k \le 6$ shows that the S_i^* 's have no proper substring $||T|| \equiv 0 \mod v$, and hence the k-cycles so constructed are elementary.

REMARK 1. A more detailed analysis of our construction for $A(n, k, \lambda)$ shows that we can choose the S_i 's such that there exist corresponding S_i^* 's free of proper substrings T with $||T|| \equiv 0 \pmod{v}$ more generally than the cases stated in Theorem 3. For example, this is true for k = 3, 4, any λ , and k = 5, $(5, \lambda) = 1, \lambda$ odd, or $\lambda = 2$. For k = 4, we have to (and can) avoid S = (a, a; a, a) while $S^* = (a, b, -a, -b)$ is acceptable. However, the interesting problem of constructing $A(n, k, \lambda)$'s for all $n \in N(k, \lambda)$ with this property so that we can cover K_{2n+1}^{λ} with elementary k-cycles in this manner is still open.

REMARK 2. $ND(v, 3, \lambda)$'s are also triple systems. In [3], we con-

structed triple systems directly for all parameters satisfying the necessary conditions $\lambda (v-1) \equiv 0 \pmod{2}$, $\lambda v (v-1) \equiv 0 \pmod{6}$, which is more general than the values $v = 2n + 1, 3, \lambda$ constructable from $A(n, 3, \lambda)$'s in this paper. The neighbor designs constructed here have parameters satisfying v = 2n + 1, $\lambda n \equiv 0 \pmod{k}$, $\lambda n (n + 1) \equiv 0 \pmod{4}$, $\lambda \equiv 0 \pmod{2}$ when k = 2, and $v \neq 5$ when k = 3. In a forthcoming paper [4], we use the results given here together with other constructions to show that we can always construct a neighbor design for all values of the parameters satisfying the following obvious necessary conditions: $\lambda (v-1) \equiv 0 \pmod{2}$, $\lambda v (v-1) \equiv 0 \pmod{2k}$, $\lambda \equiv 0 \pmod{2}$ if k = 2, and $k \equiv 0 \pmod{2}$ if v = 2.

References

1. D. E. Knuth, The Art of Computer Programming, vol. 2, (1969) Addison-Wesley.

2. F. K. Hwang, Construction for some classes of neighbor designs, Ann. Statist., 1 No. 4 (1971), 786–790.

3. F. K. Hwang and S. Lin, A direct method to construct triple systems, J. Combinatorial Theory (A) 17 (1974), 84–94.

4. ____, Neighbor designs, to appear in J. Combinatorial Theory (A).

5. D. H. Rees, Some design for use in serology, Biometrics, 23 (1967), 779-791.

Received March 1, 1974.

Bell Laboratories