ON CURVATURE OPERATORS OF BOUNDED RANK

JAAK VILMS

A curvature operator, that is, a linear map $R: \Lambda^2 V \rightarrow \Lambda^2 V$, has bounded rank 2r if it maps simple bivectors into bivectors of rank $\leq 2r$. It is shown here that this condition is equivalent to the following:

$$\sum R(x_{i_1} \wedge y_1) \wedge \cdots \wedge R(x_{i_{r+1}} \wedge y_{r+1}) = 0$$

for all $x_1, \dots, x_{r+1}, y_1, \dots, y_{r+1}$ in V, with the sum taken over all permutations (i_1, \dots, i_{r+1}) of $(1, 2, 3, \dots, r+1)$. An application to Riemannian geometry is given.

1. Introduction. The Riemann curvature tensor has been studied in many different algebraic contexts. In particular, it can be formulated as a linear map $R: \Lambda^2 V \to \Lambda^2 V$, called the curvature operator, where V is a real n-dimensional vector space and $\Lambda^2 V$ is its associated space of bivectors.

The concept of bivector rank is reviewed in § 2. Our main result appears as Theorem 3.4 in § 3. The application to Riemannian geometry is given in § 4. The reader is referred to [1] and [2] for background material in exterior algebra.

The author wishes to thank Professor Marvin Marcus for supplying an elegant proof for Theorem 3.4.

2. The rank of a bivector. The bivector space A^2V is isomorphic to the space o(V) of linear maps $V \to V$ which are skew-symmetric with respect to any fixed inner product on V. Namely, choose a basis e_1, \dots, e_n of V. Then for arbitrary $\alpha \in A^2V$ we have $\alpha = \Sigma a^{ij}e_i \wedge e_j$, where the sum is taken either over $1 \leq i < j \leq n$, or over $i, j = 1, \dots, n$ with the understanding that $a^{ji} = -a^{ij}$ (and the a^{ij} are divided by 2). The linear map $A: V \to V$ defined by $Ae_i = \Sigma a^{ij}e_j$ is skew-symmetric with respect to any inner product for which the basis e_1, \dots, e_n is orthonormal. It is easy to check that if a different basis is chosen, the range of A still stays the same; hence, $U_\alpha = A(V)$ is a uniquely defined subspace of V associated to α . The rank of α is simply the rank of such a corresponding linear map $A \in o(V)$, i.e., rank $(\alpha) = \dim U_\alpha$.

Note rank $(\alpha) = 0$ means $\alpha = 0$. Bivectors of minimal nonzero rank, that is, of rank 2, are called simple or decomposable.

We shall need some equivalent definitions of the rank of α , expressed in the context of $\Lambda^2 V$ rather than o(V). These facts are summarized as follows.

Proposition 2.1. Let $\alpha \in \Lambda^2 V$, $\alpha \neq 0$.

(a) Rank (α) = 2r if and only if there exist independent vectors x_1, \dots, x_{2r} such that

$$\alpha = x_1 \wedge x_2 + \cdots + x_{2r-1} \wedge x_{2r}.$$

- (b) Rank $(\alpha) = 2r$ if and only if $\alpha^r \neq 0$ and $\alpha^{r+1} = 0$.
- (c) The rank of α is the smallest dimension of any subspace $U \subset V$ such that A^2U contains α .
- (d) The rank of α is twice the smallest number of terms in any expression of α as a sum of simple bivectors.

Proof.

(a) Write $\alpha = \Sigma a^{ij} e_i \wedge e_j$, with the sum taken over $1 \leq i < j \leq n$. Since $\alpha \neq 0$ by hypothesis, some a^{ij} must be nonzero; hence the basis vectors e_i can be relabeled to obtain $a^{12} \neq 0$. Set

$$x_1 = a^{12}e_i - \sum\limits_{3 \leq i} a^{2j}e_j$$
 , $x_2 = e_2 + \sum\limits_{3 \leq i} rac{a^{1i}}{a^{12}}e_i$.

Then the expression $\alpha = \sum a^{ij}e_i \wedge e_j$ can be rewritten as

$$egin{aligned} lpha &= x_1 \wedge x_2 + \sum\limits_{3 \leq i < j} a^{ij} e_i \wedge e_j - \sum\limits_{3 \leq i,j} rac{a^{1i} a^{2j}}{a^{12}} e_i \wedge e_j \ &= x_1 \wedge x_2 + \sum\limits_{3 \leq i < j} rac{1}{a^{12}} (a^{12} a^{ij} - a^{1i} a^{2j} + a^{1j} a^{2j}) e_i \wedge e_j \ &= x_1 \wedge x_2 + \sum\limits_{3 \leq i < j} rac{1}{a^{12}} (lpha \wedge lpha)^{12ij} e_i \wedge e_j \ &= x_1 \wedge x_2 + lpha_1 \,. \end{aligned}$$

Note that $x_1, x_2, e_3, \dots, e_n$ are linearly independent and that $\alpha_1 \in \Lambda^2\{e_3, \dots, e_n\}$ (brackets $\{\dots\}$ denote span).

Now an induction can be performed. If $\alpha_1 = 0$, we are done. If $\alpha_1 \neq 0$, relabel the e_i for $3 \leq i$ to make $a_1^{34} \neq 0$. The above procedure is then repressed on α_1 to get

$$egin{aligned} \pmb{lpha}_1 &= x_3 \wedge x_4 + \sum_{\mathbf{5} \leq i < j} rac{1}{a^{34}} (\pmb{lpha}_1 \wedge \pmb{lpha}_1)^{34ij} e_i \wedge e_j \ &= x_3 \wedge x_4 + \pmb{lpha}_2 \; . \end{aligned}$$

Thus $\alpha = x_1 \wedge x_2 + x_3 \wedge x_4 + \alpha_2$, with $x_1, \dots, x_4, e_5, \dots, e_n$ linearly independent, and $\alpha_2 \in A^2\{e_5, \dots, e_n\}$. Eventually, one of the α_k 's is zero, since we run out of e_i 's to operate on. Hence $\alpha = x_1 \wedge x_2 + \dots + x_{2r-1} \wedge x_2$, for some 2r. Since the vectors x_1, \dots, x_{2r} are independent, $2r \leq n$.

Note that $\alpha \in \Lambda^2\{x_1, \dots, x_{2r}\}$. Moreover, if we extend x_1, \dots, x_{2r}

to a basis of V, then in this basis the coordinates of α are given by $a^{12}=a^{34}=a^{56}=\cdots=1$, $a^{21}=a^{43}=a^{65}=\cdots=-1$, all other $a^{ij}=0$. Hence for this basis the vectors Ae_i are given by $Ae_{2k-1}=x_{2k}$, $Ae_{2k}=-x_{2k-1}$. It follows that $U_{\alpha}=\{x_2,-x_1,x_4,-x_3,\cdots,x_{2r},-x_{2r-1}\}=\{x_1,\cdots,x_{2r}\}$, and therefore rank $(\alpha)=2r$. This proves (a).

(b) The power α^r stands for the exterior product $\alpha \wedge \cdots \wedge \alpha$ where α occurs r times. Let us substitute the "canonical" expansion given in part (a), $\alpha = x_1 \wedge x_2 + \cdots + x_{2r-1} \wedge x_{2r}$, into this product; notice that it has exactly r summands. Since $x \wedge x = 0$, the nonzero terms of the product α^r are obtained by choosing a different summand $x_{2i-1} \wedge x_{2i}$ from each α and multiplying these together. Since the exterior product of bivectors is commutative, each of these terms equals $x_1 \wedge x_2 \wedge \cdots \wedge x_{2r-1} \wedge x_{2r}$. Now there are r! of these terms, since a typical term can be built up in r! different ways. Therefore $\alpha^r = r! (x_1 \wedge \cdots \wedge x_{2r})$. Since the x_i are independent, we see that $\alpha^r \neq 0$; and also $\alpha^{r+1} = 0$, since each term of the product $\alpha^r \wedge \alpha$ contains a factor of form $x \wedge x$.

On the other hand, suppose $\alpha^s \neq 0$, $\alpha^{s+1} = 0$, and let rank $\alpha = 2r$. Then the above argument gives $\alpha^r \neq 0$, $\alpha^{r+1} = 0$. If s < r, then $s+1 \leq r$, so $\alpha^{s+1} = 0$ contradicts $\alpha^r \neq 0$; and if r < s, then $r+1 \leq s$, so $\alpha^{r+1} = 0$ contradicts $\alpha^s = 0$. Therefore only s = r is possible. This proves (b).

(c) Let s be the smallest dimension of any subspace $U \subset V$ such that $\alpha \in \Lambda^2 U$. Let e_1, \dots, e_k be a basis of U_α such that e_1, \dots, e_n is a basis of V. Hence each $Ae_i = \sum \alpha^{ij}e_j$ is a linear combination of e_1, \dots, e_k only, so that no nonzero term with $e_j, j > k$, appears in these sums. Since $\alpha^{ji} = -\alpha^{ij}$, this means that the coefficients α^{ij} which involve i, j > k must all vanish. Therefore the expression $\alpha = \sum \alpha^{ij}e_i \wedge e_j$ reduces to a sum over $i, j = 1, \dots, k$, whence $\alpha \in \Lambda^2 U_\alpha$. This implies $s \leq k$.

Conversely, by definition of s, there is a basis $b_1, \dots, b_s, b_{s+1}, \dots, b_n$ of V such that $\alpha = \sum x^{ij}b_i \wedge b_j$, summed over $1 \leq i < j \leq s$. Taking this as a sum over all $i, j = 1, \dots, n$, we see that $x^{ij} = 0$ for i, j > s. Hence for this basis we have $Ae_i = \sum x^{ij}b_j$, summed over $1 \leq j \leq s$, which implies that $U_{\alpha} \subset \{b_1, \dots, b_s\}$. Therefore $k \leq s$, and thus k = s. This proves (c).

(d) By (a), a simple bivector is of form $x_1 \wedge x_2$. The required statement follows directly from (a) and (c).

COROLLARY 2.2.

- (a) A bivector α is simple if and only if $\alpha \wedge \alpha = 0$.
- (b) If $\alpha = \sum a^{ij}y_i \wedge y_j$, $i, j \leq p$, then $rank(\alpha) \leq p$; and if the y_i are linearly dependent, then $rank(\alpha) < 0$.
 - (c) If $\alpha = y_1 \wedge y_2 + \cdots + y_{2r-1} \wedge y_{2r}$, then $rank(\alpha)$ is = 2r or

is <2r as the y_i are linearly independent or dependent.

Proof. Part (a) is clear. For (b), note $\alpha \in \Lambda^2 U_y$ where $U_y = \{y_1, \cdots, y_p\}$. Now rank $(\alpha) \leq \dim U_y$ by Proposition 2.1 (c). If the y_i are dependent, dim $U_y < p$. Hence rank $(\alpha) < p$. For (c) note that if y_i are dependent, then rank $(\alpha) < 2r$ by (b). On the other hand, if the y_i are independent, then rank $(\alpha) = 2r$ by Proposition 2.1 (a).

3. Curvature operators of bounded rank. The space $\Lambda^2 V$ is a disjoint union of the subsets of bivectors of the different possible ranks 2, 4, \cdots , 2[n/2]. We wish to consider how a curvature operator $R: \Lambda^2 V \to \Lambda^2 V$ maps the simple bivectors.

The image of a simple bivector is a bivector having a certain rank. At worst, this rank is 2[n/2] = n - 1 or n (as n is odd or even), but it could be a smaller number. Let us say that a curvature operator R has bounded rank 2r if the image of each simple bivector has rank $\leq 2r$. This means that the range $R(\Lambda^2V)$ is contained in the union of the sets of vectors of ranks $2, 4, \dots, 2r$. Our purpose here is to give a characterization for curvature operators R of bounded rank 2r.

Curvature operators of bounded rank 2 are those that map simple bivectors into simple bivectors, or in other words, preserve decomposability; they were studied in [3] and [4]. We first state some results concerning this special case.

PROPOSITION 3.1. If a curvature operator R has bounded rank 2, then it maps bivectors of rank 2r into bivectors of rank $\leq 2r$, for all r.

Proof. Consider a bivector α of rank 2r. By Proposition 2.1 (a) it can be written as $\alpha = x_1 \wedge x_2 + \cdots + x_{2r-1} \wedge x_{2r}$. Since R is linear, $R\alpha = R(x_1 \wedge x_2) + \cdots + R(x_{2r-1} \wedge x_{2r})$. But each of these terms is a simple bivector; hence $R\alpha = y_1 \wedge y_2 + \cdots + y_{2r-1} \wedge y_{2r}$ for suitable $y_1, \dots, y_{2r} \in V$. Now Corollary 2.2 implies that rank $(R\alpha) \leq 2r$.

Theorem 3.2. [4, Prop. 3.1]. A curvature operator R has bounded rank 2 if and only if $R(x_1 \wedge x_2) \wedge R(x_3 \wedge x_4) + R(x_1 \wedge x_3) \wedge R(x_2 \wedge x_4) = 0$ for all $x_1, x_2, x_3, x_4 \in V$.

Theorem 3.3. [3, Thm. 1]. Let V have an inner product, suppose the curvature operator R is symmetric in the induced inner product on Λ^2V and is nonsingular, and let $n\geq 5$. Then R has

bounded rank 2 if and only if $R = \pm A^2L$ for some linear map L: $V \rightarrow V$.

Now we return to the general case and state our main theorem, which is a generalization of Theorem 3.2. Let S_r denote the symmetric group on r objects.

Theorem 3.4. A curvature operator R has bounded rank 2r if and only if

(1)
$$\sum_{\sigma \in S_{r+1}} R(x_{\sigma(1)} \wedge y_1) \wedge \cdots \wedge R(x_{\sigma(r+1)} \wedge y_{r+1}) = 0,$$

for all $x_1, \dots, x_{r+1}, y_1, \dots, y_{r+1} \in V$.

Proof. [Marvin Marcus]. By definition, R has bounded rank 2r if and only if $R(x \wedge y)$ has rank $\leq 2r$ for every $x, y \in V$. By Proposition 2.1 (b), this occurs if and only if $(R(x \wedge y))^{r+1} = 0$ for all $x, y \in V$. But this in turn occurs if and only if

$$\left[R\left(\sum_{1}^{r+1}\lambda_{i}x_{i}
ight)\wedge\left(\sum_{1}^{r+1}\mu_{j}y_{j}
ight)
ight]^{r+1}=0$$

for all $x_1, \dots, x_{r+1}, y_1, \dots, y_{r+1} \in V$ and all real $\lambda_1, \dots, \lambda_{r+1}, \mu_1, \dots, \mu_{r+1}$. The left side of (1) can be considered as an $\Lambda^{2(r+1)}V$ -valued polynomial in the indeterminates $\lambda_1, \dots, \lambda_{r+1}, \mu_1, \dots, \mu_{r+1}$. Upon expanding and collecting terms, we find that the coefficient of $\lambda_1 \dots \lambda_{r+1} \mu_1 \dots \lambda_{r+1}$ is precisely the left side of equation (1). But if a polynomial is identically zero, then all its coefficients must vanish. Therefore $R(x \wedge y)^{r+1} = 0$ for all $x, y \in V$ implies (1).

On the other hand, if (1) holds for all $x_1, \dots, x_{r+1}, y_1, \dots, y_{r+1}$, then we can put $x_1 = \dots = x_{r+1} = x$ and $y_1 = \dots = y_{r+1} = y$, to get $R(x \wedge y)^{r+1} = 0$ for all $x, y \in V$.

Theorem 3.4 can be restated in terms of a basis e_1, \dots, e_n of V. Let $R(e_i \wedge e_j) = R_{ij}$. Then

$$R(x \wedge y) = \sum\limits_{i,j} x^i y^j R(e_i \wedge e_j) = \sum\limits_{i,j} x^i y^j R_{ij}$$
 ,

since both R and the exterior product are linear in their arguments. Note that the R_{ij} are the columns of the matrix of R in terms of basis $e_i \wedge e_j$, i < j, of A^2V .

Theorem 3.5. A curvature operator R has bounded rank 2r if and only if

$$\sum\limits_{\sigma \in S_{r+1}} R_{i_{\sigma(1)}j_1} \wedge \, \cdots \, \wedge \, R_{i_{\sigma(r+1)}j_{r+1}} = 0$$
 ,

for all $1 \leq i_{\nu}, j_{\nu} \leq n$.

Proof.

$$\begin{split} \sum_{\sigma \in S_{r+1}} R(x_{\sigma(1)} \wedge y_1) \wedge \cdots \wedge R(x_{\sigma(r+1)} \wedge y_{r+1}) \\ &= \sum (R_{i_{\sigma(1)}j_1} \wedge \cdots \wedge R_{i_{\sigma(r+1)}j_{r+1}}) x_{\sigma(1)}^{i_{\sigma(1)}} \cdots x_{\sigma(r+1)}^{i_{\sigma(r+1)}} y_1^{j_1} \cdots y_{r+1}^{j_{r+1}} \; . \end{split}$$

Now $x_{\sigma(r+1)}^{i_{\sigma(r+1)}} \cdots x_{\sigma(1)}^{i_{\sigma(1)}} = x_1^{i_1} \cdots x_{r+1}^{i_{r+1}}$. Hence this sum can be rewritten as

$$\sum_{\substack{i_1,\ldots,i_r\\j_1,\ldots\,i_r\\j_1,\ldots\,i_r}} (R_{i_{\sigma(1)}j_1}\wedge\cdots\wedge R_{i_{\sigma(r+1)}j_{r+1}}) x_1^{i_1}\cdots x_{r+1}^{i_{r+1}} y_1^{j_1}\cdots y_{r+1}^{j_{r+1}} \ .$$

Now this sum is zero for all $x_{\nu}^{i_{\nu}}$, $y_{\nu}^{j_{\nu}}$ if and only if the coefficients $\sum_{\sigma} R_{i_{\sigma(1)}j_{1}} \wedge \cdots \wedge R_{i_{\sigma(r+1)}j_{r+1}}$ are identically zero.

COROLLARY 3.6. A curvature operator R has an image bivector of rank > 2r if and only if there exist integers $1 \leq i_1, \dots, i_{r+1}, j_1, \dots, j_{r+1} \leq n$ such that

$$\sum\limits_{\sigma S_{r+1}} R_{i_{\sigma(1)} j_1} \wedge \, \cdots \, \wedge \, R_{i_{\sigma(r+1)} j_{r+1}}
eq 0$$
 .

4. An application. Let M^n be an n-dimensional Riemannian manifold and let V denote the tangent space at any point p of M^n . If M^n admits local isometric embedding of a neighborhood of p into Euclidean space E^{n+r} , then the curvature operator R at p decomposes into a sum $R = \Lambda^2 L_1 + \cdots + \Lambda^2 L_r$, where the maps $L_i \colon V \to V$ are the second fundamental form operators. Hence $R(x \land y) = L_1(x) \land L_1(y) + \cdots + L_r(x) \land L_r(y)$ for each $x, y \in V$, which implies that each $R(x \land y)$ has rank $\leq 2r$ (by Proposition 2.1 (d)). Hence we get the following results, which are relevant for $r \leq \lfloor n/2 \rfloor$.

LEMMA 4.1. If the neighborhood of a point in a Riemannian manifold M^n admits isometric embedding into E^{n+r} , then the curvature operator at that point has bounded rank 2r.

THEOREM 4.2. Let M^n be a Riemannian manifold, and set $R_{ij} = 1/2 \sum_{k,l} R_{ij}^{kl} e_k \wedge e_l$, where R_{ij}^{kl} is the curvature tensor and e_1, \dots, e_n is a basis of the tangent space at a point of M^n . If there exists a point in M^n where

$$\sum_{\sigma \in S_{r+1}} R_{i_{\sigma(1)}j_1} \wedge \cdots \wedge R_{i_{\sigma(r+1)}j_{r+1}} \neq 0$$

for some integers $1 \leq i_1, \dots, i_{r+1}, j_1, \dots, j_{r+1} \leq n$, then M^n cannot be isometrically immersed in E^{n+r} .

REFERENCES

- 1. M. Marcus, Finite-dimensional Multilinear Algebra, Vols. I and II, Marcel Dekker, New York, 1974 and 1975.
- 2. W. Slebodzinski, Exterior forms and their application, Warszawa, Polish Sci. Pub., 1970.
- 3. J. Vilms, Local isometric imbedding of Riemannian n-manifolds into Euclidean (n+1)-space, J. Differential Geometry, 12 (1977), 197-202.
- 4. ———, Factorization of curvature operators, Trans. Amer. Math. Soc., to appear.

Received November 17, 1978 and in revised form July 10, 1979.

COLORADO STATE UNIVERSITY FORT COLLINS, CO 80523