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NORM ATTAINING OPERATORS ON SOME
CLASSICAL BANACH SPACES

WALTER SCHACHERMAYER

We construct an operator from Lι[0, 1] to C[0,1] which may not be
approximated by norm attaining operators with respect to the operator
norm. This solves a question raised by J. Johnson and J. Wolfe and
furnishes the first example of a pair of classical Banach spaces such that
the norm attaining operators are not dense. C[0,1] is the first example of
a classical Banach space which does not have property B.

On the other hand, we show that a weakly compact operator from
C(K) into a Banach space X may be approximated in norm by norm
attaining operators. This shows in particular that the norm attaining
operators are dense in B(C(K), Lι[0,1]) and B(C(K), I2), thus solving
two questions raised by Johnson and Wolfe.

Let X, Y be Banach spaces, B(X,Y) the Banach space of bounded
linear operators A from X to Y and NA( X, Y) the subset of norm
attaining operators A, i.e. there is x G X, \\x\\ = 1 with \\Ax\\ = \\A\\.
The question of density of NA(X, Y) in B(X, Y) was studied in [1], [3],
[4], [5], [7] and [8]. As regards classical Banach spaces it was shown in [3]
that NA(L\μ), L\v)) is dense in B(L\μ), L\v)) and it was shown in [4]
that NA(C(K)9 C(L)) is dense in B{C{K), C{K% but the cases treated in
the present paper were left open.

After a preparatory part 1 we shall construct in part 2 an example
from which the subsequent result follows

THEOREM A. NA(Lι[0,1], C[0,1]) is not dense in B(Lι[0,1], C[0,1]).

Finally, in part 3, which may be read independently of part 1 and 2
we prove

THEOREM B. Let K be a compact Hausdorff space, X a Banach space
and A: C(K) -> X a weakly compact operator. Then A may be approxi-
mated in the operator norm by elements of NA(C(K), X).

Hence, if X does not contain c0 isomorphically (in particular if
X = L\μ) ovX= / 2), NA(C(K), X) is dense in B{C(K\ X).

Our notation will be standard. 1} will denote the usual Lebesgue
space over [0,1] equipped with Lebesgue measure, T the compact space
[0,1] and C the Banach space of continuous functions on T. Our Banach
spaces will be real.
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1. Denote σ*C(T, L00) the Banach space of functions F: Γ->L°°
which are continuous with respect to the σ*-topology of L00, equipped
with the norm

= sup{ | |F, | | L . :/eΓ}.

We shall need the following trivial but useful representation:

1.1. PROPOSITION. The Banach spaces B(L\ C) and σ*C(T, L00) are
naturally isometrically isomorphic. The correspondence between A G
B(L\ C) and F G σ*C(T, L°°) is given by Ft = A*(δt), where A* denotes
the adjoint of A and 8t the Dirac measure at T.

A is norm attaining iff there is t G Γ such that the function \ Ft \ equals
|| F || on a set of positive measure. D

1.2. Hence the problem of whether we may approximate A G B(L\ C),
\\A\\ = 1, by A G NA(L\ C) (with \\A\\ = 1 say) up to ε is equivalent to
the following question: Given F G σ*C(Γ, L0 0), | | F | | = 1, does there exist
F G σ*C(T, L0 0), H/ΊI = 1 and | | F - F | | < ε such that F hits at some
point t a norm attaining element of the unit sphere of L°° (i.e. | Ft | equals
1 on a set of positive measure)?

There is a natural guess for the construction of such a F for a given F
with || F || = 1: By changing sign if necessary we may suppose that there is
t0 G T such that FtQ is greater than 1 — ε on a set of positive measure.
Then

defines a function F into the unit ball of L°° with 11 Ft - Ft \\ < ε for / G T
and such that Ft equals 1 on a set of positive measure. The crux is,
however, that it may happen that F is not σ*-continuous. Suppose for
example that there is a sequence (sn)™=ι in T tending to s0 such that FSn

equals the nth Rademacher function Rn (and therefore by σ*-continuity
FSQ — 0). Then for the F constructed above (FSJ is a sequence of indepen-
dent random variables taking the values 1 and -1 + ε with probability
1/2 and so converges σ* to the constant function ε/2. However, FSQ equals
the constant function ε, i.e. F is not σ*-continuous. It will be this
phenomenon on which our example is essentially based.

But it will be instructive to investigate this idea a little further in order
to get some information and motivation, how to construct our example.
On the unit ball OL°° of L00 we also have the topology of the ZΛnorm,
which is finer than the σ*-topology and for which OL°° is a complete
metric space. Suppose that F G σ*C(Γ, L0 0), | | F | | = 1 is continuous with
respect to the I) -topology on OL°°. Then it is easy to check that F =
(F + ε) Λ 1 is also continuous with respect to the ZΛnorm, so a fortiori
F(Ξσ*C(T, L°°).
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Hence A G B(L\ C) is approximate by norm attaining operators if
the corresponding F is continuous with respect to the Zλnorm on L00.

Let us still note that this latter class of operators is strictly larger than
the class of Riesz-representable operators from I) to C (for definition see
[2]). Indeed, it is easy to check that A is Riesz-representable iff for tn -> tQ

we have that Ftn converges almost everywhere to FtQ. Note that for
bounded sequences in L00 the almost sure convergence is strictly stronger
than the convergence with respect to the ZΛnorm. Hence the class of
operators A such that the corresponding F is || -1| x-continuous includes the
class of Riesz-respresentable operators, and—after the above remarks—it
is not difficult to give examples showing that the inclusion is strict. Hence
the above observation gives, for the special situation of operators from Lλ

to C, a slightly more general result than ([8], th. 2).

To finish the introductory part of the paper, we shall show that for
arbitrary F G σ*C(T, L°°) there are "many" points of T at which F is
II ||Γcontinuous. This shows the limitations for the subsequent construc-
tion of a counterexample: The above described phenomenon can only
occur at "few" points.

1.3. PROPOSITION. Let F G σ*C(Γ, L00). There is a dense G8-set M QT
such that, at every point of M9 F is continuous with respect ot the V-norm.

Proof. Let

K={feLι:\\f\\O0<\},

which is compact if equipped with the weak topology of Zλ Define

G.TXK -> R

where ( , ) denotes the scalar product between L°° and Zλ Clearly G is
separably continuous. It follows from ([6],th. 1.2) that there is a dense
Gδ-set M in T such that, for t G M and / G K, G is jointly continuous at

In view of the compactness of K this implies that if ( O ^ = 1 £ 3Γ tends
to some t G M, then Ft tends to Ft uniformly on K, i.e. Ft tends to Ft in
the Zλnorm. " D

2. We now proceed to the proof of Theorem A. It will be convenient
to introduce an ad-hoc-concept.
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2.1. DEFINITION. Let F G σ*C(T, L00), | | F | | < 1 and S be a subset of
T. For r G Γ, F is called "hopeless at r " (resp. "S-hopeless at r ") if

(a) F r = Σ"= 1(l — λ z)χ^ for some partition {Ai)%x of Ω and scalars
0 < λ, < 1, and

(b) for every A contained in some Ai and ε > 0 there is s G T (resp.
s G S) with \r — s\<ε and μ{ω E A: \Fs(ω) | < ε} >: μ(^4) - λ ^ .

2.2. PROPOSITION. Let F G σ*C(Γ, L00), IIFII < 1 fe hopeless at some
r<ΞTandFE σ*C(T, L00) w/ίΛ | | F | | < 1 αwrf | | F - F | | < 1/2. Then for
i = 1,...,Λ,

(1) esssup{Fr(ω): ω G ^ } < l - λ / 4 .

In p a r t i c u l a r if F satisfies i n a d d i t i o n f o r e v e r y « E N

( 2 ) μ{F,>l-2-»}<aH

then Fr satisfies for every n E N

(3) μ { F r > l - 2 " " - 2 } < « n .

REMARK. The intuitive meaning of 2.2 and the reason for the concept
of "hopelessness": If Fis hopeless at r and the distribution of Fr obeys the
inequalities (2) and if F is a perturbation of F, then the distribution of Fr

obeys (3) and Fr therefore is a "hopeless candidate" for being a norm
attaining element of the unit sphere of L00.

Proof. For A^QAt it follows immediately from Definition 2.1, the
σ*-continuity of F and the assumption || Z11| < 1 that

(ω) dμ(ω) < ( μ ( ^ ) λ,/2) 1/2 + μ(A)(\ - λ ;/2) 1

This implies (1). The second part of the proposition is an immediate
consequence. D

In the next proposition we shall fix the program for our construction.

2.3. PROPOSITION. There exists F G σ*C(T, L00) and a dense subset
D C T such that

(1) \\F\\ = \andFt>0fort<Ξ Γ.
(2) Fort G Tandn G N

μ{Ft>\ -2~n} <

(3) F is hopeless at every r G Zλ
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Let us admit 2.3 for the moment and show how Theorem A follows:

Proof of Theorem A. Let F G σ*C(Γ, L°°) be given as in 2.3_and
suppose there is some norm attaining F G σ*C(Γ, L°°) with || F - F\\ <
1/4. Let F= F/\\F\\; then IIFII - 1 and \\F-F\\ < 1/2.

For « 6 ] 0 , l [ define the function

Na:L°° -> R

which is σ*-lower semicontinuous. Applying 2.2 and assumption (2) an
easy computation shows that

N2-n{Fr)<2-"(\ -2~n~6)

for r G D and so by the a* lower semicontinuity of Na for r ELT. This
implies readily that, for nor E T, Fr equals 1 on a set of positive measure.
As Fr > -1/2, for r 6 Γ, we see that no / r is a norm attaining element of
the unit sphere of L00. In view of Proposition 1.1 this proves Theorem
A. D

We still have to prove 2.3 and this will involve a rather laborious
construction. For preparation we need an elementary probabilistic lemma
whose proof we include for the sake of completeness.

2.4. LEMMA. Let (gn)^\ be an independent sequence of random varia-
bles so that llgjloo^l and £(gM) = 0. Let {hn)™=ι be a sequence of
random variables such that IIΛn||00 < 1 and each hn is independent of the
sequence (gk)f={ Then (gnhn)™=ι tends to zero in the σ*-topology of L*.

Proof. Suppose not. After passing to a subsequence and changing
signs, if necessary, we can find A G Σ and a > 0 such that, for every n,

ί
JA

By maybe passing to a subsequence once more we may assume (by
Komlos' theorem), that the Cesaro means

converge almost surely to a random variable s. Of course

I s dμ>a.
J A
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Hence there is β > 0 such that the set B — {s > β) has positive
measure. B is independent of every gn hence for every n

which implies that

Jsdμ = O,

the required contradiction. D

Proof of Proposition 2.3. Define for k = 0,1,2, . . . ,

Sk - {q G[0, l [ : there is / < k s.t. q = nx

ι + - +nj1} U {0},

where H, are supposed to be natural numbers. It is plain to check that
-S0CSιCS2C....
- Sk is compact.
- Sk = Sk_u i.e. Sk_x consists precisely of the accumulation points of

Sk.
-Uf=oSk = QΠ[0M
We shall also prepare for k G N partitions &k = (A^)j=z{ of Ω

into sets of μ-measure 2~k and for q G Q Π [0,1[, λ G Q Π ]0,1] and
n G N a "biased Rademacher function" i?jR^λ such that 5i ί^ λ equals
— (1 — λ) with probability λ/(2 — λ) and equals λ/2 with probability
(2 - 2λ)/(2 - λ).

The sequence of partitions {&k)°k=x and the family of random varia-
bles {B^λ: q G Q Π [0,1[, λ G Q Π ]0,1], n G N} are supposed to be all
independent.

Now we shall construct inductively a sequence (Fk)™=ι in σ*C(Γ, L°°)
satisfying the following

Induction Hypotheses.
(8L)\\Fk\\ = sup{\\Fk\\L~: s E Sk\Sk_x] = 1 - 2"*"1 and Fk > 0 for

re Γ.
(b) For t G Γand 0 < « < A: - 1

μ{Fk > 1 - 2~n} < 2~n+2 - 2"Λ.

(c) Fk is 5^-hopeless at every r G S^.! and, for l< k, Fk = Fr

ι for all

res,.
(d) For all t G Q Π [0,1[, JFĴ  is a simple function with rational

coefficients and measurable with respect to the σ-algebra generated by the
partitions {&ι, I— 1,...,A:} and the random variables {B^λ: q G Sk_u

λ G Q Π ] 0 , l ] , « G N } .
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(e) Ft

k is locally Lipschitzian with respect to 11 11̂  on T\Sk_u i.e. for
t G T\Sk_x there is a constant Lk(t) such that for t' G Γ, 11 - f |<
Lk(t)~x we have

{, ^ i f" 1 } < 2"Λ Vί G Γ.
To start the induction define F° by letting Ft° be identically the

constant function 1/2. For the convenience of the reader and in order to
make the idea of construction clearer we carry out the first induction step,
which is technically simpler, before passing to the general one.

Step 1. A: Definition of JF1 on So: Let Fj = Fo°.
B: Definition of Fλ on SX\SO: We define

if s G SX\SO is of the form s = n~} for odd n and

= F° -f BRoι/2
L 5 ~s ' ~"« 'XA\

if s G SΊXSΌ is of the form s — n~x for even n.
C: Definition of Fx on Γ\S,: For every s G 5Ί\SΌ we define ε(s) —

dist(5, S'1\{i<})/2, which is strictly positive and rational. Let t G T\SX; if
there is a (necessarily unique) s G S^SΌ such that 11 — s |< ε(.y) then we
define

If there is no such s we define simply

It is plain to check that (a), (b), (d), (e) and (f) are satisfied for F 1 . Let
us show (c): Fλ is Sx-hopeless at 0. Write Fo

] as

ô = Σ ( 1 - 1 / 2 ) X ;̂,

Fix A c yl|, say A C ̂ J. Then

lim μ{A Π {5Λ0//2 - -1/2}} = μ(A) μ{BRγ/2 = -1/2}

= μ(A) \/3.

Hence if s = n~ι where n is large and odd

μ{ωeA:Fs

ι=0}>\/4 μ(A),

which readily shows that Fι is Sx-hopeless at 0.
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Finally we have to show that Fι is σ*-continuous. In view of (e) we
have to check the σ*-continuity only at 0. Let (tj)jL\ C T tend to 0. By
passing to a subsequence we may suppose that for s E S{\S0, there is at
most one t. which Lies in ]s — ε(s), s + ε(s)[. Then the sequence Ft

x — FQ
is of the form described in Lemma 2.4: It is the product of some B%λ/2

with a scalar multiple (less or equal to one) of either χA\ or χAr, so we
may conclude that Ft

λ — FQ tends σ* to zero, i.e. Fι is σ*-continuous at
t = 0.

Step k. SupposeF\...,Fk~ ι andL k ~\t) defined.
A: Definition of Fk on Sk_x: Let Fr

k = Fk'x for r E Sk_x.
B: Definition of Fk on Sk\Sk_x: First fix r E Sk_\Sk_2 and write

m(r)

i=\

where {JSΓJJ^ is a partition of Ω, belonging to the σ-algebra generated by
{&: Kk) and {B^λ: q E Sk_2) and where the \r

t are rational coeffi-
cients with 2~k<λr

i< 1. Now find a strictly positive rational number
δ(r), such that

8(r) < min{dist(r, Sk^\{r})9 L ^ ^ r Γ ^ m i n ^ , 1 - λ- λ1; < 1}}.

Note that the intervals {]r9 r + δ(r)[: rGS' J t_1\S i t_2} are mutually
disjoint.

Now fix s E Sk\Sk_ι: if s is of the form s = r + n~ι for some
r E iSί

A:_1\5t

A:_2 with #~* < 8(r) (in which case r is unique), define

Fj< = Fs

k-1 +[l -\r-s\/8(r)] χBrχArBR'*

if n equals i + (j — l)m(r) modulo 2km(r), where 1 < j < 2* and 1 < /
<m(r) .

If i E Sj\Sk_! is not of the above form, define simply Fk — Fk~ι.
C: Definition of Fk on T\Sk: First find for each s E Sf\Sk_x a

strictly positive number ε^) which is smaller than dist(.?9 Sk{s})/2 and
Lk~ι(s)~ι multiplied by the minimum of the λ's and (1 — λ)'s, where λ
runs through the (finitely many) values different form zero, which Fk~λ

assumes.
Note again that the intervals []s — ε(s), s + ε(s)[: s E S/\Sk_ι} are

mutually disjoint.
Now fix / E T\Sk; if / is such that there is a (necessarily unique)

s E Sf\Sk_λ with t E]s — ε(s), s + ε(s)[ we define

F," = F*-1 +[1 - \s-t\Ms)] [Fj< - /?"•].

If t is not of this form, define simply Fk — Fk~\
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We have defined Fk on all of T and we now have to check properties
(a)to(f):

(a) Let r EL Sk_\Sk_2\ then it follows from the definition of Brλn and
the hypothesis

0<Fr

k-{ < 1 - 2 " *

that for n G N, 1 < i < ιw(r), 1 <y < 2*

0 < F / " 1 + χ ^ χ ^ r INT/' < 1 - 2-*-1.

The factor [1 — | r — s|/δ(r)] is chosen small enough to get for s G

0<Fk< 1 - 2 " * - '

and the factor [1 — | s — t |/ε(ί)] is small enough to get for t G

O ^ ^ ^ l - 2 - * - 1 .

Finally, in order to show that

| |F*| | = sup{F/: s £ 5Λ^_,} = 1 - 2"*"1

find, for ε > 0, r G Sk_ι\Sk_2 and λ1; such that λ7; < 2'k + ε. If n is
sufficiently large and n equals /modulo 2k. Then, for s = r + n~ι

(b) and (f): Since jut(^) = 2"*, we see that Ft

k differs from F ^ " 1 at
most on a set of measure 2~k, from which (f) and (b) follow.

(c): Fk is AS^.J-hopeless at every r 6 ^ . 2 by induction hypothesis.
For r G Sk_x\Sk_2 write

2* m(r)

FΓι=F,k= 2 Σλ',χWnilyV
7 = 1 1 = 1

For every ̂ ί, contained in J8Γ Π ̂  for some / andy, we have

lim μ{ω GA: BR'*' = 1 - λ;} = μ U ) λ y (2 ~ λ';)
H * 0 0

It follows that given ε > 0 for n large enough and equal to i + (j — l)m(r)
modulo 2km(r) we have for s = r + w"1

(d) and (e): obvious.
Finally we have to show that Fk is σ*-continuous. In view of (e) we

have to check the σ*-continuity only at Sk_λ.
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Let (tj)jL\ G T tend to s0 E Sk_γ. By passing to a subsequence we
may assume that, for each s E S/\Sk_ι there is at most one tj which lies
in ]s — ε(s), s + ε(s)[. Hence

where c} is a constant between 0 and 1, C, is a set depending only on
{BRfλ: q E Sk_2) and {&ι}t<k while Sj is some element of Sk_x\Sk_2

(and λy and k} are some elements of Q Π ]0,1] and N respectively). If
j Φ i then either Sj Φ s, or k} φ ky, so we may apply Lemma 2.4 and
conclude that Fk — Fk~λ tends σ* to zero. Since

11 ' /

we see that Fk is indeed σ*-continuous. This finishes the induction step.
It follows from (f) that the sequence {Fk)^λ is II IIrconvergent

uniformly in ί E Γ, hence

Fg= M l , - limF,*

is a well-defined element of σ*C(Γ, L00). It follows from (a), (b) and (c) of
the induction hypothesis that F satisfies the corresponding assumptions of
2.3 if we let D = Q Π [0,1[. This finishes the proof of Prop. 2.3 and
therefore of Theorem A. D

One may ask for which compact spaces K the norm attaining opera-
tors are dense in B(L\ C{K)). It is easily deduced from the representation
1.1 that this is the case if K has a dense set of isolated points (observed in
[5]). On the other hand the above construction may be applied to some
other concrete examples of compact spaces. The author has checked this,
apart from [0,1], for the torus, the Cantor set, a countable product of the
one point compactification of N and for products of these compact spaces
with an arbitrary compact space. This leaves of course open the question
of characterising the class of compact spaces K for which the norm
attaining operators are dense in B(L\ C(K)).

3. We now pass to the proof of Theorem B. It is based on a simple
lemma. In the sequel K will denote a compact Hausdorff space.

3.1. LEMMA. Let W be a weakly compact subset of the space ̂ (K) of
Radon measures on K and let μ0 E ?ίt(K).

Forε>0 there is an operator S: <ΰl(K) -* 91L(ΛΓ), IIS II = 1 such that
(i) there is f0 E C(ϋΓ), | |/ 0 | | - 1 with

(ii) ||Sμ - μ\\<εfor all μ G W.
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Proof. Take the Hahn-decomposition μ0 = μ$ ~~ IH °f Mo
positive and negative part and find a partition of K into two Borel sets
and B~ such that

Since F is weakly compact, it is uniformly inner regular ([2], Lemma
VI.2.13) and we can therefore find compact subsets K+ and K~ of B+ and
B~ respectively such that

for all μ G W.
Fix points x + G # + and x~G ίΓ" and let F: K -~> Kbe the map

ίx for* G ί + ,
+ forx (ΞB+\K+ ,

[~ foΐx G B\K~.

Clearly Fis Borel measurable. Define S: 911 (JSΓ) -> 9!t( JSΓ) by

F(μ) denoting the image measure of μ under F. Evidently ||5ΊI = 1 and
115/t - μ|| < ε, for ju e ίF. Find/0 E C(ϋΓ), | |/ 0 | | = 1 such that/0 equals 1
onK+ and -1 on#~; then </0, Sμo)= | |μ o | | . D

o/ Theorem B. Let Λ*: X* -» 9H(ίΓ) denote the adjoint of A
and W the image of the closed unit ball of X* under A*. In view of the
weak compactness of W we may apply StegalΓs theorem ([7], p. 176) to
find an operator T: ^(K)-* <ΐfϊi(K) (of rank 1) such that | |Γ | | <
ε/(2IUII) and such that Wλ - (Id + T)W has an element, say μ0, of
maximal norm, i.e.

| |μ o | | = sup{||μ||: μ G W,} = ||(Id + T)A*\\.

Now we apply Lemma 3.1 to find S: <Vl(K) -> 9H(A"), II5II = 1,
such that

(ϊ)sup{\\Sμ-μ\\:μEW}<ε/2,
(ii) there is/0 e C W , ll/oll = 1 with

Denote A* the operator S(ϊd + T)A*.

\\A*-A*\\ < \\SA* -A*\\ + \\STA*\\

< e / 2 + | | S | | ||ΓH M | | < ε .
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The adjoint of A*, namely i** : C(K)** -* X** given by i * * =
y4**(Id + Γ*)^*, takes C(K)** into X, as Λ** does so. Finally let A:
C(K) -> X be the restriction of i * * to C(iO It is plain to justify the
above introduced notation, i.e. that A* is the adjoint of A. Also \\A — A\\
< εand

H i l l - ι ι i * ι ι<ι i ( id
On the other hand

= sup{</0, S(U + r μ V ) : HJC H < 1}

which shows readily that || Af0 II = \\A ||. D
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